[go: up one dir, main page]

JP4774378B2 - 結着剤を使用した磁石およびその製造方法 - Google Patents

結着剤を使用した磁石およびその製造方法 Download PDF

Info

Publication number
JP4774378B2
JP4774378B2 JP2007048358A JP2007048358A JP4774378B2 JP 4774378 B2 JP4774378 B2 JP 4774378B2 JP 2007048358 A JP2007048358 A JP 2007048358A JP 2007048358 A JP2007048358 A JP 2007048358A JP 4774378 B2 JP4774378 B2 JP 4774378B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
sio
test piece
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007048358A
Other languages
English (en)
Other versions
JP2007281433A (ja
Inventor
祐一 佐通
又洋 小室
尊雄 今川
隆 安原
豊 松延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2007048358A priority Critical patent/JP4774378B2/ja
Priority to US11/684,889 priority patent/US7914695B2/en
Priority to KR1020070023895A priority patent/KR100945068B1/ko
Priority to EP20070005161 priority patent/EP1835514A3/en
Priority to CN2007100863129A priority patent/CN101055780B/zh
Publication of JP2007281433A publication Critical patent/JP2007281433A/ja
Priority to KR1020090114784A priority patent/KR20090127118A/ko
Application granted granted Critical
Publication of JP4774378B2 publication Critical patent/JP4774378B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は結着剤を使用した磁石並びに該磁石の製造方法に関する。
永久磁石は近年著しくその性能が向上している。多く使用されている永久磁石は磁石材料を焼結して製造した焼結磁石である。この焼結磁石は、磁石としての性能が優れているが、生産性に関し課題が多い。
焼結磁石と共に磁石材料を樹脂で固める磁石が研究されている。この磁石は、熱硬化性エポキシ樹脂で磁石材料を接着することで機械的強度を得るものである。しかし、エポキシ樹脂を使用した磁石は、現状では、磁気特性がかなり悪くなる課題があり、十分な磁気特性が得られていない。
エポキシ樹脂を使用した磁石は次の特許文献1乃至3に開示されており、これらの特許文献では、磁気特性の改善等に関する技術が開示されている。
一方、これらエポキシ樹脂とは異なる結着材の構成として、特許文献4には希土類磁石の粉末粒子をSiO2 および/又はAl23粒子で結着した磁石が記載されている。また、特許文献5には酸化物磁性粉の微小粒子が分散分布した酸化物ガラス質が充填された無機ボンド磁石が記載されている。
特開平11−238640号公報 特開平11−067514号公報 特開平10−208919号公報 特開平10−321427号公報 特開平8−115809号公報
従来のエポキシ樹脂を結着材として使用した磁石では、磁石材料とエポキシ樹脂との混合物を圧縮成形する際、エポキシ樹脂が磁粉を押しのけるため磁石材の充填量をあげられない問題がある。このためエポキシ樹脂をバインダーとして使用する磁石では、性能の高い磁石が作りにくい問題がある。
また、エポキシ樹脂とは異なるバインダー構成をとる上記特許文献4においても、結着材となるSiO2 等は粒子状で構成され、磁石への粉末粒子への浸透性が悪いという問題がある。更に、上記特許文献5においては、結着材の形成が高温工程であり、酸化物磁性粉を用いることが前提となる。このため、非酸化物の磁性粉に比べ、形成される磁石と特性が劣ることとなる。
本発明の目的は、磁石材を結着材で結着した磁石において、磁気特性がより改善された磁石を、あるいは該磁石の製造方法を提供することである。
本発明では、次の特徴の少なくとも一つにより前記目的を達成する。
本発明の一つの特徴は、その前駆体溶液が磁石材料と濡れ性が良好な結着材で、磁石材料を結着したことである。
本発明の他の一つの特徴は、前駆体溶液が磁石材料と濡れ性が良好な結着材としてSiO2 を使用し、SiO2 で磁石材を結着したことである。
本発明の他の一つの特徴は、本願特有の結着材の製造方法に起因する。即ち、結着材製造の条件によっては、アルコキシ基が残存し、最終的に生成される結着材に上記SiO2 の他、アルコキシ基が含まれる構成となる。
本発明のさらに他の特徴は、粉体状の磁石材を成形し、磁石粉体の成形体に濡れ性が良好な結着材溶液を含浸させて前記形成された磁石粉末を結着したことである。
他にいろいろな特徴を有するが、これらは実施の形態の中で説明する。
本発明を用いることにより、磁石材を結着材で結着した磁石において、磁気特性を改善することが可能となる。
本発明に係る磁石の製造プロセスの一例を図1に示す。工程1では、粉体状の磁石材料を生成する。詳細な生成方法については、以下の各実施例で説明する。
工程2では、前記粉体状の磁石材料を圧縮成形する。例えば回転機に使用する永久磁石を製造する場合は、この工程2で、回転機に使用する永久磁石の最終磁石形状に沿って圧縮成形することが可能である。以下に詳述する方法によれば、工程2で圧縮成形された磁石形状の寸法関係がその後の工程であまり変化しない。このため高い精度で磁石を製造することが可能である。永久磁石型回転機に要求される精度を達成できる可能性が高い。例えば、磁石内蔵型の回転機に使用される磁石に要求される磁石の制度を得ることが可能である。これに対し、従来の焼結磁石では、製造される磁石の寸法制度がたいへん悪く、磁石の切削加工が必要である。このことは作業性を悪くするだけでなく、切削加工により磁気特性が劣化する心配がある。
工程3では、圧縮成形された磁石成形体にSiO2 の前駆体の溶液を含浸する。この前駆体は、圧縮成形された磁石成形体に対する濡れ性の良好な材料である。磁石成形体に対する濡れ性の良好な結着剤の溶液を含浸することで、磁石成形体を構成する磁石粉体の表面を前記結着剤が被い、結果として多数の粉体を良好につなぎ合わせる作用を為す。また良好な濡れ性の作用で結着剤の溶液が磁石成形体の細部に入り込むので、量的に少ない結着剤で良好な結着効果が得られる。また良好な濡れ性を利用しているので、エポキシ樹脂の使用に比べ設備が比較的シンプルで安価になる。
工程4は、前記体を熱処理することでSiO2 を結着剤として磁石材料を結着した磁石を得ることができる。以下に詳述するように、工程4での処理温度は比較的低い温度であり、この熱処理で前記磁石成形体の形状や寸法が変化することがほとんど無く、最終的に製造された磁石の形状や寸法関係の精度がたいへん高い。
上記工程3で使用される、結着剤溶液中のSiO2 の前駆体であるアルコキシシロキサン,アルコキシシランとしては化学式2,化学式3に示すような末端基及び側鎖にアルコキシ基を有する化合物が挙げられる。
Figure 0004774378
Figure 0004774378
また、溶媒のアルコールにはアルコキシシロキサン,アルコキシシラン中のアルコキシ基と同じ骨格の化合物が好ましいがこれらに限られるものではない。具体的にはメタノール,エタノール,プロパノール,イソプロパノール等が挙げられる。また、加水分解及び脱水縮合用触媒としては酸触媒,塩基触媒,中性触媒のいずれでも良いが中性触媒が金属の腐食を最小限に抑えられるので最も好ましい。中性触媒としては、オルガノスズ触媒が効果的で、具体的にはビス(2−エチルヘキサノエート)スズ,n−ブチルトリス(2−エチルヘキサノエート)スズ,ジ−n−ブチルビス(2−エチルヘキサノエート)スズ,ジ−n−ブチルビス(2,4−ペンタンジオネート)スズ,ジ−n−ブチルジラウリルスズ,ジメチルジネオデカノエートスズ,ジオクチルジラリル酸スズ,ジオクチルジネオデカノエートスズ等が挙げられるがこれらに限られるものではない。また、酸触媒としては希塩酸,希硫酸,希硝酸,蟻酸,酢酸等が、塩基触媒としては水酸化ナトリウム,水酸化カリウム,アンモニア水等が挙げられるがこれらに限られるものではない。
結着剤溶液中のSiO2 の前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量は体積分率として5vol% 以上かつ96vol% が好ましい。アルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が5vol%未満になると、磁石中の結着剤の含有率が低いため、硬化後の結着剤の材料としての強度がやや小さくなる。一方、アルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総量の含有量が96vol% 以上になると、SiO2 の前駆体であるアルコキシシロキサン,アルコキシシランの高分子量化の反応が速いため、結着剤溶液の増粘速度も速くなる。これは結着剤溶液の適正粘度の制御がより困難であることを意味しており、この結着剤溶液を含浸法に用いることが先に説明した材料に比べ難しくなる。
結着剤溶液中のSiO2 の前駆体であるアルコキシシロキサン又はアルコキシシランと水とは、以下の化学式4,化学式5に示した加水分解反応が生じる。ここで化学反応式は加水分解が部分的に生じた時の反応式である。
Figure 0004774378
Figure 0004774378
この際、水の添加量がアルコキシシロキサン又はアルコキシシランの加水分解反応の進行度を支配する因子の一つとなる。この加水分解反応は硬化後の結着剤の機械的強度が大きくするためには重要である。アルコキシシロキサン又はアルコキシシランの加水分解反応が発生していないと、その次に起こるアルコキシシロキサン又はアルコキシシランの加水分解反応物同士の脱水縮合反応が進行しないからである。この脱水縮合反応生成物がSiO2 であり、このSiO2 が磁粉との接着性が高く、結着剤の機械的強度を大きくする重要な材料となるからである。更に、シラノールのOH基が磁粉表面のO原子又はOH基と相互作用が強く高接着化に寄与するからである。しかしながら、加水分解反応が進みシラノール基の濃度が高くなるとシラノール基を含む有機ケイ素化合物(アルコキシシロキサン又はアルコキシシランの加水分解生成物)同士の脱水縮合反応が進行し、有機ケイ素化合物の分子量が大きくなり、結着剤溶液の粘度は高くなる。これは含浸法に用いる結着剤溶液としては適正な状態ではない。従って、結着剤溶液中のSiO2 の前駆体であるアルコキシシロキサン又はアルコキシシランに対する適正な水の添加量が必要となる。ここで、絶縁層形成処理液中の水の添加量として、化学反応式1,2に示した加水分解反応における反応当量の1/10〜1が好ましい。水の添加量が化学反応式1,2に示した加水分解反応における反応当量の1/10以下では、有機ケイ素化合物のシラノール基の濃度が低いため、シラノール基を含む有機ケイ素化合物と磁粉表面との相互作用が低く、また、脱水縮合反応が生じにくいため生成物中にアルコキシ基が多量に残存したSiO2 が生成するため、SiO2 中に欠陥部が多数発生し、強度の低いSiO2 が生じる。一方、水の添加量が化学反応式1,2に示した加水分解反応における反応当量の1より大きくなると、シラノール基を含む有機ケイ素化合物は脱水縮合が発生し易くなり、結着剤溶液が増粘するため、磁粉と磁粉の隙間に結着剤溶液は浸透できなくなり含浸法に用いる結着剤溶液としては適正な状態ではない。結着剤溶液中の溶媒には通常アルコールを用いる。それは結着剤溶液に用いる溶媒にはアルコキシシロキサン中のアルコキシ基は解離反応が速く、溶媒のアルコールと置換し平衡状態にあるからである。そのため溶媒のアルコールには沸点が水より低く粘度の低いメタノール,エタノール,n−プロパノール,iso−プロパノールが好ましい。しかし、化学的には溶液の安定性が若干低下するものの、結着剤溶液の粘度が数時間で増加しなく、かつ、沸点が水より低い溶媒であれば本発明に用いることが可能で、アセトン等のケトン類などの水溶性溶媒であれば適用できる。
以上説明した本発明の結着剤の一態様として、以下の特徴を挙げることができる。
まず、SiO2 の前駆体は、アルコールを溶媒とする溶液で構成される。水は加水分解反応を調整するために添加されるにすぎない。水溶液ではなくアルコールをベースとした溶液を使って含浸処理することにより、熱硬化後に水がほとんど残存しないこととなる。永久磁石内の水の残存を抑えているため、酸化等により経時的に磁気特性が劣化することもなくなる。
この際、SiO2 の前駆体として、アルコキシシロキサン,アルコキシシラン等を用いて加水分解を行っているため、メトキシが残存することが考えられる。この場合には、製造された永久磁石に磁粉、磁粉を結着するバインダーの他、メトキシが含有されることとなる。
次に、上記工程により生成した磁石は、NdFeB等の希土類の磁石用磁粉を、SiO系のバインダーで結着した構造となる。このバインダーはアモルファス状(非結晶状態)の連続膜構造をとる。上記のように、バインダーはSiO2で構成されることを基本とするが、アモルファス状であるため、部分的にSiO等の組成が存在することも考えられる。主としてSiとOとからなる連続膜、即ちSiO系の連続膜からなるバインダーが形成されることが考えられる。
次に、バインダーとして、SiO系以外の酸化物ガラス質を用いる構成について検討する。上述のように、本発明の製造工程を踏むためには、含浸溶液としての前駆体には様々な要件が課せられる。低粘度であること、浸透性が高いこと、安定性が高いこと、比較的低温で硬化すること、等である。これらの要件を満たすものとして、SiO系のバインダーが最良であると考えられるが、本製造工程に適した要件を満たすものであれば、他の酸化物ガラス質をバインダーとして用いることによる効果も期待できる。
次に、本発明に係る磁石製造プロセスの他の例を図2に示す。ここでは、粉体状の磁石材料を生成後、圧縮成形前に絶縁処理を施す工程が加わる点が、上記で説明した図1と異なる。
この絶縁処理工程では、磁粉表面のできるだけ全面にさらにできるだけ均一に絶縁層を作ることが望ましく、具体的な処理方法は後述する。磁石が回転機など、いろいろな機器に使用される場合、交流磁場で使用される場合が多い。例えば回転機では、巻線により作られ磁石に作用する磁束が周期的に変化する。このように磁束が変化する場合、磁石に渦電流が発生し使用される機器の効率が低下する恐れがある。磁粉表面を絶縁層で被うことによりこの渦電流を抑え、回転機の効率低下を抑えることができる。
磁石の使用用途として高調波を含む高周波磁界が磁石に対して印加される条件下では、希土類磁石粉体表面に無機絶縁膜を形成されていることが好ましい。このような理由で希土類磁石粉体表面に無機絶縁膜を形成し、無機絶縁膜としてリン酸塩化成処理膜を適用するのが良い。リン酸塩化成処理液にリン酸,マグネシウム,ほう酸を用いた場合、以下のような組成が良い。リン酸量は1〜163g/dm3が望ましく、163g/dm3より大きいと磁束密度の低下を招き、1g/dm3 より小さいと絶縁性が悪くなる。また、ほう酸量はリン酸1gに対して0.05〜0.4gが望ましくこの範囲を超えると絶縁層の安定性が悪くなる。磁粉表面の全面に絶縁層を均一に形成するためには、絶縁層形成処理液の磁粉に対する濡れ性を向上させることが有効である。これには界面活性剤の添加が望ましい。こうした界面活性剤としては、例えば、パーフルオロアルキル系,アルキルベンゼンスルホン酸系,両性イオン系、またはポリエーテル系の界面活性剤が挙げられ、その添加量は、絶縁層形成処理液中に0.01〜1重量%含有させることが望ましく、0.01重量%未満では表面張力を下げて磁粉表面を濡れさせる効果が不十分であり、1重量%を超えてもそれ以上の効果は望めず不経済である。
また、防錆剤の量は0.01〜0.5mol/dm3が望ましく、0.01mol/dm3 未満では磁粉表面の錆の抑制が難しく、0.5mol/dm3 より多くしても以上の効果は望めず経済的でない。
リン酸塩化成処理液の添加量は、希土類磁石用磁粉の平均粒径に依存する。希土類磁石用磁粉の平均粒径が0.1 〜500μmの場合、希土類磁石用磁粉1kgに対して300〜25mLが望ましい。300mLより多いと磁粉表面の絶縁膜が厚くなりすぎ、また、錆が発生し易くなるために磁石作製時の磁束密度の低下を招き、25mLより少ないと絶縁性が悪く、処理液の濡れない部分で錆の発生量が多くなり、磁石の特性劣化を引起す恐れがある。
コート膜形成処理液中の希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤させるのは、希土類フッ化物又はアルカリ土類金属フッ化物ゲルがゼラチン状の柔軟な構造を有することと、アルコールが希土類磁石用磁粉に対して優れた濡れ性を有するからである。また、ゲル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下のレベルまで粉砕する必要があるのは、希土類磁石用磁粉表面に形成されたコート膜が均一厚になり易いからである。更に、アルコールを主成分とした溶媒にすることにより、非常に酸化され易い希土類磁石用磁粉の酸化の抑制が可能となる。
更に、磁粉の絶縁性並びに磁気特性の向上を図ることを目的とした無機絶縁膜としてはフッ化物コート膜が望ましい。このような理由で希土類磁石粉体表面にフッ化物コート膜を形成する場合、フッ化物コート膜形成処理液中の希土類フッ化物又はアルカリ土類金属フッ化物の濃度に関しては希土類磁石用磁粉表面に形成する膜厚に依存するが、希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、ゲル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下のレベルまで粉砕され、かつアルコールを主成分とした溶媒に分散された状態を保つことが重要で、希土類フッ化物又はアルカリ土類金属フッ化物の濃度として200g/dm3から1g/dm3となる。
希土類フッ化物コート膜形成処理液の添加量は、希土類磁石用磁粉の平均粒径に依存する。希土類磁石用磁粉の平均粒径が0.1 〜500μmの場合、希土類磁石用磁粉1kgに対して300〜10mLが望ましい。これは処理液量が多いと溶媒の除去に時間を要するだけでなく、希土類磁石用磁粉が腐食し易くなるためである。一方、処理液量が少ないと希土類磁石用磁粉表面に処理液の濡れない部分が生じるためである。以上の事項に関し、表1には希土類フッ化物,アルカリ土類金属フッ化物コート膜について、処理液として有効な濃度等を纏めている。
Figure 0004774378
以上、図1,図2を用いて本発明に係る磁石製造プロセスの例を述べたが、具体的な実施例については以下に説明していく。
本実施例において、希土類磁石用磁粉には、組成を調整した母合金を急冷することにより作製したNdFeB系の薄帯を粉砕した磁性粉を用いた。NdFeB系母合金は鉄,Fe−B合金(フェロボロン)にNdを混合して真空あるいは不活性ガス中または還元ガス雰囲気中で溶解し組成を均一化しされている。必要に応じて切断した母合金を単ロールや双ロール法などのロールを用いた手法で、回転するロールの表面に溶解させた母合金をアルゴンガスなどの不活性ガスあるいは還元ガス雰囲気で噴射急冷し薄帯とした後、不活性ガス中あるいは還元性ガス雰囲気中で熱処理する。熱処理温度は200℃以上700℃以下でありこの熱処理によりNd2Fe14B の微結晶が成長する。薄帯は10〜100μmの厚さでありNd2Fe14Bの微結晶の大きさは10から100nmである。
Nd2Fe14Bの微結晶が平均30nmの大きさの場合、粒界層はNd70Fe30 に近い組成であり、単磁区臨界粒径よりも薄いためにNd2Fe14B の微結晶内に磁壁が形成されにくい。Nd2Fe14B 微結晶の磁化はそれぞれの微結晶で磁気的に結合しており磁化の反転は磁壁の伝搬によって起こっていると推定されている。磁化反転を抑制するためのひとつの手法として薄帯を粉砕した磁粉同士の磁気的結合をしやすくすることが挙げられる。そのために、磁粉間の非磁性部をできるだけ薄くすることが有効となり、粉砕粉はCoを添加したWC製超硬金型内に挿入後上下パンチでプレス圧力5t−20t/cm2 で圧縮成形しプレス方向に垂直な方向で磁粉間の非磁性部が少ない。これは磁粉が薄帯を粉砕した扁平粉であるために、圧縮成形した成形体で扁平粉の配列に異方性が生じ、プレス方向に垂直方向に扁平粉の長軸(薄帯の厚さ方向と垂直な方向に平行)方向がそろうことによる。扁平粉の長軸方向がプレス方向の垂直方向に向きやすくなる結果、成形体においてプレス方向の垂直方向は、プレス方向よりも磁化が連続しておりそれぞれの粉においてパーミアンスが大きくなるため、磁化反転し難くなる。このため成形体のプレス方向とプレス方向に垂直な方向では減磁曲線に差が生じてくる。10×10×10mmの成形体において、プレス方向に垂直方向に20kOeで着磁し減磁曲線を測定すると残留磁束密度(Br)は0.64T、保磁力(iHc)は12.1kOeであるのに対し、プレス方向に平行方向で20kOeの磁界で着磁後、着磁方向で減磁曲線を測定するとBr0.60T ,iHc11.8kOe であった。このような減磁曲線の差は成形体に使用している磁粉に扁平粉を用いており、その扁平粉の向きが成形体内で異方性を有しているために生じているものと考えられる。
このような減磁曲線の差は成形体に使用している磁粉に扁平粉を用いており、その扁平粉の向きが成形体内で異方性を有しているために生じているものと考えられる。個々の扁平粉の結晶粒は10〜100nmと小さく、その結晶方位の異方性は少ないが、扁平粉の形状が異方性をもつため、扁平粉の配列方向に異方性がある場合には磁気的にも異方性が生じることになる。このような成形体の試験片に下記1)〜3)のSiO2 前駆体溶液を含浸し熱処理した。実施した工程を以下に説明する。
結着剤であるSiO2前駆体には以下の3つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を5mL,水0.96mL,脱水メチルアルコール95mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
2)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
3)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を100mL,水3.84mL,ジラウリン酸ジブチル錫0.05mLを混合し、4時間25℃の温度で放置した。
1)〜3)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14B の磁粉を成形型に充填し、16t/cm2 の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
図3に前記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片の断面部のSEM観察結果の一例を示す。図3(a)が二次電子像、(b)が酸素面分析像、(c)は珪素面分析像である。(a)に示すように扁平粉が異方性をもって堆積しており部分的にクラックが発生している。また、扁平粉の表面及び扁平粉内部のクラックに沿って酸素及び珪素が検出されている。このクラックは圧縮成形時に発生したものであり、含浸処理前は空洞になっている。このことから、SiO2 前駆体溶液は磁粉中のクラック内部まで含浸されていることが分かった。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2含浸ボンド磁石で3.0% でありSiO2含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石(比較例1)の場合3%近い値であった。これは含浸処理によりクラックを含む粉末表面がSiO2により保護されるため酸化等の腐食が抑制され、不可逆熱減磁率が低減されたからである。即ち、SiO2 前駆体による含浸処理によりクラックを含む粉末表面が保護されるため酸化等の腐食が抑制され、不可逆熱減磁率が低減される。不可逆熱減磁の抑制だけでなく、PCT試験や塩水噴霧試験でも含浸処理磁石の方が減磁の少ない結果が得られている。
更に(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片について大気中で225℃に1時間保持し冷却後20℃で減磁曲線を測定した。磁界印加方向は10mm方向であり、最初に+20kOeの磁界で着磁後±1kOeから±10kOeの磁界でプラスマイナス交互に磁界を印加して減磁曲線を測定した。
その結果を図4に示す。ここでは、上記2)の条件で含浸処理した磁石と、後述する、エポキシ樹脂をバインダーとして15vol% 含有した圧縮成形ボンド磁石と、の減磁曲線を比較している。図4の横軸は印加した磁界、縦軸は残留磁束密度を示す。含浸処理した磁石は磁界が−8kOeよりも負側に大きな磁界が印加されると磁束が急激に低下する。圧縮成形ボンド磁石は含浸処理した磁石よりもさらに磁界の絶対値が小さい値で磁束が急激に低下し、−5kOeよりも負側の磁界で磁束の低下が著しい。−10kOeの磁界印加後の残留磁束密度は、含浸処理磁石の場合0.44、圧縮成形ボンド磁石では0.11Tであり含浸処理磁石の残留磁束密度は圧縮成形ボンド磁石の値の4倍となっている。これは圧縮成形ボンド磁石が225℃で加熱中に各NdFeB粉の表面やNdFeB粉のクラック表面が酸化することで各NdFeB粉を構成しているNdFeB結晶の磁気異方性が低下し、その結果保磁力が減少し負の磁界印加により磁化が反転し易くなったためと考えられる。これに対し、含浸処理磁石ではNdFeB粉及びクラック表面がSiO2 膜で被覆されているため大気中加熱時の酸化が防止された結果、保磁力の減少が少ないものと考えられる。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2含浸前で2MPa以下であるが、SiO2 含浸熱処理後は30MPa以上、本実施例中の2),3)のSiO2 前駆体溶液を用いたときは100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。しかし、10000回転以下の通常のモーターとして使用する限りにおいては、渦電流損の発生は小さいため問題は無い。
本実施例の結果から、本発明の低粘度のSiO2前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
尚、本実施例と後述の(実施例2)〜(実施例5)について、結着剤1)〜3)を用いた場合の磁石特性を、表2にまとめている。
Figure 0004774378
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2前駆体には以下の3つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水0.96mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
2)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
3)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を100mL,水9.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
1)〜3)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/minになるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は70MPa以上、本実施例中の2),3)のSiO2 前駆体溶液を用いたときは100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損がやや増加するが、使用を妨げるほどの障害とはならない。
本実施例の結果から、本発明の低粘度のSiO2前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2 前駆体には以下の3つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)−CH3を25mL,水5.9mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
2)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4)を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mL を混合し、2昼夜25℃の温度で放置した。
3)CH3O−(Si(CH3O)2−O)m−CH3(mは6〜8、平均は7) を25mL,水4.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
1)〜3)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO2前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。しかし、この抵抗値の減少はそれほど大きな問題ではない。例えばモーターとして使用する場合、渦電流損はやや増加するが使用を妨げるほどの問題とはならない。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2前駆体には以下の3つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)−CH3を25mL,水5.9mL ,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mL を混合し、2昼夜25℃の温度で放置した。
2)C25O−(Si(C25O)2−O)−CH3を25mL,水4.3mL ,脱水エチルアルコール75mL,ジラウリン酸ジブチル錫0.05mL を混合し、3昼夜25℃の温度で放置した。
3)n−C37O−(Si(C25O)2−O)−n−C37を25mL,水3.4mL,脱水iso−プロピルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、6昼夜25℃の温度で放置した。
1)〜3)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO2前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2含浸前で2MPa以下であるが、SiO2 含浸熱処理後は80MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損の発生がやや増加するが、この程度の抵抗値の減少は問題ではない。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約2倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2前駆体には以下の3つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水9.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、1昼夜25℃の温度で放置した。
2)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水9.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
3)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を100mL,水9.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mL を混合し、4昼夜25℃の温度で放置した。
1)〜3)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1)〜3)のSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四
探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は130MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
尚、磁石の比抵抗については焼結型の希土類磁石に比べて、本発明の磁石は約10倍の値を有したが、圧縮型の希土類ボンド磁石と比較して約1/10の値となった。渦電流損の発生がやや増加するが、この程度の抵抗値の減少は問題ではない。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は3〜4倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成する処理液は以下のようにして作製した。
(1)水に溶解度の高い塩、例えばLaの場合は酢酸La、または硝酸La4gを100mLの水に導入し、振とう器または超音波攪拌器を用いて完全に溶解した。
(2)10%に希釈したフッ化水素酸をLaF3が生成する化学反応の当量分を徐々に加えた。
(3)ゲル状沈殿のLaF3が生成した溶液に対して超音波攪拌器を用いて1時間以上攪拌した。
(4)4000〜6000r.p.mの回転数で遠心分離した後、上澄み液を取り除きほぼ同量のメタノールを加えた。
(5)ゲル状のLaF3 を含むメタノール溶液を攪拌して完全に懸濁液にした後、超音波攪拌器を用いて1時間以上攪拌した。
(6)(4)と(5)の操作を酢酸イオン、又は硝酸イオン等の陰イオンが検出されなくなるまで、3〜10回繰り返した。
(7)最終的にLaF3 の場合、ほぼ透明なゾル状のLaF3 となった。処理液としてはLaF3が1g/5mLのメタノール溶液を用いた。
その他の使用した希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成処理液について、表3に纏めた。
Figure 0004774378
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
NdF3 コート膜形成プロセスの場合:NdF3 濃度1g/10mL半透明ゾル状溶液(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して15mLのNdF3 コート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のNdF3コート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10-5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10-5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記希土類フッ化物又はアルカリ土類金属フッ化物コート膜を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
本実施例の希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、TbF3とDyF3を、又効果は小さいがPrF3をコート膜形成に用いた場合、磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は50MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上TbF3とDyF3とをコート膜形成に用いた時は磁気特性大幅向上が可能であることが分かった。
本実施例において、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用い
た。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
PrF3コート膜形成プロセスの場合:PrF3濃度0.1g/10mL 半透明ゾル状溶液を用いた。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して1〜30mLのPrF3 コート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のPrF3 コート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10-5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10-5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO2 前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記PrF3コート膜を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
本実施例のPrF3コート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、効果は小さいが磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って渦電流損の発生は小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は2〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上PrF3 をコート膜形成に用いた時は磁気特性向上が可能であることが分かった。PrF3 をコート膜形成した希土類磁粉を用いた磁石は磁気特性,曲げ強度,信頼性が全体的に向上しておりバランスの取れた磁石であることが分かった。
本実施例において、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
DyF3コート膜形成プロセスの場合:DyF3濃度2〜0.01g/10mL 半透明ゾル状溶液を用いた。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して10mLのDyF3 コート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のDyF3コート膜形成処理を施した希土類磁石用磁粉を2〜5torr の減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10-5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10-5torrの減圧下で、700℃,30分の熱処理を行った。
結着剤であるSiO2 前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL ,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記DyF3コート膜を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
本実施例のDyF3コート膜を形成した希土類磁粉を用いた磁石は後述する絶縁膜として機能するだけでなく、磁石の保磁力向上に寄与可能であることが分かった。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は40MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は約20%、曲げ強度は同等〜3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能、その上TbF3とDyF3とをコート膜形成に用いた時は磁気特性大幅向上が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1Lにリン酸20g,ほう酸4g,金属酸化物としてMgO,ZnO,CdO,CaOまたはBaOの4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製),EF−122(トーケムプロダクツ製),EF−132(トーケムプロダクツ製)を0.1wt% になるように加えた。防錆剤としてはベンゾトリアゾール(BT),イミダゾール(IZ),ベンゾイミダゾール(BI),チオ尿素(TU),2−メルカプトベンゾイミダゾール(MI),オクチルアミン(OA),トリエタノールアミン(TA),o−トルイジン(TL),インドール(ID),2−メチルピロール(MP)を0.04mol/Lになるように加えた。
リン酸塩化成処理膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。使用したリン酸塩化成処理液の組成を表4に示す。
Figure 0004774378
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mLのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水4.8mL ,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。
従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1Lにリン酸20g,ほう酸4g,金属酸化物としてMgO4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt% になるように加えた。防錆剤としてはベンゾトリアゾール(BT)を用い、その濃度として0.01〜0.5mol/Lになるように加えた。
リン酸塩化成処理膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mLのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4)を25mL,水4.8mL ,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2 の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO 2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1Lにリン酸20g,ほう酸4g,金属酸化物としてMgO4gを溶解し、防錆剤としてベンゾトリアゾール(BT)を0.04mol/Lになるように加えた。界面活性剤としてEF−104(トーケムプロダクツ製)を用い、その濃度として0.01 〜1wt%になるように加えた。
リン酸塩化成処理膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対してのリン酸塩化成処理液5mLを添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3 (mは3〜5、平均は4)を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNd2Fe14B の磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)上記圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は90MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1Lにリン酸20g,ほう酸4g、金属酸化物としてMgO4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt% 、防錆剤としてベンゾトリアゾール(BT)を0.04mol/Lになるように加えた。
リン酸塩化成処理膜を上記Nd2Fe14Bの磁粉に形成するプロセスは以下の方法で実施した。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して2.5〜30mL のリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3 (mは3〜5、平均は4)を25mL,水4.8mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
(1)上記リン酸塩化成膜形成処理を施したNd2Fe14B の磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、2昼夜25℃の温度で放置した結着剤であるSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に、不可逆熱減磁率も200℃大気中1時間保持後、SiO2 含浸熱処理後で1%以下でありSiO2 含浸無しの場合の3%近い値よりも小さい。これはSiO2 が磁粉の酸化による劣化を抑制しているためである。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は100MPa以上の曲げ強度を有する磁石成形体を作製することが可能であった。
更に、磁石の比抵抗についても焼結型の希土類磁石に比べて、本発明の磁石は約100倍以上の値を有し、圧縮型の希土類ボンド磁石と比較しても同等の値となった。従って、渦電流損が小さく、良好な特性を有する。
本実施例の結果から、本発明の低粘度のSiO2 前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石は通常の樹脂含有希土類ボンド磁石と比較して、磁気特性は20〜30%、曲げ強度は約3倍、更に不可逆熱減磁率は半分以下に減少させること及び磁石の高信頼化が可能であることが分かった。
(比較例1)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
(1)上記希土類磁石用磁粉と100μm以下のサイズの固形エポキシ樹脂(ソマール社製EPX6136)を体積で0から20%になるようにVミキサーを用いて混合した。
(2)前記(1)で作製した希土類磁石用磁粉と樹脂とのコンパウンドを金型中に装填し、不活性ガス雰囲気中で、成形圧16t/cm2 の条件で80℃の加熱圧縮成形した。作製した磁石は磁気特性測定用として縦10mm,横10mm,厚さ5mmのサイズを、また、強度測定用として縦15mm,横10mm,厚さ2mmのサイズである。
(3)前記(2)で作製したボンド磁石の樹脂硬化を窒素ガス中で170℃,1時間の条件で行った。
(4)前記(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(5)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(6)前記(3)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
前記(4)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性を調べた。その結果、磁石中のエポキシ樹脂含有率が高くなるに従い、磁石の残留磁束密度は減少していった。SiO2結着剤を含浸して作製したボンド磁石(実施例1〜5)と比較して、磁石の曲げ強度が50MPa以上の磁石で比較すると、エポキシ樹脂含有ボンド磁石は磁束密度が20〜30%低下していた。また、200℃大気中保持1時間後の熱減磁率はエポキシ樹脂含有ボンド磁石が5%とSiO2 含浸ボンド磁石の3.0% と比較して大きい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し(実施例1〜5)、エポキシ樹脂含有ボンド磁石(比較例1)の場合3%近い値と大きかった。不可逆熱減磁の抑制だけでなく、PCT試験や塩水噴霧試験でもエポキシ樹脂含有ボンド磁石はSiO2 含浸ボンド磁石と比較して低いレベルであった。
更に前記(4)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片について大気中で225℃に1時間保持し冷却後20℃で減磁曲線を測定した。磁界印加方向は10mm方向であり、最初に+20kOeの磁界で着磁後±1kOeから±10kOeの磁界でプラスマイナス交互に磁界を印加して減磁曲線を測定した。その結果を図4に示す。図4では、(実施例1)の2)の条件でSiO2 の含浸処理した磁石と、本比較例に示すようにエポキシ樹脂をバインダーとして15vol%含有した圧縮成形ボンド磁石との、減磁曲線を比較している。図4の横軸は印加した磁界、縦軸は磁束密度を示す。SiO2 結着剤を含浸処理した磁石は磁界が−8kOeよりも負側に大きな磁界が印加されると磁束が急激に低下する。圧縮成形ボンド磁石は含浸処理した磁石よりもさらに磁界の絶対値が小さい値で磁束が急激に低下し、−5kOeよりも負側の磁界で磁束の低下が著しい。−10kOeの磁界印加後の残留磁束密度は、含浸処理磁石の場合0.44 、圧縮成形ボンド磁石では0.11T であり含浸処理磁石の残留磁束密度は圧縮成形ボンド磁石の値の4倍となっている。これは圧縮成形ボンド磁石が225℃で加熱中に各NdFeB粉の表面やNdFeB粉のクラック表面が酸化することで各NdFeB粉を構成しているNdFeB結晶の磁気異方性が低下し、その結果保磁力が減少し負の磁界印加により磁化が反転し易くなったためと考えられる。これに対し、含浸処理磁石ではNdFeB粉及びクラック表面がSiO2 膜で被覆されているため大気中加熱時の酸化が防止された結果、保磁力の減少が少ないものと考えられる。
前記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は結着剤のエポキシ樹脂含有率を増加させると、曲げ強度は増加し、体積含有率として20vol% で磁石の曲げ強度は48MPaとなり、ボンド磁石として必要な曲げ強度を有する。
エポキシ樹脂含有ボンド磁石はSiO2 含浸ボンド磁石と比較して、比抵抗は同等のレベルであった。
本比較例の結果から、エポキシ樹脂含有希土類ボンド磁石は本発明の低粘度のSiO2前駆体を樹脂なしで冷間成形法で作製した希土類磁石成形体中へ含浸させた希土類ボンド磁石と比較して、磁気特性において20〜30%低く、不可逆熱減磁率並びに磁石の信頼性が低いことが判明した。
尚、本比較例において、樹脂の体積分率(樹脂と希土類磁石用磁粉における樹脂の体積分率を示す。)を変化させたエポキシ樹脂含有ボンド磁石の評価結果を表5に纏める。
Figure 0004774378
(比較例2)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2 前駆体には、CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を1mL,水0.19mL ,脱水メチルアルコール99mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した溶液を用いた。
上記SiO2前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である上記SiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石の場合3%近い値であった(比較例1)。
しかしながら、上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は低いレベルの値となり、本比較例のSiO2 含浸ボンド磁石はエポキシ樹脂含有ボンド磁石と比較して、1/10程度の値しかえられなかった。これは本比較例における結着剤中のSiO2前駆体の含有量が1vol%と実施例おける結着剤中のSiO2 前駆体の含有量と比べて、1〜2桁少ないため、硬化後のSiO2 単体の曲げ強度が大きくても、磁石中の含有量が少なすぎることが影響している。
結論として、本比較例の磁石は磁石強度が低い短所がある。
尚、本比較例、及び後述する(比較例3)の1),2),(比較例4)の各種特性については、表6に纏めている。
Figure 0004774378
(比較例3)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2前駆体には以下の2つの溶液を用いた。
1)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水0.19mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、2昼夜25℃の温度で放置した。
2)CH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水24mL,脱水エチルアルコール75mL,ジラウリン酸ジブチル錫0.05mL を混合し、2昼夜25℃の温度で放置した。
1),2)のSiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である1),2)のSiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2 前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(比較例3)の1)について、上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20〜30%向上可能であり、20℃で測定した減磁曲線は、SiO2含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率はSiO2 含浸ボンド磁石で3.0% でありSiO2 含浸無しの場合の熱減磁率(5%)よりも小さい。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は含浸処理を施した場合1%未満であるのに対し、エポキシ系ボンド磁石(比較例1)の場合3%近い値であった。
しかしながら、上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度は低いレベルの値となり、本比較例のSiO2 含浸ボンド磁石はエポキシ樹脂含有ボンド磁石と比較して、1/6程度の値しかえられなかった。これは本比較例における結着剤中の水の添加量が少ないため、化学反応式1に示したSiO2 前駆体材料中のメトキシ基の加水分解が進行しないためシラノール基が生成せず、SiO2 前駆体の熱硬化反応におけるシラノール基間の脱水縮合反応が生じないため、熱硬化後のSiO2 の生成量が少なくSiO2 含浸ボンド磁石の曲げ強度が低かったのが原因である。
結論として、(比較例3)の1)の磁石は磁石強度が低いため、磁石として使用することは難しい。
(比較例3)の2)について、(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は170MPaの曲げ強度を有する磁石成形体を作製することが可能であった。
(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。しかしながら、200℃大気中保持1時間後の熱減磁率は本比較例では4.0%と実施例でのSiO2 含浸ボンド磁石で3.0%と比較して大きい値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO2 含浸処理を施した場合1%未満であるのに対し、本比較例では2%近い値であった。これはSiO2 前駆体溶液が磁石表面から1mm強程度までしか磁石中に浸透しなかったことが影響していることが分かった。そのため、磁石の中央の部分の磁粉が大気中加熱時の酸化劣化を引き起こし、本比較例の磁石が実施例の磁石より不可逆熱減磁率が大きくなった原因である。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、遜色は
ないものの、長期信頼性に関しては従来のエポキシ系ボンド磁石より低くなる可能性があ
る。
(比較例4)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
結着剤であるSiO2前駆体にはCH3O−(Si(CH3O)2−O)m−CH3(mは3〜5、平均は4) を25mL,水9.6mL,脱水メチルアルコール75mL,ジラウリン酸ジブチル錫0.05mLを混合し、6昼夜25℃の温度で放置した溶液を用いた。
上記SiO2 前駆体溶液の粘度はオストワルドの粘度計を用いて30℃の温度で測定した。
(1)上記Nd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(2)上記(1)で作製した圧縮成形試験片を加圧方向が水平方向になるようにバット内に配置し、結着剤である上記SiO2 前駆体溶液をバット中に液面が垂直方向に1mm/min になるように注入した。最終的に圧縮成形試験片の上面から5mm上方になるまでSiO2前駆体溶液をバット中に注入した。
(3)上記(2)で使用した圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットを真空容器内にセットし、80Pa程度まで徐々に排気した。圧縮成形試験片表面からの気泡発生が少なくなるまで放置した。
(4)圧縮成形試験片は配置され、SiO2 前駆体溶液が満たされたバットをセットした真空容器の内圧を徐々に大気圧に戻し、圧縮成形試験片をSiO2 前駆体溶液内から取り出した。
(5)上記(4)で作製したSiO2 前駆体溶液で含浸された圧縮成形試験片を真空乾燥炉内にセットし、1〜3Paの圧力,150℃の条件で圧縮成形試験片に対して真空熱処理を施した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度はSiO2 含浸前で2MPa以下であるが、SiO2 含浸熱処理後は190MPaの曲げ強度を有する磁石成形体を作製することが可能であった。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、20%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。しかしながら、200℃大気中保持1時間後の熱減磁率は本比較例では3.6% と実施例でのSiO2 含浸ボンド磁石で3.0% と比較して大きい値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO2 含浸処理を施した場合1%未満であるのに対し、本比較例では1.6% の値となった。これはSiO2 前駆体溶液が磁石表面から2mm弱程度までしか磁石中に浸透しなかったことが影響していることが分かった。そのため、磁石の中央の部分の磁粉が大気中加熱時の酸化劣化を引き起こし、本比較例の磁石が実施例の磁石より不可逆熱減磁率が大きくなった原因である。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、遜色はないものの、長期信頼性に関しては従来のエポキシ系ボンド磁石より低くなる可能性がある。
(比較例5)
本比較例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を形成する処理液は以下のようにして作製した。
(1)水に溶解度の高い塩、例えばNdの場合は酢酸Nd、または硝酸Nd4gを100mLの水に導入し、振とう器または超音波攪拌器を用いて完全に溶解した。
(2)10%に希釈したフッ化水素酸をNdF3が生成する化学反応の当量分を徐々に加えた。
(3)ゲル状沈殿のNdF3 が生成した溶液に対して超音波攪拌器を用いて1時間以上攪拌した。
(4)4000〜6000r.p.m の回転数で遠心分離した後、上澄み液を取り除きほぼ同量のメタノールを加えた。
(5)ゲル状のNdF3 を含むメタノール溶液を攪拌して完全に懸濁液にした後、超音波攪拌器を用いて1時間以上攪拌した。
(6)上記(4)と(5)の操作を酢酸イオン、又は硝酸イオン等の陰イオンが検出されなくなるまで、3〜10回繰り返した。
(7)最終的にNdF3の場合、ほぼ透明なゾル状のNdF3となった。処理液としてはNdF3が1g/5mLのメタノール溶液を用いた。
希土類フッ化物又はアルカリ土類金属フッ化物コート膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。
NdF3コート膜形成プロセスの場合:NdF3 濃度1g/10mL半透明ゾル状溶液
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して15mLのNdF3 コート膜形成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のNdF3コート膜形成処理を施した希土類磁石用磁粉を2〜5torrの減圧下で溶媒のメタノール除去を行った。
(3)上記(2)の溶媒の除去を行った希土類磁石用磁粉を石英製ボートに移し、1×10-5torrの減圧下で200℃,30分と400℃,30分の熱処理を行った。
(4)上記(3)で熱処理した磁粉に対して、蓋付きマコール製(理研電子社製)容器に移したのち、1×10-5torrの減圧下で、700℃,30分の熱処理を行った。
(5)上記希土類フッ化物又はアルカリ土類金属フッ化物コート膜を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(6)上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(7)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(8)上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
上記(5)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、約20%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率は本比較例では3.0%と実施例でのSiO2 含浸ボンド磁石で3.0%と同等の値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO2 含浸処理を施した場合1%未満であるのに対し、本比較例では1%未満の値となった。この結果を表7に示す。
Figure 0004774378
しかしながら、(7)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度に関しては本比較例ではSiO2 含浸を実施していないため、2.9MPa という値となり、エポキシ系ボンド磁石と比較して1/15程度の値となった。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、機械的強度に乏しく、使用に当たってはこの点に注意が必要である。
(比較例6)
本実施例において、希土類磁石用磁粉には、〔実施例1〕と同様のNdFeB系の薄帯を粉砕した磁性粉を用いた。
リン酸塩化成処理膜を形成する処理液は以下のようにして作製した。
水1Lにリン酸20g,ほう酸4g、金属酸化物としてMgOの4gを溶解し、界面活性剤としてEF−104(トーケムプロダクツ製)を0.1wt%になるように加えた。防錆剤としてはベンゾトリアゾール(BT)を0.04mol/Lになるように加えた。
リン酸塩化成処理膜を上記Nd2Fe14B の磁粉に形成するプロセスは以下の方法で実施した。使用したリン酸塩化成処理液の組成を表4に示す。
(1)NdFeB系の薄帯を粉砕した磁性粉100gに対して5mLのリン酸塩化成処理液を添加し、希土類磁石用磁粉全体が濡れるのが確認できるまで混合した。
(2)上記(1)のリン酸塩化成膜形成処理を施した希土類磁石用磁粉を180℃,30分,2〜5torrの減圧下で熱処理を行った。
(3)上記リン酸塩化成膜形成処理を施したNd2Fe14Bの磁粉を成形型に充填し、16t/cm2 の圧力で、磁気特性測定用として縦10mm,横10mm,厚さ5mmの試験片を、また、強度測定用として縦15mm,横10mm,厚さ2mmの圧縮成形試験片を作製した。
(4)上記(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対して、四探針法で比抵抗を測定した。
(5)更に上記比抵抗を調べた圧縮成形試験片に対して、30kOe以上のパルス磁界を印加した。その圧縮成形試験片について磁気特性を調べた。
(6)上記(3)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片を用いて、機械的曲げ試験を実施した。曲げ試験には試料形状15mm×10mm×2mmの圧縮成形体を用い、支点間距離12mmの3点曲げ試験により曲げ強度を評価した。
(3)で作製した縦10mm,横10mm,厚さ5mmの圧縮成形試験片に対する磁気特性については、残留磁束密度が樹脂含有ボンド磁石(比較例1)と比較して、約25%向上可能であり、20℃で測定した減磁曲線は、SiO2 含浸前とSiO2 含浸熱処理後の成形体とで残留磁束密度及び保磁力の値がほぼ一致した。また、200℃大気中保持1時間後の熱減磁率は本比較例では3.1%と実施例でのSiO2 含浸ボンド磁石で3.0%とほぼ同等の値となった。更に200℃1時間後に室温に戻して再着磁した後の不可逆熱減磁率は実施例でのSiO2含浸処理を施した場合1%未満であるのに対し、本比較例では1.2%の値となりやや増加したものの大きな差はなかった(表7)。
しかしながら、上記(5)で作製した縦15mm,横10mm,厚さ2mmの圧縮成形試験片の曲げ強度に関しては本比較例ではSiO2 含浸を実施していないため、2.9MPa という値となり、エポキシ系ボンド磁石と比較して1/20程度の値となった。
この結果から、本比較例のボンド磁石は従来のエポキシ系ボンド磁石に対して、機械的強度に乏しく、使用に当たってはこの点に注意が必要である。
上述の実施例により本発明を説明したが、本発明の磁石は次の効果を備えている。
1)磁石としての性能が従来の樹脂による磁石に比べ優れている。
2)さらに優れた特性に加え、磁石としての強度も強い。樹脂磁石では得られなかった特性に優れ、強度においても優れている磁石が得られる。
上述1)と2)の効果は、上述のとおり、例えば次のようにして達成される。
樹脂のない状態で磁粉を圧縮成形した際に生じる、1μm以下の磁粉と磁粉の隙間に結着剤溶液を浸透させる必要がある。そのためには結着剤溶液の粘度が100mPa・s以下であることと、磁粉と結着剤溶液の濡れ性が高いことが必要である。更には、硬化後の結着剤と磁粉との接着性が高く、結着剤の機械的強度が大きく、結着剤が連続的に形成されていることが重要である。
結着剤溶液の粘度に関しては磁石のサイズに依存するが圧縮成形体の厚さが5mm以下且つ磁粉と磁粉の隙間が1μm程度の場合は結着剤溶液の粘度が100mPa・s程度で磁粉と磁粉の隙間に結着剤溶液を圧縮成形体の中心部まで導入することが可能である。圧縮成形体の厚さが5mm以上且つ磁粉と磁粉の隙間が1μm程度になると、例えば30mm程度の厚さを有する圧縮成形体では、圧縮成形体の中心部まで結着剤溶液を導入するには、結着剤溶液の粘度が100mPa・s程度では高く、結着剤溶液の粘度が20mPa・s以下、望ましくは10mPa・s以下が必要となる。これは通常の樹脂と比較して1桁以上低い粘度である。そのためにはSiO2 の前駆体であるアルコキシシロキサンにおけるアルコキシ基の加水分解量の制御とアルコキシシロキサン分子量の抑制とが必要となる。即ち、アルコキシ基が加水分解するとシラノール基が生成されるが、そのシラノール基は脱水縮合反応を起こし易く、脱水縮合反応はアルコキシシロキサンの高分子量化を意味するからである。また、更にシラノール基同士は水素結合を生じるため、SiO2 の前駆体であるアルコキシシロキサン溶液の粘度は増大する。具体的にはアルコキシシロキサンの加水分解反応当量に対する水の添加量と加水分解反応条件を制御することである。結着剤溶液に用いる溶媒にはアルコキシシロキサン中のアルコキシ基は解離反応が速いことからアルコールを用いることが望ましい。溶媒のアルコールには沸点が水より低く粘度の低いメタノール,エタノール,n−プロパノール,iso−プロパノールが好ましいが、結着剤溶液の粘度が数時間で増加しなく、かつ、沸点が水より低い溶媒であれば本発明に係る磁石の製造に用いることができる。
硬化後の結着剤と磁粉との接着性に関しては、本発明に用いている結着剤であるSiO2前駆体は熱処理後の生成物がSiO2 であるため、磁粉表面が自然酸化膜で覆われていれば、磁粉表面とSiO2との接着性は大きく、SiO2を結着剤とした希土類磁石は磁石を破断した際の表面は磁粉またはSiO2 の凝集破壊面が殆どである。一方、結着剤に樹脂を用いた場合は樹脂と磁粉との接着性は磁粉表面とSiO2 と比較すると一般的に小さい。そのため、樹脂を用いたボンド磁石では、磁石を破断した際の表面は樹脂と磁粉の界面または樹脂の凝集破壊面の両方が存在する。従って、磁石強度を向上させるにはSiO2を結着剤として用いる方が樹脂を結着剤として用いるより有利である。
磁石中の希土類磁粉の含有率が75vol%以上になる時は、圧縮成形するタイプの希土類磁石を用いることになるが、結着剤硬化後の希土類磁石の強度は、硬化後の結着剤の連続体が生成するかどうかが大きく影響する。それは接着界面の破断強度より同じ面積の結着剤単独の破断強度の方が大きいからである。エポキシ樹脂等の樹脂を用いた場合、全固形分中の樹脂体積分率が15vol% 以下になると樹脂と希土類磁粉との濡れ性が良好とはいえないため、磁石内部での樹脂硬化後の樹脂は連続体とはならず、島状に分布する。それに対して、前述したようにSiO2 前駆体は希土類磁粉との濡れ性が良好であるため、磁粉表面にSiO2 前駆体が連続的に拡がり、その連続的に拡がった状態で熱処理により硬化しSiO2 になる。一方、硬化後の結着剤の材料としての強度は曲げ強さで表すとSiO2は樹脂系と比較して1〜3桁大きい。そのため、結着剤硬化後の希土類磁石の強度は結着剤にSiO2 前駆体を用いた方が、樹脂を用いるより桁違いに高い。
次に本発明に係る磁石により適した磁石の材料について説明する。希土類磁石粉は、強磁性の主相および他成分からなる。希土類磁石がNd−Fe−B系磁石である場合には、主相はNd2Fe14B 相である。磁石特性の向上を考慮すると、希土類磁石粉は、HDDR法や熱間塑性加工を用いて調製された磁石粉であることが好ましい。希土類磁石粉は、Nd−Fe−B系磁石の他に、Sm−Co系磁石などが挙げられる。得られる希土類磁石の磁石特性や、製造コストなどを考慮すると、Nd−Fe−B系磁石が好ましい。ただし、本発明の希土類磁石がNd−Fe−B系磁石に限定されるものではない。場合によっては、希土類磁石中には2種以上の希土類磁石粉が混在していてもよい。即ち、異なる組成比を有するNd−Fe−B系磁石が2種以上含まれてもよく、Nd−Fe−B系磁石とSm−Co系磁石とが混在していてもよい。
なお、本明細書で「Nd−Fe−B系磁石」とは、NdやFeの一部が他の元素で置換されている形態も包含する概念である。Ndは、Dy,Tb等の他の希土類元素で置換されていてもよい。置換にはこれらの一方のみを用いてもよく、双方を用いてもよい。置換は、原料合金の配合量を調整することによって行うことができる。このような置換によって、Nd−Fe−B系磁石の保磁力向上を図れる。置換されるNdの量は、Ndに対して、0.01atom%以上,50atom%以下であることが好ましい。0.01atom%未満であると置換による効果が不十分となる恐れがある。50atom%を越えると、残留磁束密度を高レベルで維持できなくなる恐れがあり、磁石を使用する用途に対応して注意することが望ましい。
一方、Feは、Co等の他の遷移金属で置換されていてもよい。このような置換によって、Nd−Fe−B系磁石のキュリー温度(Tc)を上昇させ、使用温度範囲を拡大させることができる。置換されるFeの量は、Feに対して、0.01atom%以上,30atom%以下であることが好ましい。0.01atom% 未満であると置換による効果が不十分となる恐れがある。30atom%を越えると、保磁力の低下が大きくなる恐れがあり、磁石を使用する用途に対応して注意することが望ましい。
希土類磁石における希土類磁石粉の平均粒径は、1〜500μmが好ましい。希土類磁石粉の平均粒径が1μm未満であると、磁粉の比表面積が大きく酸化劣化による影響が大きく、それを用いた希土類磁石の磁石特性の低下が懸念される。したがってこの場合磁石の使用状態を考え、注意することが望ましい。
一方、希土類磁石粉の平均粒径が500μmより大きいと、製造時の圧力によって磁石粉が砕け、十分な電気抵抗を得ることが難しくなる。加えて、異方性希土類磁石粉を原料として異方性磁石を製造する場合には、500μmを越えるサイズにわたり、希土類磁石粉における主相(Nd−Fe−B系磁石においては、Nd2Fe14B 相)の配向方向を揃えることは難しい。希土類磁石粉の粒径は、磁石の原料である希土類磁石粉の粒径を調節することによって、制御される。なお、希土類磁石粉の平均粒径はSEM像から算出することができる。
本発明は等方性磁石粉から製造される等方性磁石,異方性磁石粉をランダム配向させた等方性磁石、および異方性磁石粉を一定方向に配向させた異方性磁石のいずれにも適用可能である。高エネルギー積を有する磁石が必要であれば、異方性磁石粉を原料とし、これを磁場中配向させた異方性磁石が好適である。
希土類磁石粉は、製造する希土類磁石の組成に応じて、原料を配合して製造する。主相がNd2Fe14B 相であるNd−Fe−B系磁石を製造する場合には、Nd,Fe、およびBを所定量配合する。希土類磁石粉は、公知の手法を用いて製造したものを用いてもよいし、市販品を用いても良い。このような希土類磁石粉は、多数の結晶粒の集合体となっている。希土類磁石粉を構成する結晶粒は、その平均粒径が単磁区臨界粒子径以下であると、保磁力を向上させる上で好適である。具体的には、結晶粒の平均粒径は、500nm以下であるとよい。なお、HDDR法とは、Nd−Fe−B系合金を水素化させることにより、主相であるNd2Fe14B化合物をNdH3,α−Fe、およびFe2B の三相に分解させ、その後、強制的な脱水素処理によって再びNd2Fe14B を生成させる手法である。UPSET法とは、超急冷法により作製したNd−Fe−B系合金を、粉砕,仮成型後、熱間で塑性加工する手法である。
磁石の使用用途として高調波を含む高周波磁界が磁石に対して印加される条件下では、希土類磁石粉体表面に無機絶縁膜を形成されていることが好ましい。即ち、磁石中の渦電流損を低減化するための磁石の高比抵抗化が必要になる。このような無機絶縁膜としては特開平10−154613号に記載されているように燐酸,硼酸,マグネシウムイオンを含有した燐酸塩化成処理液を用いて形成された膜が良く、膜厚の均一性と磁粉の磁気特性を確保するには界面活性剤と防錆剤が併用することが望ましい。特に界面活性剤としてはパーフルオロアルキル系界面活性剤、また、防錆剤としてはベンゾトリアゾール系防錆剤であることが望ましい。
更に、磁粉の絶縁性並びに磁気特性の向上を図ることを目的とした無機絶縁膜としてはフッ化物コート膜が望ましい。該フッ化物コート膜を形成する処理液としては、希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、且つ、該希土類フッ化物又はアルカリ土類金属フッ化物は平均粒径が10μm以下まで粉砕されアルコールを主成分とした溶媒に分散されたゾル状態である溶液が望ましい。磁気特性の向上には該フッ化物コート膜が表面に形成された磁粉を1×10-4Pa以下の雰囲気、且つ、600〜700℃温度で熱処理することが望ましい。
本発明は磁石材料を結着剤で結着した磁石および該磁石の製法に関する。本発明に係る磁石は永久磁石として使用するのに適している。本発明に係る磁石は、一般の磁石が使用されている分野に適用でき、例えば回転機に使用するのに適している。
磁石製造の工程を説明する図であり、絶縁膜処理を施さない製造方法に係る。 磁石製造の工程を説明する図であり、絶縁膜処理を施す製造方法に係る。 第1の実施例で製造した磁石のSiO2前駆体の含浸と熱処理により結着剤として作製したボンド磁石試験片の断面部のSEM観察結果を示し、(a)が二次電子像、(b)が酸素面分析像、(c)は珪素面分析像である。 本発明のSiO2前駆体の含浸ボンド磁石と樹脂含有ボンド磁石について、縦10mm,横10mm,厚さ5mmの圧縮成形試験片について大気中で225℃に1時間保持し冷却後20℃で測定した減磁曲線の結果を示す。磁界印加方向は10mm方向であり、最初に+20kOeの磁界で着磁後±1kOeから±10kOeの磁界でプラスマイナス交互に磁界を印加して減磁曲線を測定した結果である。

Claims (20)

  1. 希土類元素を少なくとも1種以上含む希土類磁性粉体を加圧成形して製造された希土類磁石において、
    希土類磁性粉体アルコキシ基含有するSiO2により結着されており、
    前記希土類磁性粉体を構成する扁平粉の表面及び内部にクラックが発生しており、
    前記クラックを含む粉末表面がSiO 2 により覆われていることを特徴とする希土類磁石。
  2. 請求項1に記載の前記希土類磁性粉体を構成する扁平粉の表面及び内部のクラックに沿って酸素及び珪素が存在することを特徴とする希土類磁石。
  3. 請求項1に記載の希土類磁石は、前記加圧成形により作成された加圧成形体に対し、SiO 2 の前駆体溶液を含浸し、熱処理することで製造されたことを特徴とする希土類磁石。
  4. 請求項1に記載の希土類磁性粉体表面に10μm〜10nm厚の無機絶縁膜を有する希土類磁性粉体をアルコキシ基が含有するSiO2により結着されていることを特徴とする希土類磁石。
  5. 請求項1に記載のSiO2結着剤は、SiO2前駆体であるアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物の少なくとも一種と水とを含み、更に必要な場合アルコールと加水分解用触媒から形成されることを特徴とする希土類磁石。
  6. 請求項5に記載の加水分解用触媒として中性触媒を含有してなることを特徴とする希土類磁石。
  7. 請求項6に記載の中性触媒が錫触媒であることを特徴とする希土類磁石。
  8. 請求項5に記載のSiO2結着剤中のアルコキシシロキサン,アルコキシシラン、その加水分解生成物、及びその脱水縮合物総和の体積分率が5vol%以上かつ96vol%以下であることを特徴とする希土類磁石。
  9. 請求項5に記載のSiO2結着剤中の水の含有量がアルコキシシロキサン,アルコキシシラン及び、その加水分解生成物、及びその脱水縮合物の前駆体であるアルコキシシロキサン,アルコキシシランの総量に対して、加水分解反応当量の1/10〜1であることを特徴とする希土類磁石。
  10. 請求項4に記載の無機絶縁膜は希土類フッ化物又はアルカリ土類金属フッ化物コート膜又はリン酸塩化成処理膜からなることを特徴とする希土類磁石。
  11. 請求項10に記載の希土類フッ化物又はアルカリ土類金属フッ化物コート膜はMg,Ca,Sr,Ba,La,Ce,Pr,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luフッ化物中の少なくとも1種類以上含有することを特徴とする希土類磁石。
  12. 請求項10に記載の希土類フッ化物又はアルカリ土類金属フッ化物コート膜は、該希土類フッ化物又はアルカリ土類金属フッ化物がアルコールを主成分とした溶媒に膨潤されており、ゲル状態の該希土類フッ化物又はアルカリ土類金属フッ化物の平均粒径が10μm以下まで粉砕され、かつアルコールを主成分とした溶媒に混合した処理液を用いて形成されていることを特徴とする希土類磁石。
  13. 請求項12において、前記アルコールはメチルアルコール,エチルアルコール,n−プロピルアルコール又はイソプロピルアルコールであることを特徴とする希土類磁石。
  14. 請求項10に記載のリン酸塩化成処理膜はリン酸,ほう酸、及びMg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上含有していることを特徴とする希土類磁石。
  15. 請求項10に記載のリン酸塩化成処理膜はリン酸,ほう酸,Mg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上を含有する水溶液から形成されていることを特徴とする希土類磁石。
  16. 請求項10に記載のリン酸塩化成処理膜はリン酸,ほう酸,Mg,Zn,Mn,Cd,Ca,Sr,Baの内の一種類以上を含有し、かつ界面活性剤と防錆剤とを含有する水溶液から形成されていることを特徴とする希土類磁石。
  17. 請求項16に記載の界面活性剤はパーフルオロアルキル系,アルキルベンゼンスルホン酸系,両性イオン系、またはポリエーテル系であることを特徴とする希土類磁石。
  18. 請求項16に記載の防錆剤は孤立電対を有する窒素または硫黄の少なくとも1種を含む有機化合物であることを特徴とする希土類磁石。
  19. 請求項18に記載の孤立電対を有する窒素または硫黄の少なくとも1種を含む有機化合物防錆剤は化学式1
    Figure 0004774378

    (式中、XはH,CH3,C25,C37,NH2,OH,COOHの中のいずれかである。)で表されるベンゾトリアゾールであることを特徴とする希土類磁石。
  20. 希土類元素を少なくとも1種以上含む希土類磁性粉体を加圧成形して作成された加圧成形体に対し、SiO 2 の前駆体溶液を含浸し、熱処理することで製造された希土類磁石において、
    希土類磁性粉体をアルコキシ基が含有するSiO 2 により結着されており、
    前記希土類磁性粉体を構成する扁平粉の表面及び内部のクラックに沿って酸素及び珪素が存在することを特徴とする希土類磁石。
JP2007048358A 2006-03-13 2007-02-28 結着剤を使用した磁石およびその製造方法 Expired - Fee Related JP4774378B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007048358A JP4774378B2 (ja) 2006-03-13 2007-02-28 結着剤を使用した磁石およびその製造方法
US11/684,889 US7914695B2 (en) 2006-03-13 2007-03-12 Magnet using binding agent and method of manufacturing the same
KR1020070023895A KR100945068B1 (ko) 2006-03-13 2007-03-12 결착제를 사용한 자석 및 그 제조방법
EP20070005161 EP1835514A3 (en) 2006-03-13 2007-03-13 Magnet using binding agent and method of manufacturing the same
CN2007100863129A CN101055780B (zh) 2006-03-13 2007-03-13 使用了粘合剂的磁铁及其制造方法
KR1020090114784A KR20090127118A (ko) 2006-03-13 2009-11-25 결착제를 사용한 자석 및 그 제조방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006066883 2006-03-13
JP2006066883 2006-03-13
JP2007048358A JP4774378B2 (ja) 2006-03-13 2007-02-28 結着剤を使用した磁石およびその製造方法

Publications (2)

Publication Number Publication Date
JP2007281433A JP2007281433A (ja) 2007-10-25
JP4774378B2 true JP4774378B2 (ja) 2011-09-14

Family

ID=38197605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007048358A Expired - Fee Related JP4774378B2 (ja) 2006-03-13 2007-02-28 結着剤を使用した磁石およびその製造方法

Country Status (5)

Country Link
US (1) US7914695B2 (ja)
EP (1) EP1835514A3 (ja)
JP (1) JP4774378B2 (ja)
KR (2) KR100945068B1 (ja)
CN (1) CN101055780B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9022906B1 (en) 2011-12-22 2015-05-05 Preston Nelson Top-loading adjustable weight kettlebell system
JP2009071910A (ja) * 2007-09-11 2009-04-02 Hitachi Ltd 回転電機およびそれを搭載した自動車
JP4497198B2 (ja) * 2007-12-06 2010-07-07 トヨタ自動車株式会社 永久磁石とその製造方法、およびロータとipmモータ
JP4902677B2 (ja) * 2009-02-02 2012-03-21 株式会社日立製作所 希土類磁石
JP2011134990A (ja) 2009-12-25 2011-07-07 Renesas Electronics Corp 半導体装置およびその製造方法
CN101937753B (zh) * 2010-08-10 2011-12-14 天津海特磁性材料有限公司 粘结钕铁硼磁体真空浸渗厌氧胶的生产工艺及其用途
JP5762453B2 (ja) * 2012-09-28 2015-08-12 富士フイルム株式会社 六方晶フェライト磁性粒子の製造方法およびこれにより得られた六方晶フェライト磁性粒子、ならびにそれらの利用
CN104576016B (zh) * 2013-10-10 2018-08-21 北京中科三环高技术股份有限公司 烧结钕铁硼磁体的表面处理方法和制造方法
CN103915230A (zh) * 2014-04-11 2014-07-09 合肥工业大学 一种耐腐蚀性烧结钕铁硼磁体的制备方法
CN104637667B (zh) * 2015-01-16 2018-02-09 浙江和也健康科技有限公司 一种防氧化的柔性粘贴NdFeB磁条及其制备方法
US10431365B2 (en) 2015-03-04 2019-10-01 Murata Manufacturing Co., Ltd. Electronic component and method for manufacturing electronic component
CN104916186A (zh) * 2015-06-11 2015-09-16 濮阳职业技术学院 一种新型数学万能方块
DE102015015930A1 (de) * 2015-12-09 2017-06-14 Wolfgang Kochanek Verfahren zur Herstellung magnetischer Werkstoffe
CN107301916A (zh) * 2016-04-15 2017-10-27 北京中科三环高技术股份有限公司 各向异性钕铁硼粘结磁体及其制备方法
CN106653345B (zh) * 2016-11-16 2018-01-05 宁波韵升粘结磁体有限公司 一种提高粘结钕铁硼磁体性能的方法
CN107424715A (zh) * 2017-08-26 2017-12-01 江苏菲勒电气有限公司 一种电气工程专用磁性材料
CN109841367B (zh) * 2017-11-29 2020-12-25 有研稀土新材料股份有限公司 稀土粘结磁粉及其制备方法和粘结磁体
CN113458385B (zh) * 2021-06-29 2022-06-24 中国地质大学(武汉) 基于稀土改性铁基结合剂的金刚石切削具及其制备方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136908A (ja) 1983-01-27 1984-08-06 Seiko Epson Corp 永久磁石
JPS6414902A (en) * 1987-07-08 1989-01-19 Kanegafuchi Chemical Ind Resin-bound type magnet
US5464576A (en) 1991-04-30 1995-11-07 Matsushita Electric Industrial Co., Ltd. Method of making isotropic bonded magnet
JPH0669009A (ja) * 1992-08-19 1994-03-11 Matsushita Electric Ind Co Ltd 希土類−鉄系磁石の製造方法
JPH08115809A (ja) * 1994-10-14 1996-05-07 Tdk Corp 無機ボンド磁石
JPH08311501A (ja) * 1995-05-18 1996-11-26 Mitsubishi Materials Corp 耐食性に優れたNd−Fe−B系磁気記録粉末およびその製造方法
JPH0927432A (ja) * 1995-07-11 1997-01-28 Sumitomo Special Metals Co Ltd 高耐食性R−Fe−B系ボンド磁石の製造方法
EP1113465A3 (en) * 1996-05-28 2001-08-01 Hitachi, Ltd. Soft-magnetic powder composite core having particles with insulating layers
JP3475041B2 (ja) * 1996-09-30 2003-12-08 株式会社日立製作所 圧粉磁心用磁性粉の絶縁層形成処理液とその絶縁層形成方法、それを用いた圧粉磁心およびその圧粉磁心を用いた電気装置
JPH10208919A (ja) 1997-01-22 1998-08-07 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石組成物
JPH10321427A (ja) * 1997-05-16 1998-12-04 Hitachi Metals Ltd 高電気抵抗希土類磁石およびその製造方法
JPH1123860A (ja) 1997-07-03 1999-01-29 Nec Eng Ltd 光ケーブルの余長処理用アセンブリ
JPH1167514A (ja) 1997-08-19 1999-03-09 Sumitomo Metal Ind Ltd ボンド型永久磁石の製造方法と製造用原料粉末
JP2000058312A (ja) * 1998-08-11 2000-02-25 Sumitomo Metal Mining Co Ltd 樹脂結合型磁石用組成物及び樹脂結合型磁石
JP3719492B2 (ja) * 1999-02-26 2005-11-24 日亜化学工業株式会社 希土類系磁性粉末及びその表面処理方法並びにそれを用いた希土類ボンド磁石
US20020043301A1 (en) 2000-02-22 2002-04-18 Marlin Walmer Density enhanced, DMC, bonded permanent magnets
JP3882545B2 (ja) 2000-11-13 2007-02-21 住友金属鉱山株式会社 高耐候性磁石粉及びこれを用いた磁石
JP2004172381A (ja) * 2002-11-20 2004-06-17 Nichia Chem Ind Ltd 希土類系磁性粉末及びその製造方法
JP4525072B2 (ja) * 2003-12-22 2010-08-18 日産自動車株式会社 希土類磁石およびその製造方法
JP2005191187A (ja) * 2003-12-25 2005-07-14 Nissan Motor Co Ltd 希土類磁石およびその製造方法
JP2005286315A (ja) * 2004-03-01 2005-10-13 Showa Denko Kk シリカ被覆した希土類系磁性粉末およびその製造方法並びにその用途
JP4654709B2 (ja) 2004-07-28 2011-03-23 株式会社日立製作所 希土類磁石
JP4525425B2 (ja) * 2005-03-31 2010-08-18 株式会社日立製作所 フッ化物コート膜形成処理液,フッ化物コート膜形成方法及び磁石

Also Published As

Publication number Publication date
JP2007281433A (ja) 2007-10-25
CN101055780A (zh) 2007-10-17
CN101055780B (zh) 2011-08-10
US7914695B2 (en) 2011-03-29
KR20070093348A (ko) 2007-09-18
US20070209737A1 (en) 2007-09-13
EP1835514A2 (en) 2007-09-19
KR20090127118A (ko) 2009-12-09
EP1835514A3 (en) 2010-01-06
KR100945068B1 (ko) 2010-03-05

Similar Documents

Publication Publication Date Title
JP4774378B2 (ja) 結着剤を使用した磁石およびその製造方法
JP2008282832A (ja) 希土類磁石
JP2008130780A (ja) 希土類磁石
JP5094111B2 (ja) 永久磁石回転電機とその製造方法及び永久磁石式回転電機を備えた自動車
JP4867632B2 (ja) 低損失磁石とそれを用いた磁気回路
JP4525425B2 (ja) フッ化物コート膜形成処理液,フッ化物コート膜形成方法及び磁石
US20090212893A1 (en) Corrosion resistant rare earth magnets and process for production thereof
EP1081724B1 (en) Process for producing rare earth metal-based permanent magnet having corrosion-resistant film
JP6255783B2 (ja) 複合磁性材料及びその製造方法並びに複合磁性材料の原料セット
JP2008130781A (ja) 磁石,磁石を用いたモータ、及び磁石の製造方法
JP4700578B2 (ja) 高抵抗希土類系永久磁石の製造方法
JP2008236844A (ja) 回転電機とその製造方法及び回転電機を備えた自動車
JP2005191187A (ja) 希土類磁石およびその製造方法
JP5002601B2 (ja) 永久磁石回転電機
JP2001230108A (ja) 耐食性希土類磁石の製造方法
CN105359228A (zh) 生产永磁体的方法及永磁体和带有此类永磁体的电动机器
JPH08111306A (ja) 耐食性に優れたボンド磁石用Nd−Fe−B系磁石粉末、ボンド磁石および磁石粉末の製造方法
JPWO2008068876A1 (ja) 永久磁石回転電機
JP2008141851A (ja) 自己始動式永久磁石同期電動機
JP4784173B2 (ja) 希土類磁石及びその製造方法
JP2006049865A (ja) 耐食性希土類磁石及びその製造方法
JP4276553B2 (ja) 希土類磁石及びその製造方法
JP2005187929A (ja) 希土類磁石及びその製造方法
JP2009224378A (ja) 磁石成形体
KR20070030745A (ko) 내식성 희토류 자석 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees