JP4619074B2 - Plasma display device - Google Patents
Plasma display device Download PDFInfo
- Publication number
- JP4619074B2 JP4619074B2 JP2004271960A JP2004271960A JP4619074B2 JP 4619074 B2 JP4619074 B2 JP 4619074B2 JP 2004271960 A JP2004271960 A JP 2004271960A JP 2004271960 A JP2004271960 A JP 2004271960A JP 4619074 B2 JP4619074 B2 JP 4619074B2
- Authority
- JP
- Japan
- Prior art keywords
- row electrode
- discharge
- pulse
- display
- voltage value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 47
- 239000000395 magnesium oxide Substances 0.000 claims description 47
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 47
- 238000010894 electron beam technology Methods 0.000 claims description 9
- 238000005136 cathodoluminescence Methods 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 44
- 239000013078 crystal Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 22
- 239000000758 substrate Substances 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 239000012808 vapor phase Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 239000011777 magnesium Substances 0.000 description 7
- 238000005192 partition Methods 0.000 description 6
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 101100189636 Arabidopsis thaliana PDP5 gene Proteins 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Gas-Filled Discharge Tubes (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of Gas Discharge Display Tubes (AREA)
Description
本発明は、プラズマディスプレイパネルを用いたプラズマディスプレイ装置に関する。 The present invention relates to a plasma display device using a plasma display panel.
プラズマディスプレイ装置では、映像信号における1フィールド(又は1フレーム)を、夫々がアドレス期間及びサスティン期間を含む複数のサブフィールドで構成することにより階調表示を行うようにしている。アドレス期間では、プラズマディスプレイパネルの各画素に対応した放電セルの各々を入力映像信号に基づいて選択的に放電させることにより、壁電荷が存在する点灯モード状態、及び壁電荷が存在しない消灯モード状態のいずれか一方の状態に設定する。又、サスティン期間では、点灯モード状態に設定されている放電セルのみを、そのサブフィールドの重み付けに対応した回数だけ繰り返しサスティン放電させ、この放電に伴う発光状態を維持させる。尚、各サブフィールドのアドレス期間の直前には、全放電セルの状態を初期化する為のリセット期間が設けられている。リセット期間では、先ず、全ての放電セル内に壁電荷を形成させるための書込リセット放電を生起させ、引き続き、全放電セル内に形成されている壁電荷を消去させる為の消去リセット放電を生起させることにより、全放電セルを消灯モード状態に初期化する。ところが、これら一連のリセット放電に伴う発光は表示画像に関与するものでは無く、更に全放電セルにおいて一斉に生起されるものである為、表示画像のコントラスト、特に暗い場面を表す画像を表示中の暗コントラストが低下してしまう。そこで、1フィールド(又は1フレーム)表示期間内においてリセット放電の回数を1回だけにして、コントラスト低下を抑えるようにした駆動方法が提案されている(例えば、特許文献1参照)。 In the plasma display apparatus, one field (or one frame) in a video signal is composed of a plurality of subfields each including an address period and a sustain period, so that gradation display is performed. During the address period, each discharge cell corresponding to each pixel of the plasma display panel is selectively discharged based on the input video signal, so that a lighting mode state where wall charges exist and a light-off mode state where wall charges do not exist Set to one of the states. In the sustain period, only the discharge cells set in the lighting mode state are repeatedly subjected to the sustain discharge for the number of times corresponding to the weight of the subfield, and the light emission state associated with the discharge is maintained. A reset period for initializing the state of all discharge cells is provided immediately before the address period of each subfield. In the reset period, first, a write reset discharge for causing wall charges to be formed in all the discharge cells is generated, and then an erase reset discharge for erasing the wall charges formed in all the discharge cells is generated. By doing so, all the discharge cells are initialized to the extinguishing mode. However, the light emission associated with a series of these reset discharges is not related to the display image, and is also generated simultaneously in all discharge cells, so that the contrast of the display image, particularly an image representing a dark scene is being displayed. Dark contrast is reduced. In view of this, there has been proposed a driving method in which the number of reset discharges is reduced to one in one field (or one frame) display period to suppress a reduction in contrast (see, for example, Patent Document 1).
しかしながら、リセット放電の回数を1回だけにすると、その後のアドレス期間及びサスティン期間において上記各種放電に放電遅れが生じてしまうので、各種放電を生起させるべくプラズマディスプレイパネルに印加する各種駆動パルスのパルス幅を広げる必要がある。従って、このパルス幅を広げた分だけアドレス期間及びサスティン期間が夫々長くなるので、サブフィールド数を増やして表示階調数の増加を図ることが困難であるという問題があった。
本発明は、かかる問題を解決すべく為されたものであり、表示階調数を増加させることが可能なプラズマディスプレイ装置を提供することを目的とする。 The present invention has been made to solve such a problem, and an object thereof is to provide a plasma display device capable of increasing the number of display gradations.
請求項1に係る発明によるプラズマディスプレイ装置は、複数の行電極対と前記行電極対の各々に交叉しその交叉する方向に伸張する複数の列電極との各交叉部に放電空間を有する表示セルが形成されているプラズマディスプレイパネルを搭載したプラズマディスプレイ装置であって、 電子線の照射によって励起されて波長域200〜300nm内にピークを有するカソードルミネッセンス発光を行う酸化マグネシウム結晶体が、前記表示セル各々内の前記放電空間に接する面において形成された酸化マグネシウム層と、映像信号における1フィールドを複数のサブフィールドで構成し、前記サブフィールド各々のアドレス期間において、前記行電極対の一方の行電極に走査パルスを印加すると共に映像信号に基づく画素データに応じた画素データパルスを前記列電極に印加することにより前記表示セル各々に選択的にアドレス放電を生起せしめて前記表示セル内に壁電荷を形成させるアドレス手段と、前記サブフィールドの各々において、前記行電極対各々にサスティンパルスを印加することにより前記壁電荷の形成されている前記表示セルのみをサスティン放電させるサスティン手段と、前記1フィールドの表示期間の先頭のサブフィールドの前記アドレス期間に先だって、全ての前記行電極対にリセットパルスを印加することにより全ての前記表示セル内にリセット放電を生起せしめるリセット手段と、を有し、前記リセットパルスは、時間経過に伴ってその電圧が凸状に漸増して所定の第1電圧値に到る前縁部と、時間経過に伴ってその電圧が凹状に漸減して所定の第2電圧値に到る後縁部とを有する。 A plasma display device according to a first aspect of the present invention is a display cell having a discharge space at each intersection of a plurality of row electrode pairs and a plurality of column electrodes extending in the intersecting direction. A plasma display device equipped with a plasma display panel in which a magnesium oxide crystal that emits cathode luminescence having a peak in a wavelength range of 200 to 300 nm when excited by irradiation with an electron beam is provided in the display cell. A magnesium oxide layer formed on a surface in contact with the discharge space in each, and one field in the video signal is composed of a plurality of subfields, and one row electrode of the row electrode pair in an address period of each of the subfields A pixel corresponding to pixel data based on a video signal while applying a scanning pulse to In each of the subfields, an address means for selectively generating an address discharge in each display cell by applying a data pulse to the column electrode to form wall charges in the display cell, and the row electrode pair in each subfield. a sustain means for only a sustain discharge said display cells formed of the wall charges by applying a sustain pulse to each prior to before Symbol address period of the first subfield of the display period of the one field, all have a, and reset means allowed to rise to reset discharge in all the display cells by applying a reset pulse to said row electrode pairs, wherein the reset pulse, increasing the voltage is in a convex shape over time The leading edge that reaches the predetermined first voltage value and the voltage gradually decreases in a concave shape as time elapses. And a rear edge which lead to value.
電子線の照射によって励起されて波長域200〜300nm内にピークを有するカソードルミネッセンス発光を行う酸化マグネシウム結晶体を含む酸化マグネシウム層が形成されている表示セルを備えたプラズマディスプレイパネルを駆動するにあたり、先ず、全行電極にリセットパルスを印加することにより全表示セル内にリセット放電を生起せしめる。次に、行電極対の一方の行電極に走査パルスを印加すると共に映像信号に基づく画素データに応じた画素データパルスを列電極に印加することにより表示セル各々に選択的にアドレス放電を生起せしめて表示セル内に壁電荷を形成させる。そして、行電極各々にサスティンパルスを印加することにより壁電荷の形成されている表示セルのみをサスティン放電させる。 In driving a plasma display panel including a display cell formed with a magnesium oxide layer including a magnesium oxide crystal that is excited by electron beam irradiation and emits cathodoluminescence emission having a peak in a wavelength range of 200 to 300 nm. First, a reset discharge is generated in all display cells by applying a reset pulse to all the row electrodes. Next, an address discharge is selectively generated in each display cell by applying a scan pulse to one row electrode of the row electrode pair and applying a pixel data pulse corresponding to pixel data based on the video signal to the column electrode. Thus, wall charges are formed in the display cell. Then, by applying a sustain pulse to each row electrode, only the display cells in which wall charges are formed are subjected to a sustain discharge.
以下、本発明の実施例を図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1は、本発明によるプラズマディスプレイ装置の概略構成を示す図である。 FIG. 1 is a diagram showing a schematic configuration of a plasma display device according to the present invention.
図1に示す如く、かかるプラズマディスプレイ装置は、プラズマディスプレイパネルとしてのPDP50、行電極X駆動回路51、行電極Y駆動回路53、列電極駆動回路55、及び駆動制御回路56から構成される。 As shown in FIG. 1, the plasma display device includes a PDP 50 as a plasma display panel, a row electrode X drive circuit 51, a row electrode Y drive circuit 53, a column electrode drive circuit 55, and a drive control circuit 56.
PDP50には、2次元表示画面の縦方向(垂直方向)に夫々伸張して配列された列電極D1〜Dm、横方向(水平方向)に夫々伸張して配列された行電極X1〜Xn及び行電極Y1〜Ynが形成されている。この際、互いに隣接するもの同士で対を為す行電極対(X1,Y1)、(X2,Y2)、(X3,Y3)、・・・、(Xn,Yn)の各々が、PDP50における第1表示ライン〜第n表示ラインを担う。各表示ラインと列電極D1〜Dm各々との各交叉部(図1中の一点鎖線にて囲まれた領域)には、画素を担う表示セルPCが形成されている。すなわち、PDP50には、第1表示ラインに属する表示セルPC1,1〜PC1,m、第2表示ラインに属する表示セルPC2、1〜PC2、m、・・・・、第n表示ラインに属する表示セルPCn、1〜PCn、mの各々がマトリクス状に配列されているのである。 In the PDP 50, column electrodes D 1 to D m arranged to extend in the vertical direction (vertical direction) of the two-dimensional display screen, and row electrodes X 1 to X m arranged to extend in the horizontal direction (horizontal direction), respectively. X n and row electrodes Y 1 to Y n are formed. In this case, row electrode pairs (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ),..., (X n , Y n ) that form pairs between adjacent ones. Are responsible for the first display line to the nth display line in the PDP 50. A display cell PC serving as a pixel is formed at each crossing portion (a region surrounded by an alternate long and short dash line in FIG. 1) between each display line and each of the column electrodes D 1 to D m . That is, the PDP 50, display cells PC 1, 1 to PC 1 belonging to the first display line, m, display cells PC 2 belonging to the second display line, 1~PC2, m, · · · ·, n-th display line display cell PC n, 1~PC n, each of m is what is arranged in a matrix belonging to.
図2は、表示面側から眺めたPDP50の内部構造を模式的に示す正面図である。 FIG. 2 is a front view schematically showing the internal structure of the PDP 50 as viewed from the display surface side.
図2においては、PDP50の列電極D1〜D3各々と、第1表示ライン(Y1,X1)及び第2表示ライン(Y2,X2)との各交叉部を抜粋して示すものである。 図3は、図2のV3−V3線におけるPDP50の断面を示す図であり、図4は、図2のW2−W2線におけるPDP50の断面を示す図である。 In FIG. 2, the crossing portions of each of the column electrodes D 1 to D 3 of the PDP 50 and the first display line (Y 1 , X 1 ) and the second display line (Y 2 , X 2 ) are extracted and shown. Is. 3 is a view showing a cross section of the PDP 50 taken along the line V3-V3 in FIG. 2, and FIG. 4 is a view showing a cross section of the PDP 50 taken along the line W2-W2 in FIG.
図2に示すように、各行電極Xは、2次元表示画面の水平方向に伸張するバス電極Xbと、かかるバス電極Xb上の各表示セルPCに対応した位置に各々接触して設けられたT字形状の透明電極Xaと、から構成される。各行電極Yは、2次元表示画面の水平方向に伸張するバス電極Ybと、かかるバス電極Yb上の各表示セルPCに対応した位置に各々接触して設けられたT字形状の透明電極Yaと、から構成される。透明電極Xa及びYaは例えばITO等の透明導電膜からなり、バス電極Xb及びYbは例えば金属膜からなる。透明電極Xa及バス電極Xbからなる行電極X、並びに透明電極Ya及バス電極Ybからなる行電極Yは、図3に示す如く、その前面側がPDP50の表示面となる前面透明基板10の背面側に形成されている。この際、各行電極対(X、Y)における透明電極Xa及びYaは、互いに対となる相手の行電極側に伸張しており、その幅広部の頂辺同士が所定幅の放電ギャップg1を介して互いに対向している。又、前面透明基板10の背面側には、1対の行電極対(X1、Y1)とこの行電極対に隣接する行電極対(X2、Y2)との間に、2次元表示画面の水平方向に伸張する黒色または暗色の光吸収層(遮光層)11が形成されている。さらに、前面透明基板10の背面側には、行電極対(X,Y)を被覆するように誘電体層12が形成されている。この誘電体層12の背面側(行電極対が接触する面とは反対側の面)には、図3に示す如く、光吸収層11とこの光吸収層11に隣接するバス電極Xb及びYbとが形成されている領域に対応した部分に、嵩上げ誘電体層12Aが形成されている。この誘電体層12及び嵩上げ誘電体層12Aの表面上には、後述するような電子線の照射によって励起されて波長域200〜300nm内にピークを有するカソードルミネッセンス発光を行う酸化マグネシウム結晶体を含む酸化マグネシウム層13が形成されている。 As shown in FIG. 2, each row electrode X has a bus electrode Xb extending in the horizontal direction of the two-dimensional display screen and a T provided in contact with a position corresponding to each display cell PC on the bus electrode Xb. And a transparent electrode Xa having a letter shape. Each row electrode Y includes a bus electrode Yb extending in the horizontal direction of the two-dimensional display screen, and a T-shaped transparent electrode Ya provided in contact with a position corresponding to each display cell PC on the bus electrode Yb. Is composed of. The transparent electrodes Xa and Ya are made of a transparent conductive film such as ITO, and the bus electrodes Xb and Yb are made of a metal film, for example. As shown in FIG. 3, the row electrode X composed of the transparent electrode Xa and the bus electrode Xb and the row electrode Y composed of the transparent electrode Ya and the bus electrode Yb are arranged on the back side of the front transparent substrate 10 whose front side is the display surface of the PDP 50. Is formed. At this time, the transparent electrodes Xa and Ya in each row electrode pair (X, Y) extend to the paired row electrode side, and the top sides of the wide portions pass through the discharge gap g1 having a predetermined width. Facing each other. On the back side of the front transparent substrate 10, there is a two-dimensional space between a pair of row electrodes (X 1 , Y 1 ) and a row electrode pair (X 2 , Y 2 ) adjacent to the row electrode pair. A black or dark light absorbing layer (light shielding layer) 11 extending in the horizontal direction of the display screen is formed. Further, a dielectric layer 12 is formed on the back side of the front transparent substrate 10 so as to cover the row electrode pair (X, Y). As shown in FIG. 3, on the back side of the dielectric layer 12 (the surface opposite to the surface in contact with the row electrode pair), the light absorbing layer 11 and bus electrodes Xb and Yb adjacent to the light absorbing layer 11 are provided. A raised dielectric layer 12A is formed in a portion corresponding to the region where the and are formed. The surface of the dielectric layer 12 and the raised dielectric layer 12A includes a magnesium oxide crystal that is excited by electron beam irradiation and emits cathodoluminescence light having a peak in the wavelength range of 200 to 300 nm. A magnesium oxide layer 13 is formed.
一方、前面透明基板10と平行に配置された背面基板14上には、列電極Dの各々が、各行電極対(X,Y)における透明電極Xa及びYaに対向する位置において行電極対(X,Y)と直交する方向に伸張して形成されている。背面基板14上には、更に列電極Dを被覆する白色の列電極保護層15が形成されている。この列電極保護層15上には隔壁16が形成されている。隔壁16は、各行電極対(X,Y)のバス電極Xb及びYbに対応した位置において各々2次元表示画面の横方向に伸張している横壁16Aと、互いに隣接する列電極D間の各中間位置において2次元表示画面の縦方向に伸張している縦壁16Bとによって梯子形状に形成されている。尚、PDP50の各表示ライン毎に、図2に示す如き梯子形状の隔壁16が各々形成されており、互いに隣接する隔壁16の間には、図2に示す如き隙間SLが存在する。又、梯子状の隔壁16によって、各々独立した放電空間S、透明電極Xa及びYaを含む表示セルPCが区画されている。放電空間S内には、キセノンガスを含む放電ガスが封入されている。各表示セルPC内における横壁16Aの側面、縦壁16Bの側面、及び列電極保護層15の表面には、図3に示す如くこれらの面を全て覆うように蛍光体層17が形成されている。この蛍光体層17は、実際には、赤色発光を為す蛍光体、緑色発光を為す蛍光体、及び青色発光を為す蛍光体の3種類からなる。各表示セルPCの放電空間Sと隙間SLとの間は、図3に示す如く酸化マグネシウム層13が横壁16Aに当接されることによって互いに閉じられている。一方、図4に示す如く、縦壁16Bは酸化マグネシウム層13に当接されていないので、その間に隙間r1が存在する。すなわち、2次元表示画面の横方向において互いに隣接する表示セルPC各々の放電空間Sは、この隙間r1を介して互いに連通しているのである。 On the other hand, on the rear substrate 14 arranged in parallel with the front transparent substrate 10, each of the column electrodes D is disposed at a position facing the transparent electrodes Xa and Ya in each row electrode pair (X, Y). , Y). On the back substrate 14, a white column electrode protective layer 15 that covers the column electrode D is further formed. A partition wall 16 is formed on the column electrode protective layer 15. The partition wall 16 includes a horizontal wall 16A extending in the horizontal direction of the two-dimensional display screen at a position corresponding to the bus electrodes Xb and Yb of each row electrode pair (X, Y), and intermediate portions between the column electrodes D adjacent to each other. A ladder wall is formed by the vertical wall 16B extending in the vertical direction of the two-dimensional display screen at the position. A ladder-shaped partition wall 16 as shown in FIG. 2 is formed for each display line of the PDP 50, and a gap SL as shown in FIG. 2 exists between the partition walls 16 adjacent to each other. The ladder-shaped partition 16 partitions the display cell PC including the independent discharge space S and the transparent electrodes Xa and Ya. In the discharge space S, a discharge gas containing xenon gas is enclosed. A phosphor layer 17 is formed on the side surface of the horizontal wall 16A, the side surface of the vertical wall 16B, and the surface of the column electrode protection layer 15 in each display cell PC so as to cover all of these surfaces as shown in FIG. . The phosphor layer 17 is actually composed of three types: a phosphor that emits red light, a phosphor that emits green light, and a phosphor that emits blue light. As shown in FIG. 3, the magnesium oxide layer 13 is closed between the discharge space S and the gap SL of each display cell PC by contacting the horizontal wall 16A. On the other hand, as shown in FIG. 4, since the vertical wall 16B is not in contact with the magnesium oxide layer 13, there is a gap r1 therebetween. That is, the discharge spaces S of the display cells PC adjacent to each other in the horizontal direction of the two-dimensional display screen communicate with each other through the gap r1.
ここで、上記酸化マグネシウム層13を形成する酸化マグネシウム結晶体は、マグネシウムを加熱して発生するマグネシウム蒸気を気相酸化して得られる単結晶体、例えば電子線の照射により励起されて波長域200〜300nm内(特に、230〜250nm内の235nm付近)にピークを有するCL発光を行う気相法酸化マグネシウム結晶体を含んでいる。この気相法酸化マグネシウム結晶体には、図5AのSEM写真像に示す如き立方体の結晶体が互いに嵌り込んだ多重結晶構造、あるいは図5BのSEM写真像に示す如き立方体の単結晶構造を有する、2000オングストローム以上の粒径のマグネシウム単結晶体が含まれている。このようなマグネシウム単結晶体は、他の方法によって生成された酸化マグネシウムと比較すると高純度であると共に微粒子であり、粒子の凝集が少ない等の特徴を備えており、後述するように放電遅れ等の放電特性の改善に寄与する。尚、本実施例においては、BET法によって測定した平均粒径が500オングストローム以上、好ましくは2000オングストローム以上の気相酸化マグネシウム単結晶体を用いている。そして、このような酸化マグネシウム単結晶体を、スプレー法や静電塗布法等により、図6に示す如く誘電体層12の表面に付着させることにより酸化マグネシウム層13を形成させるのである。尚、誘電体層12及び嵩上げ誘電体層12Aの表面に蒸着又はスパッタ法により薄膜酸化マグネシウム層を形成し、その上に気相法酸化マグネシウム単結晶体を付着させて酸化マグネシウム層13を形成するようにしても良い。 Here, the magnesium oxide crystal forming the magnesium oxide layer 13 is a single crystal obtained by vapor phase oxidation of magnesium vapor generated by heating magnesium, for example, a wavelength region 200 excited by irradiation with an electron beam. It includes a vapor phase magnesium oxide crystal that performs CL emission having a peak within ˜300 nm (particularly, around 235 nm within 230 to 250 nm). This vapor phase magnesium oxide crystal has a multiple crystal structure in which cubic crystals as shown in the SEM photograph image of FIG. 5A are fitted to each other, or a cubic single crystal structure as shown in the SEM photograph image of FIG. 5B. , A magnesium single crystal having a particle size of 2000 angstroms or more is included. Such a magnesium single crystal is characterized by high purity and fine particles compared to magnesium oxide produced by other methods, and less aggregation of the particles, as will be described later. This contributes to the improvement of the discharge characteristics. In this example, a vapor phase magnesium oxide single crystal having an average particle size measured by the BET method of 500 angstroms or more, preferably 2000 angstroms or more is used. Then, the magnesium oxide layer 13 is formed by adhering such a magnesium oxide single crystal to the surface of the dielectric layer 12 as shown in FIG. 6 by spraying, electrostatic coating or the like. A thin film magnesium oxide layer is formed on the surfaces of the dielectric layer 12 and the raised dielectric layer 12A by vapor deposition or sputtering, and a magnesium oxide single crystal is deposited thereon to form a magnesium oxide layer 13. You may do it.
駆動制御回路56は、上記構造を有するPDP50を図7に示す如きサブフィールド法(サブフレーム法)を採用した発光駆動シーケンスに従って駆動させるべき各種制御信号を行電極X駆動回路51、行電極Y駆動回路53、及び列電極駆動回路55の各々に供給する。尚、図7に示す発光駆動シーケンスでは、1フィールド(1フレーム)表示期間内のN個のサブフィールドSF1〜SF(N)各々において、アドレス行程W、サスティン行程I及び消去行程Eを順次実行する。ただし、先頭のサブフィールドSF1に限り、アドレス行程Wに先立ち、リセット行程Rを実行する。 The drive control circuit 56 supplies various control signals to drive the PDP 50 having the above structure in accordance with a light emission drive sequence employing a subfield method (subframe method) as shown in FIG. This is supplied to each of the circuit 53 and the column electrode drive circuit 55. In the light emission drive sequence shown in FIG. 7, the address process W, the sustain process I, and the erase process E are sequentially executed in each of the N subfields SF1 to SF (N) within one field (one frame) display period. . However, the reset process R is executed prior to the address process W only in the first subfield SF1.
行電極X駆動回路51は、リセットパルス発生回路、及びサスティンパルス発生回路からなる。行電極X駆動回路51のリセットパルス発生回路は、リセット行程RにおいてPDP50の行電極Xに印加すべきリセットパルス(後述する)を発生する。行電極X駆動回路51のサスティンパルス発生回路は、サスティン行程Iにおいて行電極Xに印加すべきサスティンパルス(後述する)を発生する。 行電極Y駆動回路53は、リセットパルス発生回路、スキャンパルス発生回路及びサスティンパルス発生回路からなる。行電極Y駆動回路53のリセットパルス発生回路は、リセット行程RにおいてPDP50の行電極Yに印加すべきリセットパルス(後述する)を発生する。行電極Y駆動回路53のスキャンパルス発生回路は、アドレス行程WにおいてPDP50の行電極Yに印加すべき走査パルス(後述する)を発生する。行電極Y駆動回路53のサスティンパルス発生回路は、サスティン行程Iにおいて行電極Yに印加すべきサスティンパルス(後述する)を発生する。 The row electrode X drive circuit 51 includes a reset pulse generation circuit and a sustain pulse generation circuit. The reset pulse generation circuit of the row electrode X drive circuit 51 generates a reset pulse (described later) to be applied to the row electrode X of the PDP 50 in the reset process R. The sustain pulse generation circuit of the row electrode X drive circuit 51 generates a sustain pulse (described later) to be applied to the row electrode X in the sustain process I. The row electrode Y drive circuit 53 includes a reset pulse generation circuit, a scan pulse generation circuit, and a sustain pulse generation circuit. The reset pulse generation circuit of the row electrode Y drive circuit 53 generates a reset pulse (described later) to be applied to the row electrode Y of the PDP 50 in the reset process R. The scan pulse generation circuit of the row electrode Y drive circuit 53 generates a scan pulse (described later) to be applied to the row electrode Y of the PDP 50 in the address process W. The sustain pulse generation circuit of the row electrode Y drive circuit 53 generates a sustain pulse (described later) to be applied to the row electrode Y in the sustain process I.
列電極駆動回路55は、アドレス行程WにおいてPDP50の列電極Dに印加すべき画素データパルスを発生する。 The column electrode drive circuit 55 generates a pixel data pulse to be applied to the column electrode D of the PDP 50 in the address process W.
図8は、サブフィールドSF1〜SF(N)の内からSF1を抜粋して、PDP50の列電極D、行電極X及びYに印加される各種駆動パルスの印加タイミングを示す図である。 FIG. 8 is a diagram showing application timings of various drive pulses applied to the column electrodes D and the row electrodes X and Y of the PDP 50 by extracting SF1 from the subfields SF1 to SF (N).
先ず、リセット行程Rでは、行電極Y駆動回路53が、図8に示す如く、行電極Y上の電圧が時間経過に伴い緩やかに凸状に上昇して正極性のピーク電圧値Vryに到る前縁部と、その後、緩やかに電圧値が凹状に下降して負極性の電圧値Vselに到る後縁部とを有するリセットパルスRPYを行電極Y1〜Ynに一斉に印加する。尚、上記電圧値Vselは、後述する負極性の走査パルス(後述する)が印加された際の行電極Y上の電圧値と、電圧印加が一切為されていない場合における行電極Y上の電圧値との間の電圧である。又、上記ピーク電圧値Vryは、後述するサスティンパルスが印加された際の行電極Y上の電圧値よりも大なる電圧値である。行電極X駆動回路51は、このリセットパルスRPYにおける電圧値の上昇区間に亘り、図8に示す如き負極性の電圧Vrxを有するリセットパルスRPXを行電極X1〜Xnに印加する。 First, in the reset process R, as shown in FIG. 8, the row electrode Y drive circuit 53 causes the voltage on the row electrode Y to gradually rise in a convex shape over time and reach a positive peak voltage value Vry. a front edge, then slowly the voltage value applied simultaneously to the reset pulse RP Y having a rear edge reaching the voltage value Vsel of a negative polarity is lowered concavely row electrodes Y 1 to Y n. The voltage value Vsel includes the voltage value on the row electrode Y when a negative-polarity scanning pulse (described later) is applied, and the voltage on the row electrode Y when no voltage is applied. The voltage between the values. The peak voltage value Vry is a voltage value larger than the voltage value on the row electrode Y when a sustain pulse described later is applied. The row electrode X driving circuit 51 applies a reset pulse RP X having a negative voltage Vrx as shown in FIG. 8 to the row electrodes X 1 to X n over the rising period of the voltage value in the reset pulse RPY.
ここで、リセットパルスRPYと共にリセットパルスRPXが印加されている間、全表示セルPC1,1〜PCn,m各々内の行電極X及びY間において微弱な書込リセット放電が生起される。かかる書込リセット放電の終息後、各表示セルPCの放電空間S内における酸化マグネシウム層13の表面には所定量の壁電荷が形成される。つまり、酸化マグネシウム層13の表面上における行電極Xの近傍には正極性の電荷が形成され、行電極Yの近傍には負極性の電荷が形成される、いわゆる壁電荷の形成された状態となる。その後、リセットパルスRPYの電圧がピーク電圧値Vryから緩やかに低下して行くと、その間、全ての表示セルPC1,1〜PCn,m各々内の行電極X及びY間において微弱な消去リセット放電が生起される。かかる消去リセット放電により、全表示セルPC1,1〜PCn,m各々内に形成されていた壁電荷が消滅する。すなわち、リセット行程Rにより、全ての表示セルPC1,1〜PCn,mの各々は、壁電荷の量が所定量に充たない、いわゆる消灯モードの状態に初期化されるのである。 Here, the occurrence between, all the display cells PC 1, 1 to PC n, is weak write reset discharge between the row electrodes X and Y in the m each reset pulse RP X with reset pulse RP Y is applied The After the end of the write reset discharge, a predetermined amount of wall charges is formed on the surface of the magnesium oxide layer 13 in the discharge space S of each display cell PC. That is, a positive charge is formed in the vicinity of the row electrode X on the surface of the magnesium oxide layer 13, and a negative charge is formed in the vicinity of the row electrode Y. Become. Thereafter, when the voltage of the reset pulse RP Y gradually decreases from the peak voltage value Vry, a weak erase is performed between the row electrodes X and Y in each of the display cells PC 1,1 to PC n, m during that time. A reset discharge occurs. Due to the erase reset discharge, the wall charges formed in all of the display cells PC 1,1 to PC n, m disappear. That is, in the reset process R, all of the display cells PC 1,1 to PC n, m are initialized to a so-called extinguishing mode in which the amount of wall charges does not reach a predetermined amount.
次に、アドレス行程Wでは、列電極駆動回路55が、入力映像信号に基づきそのサブフィールドで各表示セルPCを発光させるか否かを設定する為の画素データパルスを生成する。例えば、列電極駆動回路55は、表示セルPCを発光させる場合には高電圧、発光させない場合には低電圧の画素データパルスを各表示セルPC毎に生成する。そして、列電極駆動回路55は、かかる画素データパルスを1表示ライン分(m個)ずつ、画素データパルス群DP1、DP2、・・・、DPnとして順次、列電極D1〜Dmに印加して行く。この間、行電極Y駆動回路53は、上記画素データパルス群DP1〜DPn各々のタイミングに同期させて負極性の走査パルスSPを行電極Y1〜Ynに順次印加して行く。この際、走査パルスSPが印加され且つ高電圧の画素データパルスが印加された表示セルPCのみに選択的にアドレス放電が生起され、その表示セルPCの放電空間S内における酸化マグネシウム層13及び蛍光体層17各々の表面に所定量の壁電荷が形成される。一方、走査パルスSPが印加されたものの低電圧の画素データパルスが印加された表示セルPC内では上記の如きアドレス放電は生起されないので、その直前までの壁電荷の形成状態が維持される。すなわち、アドレス行程Wの実行により、各表示セルPCは、入力映像信号に基づき、所定量の壁電荷が存在する点灯モードの状態、又は所定量の壁電荷が存在しない消灯モードの状態のいずれか一方に設定されるのである。 Next, in the address process W, the column electrode driving circuit 55 generates pixel data pulses for setting whether or not each display cell PC is caused to emit light in the subfield based on the input video signal. For example, the column electrode drive circuit 55 generates a pixel data pulse for each display cell PC with a high voltage when the display cell PC emits light and a low voltage when the display cell PC does not emit light. Then, the column electrode driving circuit 55, one display line such pixel data pulses (m in the number) per time, the pixel data pulse group DP 1, DP 2, · · ·, sequentially as DP n, the column electrodes D 1 to D m Apply to. During this time, the row electrode Y drive circuit 53 sequentially applies negative scan pulses SP to the row electrodes Y 1 to Y n in synchronization with the timing of the pixel data pulse groups DP 1 to DP n . At this time, the address discharge is selectively generated only in the display cell PC to which the scanning pulse SP is applied and the high-voltage pixel data pulse is applied, and the magnesium oxide layer 13 and the fluorescence in the discharge space S of the display cell PC are generated. A predetermined amount of wall charges is formed on the surface of each body layer 17. On the other hand, since the address discharge as described above is not generated in the display cell PC to which the scan pulse SP is applied but the low-voltage pixel data pulse is applied, the wall charge formation state up to that time is maintained. That is, by executing the address process W, each display cell PC is either in a lighting mode state where a predetermined amount of wall charges are present or in a light-off mode state where there is no predetermined amount of wall charges based on the input video signal It is set to one side.
次に、サスティン行程Iでは、行電極X駆動回路51及び行電極Y駆動回路53の各々が、交互に繰り返し正極性のサスティンパルスIPX及びIPYを行電極X1〜Xn及びY1〜Ynに印加する。サスティンパルスIPX及びIPYを印加する回数は、各サブフィールドにおける輝度の重み付けに依存する。この際、これらサスティンパルスIPX及びIPYが印加される度に、所定量の壁電荷が形成されている上記点灯モードの状態に設定されている表示セルPCのみがサスティン放電し、この放電に伴い蛍光体層17が発光してパネル面に画像が形成される。 Next, in the sustain process I, each of the row electrode X drive circuit 51 and the row electrode Y drive circuit 53 alternately repeats positive sustain pulses IP X and IP Y to the row electrodes X 1 to X n and Y 1 to Y 1 . Apply to Y n . The number of times that the sustain pulses IP X and IP Y are applied depends on the luminance weighting in each subfield. At this time, each time the sustain pulses IP X and IP Y are applied, only the display cell PC set in the lighting mode state in which a predetermined amount of wall charges is formed undergoes a sustain discharge. Accordingly, the phosphor layer 17 emits light and an image is formed on the panel surface.
次に、消去行程Eでは、行電極Y駆動回路53が、正極性の消去パルスEPを全ての行電極Y1〜Ynに一斉に印加する。かかる消去パルスEPの印加により全表示セルPC内において消去放電が生起され、各表示セルPC内に残留している壁電荷が全て消滅する。 Next, in the erasing step E, the row electrode Y drive circuit 53 applies a positive erasing pulse EP to all the row electrodes Y 1 to Y n simultaneously. By applying the erase pulse EP, an erase discharge is generated in all the display cells PC, and all the wall charges remaining in each display cell PC are extinguished.
ここで、前述した如く、各表示セルPC内に形成されている酸化マグネシウム層13に含まれている気相酸化マグネシウム単結晶体は、電子線の照射により励起されて図9に示す如き波長域200〜300nm内(特に、230〜250nm内の235nm付近)にピークを有するCL発光を行う。この際、図10に示す如く、気相法酸化マグネシウム結晶体の粒径が大なるほどCL発光のピーク強度が大となる。すなわち、気相酸化マグネシウム結晶体を生成する際に、通常よりも高い温度でマグネシウムを加熱すると、平均粒径500オングストロームの気相酸化マグネシウム単結晶体と共に、図5A或いは図5Bの如き粒径2000オングストローム以上の比較的大なる単結晶体が形成される。この際、マグネシウムを加熱する際の温度が通常よりも高温であるので、マグネシウムと酸素が反応する火炎の長さも長くなる。従って、かかる火炎と周囲との温度差が大になり、それ故に、粒径が大なる気相酸化マグネシウム単結晶体のグループほど、200〜300nm(特に235nm付近)に対応したエネルギー準位の高い単結晶体が多く含まれることになると推測される。 Here, as described above, the vapor-phase magnesium oxide single crystal contained in the magnesium oxide layer 13 formed in each display cell PC is excited by electron beam irradiation and has a wavelength region as shown in FIG. CL light emission having a peak within 200 to 300 nm (particularly, around 235 nm within 230 to 250 nm) is performed. At this time, as shown in FIG. 10, the peak intensity of CL emission increases as the particle diameter of the vapor-phase-process magnesium oxide crystal increases. That is, when forming a vapor phase magnesium oxide crystal, if the magnesium is heated at a temperature higher than usual, the particle size 2000 as shown in FIG. 5A or FIG. A relatively large single crystal of angstroms or more is formed. At this time, since the temperature at which magnesium is heated is higher than usual, the length of the flame in which magnesium and oxygen react with each other also becomes longer. Therefore, the temperature difference between the flame and the surroundings becomes large, and therefore, the group of vapor-phase magnesium oxide single crystals having a large particle size has a higher energy level corresponding to 200 to 300 nm (especially around 235 nm). It is presumed that many single crystals are contained.
図11は、表示セルPC内に酸化マグネシウム層を設けなかった場合の放電確率、従来の蒸着法によって酸化マグネシウム層を構築した場合の放電確率、電子線の照射により200〜300nm(特に230〜250nm内の235nm付近)にピークを有するCL発光を生起する気相酸化マグネシウム単結晶体を含む酸化マグネシウム層を設けた場合各々での放電確率を示す図である。尚、図11中において横軸は、放電の休止時間、つまり放電が生起されてから次の放電が生起されるまでの時間間隔を表すものである。 FIG. 11 shows a discharge probability when a magnesium oxide layer is not provided in the display cell PC, a discharge probability when a magnesium oxide layer is constructed by a conventional vapor deposition method, and 200 to 300 nm (especially 230 to 250 nm) by electron beam irradiation. It is a figure which shows the discharge probability in each case when the magnesium oxide layer containing the gaseous-phase magnesium oxide single crystal which produces CL light emission which has a peak in the vicinity of 235 nm is provided. In FIG. 11, the horizontal axis represents the discharge pause time, that is, the time interval from when a discharge occurs until the next discharge occurs.
このように、各放電セルPCの放電空間Sに、図5A又は図5Bに示す如き電子線の照射により200〜300nm(特に230〜250nm内の235nm付近)にピークを有するCL発光を行う気相酸化マグネシウム単結晶体を含む酸化マグネシウム層13を形成すると、従来の蒸着法によって酸化マグネシウム層を形成させた場合に比して放電確率が高まるのである。尚、図12に示す如く、上記気相酸化マグネシウム単結晶体としては、電子線を照射した際の特に235nmにピークを有するCL発光の強度が大なるものほど、放電空間S内において生起される放電遅れを短縮させることができる。 In this way, the gas phase that emits CL having a peak at 200 to 300 nm (particularly around 235 nm within 230 to 250 nm) by irradiation with an electron beam as shown in FIG. 5A or 5B in the discharge space S of each discharge cell PC. When the magnesium oxide layer 13 including the magnesium oxide single crystal is formed, the discharge probability is increased as compared with the case where the magnesium oxide layer is formed by a conventional vapor deposition method. As shown in FIG. 12, the above-mentioned vapor-phase magnesium oxide single crystal is generated in the discharge space S as the intensity of CL emission having a peak particularly at 235 nm when irradiated with an electron beam increases. The discharge delay can be shortened.
従って、表示画像には関与しないリセット放電に伴う発光を抑えてコントラスト向上を図るべく、行電極Yに印加するリセットパルスRPYの電圧推移を図8に示す如く、時間経過に伴い電圧が凸状に上昇する前縁部と、凹状に下降する後縁部とにより緩やかにしてリセット放電を微弱化させても、この微弱なリセット放電を短時間に安定して生起させることが可能となる。特に、各表示セルPCは、T字形状の透明電極Xa及びYa間の放電ギャップ近傍で局所的に放電を生起させる構造を採用しているので、行電極全体で放電してしまうような強い突発的なリセット放電が抑制されると共に、列電極及び行電極間での強い誤放電も阻止される。 Therefore, in order to achieve contrast improvement by suppressing the light emission accompanying the reset discharge not involved in displaying an image, the row electrodes are applied to the Y voltage transition of the reset pulse RP Y as shown in FIG. 8, a voltage is convex with the passage of time Even if the reset discharge is weakened gently by the front edge portion that rises to the rear and the rear edge portion that falls concavely , the weak reset discharge can be stably generated in a short time. In particular, each display cell PC employs a structure in which a discharge is locally generated in the vicinity of the discharge gap between the T-shaped transparent electrodes Xa and Ya. Reset discharge is suppressed and strong erroneous discharge between the column electrode and the row electrode is also prevented.
又、放電確率が高くなる(放電遅れが少なくなる)ことにより、上記リセット行程Rでの書込リセット放電及び消去リセット放電によるプライミング効果が長く持続することになるので、アドレス行程Wにおいて生起されるアドレス放電、並びにサスティン行程Iにおいて生起されるサスティン放電が高速化する。これにより、アドレス放電を生起させるべく列電極D及び行電極Yに夫々印加される図8に示す如き画素データパルスDP及び走査パルスSP各々のパルス幅Waを短くすることができるようになり、その分だけ、このアドレス行程Wに費やす処理時間を短縮させることが可能となる。更に、サスティン放電を生起させるべく行電極Yに印加される図8に示す如きサスティンパルスIPYのパルス幅Wbを短くすることができるようになり、その分だけ、このサスティン行程Iに費やす処理時間を短縮させることが可能となる。 In addition, since the discharge probability is increased (the discharge delay is reduced), the priming effect by the write reset discharge and the erase reset discharge in the reset process R is sustained for a long time, and therefore, it occurs in the address process W. The address discharge and the sustain discharge generated in the sustain process I are accelerated. As a result, the pulse width Wa of each of the pixel data pulse DP and the scanning pulse SP as shown in FIG. 8 applied to the column electrode D and the row electrode Y to cause the address discharge can be shortened. It is possible to reduce the processing time spent in this address process W by the amount. Further, the pulse width Wb of the sustain pulse IP Y applied to the row electrode Y to cause the sustain discharge as shown in FIG. Can be shortened.
従って、これらアドレス行程W及びサスティン行程I各々に費やされる処理時間を短縮した分だけ、1フィールド(又は1フレーム)表示期間内において設けるべきサブフィールドの数を増加させることが可能となり、階調数の増加を図ることができるようになる。 Accordingly, it is possible to increase the number of subfields to be provided in one field (or one frame) display period by the amount of reduction of the processing time spent in each of the address process W and the sustain process I. Can be increased.
又、上記実施例におけるPDP50としては、行電極対(X1,Y1)、(X2,Y2)、(X3,Y3)、・・・、(Xn,Yn)の如き互いに対を為す行電極Xと行電極Yとの間に表示セルPCが形成される構造を採用しているが、互いに隣接する全ての行電極間に表示セルPCが形成された構造を採用しても良い。要するに、行電極X1及びY1の間、行電極Y1及びX2間、行電極X2及びY2の間、・・・、行電極Yn-1及びXnの間、行電極Xn及びYnの間、に夫々表示セルPCが形成された構造を採用しても良いのである。 Further, as the PDP 50 in the above embodiment, the row electrode pairs (X 1 , Y 1 ), (X 2 , Y 2 ), (X 3 , Y 3 ),..., (X n , Y n ) are used. A structure in which the display cell PC is formed between the row electrode X and the row electrode Y that are paired with each other is adopted, but a structure in which the display cell PC is formed between all the adjacent row electrodes is adopted. May be. In short, between the row electrodes X 1 and Y 1 , between the row electrodes Y 1 and X 2, between the row electrodes X 2 and Y 2 ,..., Between the row electrodes Y n−1 and X n , the row electrode X A structure in which a display cell PC is formed between n and Y n may be employed.
又、上記実施例におけるPDP50としては、前面透明基板10に行電極X及びY、背面基板14に列電極D及び蛍光体層17を夫々形成される構造を採用しているが、前面透明基板10に列電極Dと共に行電極X及びYを形成し、背面基板14に蛍光体層17を形成させた構造を採用しても良い。 The PDP 50 in the above embodiment employs a structure in which the row electrodes X and Y are formed on the front transparent substrate 10 and the column electrode D and the phosphor layer 17 are formed on the rear substrate 14. Alternatively, a structure in which the row electrodes X and Y are formed together with the column electrodes D and the phosphor layer 17 is formed on the back substrate 14 may be adopted.
13 酸化マグネシウム層
50 PDP
51 行電極X駆動回路
53 行電極Y駆動回路
55 列電極駆動回路
56 駆動制御回路
13 Magnesium oxide layer 50 PDP
51 row electrode X drive circuit 53 row electrode Y drive circuit 55 column electrode drive circuit 56 drive control circuit
Claims (3)
電子線の照射によって励起されて波長域200〜300nm内にピークを有するカソードルミネッセンス発光を行う酸化マグネシウム結晶体が、前記表示セル各々内の前記放電空間に接する面において形成された酸化マグネシウム層と、
映像信号における1フィールドを複数のサブフィールドで構成し、前記サブフィールド各々のアドレス期間において、前記行電極対の一方の行電極に走査パルスを印加すると共に映像信号に基づく画素データに応じた画素データパルスを前記列電極に印加することにより前記表示セル各々に選択的にアドレス放電を生起せしめて前記表示セル内に壁電荷を形成させるアドレス手段と、
前記サブフィールドの各々において、前記行電極対各々にサスティンパルスを印加することにより前記壁電荷の形成されている前記表示セルのみをサスティン放電させるサスティン手段と、
前記1フィールドの表示期間の先頭のサブフィールドの前記アドレス期間に先だって、全ての前記行電極対にリセットパルスを印加することにより全ての前記表示セル内にリセット放電を生起せしめるリセット手段と、を有し、
前記リセットパルスは、時間経過に伴ってその電圧が凸状に漸増して所定の第1電圧値に到る前縁部と、時間経過に伴ってその電圧が凹状に漸減して所定の第2電圧値に到る後縁部とを有することを特徴とするプラズマディスプレイ装置。 Plasma having mounted thereon a plasma display panel in which a display cell having a discharge space is formed at each intersection of a plurality of row electrode pairs and a plurality of column electrodes extending in the crossing direction. A display device,
A magnesium oxide layer that is excited by electron beam irradiation and emits cathodoluminescence light having a peak in a wavelength range of 200 to 300 nm, a magnesium oxide layer formed on a surface in contact with the discharge space in each of the display cells;
One field in the video signal is composed of a plurality of subfields, and in the address period of each of the subfields, a scanning pulse is applied to one row electrode of the row electrode pair and pixel data corresponding to pixel data based on the video signal Address means for selectively generating an address discharge in each of the display cells by applying a pulse to the column electrodes to form wall charges in the display cells;
In each of the subfields, sustain means for sustaining only the display cells in which the wall charges are formed by applying a sustain pulse to each of the row electrode pairs;
Prior before Symbol address period of the first subfield of the display period of the one field, and reset means allowed to rise to reset discharge in all the display cells by applying a reset pulse to all the row electrode pairs, I have a,
The reset pulse has a leading edge where the voltage gradually increases in a convex shape as time elapses and reaches a predetermined first voltage value, and the voltage gradually decreases in a concave shape as time elapses. A plasma display device having a trailing edge reaching a voltage value .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004271960A JP4619074B2 (en) | 2004-09-17 | 2004-09-17 | Plasma display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004271960A JP4619074B2 (en) | 2004-09-17 | 2004-09-17 | Plasma display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006085020A JP2006085020A (en) | 2006-03-30 |
JP4619074B2 true JP4619074B2 (en) | 2011-01-26 |
Family
ID=36163557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004271960A Expired - Fee Related JP4619074B2 (en) | 2004-09-17 | 2004-09-17 | Plasma display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4619074B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4754205B2 (en) * | 2004-05-17 | 2011-08-24 | パナソニック株式会社 | Plasma display apparatus and plasma display panel driving method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192630A (en) * | 1993-12-27 | 1995-07-28 | Oki Electric Ind Co Ltd | Gas discharge display panel and its protective film forming method |
JPH0822772A (en) * | 1994-07-08 | 1996-01-23 | Pioneer Electron Corp | Surface discharge type plasma display device |
JP2001176400A (en) * | 1999-12-16 | 2001-06-29 | Pioneer Electronic Corp | Plasma display panel |
JP2004038161A (en) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Plasma display having divided electrode |
JP2004077644A (en) * | 2002-08-13 | 2004-03-11 | Fujitsu Ltd | Driving method of plasma display panel |
JP2004157291A (en) * | 2002-11-06 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Driving method and driving-gear for ac type plasma display panel |
JP2004199026A (en) * | 2002-10-24 | 2004-07-15 | Pioneer Electronic Corp | Device for driving display panel |
JP2006114484A (en) * | 2004-09-16 | 2006-04-27 | Pioneer Electronic Corp | Plasma display panel |
-
2004
- 2004-09-17 JP JP2004271960A patent/JP4619074B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192630A (en) * | 1993-12-27 | 1995-07-28 | Oki Electric Ind Co Ltd | Gas discharge display panel and its protective film forming method |
JPH0822772A (en) * | 1994-07-08 | 1996-01-23 | Pioneer Electron Corp | Surface discharge type plasma display device |
JP2001176400A (en) * | 1999-12-16 | 2001-06-29 | Pioneer Electronic Corp | Plasma display panel |
JP2004038161A (en) * | 2002-06-28 | 2004-02-05 | Matsushita Electric Ind Co Ltd | Plasma display having divided electrode |
JP2004077644A (en) * | 2002-08-13 | 2004-03-11 | Fujitsu Ltd | Driving method of plasma display panel |
JP2004199026A (en) * | 2002-10-24 | 2004-07-15 | Pioneer Electronic Corp | Device for driving display panel |
JP2004157291A (en) * | 2002-11-06 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Driving method and driving-gear for ac type plasma display panel |
JP2006114484A (en) * | 2004-09-16 | 2006-04-27 | Pioneer Electronic Corp | Plasma display panel |
Also Published As
Publication number | Publication date |
---|---|
JP2006085020A (en) | 2006-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4481131B2 (en) | Plasma display device | |
JP4541108B2 (en) | Plasma display device | |
JP4636857B2 (en) | Plasma display device | |
JP4873844B2 (en) | Plasma display device | |
JP4754205B2 (en) | Plasma display apparatus and plasma display panel driving method | |
US7764250B2 (en) | Plasma display device | |
JP2006146035A (en) | Plasma display device | |
JP4987258B2 (en) | Plasma display device | |
JP4619074B2 (en) | Plasma display device | |
JP5355843B2 (en) | Plasma display device | |
JP2009008806A (en) | Driving method of plasma display panel | |
JP4636846B2 (en) | Plasma display device | |
JP2006234912A (en) | Plasma display device | |
JP4585258B2 (en) | Plasma display device | |
CN100479085C (en) | Plasma display device and method of driving plasma display panel | |
JP2003066899A (en) | Plasma display | |
JP2008122684A (en) | Plasma display device and driving method of display panel | |
JP2008070443A (en) | Drive method of plasma display panel | |
JP2008203459A (en) | Driving method of plasma display panel | |
JP2010014802A (en) | Driving method of plasma display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070803 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090605 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101026 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131105 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |