[go: up one dir, main page]

JP2002020124A - Method for producing lithium composite oxide and positive electrode active material - Google Patents

Method for producing lithium composite oxide and positive electrode active material

Info

Publication number
JP2002020124A
JP2002020124A JP2000199828A JP2000199828A JP2002020124A JP 2002020124 A JP2002020124 A JP 2002020124A JP 2000199828 A JP2000199828 A JP 2000199828A JP 2000199828 A JP2000199828 A JP 2000199828A JP 2002020124 A JP2002020124 A JP 2002020124A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
lithium composite
powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000199828A
Other languages
Japanese (ja)
Other versions
JP4608690B2 (en
Inventor
Yoshinori Yamanaka
義則 山中
Satoshi Fukumoto
聡 福本
Koichiro Ejima
光一郎 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2000199828A priority Critical patent/JP4608690B2/en
Publication of JP2002020124A publication Critical patent/JP2002020124A/en
Application granted granted Critical
Publication of JP4608690B2 publication Critical patent/JP4608690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

(57)【要約】 【課題】 リチウム化合物粉とニッケルを主体とする化
合物粉の混合、造粒成形、通気焼成の各工程を備えるリ
チウム複合酸化物の製造方法において、リチウムとニッ
ケルとの混合組成比が変わらず、また品質面での特性再
現性が高くまた量産性にもすぐれたリチウム複合酸化物
の製造方法およびその製品の提供。 【解決手段】 原料粉末を乾式混合した後、水を噴霧添
加することにより、結着性を高めると共に連続的に成形
し、酸化性ガス中で通気焼成するリチウム複合酸化物の
製造方法とする。また、前記水の添加量として混合粉末
量の5〜30wt%および造粒成形体の成形密度を1.
0〜2.5g/ccとすることにより、着実にリチウム
とニッケルの混合比を維持し、品質面での再現性を確保
できる。この方法で得られたリチウム複合酸化物は、高
電圧高エネルギーを維持する非水系二次電池の活物質と
して利用できる。
PROBLEM TO BE SOLVED: To provide a mixed composition of lithium and nickel in a method for producing a lithium composite oxide, which comprises mixing, granulating, and aeration firing steps of a lithium compound powder and a compound powder mainly composed of nickel. The present invention provides a method for producing a lithium composite oxide, which has a constant ratio, high reproducibility of characteristics in quality, and excellent mass production, and a product thereof. SOLUTION: This method is a method for producing a lithium composite oxide, in which, after dry mixing of raw material powders, water is added by spraying to increase the binding property and continuously form, followed by aeration and firing in an oxidizing gas. In addition, as the amount of water to be added, 5 to 30% by weight of the amount of the mixed powder and the molding density of the granulated compact were set to 1.
By setting the content to 0 to 2.5 g / cc, the mixture ratio of lithium and nickel can be steadily maintained, and reproducibility in quality can be ensured. The lithium composite oxide obtained by this method can be used as an active material of a non-aqueous secondary battery that maintains high voltage and high energy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、改良された非水系
リチウム二次電池用の正極活物質とその製造方法に関す
る。
The present invention relates to an improved positive electrode active material for a non-aqueous lithium secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、エレクトロニクス機器の小型高性
能化とコードレス化が進み、それらの駆動電源として二
次電池に関心が集まっており、特にリチウムイオン二次
電池は高電圧高エネルギー密度を有する電池として期待
が大きい。このような電池の正極活物質としては、リチ
ウムをインターカレーション、デインターカレーション
することのできる層状化合物、例えばLiCoO2 やL
iNiO7 など、リチウムと遷移金属を主体とする複合
酸化物(以下、リチウム複合酸化物と記す)が用いられ
る。このようなリチウム複合酸化物のうち、すでに実用
化されているリチウム二次電池用正極活物質としてはL
iCoO2 があるが、資源的に希少で高価なコバルトを
用いていることから、より安価で高エネルギー密度が可
能なリチウム複合酸化物としてLiNiO2 系の材料開
発が精力的に行なわれてきた。
2. Description of the Related Art In recent years, miniaturization and high performance of cordless electronic devices have been promoted, and attention has been paid to secondary batteries as power sources for driving them. In particular, lithium ion secondary batteries are batteries having high voltage and high energy density. As expected. As a positive electrode active material of such a battery, a layered compound capable of intercalating and deintercalating lithium, for example, LiCoO 2 or L
A composite oxide mainly composed of lithium and a transition metal (hereinafter, referred to as lithium composite oxide) such as iNiO 7 is used. Among such lithium composite oxides, as a positive electrode active material for a lithium secondary battery that has already been put into practical use, L
Although there is iCoO 2, since a rare and expensive cobalt is used as a resource, a LiNiO 2 -based material has been energetically developed as a lithium composite oxide which is cheaper and has a high energy density.

【0003】LiNiO2 の製造方法については、リチ
ウム原料とニッケル原料を均一に混合し、これを焼成す
る工程が必要である。この原料の混合工程において、リ
チウムとニッケル混合比が変動すると焼成粉の粉体特性
が劣化し、また電池特性に再現性がない等の問題が生じ
る。そこで、本出願人は、先に特開平11−13511
8号公報において、均質で電池特性に優れたリチウム−
遷移金属複合酸化物活物質を得るべく、原料の混合粉体
を成形して成形体とすることにより密度を高めた後、酸
化性ガスを用いて強制通気することにより焼成する方法
を開示した。
A method for producing LiNiO 2 requires a step of uniformly mixing a lithium raw material and a nickel raw material and firing the mixture. In the raw material mixing step, if the mixing ratio of lithium and nickel fluctuates, the powder characteristics of the fired powder deteriorate, and the battery characteristics do not have reproducibility. Accordingly, the present applicant has previously disclosed in Japanese Patent Application Laid-Open No. H11-13511.
No. 8 discloses a lithium-containing lithium battery having excellent battery characteristics.
In order to obtain a transition metal composite oxide active material, a method has been disclosed in which a mixed powder of raw materials is formed into a molded body to increase the density, and then fired by forcibly aeration using an oxidizing gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
方法は、工業的規模で電池特性に優れたリチウム複合酸
化物を得るのに有利な方法ではあるが、リチウム原料と
例えばニッケル原料を用いて工業的な量産規模で混合、
成形、焼成の各工程を経て焼成粉を得る場合、混合と成
形の工程間で、混合粉末における組成ずれが生じ、結果
として不均一な焼成粉が得られる場合があった。すなわ
ち、(1) 乾式法で混合成形を行なった場合、リチウム原
料粉末とニッケル原料粉末との粒径差、密度差、形状差
による偏析が起り、焼成前の段階で混合比が不均一とな
り、不均一な焼成粉が得られる場合があった。 (2) 溶液中で粉体を分散混合させる湿式法で混合成形を
行なった場合、得られた成形体または造粒体の水分を除
去するための乾燥処理において、成形体または造粒体の
表面にリチウムが偏析し、これを焼成すると不均一な焼
成粉となる場合があった。また、そのまま成形体または
造粒体を焼成しても、通気焼成により水分が蒸発する
際、リチウムが表面へ移動するため、同様に不均一な焼
成粉となる場合があった。 (3) また、公知技術として、原料混合粉末にPVAのご
とき有機バインダー溶液を添加し、転動造粒法で成形体
を得る方法は、得られる成形体の密度が比較的低いため
に焼成反応が進みにくく、また焼成時に有機バインダー
が分解して還元剤として作用するため、LiNiO2
場合は電気化学的特性を著しく劣化させるという問題が
あった。
However, the above method is an advantageous method for obtaining a lithium composite oxide having excellent battery characteristics on an industrial scale. Mixing on a typical mass production scale,
When a baked powder is obtained through each of the steps of molding and baking, a composition deviation in the mixed powder occurs between the mixing and the forming steps, and as a result, a non-uniform baked powder may be obtained. In other words, (1) when the mixture molding is performed by a dry method, segregation occurs due to a difference in particle size, a difference in density, and a difference in shape between the lithium raw material powder and the nickel raw material powder, and the mixing ratio becomes non-uniform at a stage before firing, In some cases, non-uniform calcined powder was obtained. (2) In the case of performing mixing molding by a wet method of dispersing and mixing powders in a solution, in the drying treatment for removing moisture of the obtained molded body or granulated body, the surface of the molded body or granulated body is In some cases, lithium segregated, and when this was fired, a nonuniform fired powder was sometimes formed. Further, even if the compact or granule is directly baked, lithium may move to the surface when moisture evaporates by aeration calcination, so that a non-uniform baked powder may be obtained. (3) As a well-known technique, a method of adding an organic binder solution such as PVA to a raw material mixed powder and obtaining a formed body by a tumbling granulation method involves a firing reaction because the density of the obtained formed body is relatively low. Is difficult to progress, and the organic binder is decomposed at the time of firing to act as a reducing agent. Therefore, in the case of LiNiO 2 , there is a problem that the electrochemical characteristics are significantly deteriorated.

【0005】このような状況に鑑み、本発明の目的は、
原料粉末の混合、成形、通気焼成の各工程を備えるLi
NiO2 の製造方法において、混合および成形工程にお
いて、リチウムとニッケルとの混合組成比が変わらず、
不均質な焼成粉となることなく、工業的な量産規模にお
いても有利で、また品質面での特性再現性が高い方法、
また、得られる製品を提供することにある。
In view of such a situation, an object of the present invention is to
Li with each process of mixing, molding and ventilation firing of raw material powder
In the method for producing NiO 2 , in the mixing and forming steps, the mixing composition ratio of lithium and nickel does not change,
A method that is advantageous even on an industrial mass production scale without producing heterogeneous calcined powder, and has high characteristics reproducibility in terms of quality.
Another object is to provide a product obtained.

【0006】[0006]

【課題を解決するための手段】上記の課題に対して、本
発明者等は、焼成時の固相反応性を高めるためリチウム
原料としては水溶性リチウム化合物を、ニッケル原料と
してはニッケルを主体とする非水溶性ニッケル化合物を
用いた場合において、乾式混合後水を噴霧添加する加湿
混合手段により結着性を高め、連続的に造粒成形するこ
とにより、リチウムとニッケル化合物の混合組成比が変
わることなく通気焼成できること、また、この方法によ
れば品質面での特性再現性が高く、また、工業的量産規
模においても有利であることを見出した。特に、噴霧添
加する水の量を混合粉末に対して5〜30wt%の量と
すること、さらには、得られた造粒成形体の成形密度が
1.0〜2.5g/ccのものであることにより、望ま
しい結果が得られることを見い出した。
In order to solve the above-mentioned problems, the present inventors have proposed that a water-soluble lithium compound is mainly used as a lithium raw material and nickel is mainly used as a nickel raw material in order to enhance the solid phase reactivity during firing. In the case of using a water-insoluble nickel compound to be used, the binding composition is increased by humidifying and mixing means of spray-adding water after dry mixing, and the mixture composition ratio of lithium and the nickel compound is changed by continuously granulating and forming. It has been found that aeration and sintering can be carried out without any problem, and that this method has high reproducibility of characteristics in terms of quality and is also advantageous on an industrial mass production scale. In particular, the amount of water to be spray-added is set to 5 to 30 wt% with respect to the mixed powder, and the obtained granulated product has a molding density of 1.0 to 2.5 g / cc. Some have found that the desired results are obtained.

【0007】すなわち、本発明は、第1に、リチウム化
合物とニッケルを主体とする化合物とを乾式混合後、水
を噴霧添加して造粒成形し、酸化性ガス中で通気焼成す
ることを特徴とするリチウム複合酸化物の製造方法であ
り、第2に、リチウム化合物粉末とニッケルを主体とす
る化合物粉末とを乾式混合した後、得られた混合粉末に
水を噴霧添加することにより結着性を高めると共に連続
的に造粒成形し、得られた造粒成形体を酸化性ガス中で
通気焼成することを特徴とするリチウム複合酸化物の製
造方法であり、第3に、前記水の噴霧添加量が、前記混
合粉末の量の5〜30wt%であることを特徴とする前
記第1又は第2に記載の製造方法であり、第4に、前記
造粒成形体の密度が1.0〜2.5g/ccであるとこ
ろの前記第3の製造方法であり、第5に、前記第1〜第
4のいずれかに記載の製造方法で得られたリチウム複合
酸化物を主材としたことを特徴とする非水系二次電池用
正極活物質である。
That is, the present invention is characterized in that, first, after a lithium compound and a compound mainly composed of nickel are dry-mixed, granulated by spray addition of water, and aerated and fired in an oxidizing gas. Secondly, after dry-mixing a lithium compound powder and a compound powder mainly composed of nickel, water is spray-added to the obtained mixed powder to obtain a binding property. And granulating and molding continuously, and then subjecting the resulting granulated body to aeration sintering in an oxidizing gas, the method comprising the steps of: The production method according to the first or second aspect, wherein an addition amount is 5 to 30% by weight of the amount of the mixed powder, and fourthly, the density of the granulated body is 1.0%. ~ 2.5g / cc of the third product Fifth, a positive electrode active material for a non-aqueous secondary battery, characterized in that the main material is a lithium composite oxide obtained by the production method according to any one of the first to fourth aspects. is there.

【0008】[0008]

【発明の実施の形態】本発明に使用される原料リチウム
化合物粉末は水溶性であり、水酸化リチウム・水和物ま
たは無水物、硝酸リチウム・水和物または無水物等が挙
げられる。またニッケル原料の主体となるニッケル化合
物粉末は、ニッケルとニッケル以外の遷移金属からな
り、それらの酸化物、水酸化物等が挙げられるが、合成
時の反応性の高さを考慮すると水酸化物が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The raw material lithium compound powder used in the present invention is water-soluble, and examples thereof include lithium hydroxide hydrate or anhydride, lithium nitrate hydrate or anhydride and the like. The nickel compound powder, which is the main component of the nickel raw material, is composed of nickel and a transition metal other than nickel, and includes oxides and hydroxides thereof. Is desirable.

【0009】これらのリチウム化合物粉末とニッケルを
主体とする化合物粉末は、リチウムとニッケル+M(た
だし、Mはニッケル以外の遷移金属である)のモル比
で、0.900≦Li/(Ni+M)≦1.100とな
るように計量し、乾式混合を行なう。得られた乾式混合
物を、加湿混合工程において、混合攪拌しながらバイン
ダーとして水を噴霧して添加する。混合機としては、パ
ドル型水平軸回転混合機、高速流動型垂直軸回転混合機
等が使用できる。
The lithium compound powder and the nickel-based compound powder have a molar ratio of lithium to nickel + M (where M is a transition metal other than nickel) in a molar ratio of 0.900 ≦ Li / (Ni + M) ≦ 1. Weigh to 100 and dry mix. The obtained dry mixture is added by spraying water as a binder while mixing and stirring in a humidifying mixing step. As the mixer, a paddle type horizontal axis rotary mixer, a high-speed flow type vertical axis rotary mixer, or the like can be used.

【0010】バインダーの水としては、焼成時における
他成分との反応、焼成粉への汚染等を配慮し、純水を用
いるのが望ましい。すなわち、乾式混合時にバインダー
として一定量の水を均一に噴霧すると、水溶性のリチウ
ム化合物の潮解性により粒子表面を溶解し、ニッケル化
合物を表面に均一に接触させることにより結着性を高
め、次の造粒成形工程において成形密度を上げることが
できる。この噴霧水の量は混合粉末の量の5〜30wt
%が望ましい。5wt%未満の添加量であると、原料粉
末表面への水分吸着量が不足して結着性が上がらないた
め成形が難しく、一方、30wt%を越えると成形密度
はあまり上がらなくなり、またリチウム化合物が溶出し
はじめ、水分の蒸発とともに成形体表面へ移動するので
組成の均一性が低下し始める。よって好適な水分量とし
ては、混合粉末量の5〜30wt%であり、より好まし
くは10〜30wt%である。
As the water for the binder, it is preferable to use pure water in consideration of the reaction with other components at the time of firing, contamination of the fired powder, and the like. That is, when a certain amount of water is sprayed uniformly as a binder during dry mixing, the surface of the particles is dissolved by the deliquescent of the water-soluble lithium compound, and the nickel compound is brought into uniform contact with the surface to enhance the binding property. In the granulation molding step, the molding density can be increased. The amount of this spray water is 5 to 30 wt.
% Is desirable. If the addition amount is less than 5 wt%, the amount of water adsorbed on the surface of the raw material powder is insufficient, and the binding property is not improved, so that the molding is difficult. Begins to elute and moves to the surface of the molded body with the evaporation of water, so that the uniformity of the composition starts to decrease. Therefore, a suitable amount of water is 5 to 30 wt%, more preferably 10 to 30 wt% of the mixed powder amount.

【0011】造粒成形工程については、工業的量産規模
からすれば、上記混合粉末を連続的に造粒成形すること
が有利である、また、造粒成形体のサイズとしては、2
〜10cmの球状、棒状、レンズ状、板状等で解粒・整
粒等の操作がないもの、且つ、各成形体が均一に成形さ
れていることが必要である。また、造粒成形体の密度と
しては、通気焼成時に成形体が壊れず、焼成中の固相反
応性を促進させるために、1.0〜2.5g/cc、好
ましくは1.5〜2.5g/ccが必要である。1.0
g/cc未満では成形ができず、また、2.5g/cc
を越えても成形が難しくなる。造粒成形機としては、デ
ィスク型押出造粒機、リング型押出造粒機、ブリケッテ
ィング型圧縮式造粒機、打錠型圧縮式造粒機等が使用で
きる。
Regarding the granulation and molding step, it is advantageous from the viewpoint of industrial mass production to continuously granulate and mold the above mixed powder.
It is necessary that the particles have a size of 10 to 10 cm, such as a sphere, a rod, a lens, or a plate, and do not have operations such as granulation and sizing, and that each molded body is uniformly formed. Further, the density of the granulated compact is 1.0 to 2.5 g / cc, preferably 1.5 to 2 g, in order to prevent the compact from being broken at the time of ventilation firing and to promote solid phase reactivity during firing. 0.5 g / cc is required. 1.0
If less than g / cc, molding cannot be performed.
Even if it exceeds, molding becomes difficult. As the granulator, a disk-type extrusion granulator, a ring-type extrusion granulator, a briquetting-type compression-type granulator, a tablet-type compression-type granulator, and the like can be used.

【0012】上記の造粒成形工程で得られた各造粒成形
体のLi/(Ni+M)モル比を分析で確認したとこ
ろ、仕込みLi/(Ni+M)モル比との差がなく、ま
たばらつきも少なかった。また、通気焼成後のリチウム
複合酸化物の特性も同様であり、上記の原料粉末につい
て、混合−造粒成形−通気焼成を数回実施した結果にお
いても特性のばらつきがなく、再現性の高い結果が得ら
れた。すなわち、この製造法を用いることで工業的に有
利、品質面での特性再現性が高いことが明らかになっ
た。また、この発明におけるリチウム複合酸化物は、リ
チウムイオン二次電池の活物質として、高い電圧下で高
いエネルギーを保持する優れた電池特性を示すことも明
らかになった。以下、実施例をもって本発明を詳細に説
明するが、本発明の範囲はこれらによって限定されるも
のではない。
When the molar ratio of Li / (Ni + M) of each granulated product obtained in the above-mentioned granulating and molding step was confirmed by analysis, there was no difference from the charged Li / (Ni + M) molar ratio and there was no variation. There were few. In addition, the characteristics of the lithium composite oxide after the ventilation firing are the same, and the results of performing the mixing-granulation-molding-air firing several times on the above-mentioned raw material powder have no variation in the characteristics and have high reproducibility. was gotten. That is, it has been clarified that the use of this production method is industrially advantageous and has high reproducibility of characteristics in terms of quality. Further, it has also been found that the lithium composite oxide according to the present invention exhibits excellent battery characteristics of maintaining high energy under a high voltage as an active material of a lithium ion secondary battery. Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited thereto.

【0013】[0013]

【実施例】[実施例1]リチウム化合物として水酸化リ
チウム・水和物(LiOH・H2O)、ニッケルを主体
とする化合物としてはモル比でNi:Co:Al=8
0:15:5の共沈水酸化物粉末を、モル比でLi/
(Ni+Co+Al)=1.05となるように計量し、
パドル型水平軸回転混合機で10分間の乾燥混合処理を
行った後、さらに混合粉末を該混合機で混合しながら混
合粉末量の15wt%の純水を噴霧添加し、合計30分
間の加湿混合処理を行った。次いで、この加湿した混合
粉末をディスク型押出式造粒機に投入し連続的に造粒成
形を実施、5φ×10mm程度の棒状成形体を得た。
EXAMPLES Example 1 Lithium hydroxide hydrate as a lithium compound (LiOH · H 2 O), Ni in a molar ratio of a compound consisting mainly of nickel: Co: Al = 8
0: 15: 5 coprecipitated hydroxide powder was mixed with a molar ratio of Li /
Weighed so that (Ni + Co + Al) = 1.05,
After performing a dry mixing process for 10 minutes with a paddle type horizontal axis rotary mixer, while further mixing the mixed powder with the mixer, 15 wt% pure water of the mixed powder amount is spray-added, and the humidified mixing is performed for a total of 30 minutes. Processing was performed. Next, the humidified mixed powder was put into a disk-type extrusion-type granulator and continuously granulated to obtain a rod-shaped compact having a size of about 5φ × 10 mm.

【0014】上記の造粒成形工程で得られた造粒成形体
の成形密度は2.1g/ccであった。この造粒成形体
について、ランダムに20点サンプリングして、Li/
(Ni+M)モル比を組成分析で確認したところ、仕込
みLi/(Ni+M)モル比が1.050であったのに
対し、上記20点のサンプルのモル比平均値は1.04
97で、その標準偏差は0.0012で、ばらつきが小
さかった。
The molding density of the granulated product obtained in the above-mentioned granulation molding step was 2.1 g / cc. About this granulated molded body, 20 points were sampled at random and Li /
When the (Ni + M) molar ratio was confirmed by composition analysis, the charged Li / (Ni + M) molar ratio was 1.050, whereas the average molar ratio of the 20 samples was 1.04.
At 97, its standard deviation was 0.0012, with low variability.

【0015】また、上記造粒成形体について、酸素ガス
中750℃で10時間の通気焼成を行い、得られた焼成
粉をランダムに20点サンプリングしてLi/(Ni+
M)モル比を組成分析で確認したところ、20点のサン
プルのモル比平均値は1.0502で、その標準偏差は
0.0015であり、仕込みLi/(Ni+M)モル比
に対して造粒成形体のモル比と焼成粉のモル比は同等で
あった。
The granulated product was subjected to aeration calcination in oxygen gas at 750 ° C. for 10 hours, and the obtained baked powder was randomly sampled at 20 points to obtain Li / (Ni +
M) The molar ratio was confirmed by composition analysis. The average value of the molar ratio of the 20 samples was 1.0502, the standard deviation was 0.0015, and the sample was granulated with respect to the charged Li / (Ni + M) molar ratio. The molar ratio of the compact was the same as the molar ratio of the calcined powder.

【0016】さらに、上記の原料化合物について、粉末
混合から通気焼成に至る焼成粉の製造工程を、10回繰
り返し実施した結果、焼成体の母平均値は1.0498
で、その標準偏差は0.0008で、ばらつきは非常に
小さかった。
Further, the above-mentioned raw material compounds were repeatedly subjected to the process of producing a baked powder from powder mixing to aeration calcination 10 times, and as a result, the population average value of the baked product was 1.0498.
The standard deviation was 0.0008, and the variation was very small.

【0017】[実施例2]造粒成形工程で純水添加量を
混合粉末量の10wt%とした以外は、実施例1の場合
と同様の原料について同様の混合、造粒成形、焼成処理
を行って焼成粉を得た。なお、得られた造粒成形体の密
度は、1.8g/ccであった。また、得られた焼成粉
について、同様に20点のサンプリングを行って組成を
モル比で確認した結果、平均値は1.0513で、標準
偏差は0.0031で、ばらつきは小さかった。
[Example 2] The same mixing, granulation molding and baking treatment was carried out on the same raw materials as in Example 1 except that the amount of pure water added was 10 wt% of the mixed powder amount in the granulation molding step. Performed to obtain a baked powder. In addition, the density of the obtained granulated compact was 1.8 g / cc. In addition, the obtained fired powder was sampled at 20 points in the same manner and the composition was confirmed by the molar ratio. As a result, the average value was 1.0513, the standard deviation was 0.0031, and the variation was small.

【0018】[実施例3]造粒成形工程で純水添加量を
混合粉末量の30wt%とした以外は、実施例1の場合
と同様の原料について同様の混合、造粒成形、焼成処理
を行って焼成粉を得た。なお、得られた造粒成形体の密
度は2.3g/ccであった。また、得られた焼成粉に
ついて、同様に20点のサンプリングを行って組成をモ
ル比で確認した結果、平均値は1.0513で、標準偏
差は0.0031で、ばらつきは小さかった。
Example 3 The same mixing, granulation, and firing treatments were performed on the same raw materials as in Example 1 except that the amount of pure water added was 30 wt% of the amount of the mixed powder in the granulation and molding step. Performed to obtain a baked powder. In addition, the density of the obtained granulated molded body was 2.3 g / cc. In addition, the obtained fired powder was sampled at 20 points in the same manner and the composition was confirmed by the molar ratio. As a result, the average value was 1.0513, the standard deviation was 0.0031, and the variation was small.

【0019】[比較例1]実施例1の場合と同様の原料
粉を用い、純水の添加なしで、V型混合機で混合を30
分間行ない、打錠形圧縮式造粒機で5φ×5mmのレン
ズ状成形体とし、実施例1の場合と同様の焼成処理を行
って焼成粉を得た。なお、得られた成形体の密度は1.
8g/ccであった。また、得られた焼成粉を同様に2
0点サンプリングし、組成をモル比で確認した結果、モ
ル比の平均値は1.0489でやや低く、標準偏差は
0.0118で、かなりのばらつきを示した。
[Comparative Example 1] Using the same raw material powder as in Example 1, mixing was performed for 30 minutes with a V-type mixer without adding pure water.
For 5 minutes, a 5 mm × 5 mm lens-shaped molded body was formed by a tableting-type compression granulator, and the same calcination treatment as in Example 1 was performed to obtain a baked powder. In addition, the density of the obtained molded body was 1.
It was 8 g / cc. In addition, the obtained fired powder was
As a result of sampling at zero point and confirming the composition by a molar ratio, the average value of the molar ratio was slightly lower at 1.0489, and the standard deviation was 0.0118, indicating a considerable variation.

【0020】[比較例2]実施例1の場合と同様の原料
粉を用い、純水の添加量を混合粉末量の40wt%と
し、V型混合機で予備混合を10分間行ない、さらに混
練機で20分間混合し、押出造粒機で径5mmのスパゲ
ティ状の造粒成形体とした。この造粒成形体について1
00℃で10時間の乾燥処理を行ない、5φ×5mm棒
状とした後、実施例1の場合と同様の焼成処理を行って
焼成粉を得た。なお、乾燥処理後の成形体の密度は1.
9g/ccであった。また、得られた焼成粉を同様に2
0点サンプリングし、組成をモル比で確認した結果、モ
ル比の平均値が1.0415で、組成のずれが大きく、
標準偏差も0.0087で大きかった。なお、乾燥後の
成形体の表層部にはLi2CO3が析出していた。
Comparative Example 2 The same raw material powder as in Example 1 was used, the amount of pure water added was 40 wt% of the mixed powder amount, premixing was performed for 10 minutes with a V-type mixer, and the kneader was further mixed. For 20 minutes to obtain a spaghetti-like granulated product having a diameter of 5 mm by an extrusion granulator. About this granulated compact, 1
After drying at 00 ° C. for 10 hours to obtain a bar having a size of 5 × 5 mm, the same firing treatment as in Example 1 was performed to obtain a fired powder. The density of the molded body after the drying treatment was 1.
It was 9 g / cc. In addition, the obtained fired powder was
As a result of sampling at zero point and confirming the composition by a molar ratio, the average value of the molar ratio was 1.0415, and the deviation of the composition was large.
The standard deviation was also large at 0.0087. Note that Li 2 CO 3 was deposited on the surface layer of the dried compact.

【0021】実施例1〜3と比較例1、2の結果より、
本発明の製造方法により得られた造粒成形体および焼成
粉は、水を噴霧添加し、結着性を高めて連続的に造粒成
形することで、リチウムとニッケル化合物の混合比は変
わらないことが分かる。また、この造粒成形体を通気焼
成することで均質な反応することができ、品質面での特
性の再現性が高いこと、工業的に有利であることも分か
る。
From the results of Examples 1 to 3 and Comparative Examples 1 and 2,
The granulated molded product and the calcined powder obtained by the production method of the present invention are spray-added with water, and continuously granulated by increasing the binding property, so that the mixing ratio of lithium and the nickel compound does not change. You can see that. In addition, it can be seen that a homogeneous reaction can be performed by aeration and firing of the granulated product, and that the reproducibility of characteristics in terms of quality is high and that it is industrially advantageous.

【0022】[0022]

【発明の効果】以上に説明したように、混合原料粉への
水の噴霧添加と引き続く造粒成形を行う工程を備える製
造法によって得られる本発明のリチウム複合酸化物は、
リチウムとニッケルの混合比が変わらず、且つ、工業的
に有利、且つ、品質面での特性の再現性が高いという効
果を奏する。また、このリチウム複合酸化物を主材とす
る非水二次電池用の正極活物質は高電圧高エネルギーを
維持できる優れた電池特性を有するという効果を奏す
る。上記製造法における水の添加量を混合粉末の5〜3
0wt%としかつ造粒成形体の成形密度を1.0〜2.
5g/ccとしたものは、成分混合比を所定値に着実に
維持できるという効果を奏する。
As described above, the lithium composite oxide of the present invention obtained by the production method including the steps of spraying water to the mixed raw material powder and performing the subsequent granulation is as follows:
This has the effect that the mixing ratio of lithium and nickel does not change, is industrially advantageous, and the reproducibility of characteristics in terms of quality is high. In addition, the positive electrode active material for a non-aqueous secondary battery containing the lithium composite oxide as a main material has an effect of having excellent battery characteristics capable of maintaining high voltage and high energy. The amount of water to be added in the above production method is adjusted to 5 to 3 of the mixed powder.
0 wt% and the molding density of the granulated compact is 1.0 to 2.
When the content is 5 g / cc, there is an effect that the component mixture ratio can be steadily maintained at a predetermined value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江島 光一郎 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD03 AE05 5H050 AA19 BA15 CA08 DA02 GA02 GA08 GA10 GA15 HA01 HA08 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Koichiro Ejima 1-8-2 Marunouchi, Chiyoda-ku, Tokyo F-term in Dowa Mining Co., Ltd. 4G048 AA04 AB01 AB05 AC06 AD03 AE05 5H050 AA19 BA15 CA08 DA02 GA02 GA08 GA10 GA15 HA01 HA08

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウム化合物粉末とニッケルを主体と
する化合物とを乾式混合した後、水を噴霧添加して造粒
成形し、酸化性ガス中で通気焼成することを特徴とする
リチウム複合酸化物の製造方法。
1. A lithium composite oxide characterized by dry-mixing a lithium compound powder and a compound mainly composed of nickel, followed by spray addition of water, granulation and calcination by aeration in an oxidizing gas. Manufacturing method.
【請求項2】 リチウム化合物粉末とニッケルを主体と
する化合物粉末とを乾式混合した後、得られた混合粉末
に水を噴霧添加することにより結着性を高めると共に連
続的に造粒成形し、得られた造粒成形体を酸化性ガス中
で通気焼成することを特徴とするリチウム複合酸化物の
製造方法。
2. After dry-mixing a lithium compound powder and a compound powder mainly composed of nickel, water is spray-added to the obtained mixed powder to enhance binding properties and continuously granulate and form. A method for producing a lithium composite oxide, comprising subjecting the obtained granulated product to aeration sintering in an oxidizing gas.
【請求項3】 前記水の添加量が、前記混合粉末の量の
5〜30wt%であることを特徴とする請求項1又は2
に記載のリチウム複合酸化物の製造方法。
3. The method according to claim 1, wherein the amount of the water added is 5 to 30 wt% of the amount of the mixed powder.
3. The method for producing a lithium composite oxide according to item 1.
【請求項4】 前記造粒成形体の成形密度が1.0〜
2.5g/ccであることを特徴とする請求項3に記載
のリチウム複合酸化物の製造方法。
4. The molding density of the granulated product is 1.0 to 1.0.
The method for producing a lithium composite oxide according to claim 3, wherein the amount is 2.5 g / cc.
【請求項5】 請求項1〜4のいずれかに記載の製造方
法で得られたリチウム酸化物を主材としたことを特徴と
する非水系二次電池用正極活物質。
5. A positive electrode active material for a non-aqueous secondary battery, comprising a lithium oxide obtained by the method according to claim 1 as a main material.
JP2000199828A 2000-06-30 2000-06-30 Method for producing composite oxide Expired - Fee Related JP4608690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000199828A JP4608690B2 (en) 2000-06-30 2000-06-30 Method for producing composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000199828A JP4608690B2 (en) 2000-06-30 2000-06-30 Method for producing composite oxide

Publications (2)

Publication Number Publication Date
JP2002020124A true JP2002020124A (en) 2002-01-23
JP4608690B2 JP4608690B2 (en) 2011-01-12

Family

ID=18697778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199828A Expired - Fee Related JP4608690B2 (en) 2000-06-30 2000-06-30 Method for producing composite oxide

Country Status (1)

Country Link
JP (1) JP4608690B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials
JP2008514537A (en) * 2004-10-01 2008-05-08 シーブイアールディ、インコ、リミテッド Method for producing lithium transition metal oxide
JP2014212134A (en) * 2014-08-21 2014-11-13 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20190076746A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
KR20190076767A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
JP2019175700A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2019175699A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, and manufacturing method for non-aqueous electrolyte secondary battery
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP2019175698A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JPWO2020137440A1 (en) * 2018-12-28 2021-11-11 パナソニックIpマネジメント株式会社 Method for Producing Lithium-Containing Composite Oxide
JP2022174094A (en) * 2018-03-28 2022-11-22 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
JP2022174097A (en) * 2018-03-28 2022-11-22 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153518A (en) * 1994-11-25 1996-06-11 Dowa Mining Co Ltd Positive electrode active material for nonaqueous lithium secondary battery, and lithium secondary battery
JPH0959026A (en) * 1995-08-21 1997-03-04 Nikki Kagaku Kk Production of lithium nickelate
JPH10162830A (en) * 1996-11-29 1998-06-19 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery, and secondary battery using same
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JPH1179751A (en) * 1997-09-02 1999-03-23 Toda Kogyo Corp Production of lithium-nickel oxide particulate powder
JP2000281354A (en) * 1999-03-31 2000-10-10 Toda Kogyo Corp Layer rock salt type oxide particulate powder and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153518A (en) * 1994-11-25 1996-06-11 Dowa Mining Co Ltd Positive electrode active material for nonaqueous lithium secondary battery, and lithium secondary battery
JPH0959026A (en) * 1995-08-21 1997-03-04 Nikki Kagaku Kk Production of lithium nickelate
JPH10162830A (en) * 1996-11-29 1998-06-19 Dowa Mining Co Ltd Positive electrode active material for lithium secondary battery, and secondary battery using same
JPH10255793A (en) * 1997-03-07 1998-09-25 Sumitomo Metal Mining Co Ltd Manufacture of lithium-cobalt double oxide for use in lithium ion secondary battery
JPH1179751A (en) * 1997-09-02 1999-03-23 Toda Kogyo Corp Production of lithium-nickel oxide particulate powder
JP2000281354A (en) * 1999-03-31 2000-10-10 Toda Kogyo Corp Layer rock salt type oxide particulate powder and its production

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005525990A (en) * 2002-05-17 2005-09-02 ヴァレンス テクノロジー インコーポレーテッド Method for synthesizing metal compounds useful as cathode active materials
JP2010047471A (en) * 2002-05-17 2010-03-04 Valence Technology Inc Method for synthesizing metal compound useful as cathode active material
JP2012121801A (en) * 2002-05-17 2012-06-28 Valence Technology Inc Method for synthesizing metal compound useful as cathode active material
JP2008514537A (en) * 2004-10-01 2008-05-08 シーブイアールディ、インコ、リミテッド Method for producing lithium transition metal oxide
JP2014212134A (en) * 2014-08-21 2014-11-13 住友金属鉱山株式会社 Cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20190076746A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
KR20190076767A (en) * 2017-12-22 2019-07-02 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
KR102044332B1 (en) * 2017-12-22 2019-11-13 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
KR102043783B1 (en) * 2017-12-22 2019-11-12 주식회사 포스코 Manufacturing method of a positive electrode active material for rechargeable battery, positive electrode active material for rechargeable battery manufacture using the same, and rechargeable battery including the same
JP2019175701A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP7143610B2 (en) 2018-03-28 2022-09-29 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
JP2019175698A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP2019172510A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Molded body, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2019175700A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, assembly, and manufacturing method for non-aqueous electrolyte secondary battery
JP7558633B2 (en) 2018-03-28 2024-10-01 住友金属鉱山株式会社 Molded body, method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP7143611B2 (en) 2018-03-28 2022-09-29 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
JP2019175699A (en) * 2018-03-28 2019-10-10 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for non-aqueous electrolyte secondary battery, molded body, and manufacturing method for non-aqueous electrolyte secondary battery
JP2022174094A (en) * 2018-03-28 2022-11-22 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
JP2022174097A (en) * 2018-03-28 2022-11-22 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and compact
JP7194891B2 (en) 2018-03-28 2022-12-23 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP7332124B2 (en) 2018-03-28 2023-08-23 住友金属鉱山株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, molding, assembly, and method for producing non-aqueous electrolyte secondary battery
JP7507434B2 (en) 2018-12-28 2024-06-28 パナソニックIpマネジメント株式会社 Method for producing lithium-containing composite oxide
JPWO2020137440A1 (en) * 2018-12-28 2021-11-11 パナソニックIpマネジメント株式会社 Method for Producing Lithium-Containing Composite Oxide

Also Published As

Publication number Publication date
JP4608690B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
US6383235B1 (en) Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP3030095B2 (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material
JP5367719B2 (en) Process for producing electrode active materials for lithium ion batteries
JP4642959B2 (en) Method for producing lithium titanate
JP2002020124A (en) Method for producing lithium composite oxide and positive electrode active material
US6875416B1 (en) Method for producing lithium-transition metal mixtures
JP2002060225A (en) Lithium cobaltate aggregate, cobalt oxide aggregate, method for manufacturing the same and lithium cell using lithium cobaltate aggregate
JP7586152B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded body
KR100417251B1 (en) Method for preparing lithium manganese spinel oxide having improved electrochemical performance
JP7403289B2 (en) Positive electrode active material composite for lithium ion secondary battery and method for manufacturing the same
JP7444535B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
JP3575313B2 (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material
KR20040105852A (en) Lithium-containing complex oxide and its producing method
CN112203984B (en) Method for producing lithiated transition metal oxides
JP7159589B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JP4965019B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
KR20010029695A (en) A method for manufacturing the cathode material of the secondary lithium electric cell
JP7194891B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, compact, and method for producing non-aqueous electrolyte secondary battery
JPH05290832A (en) Manufacture of positive electrode for lithium secondary battery
JPH08185863A (en) Positive electrode active material for lithium secondary battery and secondary battery using it
KR20180046972A (en) Method of manufacturing cathode material for lithium secondary battery using solid state reaction, cathode material for lithium secondary battery, and lithium secondary battery
JP3610439B2 (en) Cathode active material for non-aqueous lithium secondary battery and lithium secondary battery
JP4043000B2 (en) Method for producing lithium composite oxide
JP2004091889A (en) Metal niobium powder and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees