JP4608690B2 - Method for producing composite oxide - Google Patents
Method for producing composite oxide Download PDFInfo
- Publication number
- JP4608690B2 JP4608690B2 JP2000199828A JP2000199828A JP4608690B2 JP 4608690 B2 JP4608690 B2 JP 4608690B2 JP 2000199828 A JP2000199828 A JP 2000199828A JP 2000199828 A JP2000199828 A JP 2000199828A JP 4608690 B2 JP4608690 B2 JP 4608690B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- nickel
- composite oxide
- lithium
- granulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、改良された非水系リチウム二次電池用の正極活物質とその製造方法に関する。
【0002】
【従来の技術】
近年、エレクトロニクス機器の小型高性能化とコードレス化が進み、それらの駆動電源として二次電池に関心が集まっており、特にリチウムイオン二次電池は高電圧高エネルギー密度を有する電池として期待が大きい。
このような電池の正極活物質としては、リチウムをインターカレーション、デインターカレーションすることのできる層状化合物、例えばLiCoO2 やLiNiO7 など、リチウムと遷移金属を主体とする複合酸化物(以下、リチウム複合酸化物と記す)が用いられる。
このようなリチウム複合酸化物のうち、すでに実用化されているリチウム二次電池用正極活物質としてはLiCoO2 があるが、資源的に希少で高価なコバルトを用いていることから、より安価で高エネルギー密度が可能なリチウム複合酸化物としてLiNiO2 系の材料開発が精力的に行なわれてきた。
【0003】
LiNiO2 の製造方法については、リチウム原料とニッケル原料を均一に混合し、これを焼成する工程が必要である。この原料の混合工程において、リチウムとニッケル混合比が変動すると焼成粉の粉体特性が劣化し、また電池特性に再現性がない等の問題が生じる。
そこで、本出願人は、先に特開平11−135118号公報において、均質で電池特性に優れたリチウム−遷移金属複合酸化物活物質を得るべく、原料の混合粉体を成形して成形体とすることにより密度を高めた後、酸化性ガスを用いて強制通気することにより焼成する方法を開示した。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の方法は、工業的規模で電池特性に優れたリチウム複合酸化物を得るのに有利な方法ではあるが、リチウム原料と例えばニッケル原料を用いて工業的な量産規模で混合、成形、焼成の各工程を経て焼成粉を得る場合、混合と成形の工程間で、混合粉末における組成ずれが生じ、結果として不均一な焼成粉が得られる場合があった。
すなわち、(1) 乾式法で混合成形を行なった場合、リチウム原料粉末とニッケル原料粉末との粒径差、密度差、形状差による偏析が起り、焼成前の段階で混合比が不均一となり、不均一な焼成粉が得られる場合があった。
(2) 溶液中で粉体を分散混合させる湿式法で混合成形を行なった場合、得られた成形体または造粒体の水分を除去するための乾燥処理において、成形体または造粒体の表面にリチウムが偏析し、これを焼成すると不均一な焼成粉となる場合があった。また、そのまま成形体または造粒体を焼成しても、通気焼成により水分が蒸発する際、リチウムが表面へ移動するため、同様に不均一な焼成粉となる場合があった。
(3) また、公知技術として、原料混合粉末にPVAのごとき有機バインダー溶液を添加し、転動造粒法で成形体を得る方法は、得られる成形体の密度が比較的低いために焼成反応が進みにくく、また焼成時に有機バインダーが分解して還元剤として作用するため、LiNiO2 の場合は電気化学的特性を著しく劣化させるという問題があった。
【0005】
このような状況に鑑み、本発明の目的は、原料粉末の混合、成形、通気焼成の各工程を備えるLiNiO2 の製造方法において、混合および成形工程において、リチウムとニッケルとの混合組成比が変わらず、不均質な焼成粉となることなく、工業的な量産規模においても有利で、また品質面での特性再現性が高い方法、また、得られる製品を提供することにある。
【0006】
【課題を解決するための手段】
上記の課題に対して、本発明者等は、焼成時の固相反応性を高めるためリチウム原料としては水溶性リチウム化合物を、ニッケル原料としてはニッケルを主体とする非水溶性ニッケル化合物を用いた場合において、乾式混合後水を噴霧添加する加湿混合手段により結着性を高め、連続的に造粒成形することにより、リチウムとニッケル化合物の混合組成比が変わることなく通気焼成できること、また、この方法によれば品質面での特性再現性が高く、また、工業的量産規模においても有利であることを見出した。特に、噴霧添加する水の量を混合粉末に対して5〜30wt%の量とすること、さらには、得られた造粒成形体の成形密度が1.0〜2.5g/cm 3 のものであることにより、望ましい結果が得られることを見出した。
【0007】
すなわち、本発明は、第1に、リチウム化合物粉末と、主体のニッケルとニッケル以外の遷移金属との水酸化物粉末とを乾式混合した後、得られた混合粉末に対して5〜30wt%の水を噴霧添加して加湿混合処理を行った後に造粒成形し、得られた造粒成形体を酸素ガス中で通気焼成することを特徴とする複合酸化物の製造方法であり、第2に、水溶性リチウム化合物粉末と、主体のニッケルとニッケル以外の遷移金属との水酸化物粉末とを乾式混合した後、得られた混合粉末に対して5〜30wt%の水を噴霧添加して加湿混合処理を行った後に連続的に造粒成形し、得られた造粒成形体を酸素ガス中で通気焼成することを特徴とする複合酸化物の製造方法であり、第3に、前記造粒成形体の成形密度が1.0〜2.5g/cm 3 であることを特徴とする第1又は2に記載の複合酸化物の製造方法であり、第4に、前記ニッケル以外の遷移金属がコバルトである第1〜3のいずれかに記載の複合酸化物の製造方法であり、第5に、第1〜4のいずれかに記載の製造方法で得られたニッケルとニッケル以外の遷移金属とリチウムとの複合酸化物を主材としたことを特徴とする非水系二次電池用正極活物質である。
【0008】
【発明の実施の形態】
本発明に使用される原料リチウム化合物粉末は水溶性であり、水酸化リチウム・水和物または無水物、硝酸リチウム・水和物または無水物等が挙げられる。またニッケル原料の主体となるニッケル化合物粉末は、ニッケルとニッケル以外の遷移金属からなり、それらの酸化物、水酸化物等が挙げられるが、合成時の反応性の高さを考慮すると水酸化物が望ましい。
【0009】
これらのリチウム化合物粉末とニッケルを主体とする化合物粉末は、リチウムとニッケル+M(ただし、Mはニッケル以外の遷移金属である)のモル比で、0.900≦Li/(Ni+M)≦1.100となるように計量し、乾式混合を行なう。得られた乾式混合物を、加湿混合工程において、混合攪拌しながらバインダーとして水を噴霧して添加する。混合機としては、パドル型水平軸回転混合機、高速流動型垂直軸回転混合機等が使用できる。
【0010】
バインダーの水としては、焼成時における他成分との反応、焼成粉への汚染等を配慮し、純水を用いるのが望ましい。すなわち、乾式混合時にバインダーとして一定量の水を均一に噴霧すると、水溶性のリチウム化合物の潮解性により粒子表面を溶解し、ニッケル化合物を表面に均一に接触させることにより結着性を高め、次の造粒成形工程において成形密度を上げることができる。この噴霧水の量は混合粉末の量の5〜30wt%が望ましい。5wt%未満の添加量であると、原料粉末表面への水分吸着量が不足して結着性が上がらないため成形が難しく、一方、30wt%を越えると成形密度はあまり上がらなくなり、またリチウム化合物が溶出しはじめ、水分の蒸発とともに成形体表面へ移動するので組成の均一性が低下し始める。よって好適な水分量としては、混合粉末量の5〜30wt%であり、より好ましくは10〜30wt%である。
【0011】
造粒成形工程については、工業的量産規模からすれば、上記混合粉末を連続的に造粒成形することが有利である。また、造粒成形体のサイズとしては、2〜10cmの球状、棒状、レンズ状、板状等で解粒・整粒等の操作がないもの、且つ、各成形体が均一に成形されていることが必要である。また、造粒成形体の密度としては、通気焼成時に成形体が壊れず、焼成中の固相反応性を促進させるために、1.0〜2.5g/cm 3 、好ましくは1.5〜2.5g/cm 3 が必要である。1.0g/cm 3 未満では成形ができず、また、2.5g/cm 3 を越えても成形が難しくなる。造粒成形機としては、ディスク型押出造粒機、リング型押出造粒機、ブリケッティング型圧縮式造粒機、打錠型圧縮式造粒機等が使用できる。
【0012】
上記の造粒成形工程で得られた各造粒成形体のLi/(Ni+M)モル比を分析で確認したところ、仕込みLi/(Ni+M)モル比との差がなく、またばらつきも少なかった。また、通気焼成後のリチウム複合酸化物の特性も同様であり、上記の原料粉末について、混合−造粒成形−通気焼成を数回実施した結果においても特性のばらつきがなく、再現性の高い結果が得られた。すなわち、この製造法を用いることで工業的に有利、品質面での特性再現性が高いことが明らかになった。
また、この発明におけるリチウム複合酸化物は、リチウムイオン二次電池の活物質として、高い電圧下で高いエネルギーを保持する優れた電池特性を示すことも明らかになった。
以下、実施例をもって本発明を詳細に説明するが、本発明の範囲はこれらによって限定されるものではない。
【0013】
【実施例】
[実施例1]
リチウム化合物として水酸化リチウム・水和物(LiOH・H2O)、ニッケ ルを主体とする化合物としてはモル比でNi:Co:Al=80:15:5の共沈水酸化物粉末を、モル比でLi/(Ni+Co+Al)=1.05となるように計量し、パドル型水平軸回転混合機で10分間の乾燥混合処理を行った後、さらに混合粉末を該混合機で混合しながら混合粉末量の15wt%の純水を噴霧添加し、合計30分間の加湿混合処理を行った。次いで、この加湿した混合粉末をディスク型押出式造粒機に投入し連続的に造粒成形を実施、5φ×10mm程度の棒状成形体を得た。
【0014】
上記の造粒成形工程で得られた造粒成形体の成形密度は2.1g/cm 3 であった。この造粒成形体について、ランダムに20点サンプリングして、Li/(Ni+M)モル比を組成分析で確認したところ、仕込みLi/(Ni+M)モル比が1.050であったのに対し、上記20点のサンプルのモル比平均値は1.0497で、その標準偏差は0.0012で、ばらつきが小さかった。
【0015】
また、上記造粒成形体について、酸素ガス中750℃で10時間の通気焼成を行い、得られた焼成粉をランダムに20点サンプリングしてLi/(Ni+M)モル比を組成分析で確認したところ、20点のサンプルのモル比平均値は1.0502で、その標準偏差は0.0015であり、仕込みLi/(Ni+M)モル比に対して造粒成形体のモル比と焼成粉のモル比は同等であった。
【0016】
さらに、上記の原料化合物について、粉末混合から通気焼成に至る焼成粉の製造工程を、10回繰り返し実施した結果、焼成体の母平均値は1.0498で、その標準偏差は0.0008で、ばらつきは非常に小さかった。
【0017】
[実施例2]
造粒成形工程で純水添加量を混合粉末量の10wt%とした以外は、実施例1の場合と同様の原料について同様の混合、造粒成形、焼成処理を行って焼成粉を得た。なお、得られた造粒成形体の密度は、1.8g/cm 3 であった。また、得られた焼成粉について、同様に20点のサンプリングを行って組成をモル比で確認した結果、平均値は1.0513で、標準偏差は0.0031で、ばらつきは小さかった。
【0018】
[実施例3]
造粒成形工程で純水添加量を混合粉末量の30wt%とした以外は、実施例1の場合と同様の原料について同様の混合、造粒成形、焼成処理を行って焼成粉を得た。なお、得られた造粒成形体の密度は2.3g/cm 3 であった。また、得られた焼成粉について、同様に20点のサンプリングを行って組成をモル比で確認した結果、平均値は1.0513で、標準偏差は0.0031で、ばらつきは小さかった。
【0019】
[比較例1]
実施例1の場合と同様の原料粉を用い、純水の添加なしで、V型混合機で混合を30分間行ない、打錠形圧縮式造粒機で5φ×5mmのレンズ状成形体とし、実施例1の場合と同様の焼成処理を行って焼成粉を得た。なお、得られた成形体の密度は1.8g/cm 3 であった。また、得られた焼成粉を同様に20点サンプリングし、組成をモル比で確認した結果、モル比の平均値は1.0489でやや低く、標準偏差は0.0118で、かなりのばらつきを示した。
【0020】
[比較例2]
実施例1の場合と同様の原料粉を用い、純水の添加量を混合粉末量の40wt%とし、V型混合機で予備混合を10分間行ない、さらに混練機で20分間混合し、押出造粒機で径5mmのスパゲティ状の造粒成形体とした。この造粒成形体について100℃で10時間の乾燥処理を行ない、5φ×5mm棒状とした後、実施例1の場合と同様の焼成処理を行って焼成粉を得た。なお、乾燥処理後の成形体の密度は1.9g/cm 3 であった。また、得られた焼成粉を同様に20点サンプリングし、組成をモル比で確認した結果、モル比の平均値が1.0415で、組成のずれが大きく、標準偏差も0.0087で大きかった。なお、乾燥後の成形体の表層部にはLi2CO3が析出していた。
【0021】
実施例1〜3と比較例1、2の結果より、本発明の製造方法により得られた造粒成形体および焼成粉は、水を噴霧添加し、結着性を高めて連続的に造粒成形することで、リチウムとニッケル化合物の混合比は変わらないことが分かる。また、この造粒成形体を通気焼成することで均質な反応することができ、品質面での特性の再現性が高いこと、工業的に有利であることも分かる。
【0022】
【発明の効果】
以上に説明したように、混合原料粉への水の噴霧添加と引き続く造粒成形を行う工程を備える製造法によって得られる本発明の複合酸化物は、リチウムとニッケルの混合比が変わらず、且つ、工業的に有利、且つ、品質面での特性の再現性が高いという効果を奏する。また、この複合酸化物を主材とする非水二次電池用の正極活物質は高電圧高エネルギーを維持できる優れた電池特性を有するという効果を奏する。
上記製造法における水の添加量を混合粉末の5〜30wt%としかつ造粒成形体の成形密度を1.0〜2.5g/cm 3 としたものは、成分混合比を所定値に着実に維持できるという効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved positive electrode active material for a non-aqueous lithium secondary battery and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electronic devices have become smaller, higher performance, and cordless, and secondary batteries have attracted interest as their drive power sources. In particular, lithium ion secondary batteries are highly expected as batteries having high voltage and high energy density.
As the positive electrode active material of such a battery, a layered compound capable of intercalating and deintercalating lithium, for example, a composite oxide mainly composed of lithium and a transition metal, such as LiCoO 2 and LiNiO 7 (hereinafter, referred to as a lithium oxide). Lithium composite oxide).
Among such lithium composite oxides, there is LiCoO 2 as a positive electrode active material for lithium secondary batteries that has already been put into practical use, but it is cheaper because it uses rare and expensive cobalt in terms of resources. LiNiO 2 -based materials have been vigorously developed as lithium composite oxides capable of high energy density.
[0003]
The preparation method of LiNiO 2, were uniformly mixed lithium material and a nickel material, it is necessary calcining it. In this raw material mixing process, if the mixing ratio of lithium and nickel varies, problems such as deterioration of the powder characteristics of the fired powder and lack of reproducibility of battery characteristics occur.
In view of this, the present applicant previously disclosed in Japanese Patent Application Laid-Open No. 11-135118, by forming a mixed powder of raw materials to obtain a lithium-transition metal composite oxide active material that is homogeneous and excellent in battery characteristics. A method for firing by increasing the density by performing forced aeration using an oxidizing gas is disclosed.
[0004]
[Problems to be solved by the invention]
However, the above method is an advantageous method for obtaining a lithium composite oxide excellent in battery characteristics on an industrial scale, but is mixed and molded on an industrial mass production scale using a lithium raw material and a nickel raw material, for example. When obtaining a baked powder through each step of calcination, a composition shift in the mixed powder occurs between the mixing and molding steps, and as a result, a non-uniform baked powder may be obtained.
That is, (1) when dry molding is performed, segregation occurs due to particle size difference, density difference, and shape difference between the lithium raw material powder and the nickel raw material powder, and the mixing ratio becomes non-uniform before firing, In some cases, non-uniform fired powder was obtained.
(2) When the mixture molding is performed by a wet method in which powders are dispersed and mixed in a solution, the surface of the molded body or the granulated body in the drying process for removing moisture of the obtained molded body or the granulated body. Lithium segregated in some cases, and when this was fired, non-uniform fired powder could be obtained. Further, even if the molded body or the granulated body is fired as it is, lithium moves to the surface when moisture evaporates by aeration firing, so that it may be similarly non-uniform fired powder.
(3) In addition, as a known technique, a method of adding an organic binder solution such as PVA to the raw material mixed powder and obtaining a molded body by the rolling granulation method is a firing reaction because the density of the obtained molded body is relatively low. In the case of LiNiO 2 , there is a problem that the electrochemical characteristics are remarkably deteriorated because the organic binder decomposes and acts as a reducing agent during firing.
[0005]
In view of such circumstances, the object of the present invention is to provide a method for producing LiNiO 2 comprising the steps of mixing raw material powder, forming, and aeration firing, and the mixing composition ratio of lithium and nickel changes in the mixing and forming step. In addition, an object is to provide a method that is advantageous on an industrial mass production scale, does not become a heterogeneous calcined powder, and has high quality reproducibility, and a product to be obtained.
[0006]
[Means for Solving the Problems]
In order to improve the solid-phase reactivity at the time of firing, the present inventors used a water-soluble lithium compound as a lithium raw material and a water-insoluble nickel compound mainly composed of nickel as a nickel raw material. In this case, after the dry mixing, it is possible to perform aeration firing without changing the mixed composition ratio of the lithium and nickel compounds by increasing the binding property by a humidifying and mixing means in which water is added by spraying and continuously granulating and forming. According to the method, it has been found that the characteristic reproducibility in terms of quality is high, and that it is advantageous in industrial mass production scale. In particular, the amount of water to be added by spraying is 5 to 30 wt% with respect to the mixed powder, and the molding density of the obtained granulated molded body is 1.0 to 2.5 g / cm 3 . It has been found that desirable results can be obtained.
[0007]
That is, in the present invention, firstly, the lithium compound powder and the hydroxide powder of the main nickel and a transition metal other than nickel are dry mixed, and then 5 to 30 wt% of the obtained mixed powder. A method for producing a composite oxide, characterized in that water is sprayed and subjected to humidification and mixing, followed by granulation and molding, and the resulting granulation and molding is subjected to aeration firing in oxygen gas. Then, after dry-mixing the water-soluble lithium compound powder and the hydroxide powder of the main nickel and a transition metal other than nickel, 5 to 30 wt% of water is sprayed and added to the resulting mixed powder for humidification It is a method for producing a composite oxide, characterized in that it is continuously granulated after performing the mixing treatment, and the obtained granulated compact is subjected to aeration firing in oxygen gas. Third, the granulation molding density of the molded body is 1.0 to 2.5 g / cm 3 The method for producing a composite oxide according to 1 or 2, wherein the transition metal other than nickel is cobalt. A non-aqueous system characterized in that the fifth main component is a composite oxide of nickel, a transition metal other than nickel, and lithium obtained by the production method according to any one of the first to fourth aspects. It is a positive electrode active material for secondary batteries.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The raw material lithium compound powder used in the present invention is water-soluble and includes lithium hydroxide / hydrate or anhydride, lithium nitrate / hydrate or anhydride, and the like. Nickel compound powder, which is the main ingredient of nickel raw material, is composed of transition metals other than nickel and nickel, and examples thereof include oxides and hydroxides. In view of the high reactivity during synthesis, hydroxides are considered. Is desirable.
[0009]
These lithium compound powder and nickel-based compound powder have a molar ratio of lithium to nickel + M (where M is a transition metal other than nickel), 0.900 ≦ Li / (Ni + M) ≦ 1.100. Weigh until it becomes and dry-mix. In the humidifying and mixing step, the obtained dry mixture is added by spraying water as a binder while mixing and stirring. As the mixer, a paddle type horizontal axis rotary mixer, a high-speed flow type vertical axis rotary mixer, or the like can be used.
[0010]
As water for the binder, it is desirable to use pure water in consideration of reaction with other components during firing, contamination of the fired powder, and the like. That is, when a certain amount of water is uniformly sprayed as a binder during dry mixing, the particle surface is dissolved by the deliquescence property of the water-soluble lithium compound, and the nickel compound is uniformly contacted with the surface to enhance the binding property. In the granulation molding process, the molding density can be increased. The amount of spray water is preferably 5 to 30 wt% of the amount of the mixed powder. If the amount is less than 5 wt%, the amount of moisture adsorbed on the surface of the raw material powder is insufficient and the binding property does not increase, so that molding is difficult. On the other hand, if it exceeds 30 wt%, the molding density does not increase so much. Starts to elute and moves to the surface of the molded body as the water evaporates, so the uniformity of the composition begins to deteriorate. Accordingly, a suitable amount of water is 5 to 30 wt%, more preferably 10 to 30 wt% of the mixed powder amount.
[0011]
Regarding the granulation molding process, it is advantageous to granulate and mold the mixed powder continuously from the industrial mass production scale. In addition, the size of the granulated molded body is 2 to 10 cm spherical, rod-shaped, lens-shaped, plate-shaped, etc. without operations such as sizing and sizing, and each molded body is uniformly molded. It is necessary. In addition, the density of the granulated molded body is 1.0 to 2.5 g / cm 3 , preferably 1.5 to 5 so that the molded body does not break during aeration firing and promotes solid-phase reactivity during firing. 2.5 g / cm 3 is required. If it is less than 1.0 g / cm 3 , molding cannot be performed, and if it exceeds 2.5 g / cm 3 , molding becomes difficult. As the granulating machine, a disk-type extrusion granulator, a ring-type extrusion granulator, a briquetting compression granulator, a tableting compression granulator, or the like can be used.
[0012]
When the Li / (Ni + M) molar ratio of each granulated molded body obtained in the above granulation molding process was confirmed by analysis, there was no difference from the prepared Li / (Ni + M) molar ratio, and there was little variation. In addition, the characteristics of the lithium composite oxide after aeration firing are the same, and there is no variation in characteristics even when the above-mentioned raw material powder is subjected to mixing-granulation molding-aeration firing several times, and the results are highly reproducible. was gotten. That is, it has been clarified that the use of this production method is industrially advantageous and the quality reproducibility is high.
Moreover, it became clear that the lithium composite oxide in this invention shows the outstanding battery characteristic which hold | maintains high energy under a high voltage as an active material of a lithium ion secondary battery.
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, the scope of the present invention is not limited by these.
[0013]
【Example】
[Example 1]
Lithium hydroxide hydrate (LiOH.H 2 O) is used as the lithium compound, and Ni: Co: Al = 80: 15: 5 co-precipitated hydroxide powder is used as the molar component. Weighed so that the ratio Li / (Ni + Co + Al) = 1.05, and after performing a dry mixing treatment for 10 minutes with a paddle type horizontal shaft rotary mixer, mixed powder was further mixed while mixing with the mixer An amount of 15 wt% pure water was added by spraying, and a humidified mixing treatment was performed for a total of 30 minutes. Next, this humidified mixed powder was put into a disk-type extrusion granulator, and granulated and formed continuously. A rod-shaped molded body of about 5φ × 10 mm was obtained.
[0014]
The molding density of the granulated molded body obtained in the granulation molding process was 2.1 g / cm 3 . About this granulated compact, 20 points were sampled at random, and the Li / (Ni + M) molar ratio was confirmed by composition analysis. The charged Li / (Ni + M) molar ratio was 1.050, whereas The average value of the molar ratio of the 20 samples was 1.0497, the standard deviation was 0.0012, and the variation was small.
[0015]
Further, the granulated molded body was subjected to aeration firing for 10 hours in oxygen gas at 750 ° C., and the obtained fired powder was randomly sampled at 20 points to confirm the Li / (Ni + M) molar ratio by composition analysis. The average molar ratio of the 20 samples is 1.0502, and the standard deviation is 0.0015. The molar ratio of the granulated molded body and the molar ratio of the calcined powder with respect to the charged Li / (Ni + M) molar ratio. Were equivalent.
[0016]
Furthermore, as a result of repeating the manufacturing process of the calcined powder from powder mixing to aeration firing for the above raw material compound 10 times, the mother average value of the fired body was 1.0498, and its standard deviation was 0.0008, The variation was very small.
[0017]
[Example 2]
Except that the amount of pure water added was 10 wt% of the amount of mixed powder in the granulation and molding step, the same raw material as in Example 1 was subjected to the same mixing, granulation and firing treatment to obtain a fired powder. In addition, the density of the obtained granulated compact was 1.8 g / cm 3 . Moreover, about the obtained baked powder, 20 points | pieces were sampled similarly, As a result of checking a composition by molar ratio, the average value was 1.0513, the standard deviation was 0.0031, and the dispersion | variation was small.
[0018]
[Example 3]
Except that the amount of pure water added was 30 wt% of the amount of the mixed powder in the granulation and molding step, the same raw material as in Example 1 was subjected to the same mixing, granulation and firing treatment to obtain a fired powder. In addition, the density of the obtained granulated molded body was 2.3 g / cm 3 . Moreover, about the obtained baked powder, 20 points | pieces were sampled similarly, As a result of checking a composition by molar ratio, the average value was 1.0513, the standard deviation was 0.0031, and the dispersion | variation was small.
[0019]
[Comparative Example 1]
Using the same raw material powder as in Example 1, mixing with a V-type mixer for 30 minutes without the addition of pure water, and forming a lens-shaped molded product of 5φ × 5 mm with a tablet compression granulator, The same baking treatment as in Example 1 was performed to obtain a baked powder. The density of the obtained molded body was 1.8 g / cm 3 . Similarly, 20 points of the obtained baked powder were sampled, and the composition was confirmed by molar ratio. As a result, the average value of the molar ratio was slightly low at 1.0489 and the standard deviation was 0.0118, which showed considerable variation. It was.
[0020]
[Comparative Example 2]
The same raw material powder as in Example 1 was used, the amount of pure water added was 40 wt% of the amount of mixed powder, premixing was performed for 10 minutes with a V-type mixer, and further mixed for 20 minutes with a kneader. It was set as the spaghetti-shaped granulated molded object of diameter 5mm with the granulator. The granulated compact was dried at 100 ° C. for 10 hours to form a 5φ × 5 mm rod, and then fired in the same manner as in Example 1 to obtain a fired powder. The density of the molded body after the drying treatment was 1.9 g / cm 3 . Further, the obtained fired powder was similarly sampled at 20 points, and the composition was confirmed by the molar ratio. As a result, the average value of the molar ratio was 1.0415, the compositional deviation was large, and the standard deviation was also large at 0.0087. . Incidentally, the surface layer of the molded body after drying was precipitated Li 2 CO 3.
[0021]
From the results of Examples 1 to 3 and Comparative Examples 1 and 2, the granulated molded body and the calcined powder obtained by the production method of the present invention were continuously granulated by adding water by spraying to enhance the binding property. It turns out that the mixing ratio of lithium and a nickel compound does not change by shaping | molding. Further, it can be seen that a homogeneous reaction can be achieved by subjecting the granulated molded body to aeration firing, and that the reproducibility of characteristics in terms of quality is high, and that it is industrially advantageous.
[0022]
【The invention's effect】
As explained above, the composite oxide of the present invention obtained by the production method including the step of performing spray addition of water to the mixed raw material powder and subsequent granulation molding does not change the mixing ratio of lithium and nickel, and This is advantageous in terms of industrial advantage and high reproducibility of characteristics in terms of quality. In addition, the positive electrode active material for a non-aqueous secondary battery using the composite oxide as a main material has an effect of having excellent battery characteristics capable of maintaining high voltage and high energy.
When the amount of water added in the above production method is 5 to 30 wt% of the mixed powder and the molding density of the granulated molded body is 1.0 to 2.5 g / cm 3 , the component mixing ratio is steadily set to a predetermined value. The effect that it can maintain is produced.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199828A JP4608690B2 (en) | 2000-06-30 | 2000-06-30 | Method for producing composite oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000199828A JP4608690B2 (en) | 2000-06-30 | 2000-06-30 | Method for producing composite oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002020124A JP2002020124A (en) | 2002-01-23 |
JP4608690B2 true JP4608690B2 (en) | 2011-01-12 |
Family
ID=18697778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000199828A Expired - Fee Related JP4608690B2 (en) | 2000-06-30 | 2000-06-30 | Method for producing composite oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4608690B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4936661B2 (en) * | 2002-05-17 | 2012-05-23 | ヴァレンス テクノロジー インコーポレーテッド | Method for synthesizing metal compounds useful as cathode active materials |
US20060073091A1 (en) * | 2004-10-01 | 2006-04-06 | Feng Zou | Process for producing lithium transition metal oxides |
JP2014212134A (en) * | 2014-08-21 | 2014-11-13 | 住友金属鉱山株式会社 | Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
KR102043783B1 (en) * | 2017-12-22 | 2019-11-12 | 주식회사 포스코 | Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same |
KR102044332B1 (en) * | 2017-12-22 | 2019-11-13 | 주식회사 포스코 | Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same |
JP7143611B2 (en) * | 2018-03-28 | 2022-09-29 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery |
JP7194891B2 (en) * | 2018-03-28 | 2022-12-23 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery |
JP7332124B2 (en) * | 2018-03-28 | 2023-08-23 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery |
JP7558633B2 (en) * | 2018-03-28 | 2024-10-01 | 住友金属鉱山株式会社 | Molded body, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery |
JP7143610B2 (en) * | 2018-03-28 | 2022-09-29 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery |
US20220059835A1 (en) | 2018-12-28 | 2022-02-24 | Panasonic Intellectual Property Management Co., Ltd. | Lithium-containing complex oxide production method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1179751A (en) * | 1997-09-02 | 1999-03-23 | Toda Kogyo Corp | Production of lithium-nickel oxide particulate powder |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3610440B2 (en) * | 1994-11-25 | 2005-01-12 | 同和鉱業株式会社 | Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery |
JPH0959026A (en) * | 1995-08-21 | 1997-03-04 | Nikki Kagaku Kk | Production of lithium nickelate |
JP3355102B2 (en) * | 1996-11-29 | 2002-12-09 | 同和鉱業株式会社 | Positive active material for lithium secondary battery and secondary battery using the same |
JPH10255793A (en) * | 1997-03-07 | 1998-09-25 | Sumitomo Metal Mining Co Ltd | Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery |
JP2000281354A (en) * | 1999-03-31 | 2000-10-10 | Toda Kogyo Corp | Layer rock salt type oxide particulate powder and its production |
-
2000
- 2000-06-30 JP JP2000199828A patent/JP4608690B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1179751A (en) * | 1997-09-02 | 1999-03-23 | Toda Kogyo Corp | Production of lithium-nickel oxide particulate powder |
Also Published As
Publication number | Publication date |
---|---|
JP2002020124A (en) | 2002-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6383235B1 (en) | Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials | |
JP3030095B2 (en) | Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material | |
JP5367719B2 (en) | Process for producing electrode active materials for lithium ion batteries | |
JP5266861B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP7586152B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded body | |
JP7230515B2 (en) | Manufacturing method of positive electrode active material for lithium ion secondary battery, and formed body | |
JP4608690B2 (en) | Method for producing composite oxide | |
JP2002060225A (en) | Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate | |
JP7586153B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded body | |
JP2000243392A (en) | Positive electrode active material, its manufacture and lithium ion secondary battery using positive electrode active material | |
JP7159589B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery | |
JP7143611B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JP4965019B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery | |
JP7194891B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery | |
JP7159588B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact | |
KR20180046972A (en) | Method of manufacturing cathode material for lithium secondary battery using solid state reaction, cathode material for lithium secondary battery, and lithium secondary battery | |
JPH08185863A (en) | Positive electrode active material for lithium secondary battery and secondary battery using it | |
JP3610439B2 (en) | Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery | |
JP3434873B2 (en) | Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery | |
JP4043000B2 (en) | Method for producing lithium composite oxide | |
JP7143610B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JP7332124B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery | |
JPH11195417A (en) | Manufacture of high-purity tetragonal lithium manganate powders suitable to be used as positive electrode active material of lithium-ion secondary battery | |
JPH08138673A (en) | Positive active material for non-aqueous lithium secondary battery and lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040206 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100831 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100922 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20100922 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100922 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100922 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |