JP4608758B2 - 内燃機関の空燃比制御装置 - Google Patents
内燃機関の空燃比制御装置 Download PDFInfo
- Publication number
- JP4608758B2 JP4608758B2 JP2000309163A JP2000309163A JP4608758B2 JP 4608758 B2 JP4608758 B2 JP 4608758B2 JP 2000309163 A JP2000309163 A JP 2000309163A JP 2000309163 A JP2000309163 A JP 2000309163A JP 4608758 B2 JP4608758 B2 JP 4608758B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- lean
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【発明の属する技術分野】
本発明は、空燃比リーン域でのリーン燃焼を行わせる内燃機関の空燃比制御装置に係わり、リーン燃焼時に発生する窒素酸化物(NOx)を浄化するためのNOx吸蔵型触媒を有する内燃機関の空燃比制御装置に関するものである。
【0002】
【従来技術】
燃費の効率化が求められる近年では、理論空然比よりも燃料の薄い状態で内燃機関を燃焼させるいわゆるリーンバーン制御が多様化されつつある。こうしたリーン燃焼を行わせる場合に問題となるのは、内燃機関から排出される排出ガス成分の一つであるNOx(窒素酸化物)の浄化が挙げられる。そこで、このリーン燃焼時に排出されるNOxを削減する技術が求められている。
【0003】
この問題を解決するために、機関排気管にNOx吸蔵触媒等をもうけて排出NOxを吸蔵させ、NOx触媒にある程度NOxが吸蔵されたらリッチ成分を供給することによりNOxを還元し、浄化して排出する技術がある。さらに、我々は特願平10−187730号で、NOx触媒に吸蔵されたNOxを還元・放出するために制御されるリッチ成分の供給量を、酸素濃度センサの出力に基づいて精度良く制御する技術を提案した。より具体的には、排出されるNOxを酸素濃度センサにより検出し、検出値を積算していくことでNOx触媒に吸蔵されたNOxを計算している。そして、NOx触媒のNOx吸蔵量として予め設定されている判定値とECUにより算出されるNOxの積算量とを比較し、積算量が判定値を越えたときにリッチ成分を供給しNOxを還元・放出するように制御している。
【0004】
【発明が解決する課題】
ところが、NOx触媒前に配設される触媒が酸素貯蔵能力を有する場合、リーン領域での燃焼からNOxを還元するためにリッチ領域での燃焼へ切り換える(以降、リーン→リッチ切り換えという)と、前記触媒に酸素貯蔵能力(ストレージ効果)があるためにHC、COと酸素との酸化・還元反応が生じる。これにより三元触媒後の空燃比が速やかにリッチ領域へと切り替わらない。
【0005】
空燃比がリッチ領域への切り換えが緩やかであると図12に示すように、三元触媒により浄化されないNOx量、つまりNOx排出量が多い空燃比(16〜18)領域を通過する時間が長くなってしまい、NOxを排出させてしまう。これによりリーン→リッチ切り換え時に多量のNOxがNOx触媒に吸蔵されるので、このとき排出したNOxを還元させるために、リッチパージ時間が長くなってしまうという問題がある。また、リッチ領域での燃焼からリーン領域での燃焼への切り換え(以降、リッチ→リーン切り換えという)時に、NOxを排出してしまうとリーン制御への切り換え初期からNOx吸蔵触媒へ多量のNOxが吸蔵されることとなる。これにより、NOx吸蔵容量(NOx吸蔵量の判定値)をリッチ→リーン切り換え時に発生するNOxが消費してしまい、NOx吸蔵判定値までの容量を十分に利用することができない。
【0006】
そこで本発明では、空燃比の切換えの際に三元触媒下流に排出されるNOxを低減することのできる内燃機関の空燃比制御装置を提供することを目的とする。
【0007】
【課題を解決すための手段】
本発明は、上述の課題に鑑みてなされたものであり、請求項1記載の内燃機関の空燃比制御装置によれば、NOx吸蔵触媒に吸蔵されたNOxを還元・放出するために行われるリッチパージ制御手段は、リーン→リッチ切り換え時の空燃比(第1の空燃比)が、一時的にその後のリッチパージ中の空燃比(第2の空燃比)よりリッチとなるように制御するリッチパージ開始時制御手段と、リッチパージ中の空燃比(第2の空燃比)を一定に制御する手段を備える。
【0008】
これにより、酸素貯蔵能力を有する排気管通路上流側に配設された触媒、例えば、三元触媒に貯蔵された酸素をすばやく消費することができ、リーン→リッチ切り換え時にNOxを多量に排出する空燃比領域を速やかに通過する。すなわち、リーン→リッチ切り換え時に排出されるNOxを抑制することができるので、このとき発生するNOxを還元させるためのリッチパージ時間を短くすることができる。
【0009】
なお、NOx吸蔵触媒は、NOxを吸蔵、または吸着する触媒である。また、いわゆるリーン制御はリーン制御手段によってなされる空燃比制御のことであり、リッチーパージ制御はリッチパージ制御手段によってなされる空燃比制御のことである。リッチパージ制御手段は、リッチパージ開始時制御とリッチパージ制御とからなりリッチパージ開始時制御手段により設定される空燃比は、リッチパージ制御により設定される空燃比よりもリッチに設定される。また、ここで行われるリーン制御とリッチパージ制御とは、フィードバック制御を用いて空燃比を制御しても良いし、オープン制御を用いて空燃比を制御しても良い。
【0010】
さらに、請求項1に記載の内燃機関の空燃比制御装置において、リッチパージ制御手段は、リッチパージ制御からリーン制御に復帰する際に、一時的に空燃比がリーン制御手段により制御される空燃比よりリーンとなるように制御する。
【0011】
このため、リッチ→リーン切り換え時に発生するNOxを抑制することができ、切り換え時に吸蔵されるNOx量を低減することができる。これにより、リーン制御により排出されるNOxをNOx吸蔵容量(NOx吸蔵判定値)まで十分に利用することができる。
【0012】
請求項2記載の内燃機関の空燃比制御装置によれば、請求項1に記載の内燃機関の空燃比制御装置において、リッチパージ開始時に一時的に設定される空燃比をその後のリッチパージ制御中の空燃比へ収束させる第1の収束手段を備えるので、リッチパージ制御の設定する空燃比への追従性と、トルク変動などを抑制したすみやかな制御性を実現することができる。
【0013】
請求項3記載の内燃機関の空燃比制御装置によれば、請求項1または請求項2のいずれか一つに記載の内燃機関の空燃比制御装置において、リーン復帰制御手段により設定される空燃比をリーン制御手段により設定される空燃比へ収束させる第2の収束手段を備えるので、リーン制御が設定する空燃比への追従性と、トルク変動などを抑制したすみやかな制御性を実現することができる。
【0014】
請求項4記載の内燃機関の空燃比制御装置によれば、請求項1乃至請求項3に記載の内燃機関の空燃比制御装置において、リーン復帰制御手段および/またはリッチパージ開始時制御手段により設定される空燃比は、第1の運転状態検手段により検出される運転状態に基づいて設定される。これにより、様々な運転状態に応じて排出されるNOxを低減させるのに最適な空燃比制御を行うことができる。
【0015】
請求項5記載の内燃機関の空燃比制御装置によれば、請求項4に記載の内燃機関の空燃比制御装置において、内燃機関の負荷を検出する。
【0016】
これにより、内燃機関の負荷によりHC、COの量が変化するので、これを検出することで、HC、COを速やかに消費する空燃比に制御できる。
【0017】
請求項6記載の内燃機関の空燃比制御装置によれば、請求項5に記載の内燃機関の空燃比制御装置において、運転状態検出手段として吸入空気量を検出し、検出した吸入空気量に基づいて空燃比を設定する。吸入空気量の変化により上流側触媒(三元触媒)に流入するHC、COの量が変化する。ところで、前記触媒に貯蔵される酸素を速やかに消費するためには、リーン→リッチ切り換え時において、空燃比をすばやくリッチ燃焼へと切り換えることが必要であるので、上述のような制御を実施することで、酸素を消費するのに最適なHC、COの発生量、すなわち最適な空燃比制御をすることができる。
【0018】
請求項7記載の内燃機関の空燃比制御装置によれば、リッチパージ制御手段からリーン復帰制御に移る際に、一時的にその後のリッチパージ中の空燃比よりリッチとなるように空燃比を制御する。これにより空燃比がリッチ→リーン切り換え時にNOxを多く排出させてしまう領域を速やかに通過するので、NOx触媒に貯蔵されるNOxを低減でき、NOx吸蔵判定値までの容量を十分に利用することが可能となる。
【0019】
請求項8の発明によれば、請求項7に記載の内燃機関の空燃比制御装置において、リーン制御手段は、リーン復帰制御手段により設定される空燃比を前記リーン制御手段により設定される空燃比へ収束させる第2の収束手段を備える。
【0020】
これにより、リーン制御が設定する空燃比への追従性と、トルク変動などを抑制したすみやかな制御性を実現することができる。
【0021】
請求項9の発明によれば、請求項7または請求項8のいずれか一つに記載の内燃機関の空燃比制御装置において、内燃機関の運転状態を検出する第2の運転状態検出手段を備え、リーン復帰制御手段により設定される空燃比は、第2の運転状態検出手段により検出される運転状態に基づいて設定される。
【0022】
これにより、様々な運転状態に応じて排出されるNOxを低減させるのに最適な空燃比制御を行うことができる。
【0023】
請求項10の発明によれば、請求項9に記載の内燃機関の空燃比制御装置において、第2の運転状態検出手段は、内燃機関の負荷を検出する。請求項5記載の内燃機関の空燃比制御装置によれば、請求項4に記載の内燃機関の空燃比制御装置において、内燃機関の負荷を検出する。
【0024】
これにより、内燃機関の負荷によりHC、COの量が変化するので、これを検出することで、HC、COを速やかに消費する空燃比に制御できる。
【0025】
請求項11の発明によれば、請求項10に記載の内燃機関の空燃比制御装置において、内燃機関の負荷は、吸入空気量であり、検出した吸入空気量に基づいて空燃比を設定する。吸入空気量の変化により上流側触媒(三元触媒)に流入するHC、COの量が変化する。ところで、前記触媒に貯蔵される酸素を速やかに消費するためには、リーン→リッチ切り換え時において、空燃比をすばやくリッチ燃焼へと切り換えることが必要であるので、上述のような制御を実施することで、酸素を消費するのに最適なHC、COの発生量、すなわち最適な空燃比制御をすることができる。
【0026】
【実施の形態】
<第1の実施形態>
以下、この発明を具体化した第1の実施形態を図面にしたがって説明する。本実施形態における空燃比制御システムでは、内燃機関に供給する混合気の目標空燃比を理論空然比よりもリーン側に設定し、その目標空燃比に基づいてリーン燃焼を行わせる、いわゆるリーンバーン制御を実施する。同システムの主たる構成として、内燃機関の排気系通路の途中には酸素貯蔵能力を有する三元触媒とNOx吸蔵還元型触媒(以下、NOx触媒という)とが設けられ、内燃機関と三元触媒との間には限界電流式の空燃比センサ(A/Fセンサ)が配設される。そして、マイクロコンピュータを主体とする電子制御装置(以下、ECUという)は、A/Fセンサによる検出結果を取り込み、その検出結果に基づいて空燃比をフィードバック制御する。以下に、図面を用いてその詳細な構成を説明する。
【0027】
図1は、本実施の形態における空燃比制御システムの概略構成図である。図1に示されるように、内燃機関は4気筒4サイクルの火花点火式エンジン(以下、エンジン1という)として構成されている。その吸入空気は上流よりエアクリーナ2、吸気管3、スロットル弁4、サージタンク5およびインテークマニホールド6を通過して、インテークマニホールド6内で各気筒毎の燃料噴射弁7から噴射された燃料と混合される。そして、所定空燃比の混合気として各気筒に供給される。
【0028】
エンジン1の各気筒に設けられた点火プラグ8は点火コイル9にて発生された高電圧により前記各気筒の混合気を所定タイミングで点火する。燃焼後に各気筒から排出される排出ガスは、エキゾーストマニホールド11および排気管12を経て、排ガス中のHC、CO、NOxの三成分を浄化するのための三元触媒13と、排ガス中のNOxを浄化するためのNOx触媒14とを通過した後、大気に排出される。
【0029】
ここで、NOx触媒14は、主にリーン空燃比での燃焼時においてNOxを吸蔵し、リッチ空燃比での燃焼時において前記吸蔵したNOxをリッチ成分(CO、HCなど)で還元し放出する。また、三元触媒13は、NOx触媒14に比べてその容量が小さく、エンジン1の低温始動後において早期に活性化されて有害ガスを浄化する触媒である。また、この三元触媒13は酸素貯蔵能力を備えており、多少空燃比がずれた状態であっても貯蔵した酸素によりHC、COを浄化することができる。
【0030】
吸気管3には吸入空気量を検出するエアフロメータ21が設けられている。また、スロットル弁4には同弁4の開度(スロットル開度TH)を検出するためのスロットルセンサ23が設けられ、このスロットルセンサ23はスロットル開度THに応じたアナログ信号を出力する。スロットルセンサ23はアイドルスイッチを内蔵しており、スロットル弁4が略全閉である旨の検出信号を出力する。さらにスロットル弁4はスロットルアクチュエータ15により駆動される。スロットルアクチュエータ15としては周知のDCモータ、トルクモータ等が用いられる。
【0031】
エンジン1のシリンダブロックには水温センサ24が設けられ、この水温センサ24はエンジン1内を循環する冷却水の温度(冷却水温Thw)を検出する。
エンジン1のクランクケースにはエンジン1の回転速度(エンジン回転速度Ne)を検出するための回転速度センサ25が設けられている。
【0032】
さらに、前記排気管12において三元触媒13の上流には、限界電流式のA/Fセンサ27が配設されており、同センサ27はエンジン1から排出される排ガスの酸素濃度(或いは、未燃ガス中のCO濃度)に比例して広域で且つリニアな空燃比信号を出力する。なお、A/Fセンサ27は、素子部(固体電解質および拡散抵抗層)の活性化を図るためのヒータ47を備える。A/Fセンサ27としては、断面コップ形状に形成された素子部を有するコップ型センサや、あるいは板状の素子部とヒータ47とが積層されて成る積層型センサが適用できる。
【0033】
ECU30は、周知のCPU、ROM、RAM、バックアップRAM(いずれも図示しない)などを中心に論理演算回路として構成され、前記各センサの検出信号に基づいて燃料噴射量、点火時期Igなどの制御信号を算出し、さらにそれらの制御信号を燃料噴射弁7、点火コイル9にそれぞれ出力する。
【0034】
また、ECU30内のCPUは、A/Fセンサ27のヒータ通電量をデューティ制御して同センサ27を活性状態で維持する。本実施形態では、A/Fセンサ27のヒータ47に対して必要な電力量を供給し、当該センサ27の素子温を活性温度域で保持するようにしている。
【0035】
次に、上述の如く構成される空燃比制御システムの作動を図2から図4のフローチャートを用いて説明する。
【0036】
図2は、ECU30が処理するリーンバーン制御のメインルーチンである。
【0037】
最初に、ステップ10にてリッチパージ制御が必要か否かを示すフラグFrの判定が行われる。リッチパージ制御の開始を示すフラグFrは、ステップ20以降のNOx触媒14のNOx吸蔵量が判定値を越えたときにリーン制御からリッチパージ制御に切り換えるための役割を果たす。このフラグFrが0であると判定されるとステップ20に進む。ステップ20では空燃比センサ27により排ガス中のNOx量NOMOL(モル)を推定する。NOMOL値の推定に際し、その時々のエンジン回転速度Neと吸入空気量とに応じたNOx基本量を求めると共に、図5の関係を用いてその時々の空燃比に応じたA/F補正値を求める。そして、NOx基本量とA/F補正値とを乗算してその積をNOx量NOMOLとする(NOMOL=NOx基本量・A/F補正値)。
【0038】
ちなみに、図5では理論空然比(λ=1)でA/F補正値=1.0が設定され、それよりもリーン側では「1.0」以上のA/F補正値が設定される。ただし、空燃比がある程度よりもリーン側(例えばA/F>16)では燃焼温度が下がるためにそれ以上の増加側の補正が不要となり、A/F補正値は所定の値に収束する。
【0039】
その後、CPUは、ステップ30でNOx積算量を算出する。このとき、前記ステップ20で算出したNOMOL値をNOx積算値の前回値に加算し、その和をNOx積算値の今回値とする(NOx積算値=NOx積算値+NOx量)。
【0040】
さらに、CPUは、ステップ40で前記算出したNOx積算値が所定の判定値C1を越えたか否かを判別する。判定値C1は固定値でもよいし、たとえば、図14の関係を用い、NOx触媒14のNOx吸蔵能力に応じて可変にしても良いし、予めNOx触媒14の劣化を見込んで判定値C1を設定しても良い。なお、NOx吸蔵能力が高いほど、NOx触媒14の劣化度合いが小さいことを意味する。
【0041】
NOx積算値が判定値C1よりも小さければ(ステップ40がNo)、ステップ50に進む。CPUは、ここでリーン制御を行い、本ルーチンを終了する。ここで言うリーン制御は、最良の燃費点で制御するために空燃比を理論空然比より大幅にリーン側で制御している。空燃比がリーンのときはNOx発生量自体は多くないものの、三元触媒13の浄化率が低くなるため、三元触媒13から排出されるNOxの量は空燃比が理論空然比のときに比べて多くなる。このため、三元触媒13から排出されたNOxをNOx触媒14にて吸蔵している。リーン制御手段による空燃比の設定方法は、従来より行われているリーンバーンシステムに用いられているもので良い。また、ステップ40にて、NOx積算量が判定値C1を越えたときは、ステップ60にてリッチパージ制御を開始するためにフラグFrに1を立てて本ルーチンを終了する。
【0042】
次に、ステップ10にて、フラグFrが1、すなわちリッチパージ制御を開始するときはステップ70に進む。ステップ70では、リッチパージ制御が終了か否かを判定するフラグFstpが0か否かが判定され、フラグFstpが0のとき、すなわちリッチパージ制御が終了前であると判定された場合は、ステップ100にて後述する図3のリッチパージ制御を行って本ルーチンを終了する。一方、フラグFstpが1のとき、すなわちリッチパージ制御を終了するためのリーン復帰制御開始時は、ステップ200に進み、後述する図4のリーン復帰制御を行って本ルーチンを終了する。
【0043】
次に図3のフローチャートを説明する。図3のリッチパージ制御は、図2のフローチャートのステップ100にてサブルーチンコールされる処理である。当該フローチャートは、NOx触媒14のNOx吸蔵量が判定値C1に達したときに、吸蔵されているNOxを還元・放出するためにリッチパージを行う処理であり、このリッチパージ制御は本発明の特徴を有する。
【0044】
まず、ステップ101では、吸入空気量Q、スロットル開度TH、機関温度Thw、などの運転状態に基づいて目標空燃比Rtarが設定される。そして、ステップ102へ進み、リーン→リッチ切り換え後最初の空燃比設定が終了したことを示すフラグFfirが1か否かが判定される。フラグFfirが1でなければ(フラグ=0)、ステップ103へ進む。ステップ103では、リッチパージ開始時に設定される空燃比Rfiの演算が行われる。
【0045】
空燃比Rfiは、リーン制御からリッチパージが速やかに行われるように、目標空燃比Rtarよりもリッチな空燃比に設定するための値である。空燃比Rfiの設定方法として例えば、図6(a)に示すように内燃機関の回転速度に対応するマップを呼び出し、マップから運転状態に応じた空燃比Rfiを求めている。これによるとHC、COの変化量に応じて三元触媒13に貯蔵された酸素を速やかに消費し、空燃比をすばやくリッチへすることができる。また、リッチパージ開始時に設定される空燃比Rfiの算出方法は、内燃機関の回転速度のみならず、内燃機関の負荷や吸入空気量などに基づいて設定されるものでも良い。更に、固定値に設定してもよく、固定値にした場合は、マップの呼び出しなどのステップ数を削減できるのでCPUへの負担を軽減することができる。また、RfiをRfi=Rtar−αとして設定し、目標空燃比Rtarより常に所定空燃比だけリッチ側の空燃比となるように設定しても良い。もちろんαの値を可変設定、例えば内燃機関の負荷等に応じて設定するようにしても良い。このようにして空燃比Rfiが設定されるとステップ104へ進む。
【0046】
ステップ104では、リッチパージ制御手段が設定するリッチパージ空燃比として、ステップ103で算出した空燃比Rfiが設定される。そして、ステップ105に進み、リーン→リッチ切り換え後最初のリッチパージ空燃比の設定が終了したことを示すフラグFfirを1にセットし本ルーチンを終了する。
【0047】
ステップ102にて、フラグFfirが1であれば、ステップ106へ進む。
ステップ106では、空燃比Rfiを減衰させ目標空燃比Rtarに収束させるための減衰量Greが算出される。減衰量Greは図6(b)に示されるように内燃機関の回転速度に対応するマップに基づいて設定される。また、この減衰量Greの算出方法は、内燃機関の回転速度のみならず、内燃機関の負荷や吸入空気量などに基づいて設定されるものでもよい。さらに、固定値に設定しても良く、固定値にした場合は、マップの呼び出しなどのステップ数を削減できるのでCPUへの負担を軽減することができる。このようにして減衰量が設定されるとステップ107へ進む。
【0048】
ステップ107では、リッチパージ制御が終了しているか否かが判定される。
例えば、リッチパージ制御終了か否かの判定方法として、次のような方法を用いることができる。まず、図2のフローチャートのステップ30にて算出されたNOx積算量に基づきNOx触媒に吸蔵された全NOxを還元・放出するのに必要なリッチパージ総量を予め算出する。予め算出されたリッチパージ総量を判定値とし、毎回のCPUの処理毎に実際にリッチパージ量を積算しリッチパージ積算値が前記判定値を越えたか否かを判定する。そしてリッチパージ積算値が判定値を越えたときに、リッチパージ制御の終了とする。NOx触媒に吸蔵されたNOxを還元するのに必要なリッチパージ空燃比の算出方法としては、吸入空気量とエンジン回転速度に基づいたマップから求める。他にも、吸気圧(PM)をパラメータとしても良い。
【0049】
リッチパージ制御が終了していないと判定された場合は、ステップ108へ進み、リッチパージ空燃比をリッチパージの前回値からステップ106で算出した減衰量Greを差し引く(リッチパージ空燃比=前回値―減衰量Gre)ことで設定する。そして、ステップ109では、ステップ101で設定された目標空燃比Rtarとステップ108で算出されたリッチパージ空燃比を比較し、リッチパージ空燃比が目標空燃比Rtarよりリッチであると(リッチパージ空燃比―目標空燃比Rtar>0)、このまま本ルーチンを終了する。また、ステップ109にて、リッチパージ空燃比が目標空燃比Rtarよりリーンになると、(リッチパージ空燃比―目標空燃比Rtar<0)、ステップ110に進み、リッチパージ空燃比を目標空燃比Rtarに設定して本ルーチンを終了する。
【0050】
ステップ107にて、リッチパージ制御が終了であると判定されると、ステップ111にてリッチパージ制御終了を示すフラグFstpを1にセットし、ステップ112にてリーン→リッチ切り換え後の最初の空燃比設定をしたか否かを示すフラグFfirを0(初期化)にセットし、本ルーチンを終了する。
【0051】
このように、本ルーチンでは、目標空燃比Rtarより更にリッチな空燃比をリッチパージ開始時の空燃比Rfiとして設定する。更に本実施例においては、このRfiを運転状態に応じて設定するようにしている。これにより、三元触媒13に貯蔵された酸素をすばやく消費し、三元触媒下流の空燃比を速やかにリーン→リッチ/リッチ→リーンに切り換えることができる。すなわち、本発明ではリーン→リッチ/リッチ→リーン切り換えの際に三元触媒13の下流にNOxがもっとも排出される空燃比をきわめて短時間で通過することになり、リーンからリッチ、リッチからリーンの切り換えの際に排出されるNOxを低減することができる。
【0052】
なお、本ルーチンでは、リッチパージ開始時制御の空燃比を目標空燃比Rtarへ収束させる方法として運転状態に応じた減衰量Greを設定しているが、予め所定値を設定しておいてもよい。減衰量Greを所定値とすることで本ルーチンのステップ103を削除することができるためCPUへの負担を軽減することができる。
【0053】
次に、図2のステップ200にてサブルーチンコールされるリーン復帰制御について、図4を用いて詳細を説明する。
【0054】
本ルーチンは、リッチパージ制御が終了すると行われる制御である。まず、ステップ201にて、目標空燃比Ltarが内燃機関の回転速度Neや吸入空気量などに基づいて設定される。次に、ステップ202にてリーン復帰制御による最初の空燃比の設定が終了したか否かを判定するフラグFsecが読み込まれる。フラグFsecが0である場合、すなわちリーン復帰制御による最初の空燃比が未設定である場合は、ステップ204に進み、空燃比Lfiを算出する。空燃比Lfirは、リーン復帰制御手段により設定され、図13(a)に示されるような内燃機関の回転速度Neに応じたマップに基づいて算出される。なお、回転速度Neのみならず内燃機関の負荷や吸入空気量等からに基づいて設定されてもよい。そして、ステップ209へ進み、リーン復帰空燃比にステップ204で算出した空燃比Lfiを入力する。ステップ210では、最初の空燃比Lfiが設定されたことを示すためにフラグFsecに1を入力し、本ルーチンを終了する。
ステップ202で、フラグFsecが1のとき、すなわち最初の空燃比が設定済みの場合は、ステップ203にて、減衰量Glが算出される。減衰量Glは、空燃比Lfirを目標空燃比Ltarに収束させるための値であり、図13(b)に示されるような内燃機関の回転速度Neに応じたマップに基づいて算出される。なお、回転速度Neのみならず内燃機関の負荷や吸入空気量PMなどに基づいて設定されてもよい。
【0055】
ステップ205に進むと、リーン復帰空燃比と目標空燃比Ltarとを比較する。リーン復帰空燃比は、リーン復帰空燃比の前回値からステップ203で算出した減衰量Glを差し引いた空燃比である。ここで、目標空燃比Ltarよりリーン復帰空燃比の方がリーンのときは(リーン復帰空燃比―目標空燃比Ltar>0)、ステップ207において、リーン復帰空燃比の前回値からステップ203で算出されたリーン減衰量Glを差し引いた値を今回のリーン復帰空燃比として設定し、本ルーチンを終了する。ステップ205において、目標空燃比Ltarよりリーン復帰空燃比の方がリッチなときは(リーン復帰空燃比―目標空燃比Ltar<0)、ステップ206にてリーン復帰空燃比を目標空燃比Ltarに設定する。そして、ステップ208に進み、初期化の処理としてフラグFsecとリーン復帰制御が終了したことを示すフラグFstpとに0を入力(リセット)し、本ルーチンを終了する。
【0056】
次に、本実施形態の図8のタイムチャートを図7の従来技術と比較して説明する。図中のLはリーンを示し、Rはリッチを示す。
【0057】
まず、図7を用いて従来技術を説明する。図7(a)は、三元触媒13前の空燃比(以下、制御空燃比という)を表わし、リーン制御からリッチパージ制御を行い、再びリーン制御へと制御空燃比を切り換えている図である。図7(a)のように空燃比を切り換えると、三元触媒13下流の空燃比(以降、三元触媒後空燃比という)は、図7(b)のようになる。図中のAは、制御空燃比をリーン→リッチへと切り換えた直後であり、三元触媒13に貯蔵された酸素を消費しながら三元触媒後空燃比がリッチになる。三元触媒後空燃比が目標空燃比となる図中のBまでに時間Tαを要する。その後、三元触媒後空燃比は、図7(a)の制御空燃比がリッチパージ制御からリーン制御へと切り換えられると図中のCからDへと変化する。CからDへは時間Tβを要する。図7(c)は、このとき排出されるNOx量を示した図である。図7(b)で示したように、三元触媒後空燃比がNOxを多量に排出される空燃比領域をゆっくり(Tα、Tβ)通過するため、TαとTβとに応じて多量のNOxが排出されている。
【0058】
図8の(a)は本実施形態のリーンバーン制御において、空燃比をリーン→リッチに切り換え、NOx触媒に吸蔵されたNOxを還元・放出した後に、リッチ→リーンへ切り換えた図である。ここでリーン→リッチへと切り換える際に、目標空燃比より更にリッチ(以降、リッチパージ開始時空燃比という)に設定し、その後、目標空燃比へ収束させる。同様にリッチ→リーンへと切り換える際も、目標空燃比より更にリーン(以降リーン復帰空燃比という)に設定し、その後、目標空燃比へ収束させている。このように制御空燃比を設定することで三元触媒後空燃比は図8(b)のようになる。
【0059】
図中のA’は、制御空燃比をリーン→リッチへと切り換えた直後であり、三元触媒13に貯蔵された酸素を消費しながら三元触媒後空燃比がリッチになる。このとき、制御空燃比が目標空燃比より更にリッチなリッチパージ開始時空燃比に設定されている。このため、三元触媒13に貯蔵されている酸素を消費する時間が短くなり、三元触媒後空燃比が目標空燃比になる図中のB’までの時間Tα’は図7(b)のTαよりも短くなっている。同様に、図中のC’は、制御空燃比をリッチ→リーンへと切り換えた直後である。前述したように制御空燃比を目標空燃比よりさらにリーンなリーン復帰空燃比に設定することで、三元触媒後空燃比が目標空燃比へ時間Tβ’は図7の(b)のTβに比して短くなっている。これにより図8(c)に示される如くNOxの排出量が従来技術に比して低減される。
【0060】
なお、リッチパージ中に燃料カットの要求が入ったときは、リッチパージを禁止しても良い。その後、燃料カットから復帰したときは再びリッチパージを行う。復帰後のリッチパージは、リッチパージを行う前に設定されるリッチパージ総量から、燃料カットの要求が入る前に行ったリッチパージ積算値を差し引いたリッチパージ量を実施することで、NOx触媒に吸蔵されたままのNOxを還元・放出する。このように燃料カットなどのリッチパージを実施できない運転領域が検出されると、リッチパージを禁止するので、最適な制御を行うことができる。本実施形態において、リッチパージ制御手段は図2に、リーン制御手段は図2のステップ50に、リッチパージ開始時制御手段は図3に、リーン復帰制御手段は図4に、第1の収束手段は図3のステップ108〜ステップ110に、第2の収束手段は図4のステップ205〜ステップ206に、第1・第2の運転状態検出手段はエアフロメータ21、回転速度センサ25に、相当し、それぞれ機能する。
【0061】
<第2の実施形態>
以下に第2の実施形態について、図を用いて説明する。
【0062】
本実施形態は、第1の実施形態との違いは、目標空燃比よりリッチおよびリーンに設定されたリッチパージ空燃比およびリーン復帰制御により設定されたリーン復帰空燃比を目標空燃比へ収束させる収束手段にある。第1の実施形態では、目標空燃比に収束させる手段として、運転状態を検出し、運転状態に応じた減衰量にしたがって収束させる手段を用いていた。
【0063】
本実施形態では、過度リッチ量および過度リーン量を加えた空燃比が所定時間継続され、所定時間経過した後に空燃比が目標空燃比に設定されるようになる。
図9乃至12を用い、第1の実施形態と異なる部分を説明する。
【0064】
メインルーチンは、第1の実施形態と同様である。ここでサブルーチンコールされるリッチパージ制御とリッチパージ終了制御とが図9、10のフローチャートに示されている。図9のフローチャートにしたがって、リッチパージ制御を説明する。
【0065】
まず、ステップS101’にて、カウンタT1をインクリメントする。カウンタT1は、リッチパージ制御中にリッチパージ空燃比を設定する時期をカウントするタイマである。カウンタT1がインクリメントされるとステップS102’に進み、カウンタT1が所定値C1以上か否かが判定される。カウンタT1が所定値C2以下の場合、ステップS107’に進み、リーン→リッチ切り換え後の空燃比を設定するためリッチパージ開始時空燃比RTAFを算出する。空燃比RTAFは、空燃比のリーン→リッチ切り換えが速やかに行われるように、その後の目標空燃比よりも更にリッチに設定される。リッチパージ開始時空燃比RTAFが算出されるとステップS108’へ進み、リッチパージ空燃比にステップS107’で算出したRTAFを設定し、本ルーチンを終了する。
【0066】
ステップS102’にて、カウンタT1が所定値C2を越えたと判定されると、ステップS103’へ進み、目標空燃比TAFが算出される。続いて、ステップS104’では、リッチパージ空燃比にステップS103’にて算出された目標空燃比TAFが設定され、ステップS105’へ進む。ステップS105’では、リッチパージ制御が終了か否かが判定される。この判定方法としては、第1の実施形態のように、NOx触媒に貯蔵されているNOx量からNOxを還元・放出するのに必要なリッチパージ量を算出し、実際のリッチパージ量から判定しても良いし、所定時間によってリッチパージ制御の終了時期が判定されても良い。リッチーパージ制御が終了である場合は、ステップS106’へ進み、リッチーパージ制御を終了するためのリッチパージ終了フラグFstpに1を入力し、カウンタT1を0に戻し、本ルーチンを終了する。一方、ステップS105’でリッチパージ制御が終了ではないと判定されると、そのまま本ルーチンを終了する。
【0067】
次に、本実施形態のリーン復帰制御について図10を用いて説明する。
【0068】
まず、ステップS201’にて、リーン復帰空燃比がリーン復帰初期空燃比LTAF(リッチ→リーン切り替え後に所定期間設定される空燃比であり、最終的に設定される目標空燃比TAFより更にリーンな空燃比である。)に設定される時間をカウントするタイマT2をインクリメントし、ステップS202’へ進む。ステップ202では、カウンタT2が所定値C3を越えたか否かを判定する。所定値C3は、リーン復帰空燃比がリーン復帰初期空燃比LTAFに設定される期間に設定される。すなわち、空燃比がリッチ→リーン切り替えの際にNOxが多量に排出される空燃比領域を速やかに通過するのに必要な期間に設定される。ステップS202’にてカウンタT2が所定値C3以下であると判定されると、ステップS203’へ進み、リーン復帰初期空燃比LTAFを算出し、ステップS204’へ進む。ステップS204’では、リーン復帰空燃比にリーン復帰初期空燃比LTAFを設定して本ルーチンを終了する。一方、ステップS202’にて、カウンタT2が所定値C2以上であると判定された場合はステップS203’へ進み、フラグFrとフラグFstp、カウンタT2とに0を入力し、本ルーチンを終了する。
【0069】
本実施形態では、タイマT1・T2により空燃比がリッチパージ開始時空燃比RTAFまたはリーン復帰初期空燃比LTAFに設定される期間がカウントされる。このように制御することで、空燃比がリッチ→リーンまたはリーン→リッチに切り替えられる際にNOxが多量に排出される空燃比領域を速やかに通過することができる。
【0070】
つぎに、本実施形態を図11のタイムチャートを用いて説明する。
【0071】
まず、図11(a)は本実施形態のリーンバーン制御において、空燃比をリーン→リッチに切り換え、NOx触媒に吸蔵されたNOxを還元・放出した後に、リッチ→リーンへ切り換えた図である。ここでリーン→リッチへと切り換える際に、目標空燃比より更にリッチ(以降、リッチパージ開始時空燃比という)に設定し、その後、目標空燃比へ収束させる。同様にリッチ→リーンへと切り換える際も、目標空燃比より更にリーン(以降リーン復帰空燃比という)に設定し、その後、目標空燃比へ収束させている。このように制御空燃比を設定することで三元触媒13の下流の空燃比は図11(b)のようになる。
【0072】
図中のA”は、制御空燃比をリーン→リッチへと切り換えた直後であり、三元触媒13に貯蔵された酸素を消費しながら三元触媒後空燃比がリッチになる。このとき、制御空燃比が目標空燃比より更にリッチなリッチパージ開始時空燃比に設定されている。このため、第1の実施形態で示した従来技術の図7(b)に比して三元触媒13に貯蔵されている酸素を消費する時間が短くなり、三元触媒後空燃比が目標空燃比になる図中のB”までの時間Tα”は図7(b)のTαよりも短くなっている。同様に、図中のC”は、制御空燃比をリッチ→リーンへと切り換えた直後である。前述したように制御空燃比を目標空燃比よりさらにリーンなリーン復帰空燃比に設定することで、三元触媒後空燃比が目標空燃比へ時間Tβ”は図7(b)のTβに比して短くなっている。これにより図11(c)に示される如くNOxの排出量が従来技術に比して低減される。
【0073】
本実施形態において、リッチパージ制御手段は図9に、リッチパージ開始時制御手段は図3に、リーン復帰制御手段は図10に、相当し、それぞれ機能する。
【図面の簡単な説明】
【図1】本実施の形態の概略構成図。
【図2】本発明第1の実施形態の空燃比制御を示すフローチャート。
【図3】本発明第1の実施形態のリッチパージ制御を示すフローチャート。
【図4】本発明第1の実施形態のリーン復帰制御を示すフローチャート。
【図5】空燃比の補正値を求めるための図。
【図6】(a)は内燃機関の回転速度に応じた減衰量を求めるための図、(b)内燃機関の回転速度に応じた減衰量を求めるための図。
【図7】従来技術のタイムチャート、(a)は制御空燃比を示すタイムチャート、(b)は三元触媒後の空燃比を示すタイムチャート、(c)は三元触媒の下流に排出されるNOx量を示すタイムチャート。
【図8】本発明第1の実施形態のタイムチャート、(a)は制御空燃比を示すタイムチャート、(b)は三元触媒後の空燃比を示すタイムチャート、(c)は三元触媒の下流に排出されるNOx量を示すタイムチャート。
【図9】本発明第2の実施形態のリッチパージ制御を示すフローチャート。
【図10】本発明第2の実施形態のリーン復帰制御を示すフローチャート。
【図11】本発明第2の実施形態のタイムチャート、(a)は制御空燃比を示すタイムチャート、(b)は三元触媒後の空燃比を示すタイムチャート、(c)は三元触媒下流に排出されるNOx量を示すタイムチャート。
【図12】空燃比によるNOx排出量を示す図。
【図13】(a)は内燃機関の回転速度に応じた減衰量を求めるための図、(b)内燃機関の回転速度に応じた減衰量を求めるための図。
【図14】NOx吸蔵能力からNOx判定値を求める図。
【符号の簡単な説明】
1 エンジン
12 排気管
13 上流側触媒としての三元触媒
14 NOx触媒
27 酸素濃度センサとしてのA/Fセンサ
30 ECU
Claims (11)
- 排気通路中に設けられ、酸素貯蔵能力を有する上流側触媒と、前記上流側触媒の下流に設けられ、NOxを吸蔵するNOx触媒と、
空燃比リーン領域でのリーン燃焼を行わせるリーン制御手段と、
前記リーン制御手段によるリーン燃焼時に排出され、前記NOx触媒に吸蔵されたNOxを浄化するために空燃比を所定期間リッチに制御するリッチパージ制御手段とを備える内燃機関の空燃比制御装置において、
前記リッチパージ制御手段は、リッチパージ制御開始時の第1の空燃比がその後のリッチパージ中の第2の空燃比よりリッチとなるように制御するリッチパージ開始時制御手段と、リッチパージ中の前記第2の空燃比が一定となるように制御する手段と、前記リッチパージ制御から前記リーン制御に復帰するとき、一時的に前記空燃比が前記リーン制御手段により制御される空燃比よりリーンとなるように制御するリーン復帰制御手段とを備えることを特徴とする内燃機関の空燃比制御装置。 - 前記リッチパージ制御手段は、前記リッチパージ開始時制御手段により設定される空燃比を前記リッチパージ制御手段により設定される空燃比へ収束させる第1の収束手段を備えることを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
- 前記リーン制御手段は、前記リーン復帰制御手段により設定される空燃比を前記リーン制御手段により設定される空燃比へ収束させる第2の収束手段を備えることを特徴とする請求項1又は請求項2のいずれか一つに記載の内燃機関の空燃比制御装置。
- 内燃機関の運転状態を検出する第1の運転状態検出手段を備え、
前記リーン復帰制御手段および/または前記リッチパージ開始時制御手段により設定される空燃比は、前記運転状態検出手段により検出される運転状態に基づいて設定されることを特徴とする請求項1乃至請求項3のいずれか一つに記載の内燃機関の空燃比制御装置。 - 前記第1の運転状態検出手段は、内燃機関の負荷を検出することを特徴とする請求項4に記載の内燃機関の空燃比制御装置。
- 前記内燃機関の負荷は、吸入空気量であることを特徴とする請求項5に記載の内燃機関の空燃比制御装置。
- 排気通路中に設けられ、酸素貯蔵能力を有する上流側触媒と、前記上流側触媒の下流に設けられ、NOxを吸蔵するNOx触媒と、
空燃比リーン領域でのリーン燃焼を行わせるリーン制御手段と、
前記リーン制御手段によるリーン燃焼時に排出され、前記NOx触媒に吸蔵されたNOxを浄化するために空燃比を所定期間リッチに制御するリッチパージ制御手段とを備える内燃機関の空燃比制御装置において、
前記リッチパージ制御手段は、リッチパージ制御からリーン制御に復帰するとき、一時的に空燃比がリーン制御手段により制御される空燃比よりリーンとなるように制御するリーン復帰制御手段を備えることを特徴とする内燃機関の空燃比制御装置。 - 前記リーン制御手段は、前記リーン復帰制御手段により設定される空燃比を前記リーン制御手段により設定される空燃比へ収束させる第2の収束手段を備えることを特徴とする請求項7に記載の内燃機関の空燃比制御装置。
- 内燃機関の運転状態を検出する第2の運転状態検出手段を備え、
前記リーン復帰制御手段により設定される空燃比は、前記運転状態検出手段により検出される運転状態に基づいて設定されることを特徴とする請求項7または請求項8のいずれか一つに記載の内燃機関の空燃比制御装置。 - 前記第2の運転状態検出手段は、内燃機関の負荷を検出することを特徴とする請求項9に記載の内燃機関の空燃比制御装置。
- 前記内燃機関の負荷は、吸入空気量であることを特徴とする請求項10に記載の内燃機関の空燃比制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309163A JP4608758B2 (ja) | 2000-10-10 | 2000-10-10 | 内燃機関の空燃比制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000309163A JP4608758B2 (ja) | 2000-10-10 | 2000-10-10 | 内燃機関の空燃比制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002115581A JP2002115581A (ja) | 2002-04-19 |
JP4608758B2 true JP4608758B2 (ja) | 2011-01-12 |
Family
ID=18789373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000309163A Expired - Lifetime JP4608758B2 (ja) | 2000-10-10 | 2000-10-10 | 内燃機関の空燃比制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4608758B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10208688B2 (en) | 2016-12-13 | 2019-02-19 | Hyundai Motor Company | Exhaust gas purification apparatus and method for controlling the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3912294B2 (ja) * | 2003-02-19 | 2007-05-09 | トヨタ自動車株式会社 | 内燃機関の排気浄化方法および排気浄化装置 |
JP2009281952A (ja) * | 2008-05-26 | 2009-12-03 | Nissan Diesel Motor Co Ltd | NOxセンサの異常判定装置 |
KR101091626B1 (ko) * | 2009-07-31 | 2011-12-08 | 기아자동차주식회사 | 배기 가스 내의 질소 산화물 정화 방법 및 이 방법을 실행하는 배기 장치 |
KR101734713B1 (ko) | 2015-12-10 | 2017-05-24 | 현대자동차주식회사 | 연료소모저감을 위한 삼원촉매 제어방법과 삼원촉매제어시스템 및 차량 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666185A (ja) * | 1992-08-11 | 1994-03-08 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JPH11210525A (ja) * | 1998-01-27 | 1999-08-03 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2000234541A (ja) * | 1999-02-15 | 2000-08-29 | Toyota Motor Corp | 内燃機関の燃料噴射制御装置 |
-
2000
- 2000-10-10 JP JP2000309163A patent/JP4608758B2/ja not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0666185A (ja) * | 1992-08-11 | 1994-03-08 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JPH11210525A (ja) * | 1998-01-27 | 1999-08-03 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
JP2000234541A (ja) * | 1999-02-15 | 2000-08-29 | Toyota Motor Corp | 内燃機関の燃料噴射制御装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10208688B2 (en) | 2016-12-13 | 2019-02-19 | Hyundai Motor Company | Exhaust gas purification apparatus and method for controlling the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002115581A (ja) | 2002-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4158268B2 (ja) | エンジンの排気浄化装置 | |
KR100306873B1 (ko) | 질소산화물촉매를가진엔진배기가스제어시스템 | |
US6839637B2 (en) | Exhaust emission control system for internal combustion engine | |
JP3966014B2 (ja) | 内燃機関の排気浄化装置 | |
JP3997599B2 (ja) | 内燃機関の空燃比制御装置 | |
US6766640B2 (en) | Engine exhaust purification device | |
JP6296019B2 (ja) | 内燃機関 | |
JP2014066154A (ja) | 内燃機関の制御装置 | |
WO1998012423A1 (fr) | Dispositif de commande de moteur | |
JP3807090B2 (ja) | 希薄燃焼内燃機関 | |
JP3778012B2 (ja) | 内燃機関の空燃比制御装置 | |
JP4608758B2 (ja) | 内燃機関の空燃比制御装置 | |
JP4389141B2 (ja) | 内燃機関の排気浄化装置 | |
JP3627612B2 (ja) | 内燃機関の空燃比制御装置及び触媒劣化判定装置 | |
JP2004060563A (ja) | 内燃機関の燃料噴射量制御装置 | |
US20010028868A1 (en) | Exhaust emission control system for internal combustion engine | |
JP4492776B2 (ja) | 内燃機関の排気浄化装置 | |
JP4356249B2 (ja) | 内燃機関の排気浄化装置 | |
JPH11270382A (ja) | 内燃機関の空燃比制御装置 | |
JP2000337130A (ja) | 内燃機関の排出ガス浄化装置 | |
US6650991B2 (en) | Closed-loop method and system for purging a vehicle emission control | |
JP2000130221A (ja) | 内燃機関の燃料噴射制御装置 | |
JP3937487B2 (ja) | 内燃機関の排気浄化装置 | |
JP4269279B2 (ja) | 内燃機関の制御装置 | |
JP4666542B2 (ja) | 内燃機関の排気浄化制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091016 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20091016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100914 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4608758 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |