JP5266861B2 - Method for producing positive electrode active material for lithium secondary battery - Google Patents
Method for producing positive electrode active material for lithium secondary battery Download PDFInfo
- Publication number
- JP5266861B2 JP5266861B2 JP2008116741A JP2008116741A JP5266861B2 JP 5266861 B2 JP5266861 B2 JP 5266861B2 JP 2008116741 A JP2008116741 A JP 2008116741A JP 2008116741 A JP2008116741 A JP 2008116741A JP 5266861 B2 JP5266861 B2 JP 5266861B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- active material
- positive electrode
- electrode active
- hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウム二次電池用正極活物質とその製造方法に関する。詳しくは、本発明は、1次粒子の粒径が大きく、均一であると共に、そのような1次粒子の殆どが空間によってのみ囲まれており、従って、正極活物質として用いるとき、サイクル特性にすぐれるリチウム二次電池を与えるリチウム二次電池用正極活物質とその製造方法に関する。更に、本発明は、上述した正極活物質を含む正極を有するリチウムイオン二次電池に関する。 The present invention relates to a positive electrode active material for a lithium secondary battery and a method for producing the same. Specifically, the present invention has a primary particle size that is large and uniform, and most of such primary particles are surrounded only by a space. Therefore, when used as a positive electrode active material, cycle characteristics are improved. The present invention relates to a positive electrode active material for a lithium secondary battery that provides an excellent lithium secondary battery and a method for producing the same. Furthermore, this invention relates to the lithium ion secondary battery which has a positive electrode containing the positive electrode active material mentioned above.
近年、携帯電話やノート型パーソナルコンピュータ等は、高性能化と小型化によって急激に普及しており、そのような小型移動機器の電源として、エネルギー密度が高いところから、リチウム二次電池が広く用いられるに至っている。更に、最近においては、電気自動車(EV)や内燃機関と電池の両方を動力源とするハイブリッド電気自動車(HEV)における電源としての利用の実用化のために、一層、高容量で、しかも、安全性と出力特性にすぐれるリチウム二次電池を開発すべく、種々の研究が推進されている。 In recent years, cellular phones and notebook personal computers have rapidly spread due to high performance and downsizing, and lithium secondary batteries are widely used as power sources for such small mobile devices because of their high energy density. Has come to be. Furthermore, recently, in order to put it to practical use as a power source in an electric vehicle (EV) or a hybrid electric vehicle (HEV) using both an internal combustion engine and a battery as a power source, the capacity is further increased and the safety is further increased. Various researches are being promoted in order to develop lithium secondary batteries with excellent performance and output characteristics.
そのような研究の一つの方向として、スピネル構造を有するマンガン酸リチウム(LiMn2O4)、層状構造を有する六方晶系のニッケル酸リチウム(LiNiO2)とコバルト酸リチウム(LiCoO2)のようなリチウム複合酸化物からなるリチウム二次電池用正極活物質の性能の向上を目指す研究が種々、行われている。 One direction of such research is such as lithium manganate (LiMn 2 O 4 ) having a spinel structure, hexagonal lithium nickelate (LiNiO 2 ) and lithium cobaltate (LiCoO 2 ) having a layered structure. Various studies aiming at improving the performance of a positive electrode active material for lithium secondary batteries made of a lithium composite oxide have been conducted.
これらのリチウム複合酸化物のうち、コバルト酸リチウムは、原料であるコバルトの産地が限定されており、その安定供給が困難であるうえに、非常に高価であるという問題がある。一方、マンガン酸リチウムは、材料コストは比較的低く抑えることができるものの、コバルト酸リチウムを用いた場合ほどの高エネルギー密度が得られない問題がある。 Among these lithium composite oxides, lithium cobaltate has a problem in that the source of cobalt as a raw material is limited, and its stable supply is difficult and is very expensive. On the other hand, lithium manganate has a problem that although the material cost can be kept relatively low, the energy density as high as when lithium cobaltate is used cannot be obtained.
これに対して、ニッケル酸リチウムは、ニッケル原料が資源的に豊富であり、また、上記の二つに比べて、良好な容量特性を有し、しかも、最も大きいエネルギー密度を実現できる点で有望視されている。更に、ニッケルと共に、例えば、マグネシウム、ストロンチウム、アルミニウム、コバルト、マンガン、鉄、バナジウム等の種々の金属原子を含むリチウム複合酸化物も、充放電容量が高く、高電圧が得られること、サイクル特性等の電池特性がすぐれていること、ニッケル原料が比較的低コストであり、供給面でも安定している等から、従来、開発が積極的に進められている。 On the other hand, lithium nickelate is promising because it has abundant nickel raw materials, has better capacity characteristics than the above two, and can achieve the highest energy density. Is being viewed. Furthermore, lithium composite oxides containing various metal atoms such as magnesium, strontium, aluminum, cobalt, manganese, iron, vanadium, etc., together with nickel, have high charge / discharge capacity, high voltage, cycle characteristics, etc. Development has been actively promoted because of its excellent battery characteristics, relatively low cost of nickel raw materials, and stable supply.
上述したようなニッケル酸リチウムや他の金属を含む複合酸化物は、従来、一般には、ニッケル塩と上記他の金属の塩とをリチウム化合物と共に乾式混合するか、又は適宜の溶媒中で湿式混合し、乾燥させた後、酸化性雰囲気中、通常、600〜1000℃の温度にて10〜30時間焼成し、必要に応じて、粉砕、分級することによって得ることができる。 Conventionally, a composite oxide containing lithium nickelate and other metals as described above is generally mixed by dry mixing a nickel salt and a salt of the other metal together with a lithium compound, or wet mixing in an appropriate solvent. Then, after drying, it can be obtained by firing in an oxidizing atmosphere at a temperature of usually 600 to 1000 ° C. for 10 to 30 hours, and pulverizing and classifying as necessary.
しかし、従来、ニッケル酸リチウムを正極活物質に用いたリチウム二次電池は、サイクル特性や高温での保存安定性に劣ることが知られており、このような問題の解決には、ニッケル酸リチウムの1次粒径を大きくすることが有効な手段であることが知られている(例えば、特許文献1参照)。 However, lithium secondary batteries using lithium nickelate as a positive electrode active material have been known to be inferior in cycle characteristics and storage stability at high temperatures. It is known that increasing the primary particle size is an effective means (see, for example, Patent Document 1).
即ち、ニッケル酸リチウムにおいては、1次粒子は単結晶に近い粒子であり、これが凝集して2次粒子を形成している。そこで、リチウム二次電池の充放電に伴うリチウムの吸蔵、脱離によって、上記1次粒子が膨張、収縮し、即ち、体積変化を不可避的に起こし、従って、電池の充放電が繰り返されるとき、その1次粒子の体積変化から2次粒子は1次粒子の凝集が解かれることによって崩壊して、微細化する。 That is, in lithium nickelate, the primary particles are particles close to a single crystal, and these aggregate to form secondary particles. Therefore, when the primary particles expand and contract due to insertion / extraction of lithium accompanying charging / discharging of the lithium secondary battery, that is, volumetric change is unavoidable, and thus charging / discharging of the battery is repeated, From the change in volume of the primary particles, the secondary particles collapse and become finer as the aggregation of the primary particles is released.
より詳しくは、リチウム二次電池の充放電に伴うリチウムの吸蔵、脱離によって、ニッケル酸リチウムの1次粒子はc軸方向に膨張、収縮する。粒界によって隔てられる2つの1次粒子についてみると、その結晶方向が同じであることは稀であり、通常は結晶方向が異なっている。従って、ニッケル酸リチウムの1次粒子はリチウムの吸蔵、脱離によってそれぞれ異なった方向に膨張、収縮し、かくして、粒界に歪みを生じて、2次粒子は崩壊して、微細化する。 More specifically, primary particles of lithium nickelate expand and contract in the c-axis direction due to insertion and extraction of lithium accompanying charging and discharging of the lithium secondary battery. Looking at two primary particles separated by a grain boundary, the crystal directions are rarely the same, and the crystal directions are usually different. Accordingly, the primary particles of lithium nickelate expand and contract in different directions due to insertion and extraction of lithium, and thus the grain boundaries are distorted, and the secondary particles collapse and become finer.
リチウム二次電池において、正極は、粉体であるニッケル酸リチウムを正極活物質として、これに導電材を混合し、結着剤で結着して形成されている。従って、上述したように、2次粒子が崩壊し、微細化すれば、正極内において電子伝導が確保されない部分が増加して、内部抵抗が増加することとなり、活物質としての利用率が低下する。即ち、これがリチウム二次電池のサイクル劣化である。 In a lithium secondary battery, the positive electrode is formed by mixing lithium nickelate, which is powder, with a positive electrode active material, mixing a conductive material thereto, and binding with a binder. Therefore, as described above, if the secondary particles are collapsed and refined, the portion where electron conduction is not ensured in the positive electrode increases, the internal resistance increases, and the utilization rate as an active material decreases. . That is, this is the cycle deterioration of the lithium secondary battery.
また、高温でのニッケル酸リチウムの貯蔵安定性を高めるためにも、その1次粒径を大きくすることが有効であることが知られている(特許文献2参照)。 Further, it is known that it is effective to increase the primary particle size in order to enhance the storage stability of lithium nickelate at high temperatures (see Patent Document 2).
ここに、大きい1次粒子を有するニッケル酸リチウムは、好ましくは、1000℃のような高温で焼成すれば得ることができるが、このような高温での焼成においては、原料リチウム塩の揮発によるリチウム欠損を起こしやすく、その空サイトへLi+とイオン半径がほぼ等しいNi2+が混入して、非化学量論組成を有する複合酸化物を与える傾向が強い。このような複合酸化物は、これを正極活物質として用いても、高い充放電特性を有するリチウム二次電池を得ることはできない。そのうえ、上述したような高温での焼成は、工業的な製造条件には適していない。 Here, the lithium nickelate having large primary particles can be obtained preferably by firing at a high temperature such as 1000 ° C. In such a high temperature firing, lithium due to volatilization of the raw lithium salt is obtained. There is a strong tendency for defects to occur, and Ni 2+ having an ionic radius approximately equal to Li + is mixed into the vacant site to give a composite oxide having a non-stoichiometric composition. Even if such a complex oxide is used as a positive electrode active material, a lithium secondary battery having high charge / discharge characteristics cannot be obtained. Moreover, baking at a high temperature as described above is not suitable for industrial production conditions.
他方、塩基性ニッケル塩のスラリーに水酸化リチウムを加えて、反応させ、得られた反応生成物を噴霧乾燥し、得られた乾燥物をプレス成形して、ニッケル酸リチウムを得る方法も知られている(特許文献2参照)。この方法によれば、上記反応生成物を高温で焼成しても、成型物の内部からの原料リチウム塩の揮発を防ぐことができるが、それでも、成型物の表面付近の原料リチウム塩は揮発する。従って、高い充放電特性を有するニッケル酸リチウムを得るには、成型品の表面積に対して十分に大きい成型物を作る必要があり、かくして、この方法も工業的に適しているとはいえない。
本発明は、リチウム二次電池の正極活物質のためのニッケル酸リチウムにおける上述した問題を解決するためになされたものであって、1次粒子の粒径が大きく、均一であると共に、そのような1次粒子の殆どが空間によってのみ囲まれており、従って、正極活物質として用いるとき、サイクル特性にすぐれるリチウム二次電池を与えるリチウム二次電池用正極活物質とその製造方法を提供することを目的とする。更に、本発明は、上述した正極活物質を含む正極を備えたリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in order to solve the above-described problem in lithium nickelate for a positive electrode active material of a lithium secondary battery, and the primary particles have a large and uniform particle size. Therefore, there is provided a positive electrode active material for a lithium secondary battery that provides a lithium secondary battery having excellent cycle characteristics when used as a positive electrode active material, and a method for producing the same. For the purpose. Furthermore, an object of this invention is to provide the lithium ion secondary battery provided with the positive electrode containing the positive electrode active material mentioned above.
本発明によれば、組成式LixNi1-y-zCoyMzO2(MはMn、Al、Zr、Si、Sr及びMgから選ばれる少なくとも1種の元素であり、x、y及びzは0.95≦x≦1.10、0.1≦y≦0.4及び0≦z≦0.1を満足する数である。)で表されるリチウム二次電池用正極活物質であって、レーザー回折式粒度分布測定装置で測定したメジアン径が2〜20μmの範囲にあり、クロスセクションポリッシャで処理した粒子断面のSEM観察による1次粒子径の平均長径が1〜10μmの範囲にあり、(上記メジアン径)/(上記粒子断面の1次粒子径の平均長径)が1.0〜3.0の範囲にあり、体積基準の累積分布の5%径がメジアン径/3以上であると共に95%径がメジアン径の3倍以下であるリチウム二次電池用正極活物質が提供される。 According to the present invention, the composition formula Li x Ni 1 -yz Co y M z O 2 (M is at least one element selected from Mn, Al, Zr, Si, Sr and Mg, and x, y and z Is a number satisfying 0.95 ≦ x ≦ 1.10, 0.1 ≦ y ≦ 0.4 and 0 ≦ z ≦ 0.1.) The median diameter measured by a laser diffraction particle size distribution measuring device is in the range of 2 to 20 μm, and the average major axis of the primary particle diameter by SEM observation of the cross section of the particle processed by the cross section polisher is in the range of 1 to 10 μm , (The median diameter) / (average major axis of the primary particle diameter of the particle cross section) is in the range of 1.0 to 3.0, and the 5% diameter of the volume-based cumulative distribution is the median diameter / 3 or more. And a positive electrode for a lithium secondary battery whose 95% diameter is not more than 3 times the median diameter An active material is provided.
更に、本発明によれば、このようなリチウム二次電池用正極活物質の製造方法が提供される。即ち、本発明によれば、第1の方法として、
(a)コバルト元素を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法が提供される。
Furthermore, according to this invention, the manufacturing method of such a positive electrode active material for lithium secondary batteries is provided. That is, according to the present invention, as the first method,
(A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) Provided is a method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is subjected to secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
本発明によれば、第2の方法として、
(a)コバルト元素と共に、Mg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含む水酸化ニッケル粒子にLi/(Co+Ni+M)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法が提供される。
According to the present invention, as the second method,
(A) Li / (Co + Ni + M) molar ratio of 1.5 to 5.0 on nickel hydroxide particles containing at least one element M selected from Mg, Mn, Sr, Si, Zr and Al together with cobalt element Mix lithium hydroxide in the range,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) Provided is a method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is subjected to secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
また、本発明によれば、第3の方法として、
(a)コバルト元素を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、余剰のリチウム元素を除去した後、
(d)その焼成物にMg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含有させ、次いで、
(e)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法が提供される。
According to the present invention, as a third method,
(A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water to remove excess lithium element,
(D) The fired product contains at least one element M selected from Mg, Mn, Sr, Si, Zr and Al,
(E) There is provided a method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is subjected to secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
本発明によるニッケル酸リチウムは、1次粒子の粒径が大きく、均一であると共に、そのような1次粒子の殆どが空間によってのみ囲まれており、従って、正極活物質として用いるとき、サイクル特性にすぐれるリチウム二次電池を与えるリチウム二次電池用正極活物質を与える。 The lithium nickelate according to the present invention has a large primary particle size and is uniform, and most of such primary particles are surrounded only by a space. Therefore, when used as a positive electrode active material, cycle characteristics are obtained. A positive electrode active material for a lithium secondary battery is provided that provides an excellent lithium secondary battery.
本発明の第1及び第2の方法によれば、コバルト元素(と他の元素M)を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、これを一次焼成した後、得られた焼成物から余剰のリチウム元素を水洗、除去し、この焼成物を二次焼成することによって、前述した組成を有すると共に、前述した粒子特性を有するリチウム二次電池用正極活物質を得ることができる。 According to the first and second methods of the present invention, nickel hydroxide particles containing cobalt element (and other element M) are mixed with water in a Li / (Co + Ni) molar ratio of 1.5 to 5.0. After lithium oxide is mixed and subjected to primary firing, excess lithium element is washed and removed from the obtained fired product, and the fired product is subjected to secondary firing, thereby having the above-described composition and the above-described particles. A positive electrode active material for a lithium secondary battery having characteristics can be obtained.
また、本発明の第3の方法によれば、コバルト元素を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、これを一次焼成し、得られた焼成物から余剰のリチウム元素を水洗、除去した後、この焼成物に他の元素Mを含有させ、これを二次焼成することによって、同様に、前述した組成を有すると共に、前述した粒子特性を有するリチウム二次電池用正極活物質を得ることができる。 According to the third method of the present invention, lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element at a Li / (Co + Ni) molar ratio in the range of 1.5 to 5.0. After the primary firing, the excess lithium element is washed and removed from the fired product, and then the fired product contains another element M, and this is subjected to secondary firing to similarly have the above-described composition. In addition, a positive electrode active material for a lithium secondary battery having the above-described particle characteristics can be obtained.
本発明によるリチウム二次電池用正極活物質は、組成式LixNi1-y-zCoyMzO2(MはMn、Al、Zr、Si、Sr及びMgから選ばれる少なくとも1種の元素であり、x、y及びzは0.95≦x≦1.10、0.1≦y≦0.4及び0≦z≦0.1を満足する数である。)で表されるリチウム二次電池用正極活物質であって、レーザー回折式粒度分布測定装置で測定したメジアン径が2〜20μmの範囲にあり、クロスセクションポリッシャで処理した粒子断面のSEM観察による1次粒子径の平均長径が1〜10μmの範囲にあり、(上記メジアン径)/(上記粒子断面の1次粒子径の平均長径)が1.0〜3.0の範囲にあり、体積基準の累積分布の5%径がメジアン径/3以上であると共に95%径がメジアン径の3倍以下である。 The positive electrode active material for a lithium secondary battery according to the present invention has a composition formula Li x Ni 1 -yz Co y M z O 2 (M is at least one element selected from Mn, Al, Zr, Si, Sr and Mg). X, y and z are numbers satisfying 0.95 ≦ x ≦ 1.10, 0.1 ≦ y ≦ 0.4 and 0 ≦ z ≦ 0.1.) A positive electrode active material for a battery, having a median diameter measured by a laser diffraction particle size distribution measuring device in a range of 2 to 20 μm, and an average major axis of primary particle diameters by SEM observation of a cross section of a particle treated with a cross section polisher. In the range of 1 to 10 μm, (the median diameter) / (average major axis of the primary particle diameter of the particle cross section) is in the range of 1.0 to 3.0, and the 5% diameter of the volume-based cumulative distribution is Median diameter / 3 or more and 95% diameter is less than 3 times the median diameter It is.
本発明において、1次粒子とは粒界若しくは空間又は粒界と空間によって囲まれた粒子をいい、2次粒子とは上記1次粒子の凝集体をいう。 In the present invention, primary particles refer to grain boundaries or spaces, or particles surrounded by grain boundaries and spaces, and secondary particles refer to aggregates of the primary particles.
本発明において、Coは、得られるリチウム二次電池用正極活物質、即ち、リチウム複合酸化物の結晶構造を安定化させ、従って、このようなリチウム複合酸化物を正極活物質とするリチウム二次電池によれば、サイクル劣化が抑制される。しかし、前記一般式(I)において、yの値が0.1よりも小さいときは、Coは結晶構造の安定化に殆ど寄与せず、他方、yの値が0.4を超えるときは、得られるリチウム二次電池における充放電容量が低下する。また、Coは高価であるので、不必要に多く含有させることは、経済的にも不利である。従って、本発明によれば、前記一般式(I)において、yの値は0.1〜0.4の範囲が好ましい。 In the present invention, Co stabilizes the crystal structure of the obtained positive electrode active material for a lithium secondary battery, that is, a lithium composite oxide, and therefore, the lithium secondary oxide using such a lithium composite oxide as a positive electrode active material. According to the battery, cycle deterioration is suppressed. However, in the general formula (I), when the value of y is smaller than 0.1, Co hardly contributes to the stabilization of the crystal structure, and on the other hand, when the value of y exceeds 0.4, The charge / discharge capacity in the obtained lithium secondary battery is reduced. Moreover, since Co is expensive, it is economically disadvantageous to contain it unnecessarily in large amounts. Therefore, according to the present invention, in the general formula (I), the value of y is preferably in the range of 0.1 to 0.4.
更に、本発明によるリチウム二次電池用正極活物質、即ち、リチウム複合酸化物は、上記Coに加えて、Mg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含有していてもよい。 Furthermore, the positive electrode active material for a lithium secondary battery according to the present invention, that is, the lithium composite oxide contains at least one element M selected from Mg, Mn, Sr, Si, Zr and Al in addition to the above Co. You may do it.
上記元素Mはいずれも、得られるリチウム複合酸化物の結晶構造を安定化させるので、このようなリチウム複合酸化物を正極活物質とするリチウム二次電池によれば、サイクル劣化が抑制される。しかし、得られるリチウム複合酸化物における元素Mの量が多すぎるときは、得られる電池の充放電容量が著しく低下し、又は大過剰の水酸化リチウムをフラックスとして用いると共に、焼成を二度にわたって行なう本発明の方法によっても、粒子の成長が阻害されることから、前記一般式(I)において、zの値は0.1以下であることが好ましい。 Since all of the elements M stabilize the crystal structure of the obtained lithium composite oxide, cycle deterioration is suppressed according to the lithium secondary battery using such a lithium composite oxide as a positive electrode active material. However, when the amount of the element M in the obtained lithium composite oxide is too large, the charge / discharge capacity of the obtained battery is remarkably reduced, or a large excess of lithium hydroxide is used as a flux and firing is performed twice. Since the growth of particles is also inhibited by the method of the present invention, the value of z in the general formula (I) is preferably 0.1 or less.
本発明によれば、上述したようなリチウム二次電池用正極活物質は、第1の方法として、
(a)コバルト元素を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することによって得ることができる。
According to the present invention, the positive electrode active material for a lithium secondary battery as described above is used as the first method,
(A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) The fired product can be obtained by secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
前述したようなリチウム二次電池用正極活物質は、また、第2の方法として、
(a)コバルト元素と共に、Mg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含む水酸化ニッケル粒子にLi/(Co+Ni+M)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することによって得ることができる。
The positive electrode active material for a lithium secondary battery as described above is also a second method,
(A) Li / (Co + Ni + M) molar ratio of 1.5 to 5.0 on nickel hydroxide particles containing at least one element M selected from Mg, Mn, Sr, Si, Zr and Al together with cobalt element Mix lithium hydroxide in the range,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) The fired product can be obtained by secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
更に、前述したようなリチウム二次電池用正極活物質は、第3の方法として、
(a)コバルト元素を含む水酸化ニッケル粒子にLi/(Co+Ni)モル比が1.5〜5.0の範囲にて水酸化リチウムを混合し、
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、余剰のリチウム元素を除去した後、
(d)その焼成物にMg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含有させ、次いで、
(e)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することによって得ることができる。
Furthermore, the positive electrode active material for a lithium secondary battery as described above is a third method,
(A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water to remove excess lithium element,
(D) The fired product contains at least one element M selected from Mg, Mn, Sr, Si, Zr and Al,
(E) The fired product can be obtained by secondary firing at 600 to 900 ° C. in an oxidizing atmosphere.
本発明によれば、上述したように、第1、第2及び第3のいずれの方法においても、工程(b)において、コバルト元素(と元素M)を含む水酸化ニッケル粒子とこれに対して大過剰の水酸化リチウムとの混合物を焼成する。以下、第1、第2及び第3の方法において、この工程(b)における焼成を一次焼成といい、得られる焼成物を一次焼成物ということがある。また、この一次焼成を行なう温度を一次焼成温度ということがある。 According to the present invention, as described above, in any of the first, second and third methods, in step (b), nickel hydroxide particles containing cobalt element (and element M) and A mixture with a large excess of lithium hydroxide is calcined. Hereinafter, in the first, second, and third methods, the firing in this step (b) may be referred to as primary firing, and the obtained fired product may be referred to as a primary fired product. The temperature at which the primary firing is performed may be referred to as a primary firing temperature.
次に、本発明によれば、上記一次焼成を行なった後、第1及び第2の方法においては、工程(d)において、また、第3の方法においては、工程(e)において、2回目の焼成を行なう。以下、第1及び第2の方法における工程(d)での2回目の焼成と第3の方法における工程(e)での2回目の焼成をそれぞれ二次焼成といい、得られる焼成物を二次焼成物ということがある。また、このように、二次焼成を行なう温度を二次焼成温度ということがある。 Next, according to the present invention, after the primary firing, the second time in the step (d) in the first and second methods and the step (e) in the third method. Is fired. Hereinafter, the second firing in the step (d) in the first and second methods and the second firing in the step (e) in the third method are referred to as secondary firing, and the obtained fired product is divided into two. Sometimes referred to as the next fired product. In addition, the temperature at which the secondary firing is performed may be referred to as a secondary firing temperature.
更に、本発明によれば、第1、第2及び第3のいずれの方法においても、工程(a)として、コバルト元素(と元素M)を含む水酸化ニッケル粒子にLi/(Co+Ni(+M))モル比が1.5〜5.0の範囲にて水酸化リチウムを加えて、乾式混合し、得られた混合物を一次焼成する。本発明によれば、このように、工程(a)で用いる水酸化リチウムのうち、Li/(Co+Ni(+M))モル比がほぼ1、好ましくは、0.95〜1.05の範囲の水酸化リチウムは、コバルト元素(と元素M)を含む水酸化ニッケル粒子と反応させて、リチウム複合酸化物を生成させるために用いられる。 Furthermore, according to the present invention, in any of the first, second and third methods, as step (a), nickel hydroxide particles containing cobalt element (and element M) are added to Li / (Co + Ni (+ M). ) Lithium hydroxide is added at a molar ratio in the range of 1.5 to 5.0, dry mixed, and the resulting mixture is primarily fired. According to the present invention, the lithium hydroxide used in step (a) thus has a Li / (Co + Ni (+ M)) molar ratio of approximately 1, preferably 0.95 to 1.05. Lithium oxide is used to react with nickel hydroxide particles containing cobalt element (and element M) to produce a lithium composite oxide.
本発明における重要な特徴の第1は、工程(a)において、コバルト元素(と元素M)を含む水酸化ニッケル粒子に対して大過剰の水酸化リチウムを用いる点にあり、このように大過剰に用いる水酸化リチウムのうち、コバルト元素(と元素M)を含む水酸化ニッケル粒子との反応に関与しない余剰の水酸化リチウムは、コバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムの乾式混合物を一次焼成する間、その溶融物がフラックスとして機能する。 The first important feature of the present invention is that a large excess of lithium hydroxide is used in the step (a) with respect to nickel hydroxide particles containing cobalt element (and element M). Among the lithium hydroxides used in the process, surplus lithium hydroxide that does not participate in the reaction with nickel hydroxide particles containing cobalt element (and element M) is composed of nickel hydroxide particles containing cobalt element (and element M) and hydroxide. During the primary firing of the lithium dry mixture, the melt functions as a flux.
このように、本発明によれば、コバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムの乾式混合物を一次焼成する間、生成する反応生成物はフラックスとしての水酸化リチウムの溶融物に覆われているので、一次焼成温度が高温である場合であっても、原料リチウムの揮散を防ぐことができる。 Thus, according to the present invention, during the primary firing of a dry mixture of nickel hydroxide particles containing cobalt element (and element M) and lithium hydroxide, the reaction product produced is the melting of lithium hydroxide as a flux. Since it is covered with an object, volatilization of the raw material lithium can be prevented even when the primary firing temperature is high.
コバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムとからリチウム複合酸化物が生成する反応の詳細は必ずしも明らかではないが、本発明におけるように、フラックスの共存下にコバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムとを一次焼成するとき、反応によって生じたリチウム複合酸化物の小さい1次粒子が相互にフラックスを介して接触することによって、相互に融合し、粒子間に粒界をもたない単一の1次粒子を形成し、これが繰り返して起こることによって、大きい1次粒子に成長すると考えられる。 The details of the reaction in which a lithium composite oxide is produced from nickel hydroxide particles containing cobalt element (and element M) and lithium hydroxide are not necessarily clear, but in the present invention, cobalt element ( When nickel hydroxide particles containing element M) and lithium hydroxide are primarily fired, the small primary particles of the lithium composite oxide produced by the reaction are brought into contact with each other via a flux, thereby fusing with each other. It is considered that a single primary particle having no grain boundary is formed between the particles, and this is repeatedly generated to grow into a large primary particle.
即ち、本発明によれば、フラックスは、反応によって生じたリチウム複合酸化物の小さい1次粒子が融合して、より大きい1次粒子を形成することを促進する作用があるとみられる。このように、小さい1次粒子が相互に融合するには、それが相互にある程度接近することが必要であるが、フラックスの量が余りに多いときは、粒子間の平均距離が広がり、粒子の成長が阻害される。反対に、フラックスの量が余りに少ないときは、フラックスとしての上記作用が十分ではなく、その結果、小さい1次粒子が融合、成長しないので、粒界をもつ小さい1次粒子が多数生成し、凝集し、かくして、多数の小さい1次粒子の凝集体である2次粒子が多く生成するとみられる。 That is, according to the present invention, the flux appears to have an effect of promoting the formation of larger primary particles by merging the small primary particles of the lithium composite oxide generated by the reaction. Thus, in order for small primary particles to fuse with each other, they need to be close to each other, but when the amount of flux is too high, the average distance between particles increases and particle growth Is inhibited. On the other hand, when the amount of the flux is too small, the above action as a flux is not sufficient, and as a result, small primary particles do not fuse and grow, and a large number of small primary particles having grain boundaries are generated and agglomerated. Thus, it appears that many secondary particles, which are aggregates of many small primary particles, are generated.
更に、反応によって生じたリチウム複合酸化物の小さい1次粒子が相互に融合するには、ある程度の温度と時間が必要である。この温度と時間の間には相補的な関係がある。即ち、温度が比較的高い場合、小さい1次粒子が相互に速やかに融合するので、その分、短い時間で粒子は融合、成長するとみられ、反対に、温度が比較的低い場合、粒子相互の融合が遅く、その分、粒子の融合、成長に時間を要するとみられる。 Furthermore, a certain amount of temperature and time are required for the small primary particles of the lithium composite oxide produced by the reaction to fuse with each other. There is a complementary relationship between this temperature and time. That is, when the temperature is relatively high, the small primary particles are rapidly fused with each other, and accordingly, the particles are expected to fuse and grow in a short time. On the other hand, when the temperature is relatively low, The fusion is slow, and it will take more time for the particles to fuse and grow.
従って、本発明の方法においては、工程(a)として、コバルト元素(と元素M)を含む水酸化ニッケル粒子にLi/(Co+Ni(+M))モル比が1.5〜5.0の範囲にて水酸化リチウムを加えることとしたものである。 Therefore, in the method of the present invention, as step (a), the nickel / hydroxide particles containing cobalt element (and element M) have a Li / (Co + Ni (+ M)) molar ratio in the range of 1.5 to 5.0. Therefore, lithium hydroxide is added.
次に、本発明によれば、工程(a)において得られたコバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムとの混合物を酸化性雰囲気下において、730〜950℃、好ましくは、750〜900℃の温度で一次焼成して、一次焼成物、即ち、余剰のリチウム元素を含むリチウム複合酸化物を得る。 Next, according to the present invention, a mixture of nickel hydroxide particles containing cobalt element (and element M) obtained in step (a) and lithium hydroxide is 730 to 950 ° C. in an oxidizing atmosphere, preferably Is subjected to primary firing at a temperature of 750 to 900 ° C. to obtain a primary fired product, that is, a lithium composite oxide containing excess lithium element.
一次焼成温度が余りに低いときは、1次粒子が十分に融合、成長せず、従って、得られる正極活物質をリチウム二次電池に用いても、電池のサイクル劣化を十分に抑制することができない。しかし、一次焼成温度が余りに高くても、例えば、950℃を超えるときは、水酸化リチウムが分解し、フラックスとして機能しない。従って、1次粒子が融合、成長しないので、粒界をもつ小さい1次粒子が多数生成し、従って、得られる正極活物質は、リチウム二次電池に用いても、内部抵抗が大きく、充放電特性に劣ることとなる。 When the primary firing temperature is too low, the primary particles are not sufficiently fused and grown. Therefore, even when the obtained positive electrode active material is used for a lithium secondary battery, cycle deterioration of the battery cannot be sufficiently suppressed. . However, even if the primary firing temperature is too high, for example, when it exceeds 950 ° C., lithium hydroxide is decomposed and does not function as a flux. Therefore, since the primary particles do not fuse and grow, a large number of small primary particles having grain boundaries are formed. Therefore, even when the obtained positive electrode active material is used in a lithium secondary battery, the internal resistance is large, and charge / discharge is performed. The characteristics will be inferior.
従って、本発明においては、一次焼成時間は、一次焼成温度にもよるが、例えば、焼成温度を高温とするときは、上記混合物をその焼成温度まで加熱する間に混合物には熱エネルギーが十分に蓄積されるので、混合物を予め定めた焼成温度まで加熱した後は、その温度に短時間保持することによって、混合物を十分に焼成することができる。従って、一次焼成時間は、通常、0.1〜120時間にわたってよいが、好ましくは、0.5〜96時間の範囲である。 Accordingly, in the present invention, the primary firing time depends on the primary firing temperature. For example, when the firing temperature is set to a high temperature, the mixture has sufficient heat energy while the mixture is heated to the firing temperature. Since they are accumulated, after the mixture is heated to a predetermined firing temperature, the mixture can be sufficiently fired by maintaining the temperature for a short time. Accordingly, the primary firing time may usually range from 0.1 to 120 hours, but is preferably in the range of 0.5 to 96 hours.
本発明において、一次焼成は、好ましくは、酸素雰囲気下で行なわれるが、必要に応じて、空気中で行なってもよい。 In the present invention, the primary firing is preferably performed in an oxygen atmosphere, but may be performed in air if necessary.
また、本発明によれば、重要な特徴の第2として、最終的に酸化性雰囲気下において、600〜900℃、好ましくは、700〜800℃の温度で二次焼成して、目的とするリチウム複合酸化物を得る。 Further, according to the present invention, as a second important feature, the target lithium is finally baked at a temperature of 600 to 900 ° C., preferably 700 to 800 ° C. in an oxidizing atmosphere. A composite oxide is obtained.
二次焼成においても、焼成温度が余りに低いときは、後述するように、1次粒子の表面に偏在しているリチウム元素を1次粒子の内部に十分に拡散させることができず、従って、得られる正極活物質を用いても、充放電特性にすぐれるリチウム二次電池を得ることができない。他方、二次焼成温度が余りに高いときは、フラックスの不存在下に1次粒子が凝集して、その間に粒界を形成するので、得られる正極活物質を用いても、サイクル特性にすぐれるリチウム二次電池を得ることができない。 Even in the secondary firing, when the firing temperature is too low, the lithium element unevenly distributed on the surface of the primary particles cannot be sufficiently diffused into the primary particles as described later. Even if the positive electrode active material obtained is used, a lithium secondary battery having excellent charge / discharge characteristics cannot be obtained. On the other hand, when the secondary firing temperature is too high, primary particles agglomerate in the absence of flux and form grain boundaries between them, so that even with the obtained positive electrode active material, cycle characteristics are excellent. A lithium secondary battery cannot be obtained.
同様に、二次焼成時間が余りに短いときも、1次粒子の表面に偏在しているリチウム元素を1次粒子の内部に十分に拡散させることができず、他方、二次焼成時間が余りに長いときは、1次粒子が凝集して、その間に粒界を形成し、いずれも、二次焼成温度が余りに低く、又は高いときと同様に得られる電池に有害な影響を与える。 Similarly, when the secondary firing time is too short, the lithium element unevenly distributed on the surface of the primary particles cannot be sufficiently diffused into the primary particles, while the secondary firing time is too long. Sometimes primary particles agglomerate and form grain boundaries between them, both of which have a detrimental effect on the resulting battery as well as when the secondary firing temperature is too low or high.
従って、本発明においては、二次焼成時間は、二次焼成温度にもよるが、通常、0.1 〜15時間の範囲であり、好ましくは、0.5〜10時間の範囲である。また、本発明において、二次焼成は、好ましくは、酸素雰囲気下で行なわれるが、必要に応じて、空気中で行なってもよい。 Accordingly, in the present invention, the secondary firing time is usually in the range of 0.1 to 15 hours, and preferably in the range of 0.5 to 10 hours, although it depends on the secondary firing temperature. In the present invention, the secondary firing is preferably performed in an oxygen atmosphere, but may be performed in air as necessary.
本発明においては、先の工程にて得られた焼成物を二次焼成するに際して、焼成物に水酸化リチウムを加えて、最終的に得られる焼成物、即ち、正極活物質におけるリチウム量を適宜に補正してもよい。 In the present invention, when the fired product obtained in the previous step is subjected to secondary firing, lithium hydroxide is added to the fired product, and the final obtained fired product, that is, the amount of lithium in the positive electrode active material is appropriately set. You may correct to.
本発明の方法においては、上述したように、コバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムの混合物を一次焼成した後、得られた焼成物を更に二次焼成することが必須である。一次焼成のみでは、得られる正極活物質を用いても、サイクル特性にすぐれるリチウム二次電池を得ることができない。即ち、一次焼成の後、得られた焼成物を水洗して、焼成物から余剰のリチウムを除去して、焼成物に化学量論組成に近い組成を有せしめても、リチウム元素が1次粒子の内部又は表面に偏在しているために、そのような正極活物質を用いても、サイクル特性にすぐれるリチウム二次電池を得ることができない。しかし、本発明によれば、一次焼成の後、更に、二次焼成を行なうので、1次粒子の内部又は表面に偏在しているリチウム元素を一次粒子の内部に均一に拡散させることができ、かくして、1次粒子の粒径が大きく、均一であると共に、そのような1次粒子の殆どが空間によってのみ囲まれている正極活物質を得ることができるとみられる。 In the method of the present invention, as described above, after the primary firing of the mixture of nickel hydroxide particles containing cobalt element (and element M) and lithium hydroxide, the obtained fired product may be further subjected to secondary firing. It is essential. Only by primary firing, a lithium secondary battery having excellent cycle characteristics cannot be obtained even if the obtained positive electrode active material is used. That is, even after the primary firing, the obtained fired product is washed with water to remove excess lithium from the fired product, and the fired product has a composition close to the stoichiometric composition. Therefore, even if such a positive electrode active material is used, a lithium secondary battery having excellent cycle characteristics cannot be obtained. However, according to the present invention, secondary firing is performed after the primary firing, so that lithium elements unevenly distributed in the primary particles or on the surface can be uniformly diffused into the primary particles, Thus, it seems that it is possible to obtain a positive electrode active material in which the primary particles have a large and uniform particle size, and most of such primary particles are surrounded only by spaces.
本発明による方法においては、通常、一次焼成の温度に比べて、これに引き続く二次焼成の温度は低くてよく、また、一次焼成の時間に比べて、これに引き続く二次焼成の時間は短くてよい。二次焼成においては、一次焼成において既にリチウム複合酸化物の基本的な構造が構成されていることに加えて、1次粒子の内部又は表面でリチウム元素が拡散するための熱エネルギーと時間があればよいからであるとみられる。 In the method according to the present invention, the temperature of the subsequent secondary firing may be lower than the temperature of the primary firing, and the time of the subsequent secondary firing is shorter than the time of the primary firing. It's okay. In the secondary firing, in addition to the basic structure of the lithium composite oxide already formed in the primary firing, there should be thermal energy and time for the lithium element to diffuse inside or on the surface of the primary particles. It seems to be because it should be.
以下に、本発明による第1、第2及び第3の方法について説明する。 Hereinafter, the first, second and third methods according to the present invention will be described.
本発明によれば、第1の方法において、上記コバルト元素を含む水酸化ニッケル粒子は、好ましくは、例えば、硫酸ニッケルと硫酸コバルトを含む水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を加えて得られる共沈水酸化物であるが、しかし、例えば、水酸化コバルトと水酸化ニッケルの混合物であってもよい。 According to the present invention, in the first method, the nickel hydroxide particles containing cobalt element are preferably obtained by adding a sodium hydroxide aqueous solution and an aqueous ammonia solution to an aqueous solution containing nickel sulfate and cobalt sulfate, for example. For example, it may be a mixture of cobalt hydroxide and nickel hydroxide.
本発明の第1の方法においては、工程(a)で得られた混合物を工程(b)において酸化性雰囲気下に一次焼成して、余剰のリチウム元素を含むリチウム複合酸化物、即ち、一次焼成物を得た後、工程(c)において上記一次焼成物を水洗して、余剰のリチウム元素を除去し、次いで、工程(d)において、この焼成物を酸化性雰囲気下に二次焼成し、かくして、目的とするコバルト元素を含むリチウム複合酸化物を得ることができる。 In the first method of the present invention, the mixture obtained in step (a) is first calcined in an oxidizing atmosphere in step (b), and lithium composite oxide containing excess lithium element, that is, primary calcining After obtaining the product, the primary fired product is washed with water in step (c) to remove excess lithium element, and then in step (d), the fired product is secondarily fired in an oxidizing atmosphere. Thus, the target lithium composite oxide containing cobalt element can be obtained.
本発明によれば、コバルト元素に加えて、Mg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含むリチウム複合酸化物も、上述したと同様にして、第2の方法によって得ることができる。 According to the present invention, in addition to the cobalt element, the lithium composite oxide containing at least one element M selected from Mg, Mn, Sr, Si, Zr and Al is also produced in the same manner as described above. It can be obtained by the method.
第2の方法においても、コバルト元素と元素Mを含む水酸化ニッケル粒子は、好ましくは、例えば、ニッケルとコバルトと元素Mの共沈水酸化物であるが、しかし、例えば、ニッケルとコバルトの共沈水酸化物と元素Mの水酸化物、硫酸塩、炭酸塩、硝酸塩、塩化物、オキシ塩化物(特に、元素Mがジルコニウムである場合)、ケイ酸ナトリウム(特に、元素Mがケイ素である場合)、元素Mがアルミニウムの場合はアルミン酸ナトリウムの混合物であってもよく、また、水酸化コバルトと水酸化ニッケルと元素Mの水酸化物、硫酸塩、炭酸塩、硝酸塩、塩化物、オキシ塩化物(特に、元素Mがジルコニウムである場合)、ケイ酸ナトリウム(特に、元素Mがケイ素である場合)、元素Mがアルミニウムの場合はアルミン酸ナトリウムの混合物であってもよい。このようなニッケルとコバルトと元素Mの共沈水酸化物は、ニッケル、コバルト及び元素Mの水酸化物の生成条件を考慮して、ニッケルとコバルトと元素Mのそれぞれの水溶性塩を含む水溶液に適宜のアルカリを加えて反応させることによって得ることができる。 Also in the second method, the nickel hydroxide particles containing the cobalt element and the element M are preferably, for example, a coprecipitated hydroxide of nickel, cobalt, and the element M. However, for example, the coprecipitated water of nickel and cobalt is used. Oxides and hydroxides of element M, sulfates, carbonates, nitrates, chlorides, oxychlorides (especially when element M is zirconium), sodium silicates (especially when element M is silicon) When element M is aluminum, it may be a mixture of sodium aluminate, and hydroxide, sulfate, carbonate, nitrate, chloride, oxychloride of cobalt hydroxide, nickel hydroxide and element M (Especially when element M is zirconium), sodium silicate (especially when element M is silicon), and sodium aluminate when element M is aluminum It may be. Such a coprecipitated hydroxide of nickel, cobalt, and element M is converted into an aqueous solution containing water-soluble salts of nickel, cobalt, and element M in consideration of the conditions for forming the hydroxides of nickel, cobalt, and element M. It can be obtained by adding an appropriate alkali to react.
以下、第2の方法においても、前述した第1の方法と同様にして、目的とするリチウム複合酸化物を得ることができる。即ち、第2の方法においては、工程(a)として、コバルトと元素Mを含む水酸化ニッケル粒子に大過剰の水酸化リチウムを乾式混合し、これを酸化性雰囲気下で焼成する。 Hereinafter, also in the second method, the target lithium composite oxide can be obtained in the same manner as in the first method described above. That is, in the second method, as the step (a), nickel hydroxide particles containing cobalt and the element M are dry-mixed with a large excess of lithium hydroxide and fired in an oxidizing atmosphere.
次いで、第2の方法においては、工程(b)において、上記工程(a)で得られた混合物を酸化性雰囲気下に二次焼成して、余剰のリチウム元素を含むリチウム複合酸化物を得、次いで、工程(c)において、得られた焼成物を水洗して、余剰のリチウム元素を除去した後、工程(d)において、この焼成物を酸化性雰囲気下に二次焼成し、かくして、目的とするリチウム複合酸化物を得ることができる。 Next, in the second method, in the step (b), the mixture obtained in the step (a) is secondarily fired in an oxidizing atmosphere to obtain a lithium composite oxide containing excess lithium element, Next, in step (c), the obtained fired product is washed with water to remove excess lithium element, and then in step (d), this fired product is secondarily fired in an oxidizing atmosphere, and thus the object is obtained. A lithium composite oxide can be obtained.
このような第2の方法は、例えば、ニッケルとコバルト元素と共に、マグネシウム、マンガン、ストロンチウム、ジルコニウム又はケイ素元素を含むリチウム複合酸化物を得るために好適である。 Such a second method is suitable for obtaining a lithium composite oxide containing, for example, magnesium, manganese, strontium, zirconium or silicon elements together with nickel and cobalt elements.
上述した第1及び第2の方法はいずれも、コバルト元素(及び元素M)を含む水酸化ニッケル粒子を大過剰の水酸化リチウムと共に一次焼成し、得られた一次焼成物から余剰のリチウム元素を水洗、除去した後、更に、二次焼成して、目的とするリチウム複合酸化物を得る。 In both the first and second methods described above, nickel hydroxide particles containing cobalt element (and element M) are primarily fired together with a large excess of lithium hydroxide, and excess lithium element is removed from the resulting primary fired product. After washing and removing with water, secondary firing is performed to obtain the target lithium composite oxide.
しかし、本発明によれば、第3の方法に従って、コバルト元素を含む水酸化ニッケル粒子を先ず、大過剰の水酸化リチウムと共に一次焼成し、得られた一次焼成物を水洗して、余剰のリチウム元素を除去した後、これに上記元素Mを含有させ、これに更に二次焼成して、目的とするリチウム複合酸化物を得ることもできる。 However, according to the present invention, according to the third method, nickel hydroxide particles containing cobalt element are first calcined together with a large excess of lithium hydroxide, and the obtained primary calcined product is washed with water to obtain surplus lithium. After removing the element, the element M can be contained therein, and further subjected to secondary firing to obtain the target lithium composite oxide.
即ち、この第3の方法においても、工程(a)において、コバルト元素を含む水酸化ニッケル粒子に大過剰の水酸化リチウムを乾式混合し、工程(b)において、上記混合物を酸化性雰囲気下に一次焼成して、余剰のリチウム元素を含む一次焼成物を得、次いで、工程(c)において、この一次焼成物を水洗して、余剰のリチウム元素を除去した後、工程(d)において、この焼成物にMg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含有させ、最後に、工程(e)において、これを最終的に酸化性雰囲気下に二次焼成することによって、目的とするリチウム二次電池用正極活物質を得ることができる。 That is, also in this third method, in step (a), a large excess of lithium hydroxide is dry-mixed with nickel hydroxide particles containing cobalt element, and in step (b), the mixture is placed in an oxidizing atmosphere. After primary firing, a primary fired product containing excess lithium element is obtained. Then, in step (c), the primary fired product is washed with water to remove excess lithium element, and then in step (d), The fired product contains at least one element M selected from Mg, Mn, Sr, Si, Zr and Al. Finally, in step (e), this is finally subjected to secondary firing in an oxidizing atmosphere. Thereby, the target positive electrode active material for lithium secondary batteries can be obtained.
この第3の方法は、例えば、ニッケルとコバルト元素と共に、例えば、アルミニウム元素を含むリチウム複合酸化物の製造に好適に用いられる。例えば、コバルト元素を含む水酸化ニッケル粒子を大過剰の水酸化リチウムと共に一次焼成し、得られた一次焼成物を水洗して、余剰のリチウム化合物を除去した後、この焼成物をスラリーとし、これにアルミン酸ナトリウムを加え、スラリーに酸を加えて、pHを6〜7とし、上記焼成物にアルミニウム水酸化物を付着させ、この焼成物を二次焼成すれば、コバルト元素と共にアルミニウム元素を含むリチウム複合酸化物を得ることができる。 This third method is suitably used for producing a lithium composite oxide containing, for example, an aluminum element together with nickel and cobalt elements. For example, nickel hydroxide particles containing cobalt element are primarily fired together with a large excess of lithium hydroxide, and the resulting primary fired product is washed with water to remove excess lithium compounds, and then the fired product is used as a slurry. If sodium aluminate is added to the slurry, an acid is added to the slurry to adjust the pH to 6 to 7, aluminum hydroxide is adhered to the fired product, and the fired product is subjected to secondary firing to include aluminum element together with cobalt element. A lithium composite oxide can be obtained.
このように、本発明の方法によれば、コバルト元素(と元素M)を含む水酸化ニッケル粒子を大過剰の水酸化リチウムと共に用いて、水酸化リチウムをフラックスとして機能させつつ、コバルト元素(と元素M)を含む水酸化ニッケル粒子と水酸化リチウムとの混合物を一次焼成することによって、リチウム複合酸化物を生成させるときに、900℃のような高温での焼成においても、原料リチウムの揮発を防ぐことができ、更に、先の工程にて得られた焼成物を最終的に二次焼成することによって、所期の組成を有すると共に、所期の粒子特性を有するリチウム二次電池用正極活物質を得ることができる。 As described above, according to the method of the present invention, nickel hydroxide particles containing cobalt element (and element M) are used together with a large excess of lithium hydroxide so that lithium hydroxide functions as a flux while cobalt element (and When a lithium composite oxide is produced by primary firing of a mixture of nickel hydroxide particles containing element M) and lithium hydroxide, the volatilization of the raw material lithium is prevented even in firing at a high temperature such as 900 ° C. Furthermore, by finally subjecting the fired product obtained in the previous step to secondary firing, the positive electrode active for lithium secondary batteries having the desired composition and the desired particle characteristics can be obtained. A substance can be obtained.
このようにして、本発明の方法によって得られる本発明によるリチウム二次電池用正極活物質としてのリチウム複合酸化物は、組成式LixNi1-y-zCoyMzO2(MはMn、Al、Zr、Si、Sr及びMgから選ばれる少なくとも1種の元素であり、x、y及びzは0.95≦x≦1.10、0.1≦y≦0.4及び0≦z≦0.1を満足する数である。)を有するリチウム複合酸化物であって、レーザー回折式粒度分布測定装置で測定したメジアン径が2〜20μmの範囲にあり、クロスセクションポリッシャで処理した粒子断面(以下、CP処理断面という。)のSEM観察による1次粒子径の平均長径が1〜10μmの範囲にあり、(上記メジアン径)/(上記粒子断面の1次粒子径の平均長径)が1.0〜3.0の範囲にあり、体積基準の累積分布の5%径がメジアン径/3以上であると共に95%径がメジアン径の3倍以下であるという粒度特性を有する。 Thus, the lithium composite oxide as the positive electrode active material for a lithium secondary battery according to the present invention obtained by the method of the present invention has a composition formula Li x Ni 1 -yz Co y M z O 2 (M is Mn, It is at least one element selected from Al, Zr, Si, Sr and Mg, and x, y and z are 0.95 ≦ x ≦ 1.10, 0.1 ≦ y ≦ 0.4 and 0 ≦ z ≦. And a cross section of a particle treated with a cross section polisher, having a median diameter measured by a laser diffraction particle size distribution measuring device in the range of 2 to 20 μm. The average major axis of the primary particle diameter by SEM observation (hereinafter referred to as “CP treated section”) is in the range of 1 to 10 μm, and (the median diameter) / (the average major axis of the primary particle diameter of the particle section) is 1. In the range of .0 to 3.0, The 5% diameter of the volume-based cumulative distribution has a median diameter / 3 or more, and the 95% diameter has a particle size characteristic that is 3 times or less the median diameter.
一般に、リチウム二次電池のサイクル特性を高めるには、正極活物質を構成する一次粒子の粒径を大きくすることが有効であるが、正極活物質中に余りに大きい粒子が存在するときは、リチウム二次電池において、セパレータを突き破って、短絡を引き起こすおそれがあり、他方、余りに小さい一次粒子の存在は、サイクル特性の劣化を引き起こす。そこで、本発明においては、正極活物質のメジアン径を2〜20μmの範囲とする。 In general, in order to improve the cycle characteristics of a lithium secondary battery, it is effective to increase the particle size of the primary particles constituting the positive electrode active material, but if too large particles are present in the positive electrode active material, In a secondary battery, there is a possibility of breaking through the separator and causing a short circuit. On the other hand, the presence of too small primary particles causes deterioration of cycle characteristics. Therefore, in the present invention, the median diameter of the positive electrode active material is set in the range of 2 to 20 μm.
本発明において、得られたリチウム複合酸化物の1次粒子の大きさとして、1次粒子のCP処理断面のSEM観察によって1次粒子径を測定する理由は、従来、知られている方法によってリチウムニッケル複合酸化物を製造した場合、その2次粒子が大きい1次粒子からなるときであっても、その2次粒子のCP処理断面のSEM像の観察によれば、2次粒子の内部に比較的小さい1次粒子が存在して、そのような1次粒子径の平均長径が1μm以下であることもあって、このような場合、そのような小さい1次粒子はサイクル劣化の原因になるからである。 In the present invention, as the primary particle size of the obtained lithium composite oxide, the primary particle size is measured by SEM observation of the CP-treated cross section of the primary particle. When a nickel composite oxide is produced, even when the secondary particles are composed of large primary particles, it is compared with the inside of the secondary particles according to the SEM image of the CP-treated cross section of the secondary particles. Small primary particles exist, and the average major axis of such primary particles has a size of 1 μm or less. In such a case, such small primary particles cause cycle deterioration. It is.
そこで、本発明においては、リチウム複合酸化物のCP処理断面のSEM観察による1次粒子径の平均長径が1〜10μm、好ましくは、1.5〜8μmの範囲にあることとしたものである。 Therefore, in the present invention, the average major axis of the primary particle diameter by SEM observation of the CP-treated section of the lithium composite oxide is in the range of 1 to 10 μm, preferably 1.5 to 8 μm.
そして、2次粒子を形成する1次粒子の数が多いほど、(メジアン径)/(粒子断面の1次粒子径の平均長径)の値は大きくなり、3.0を超えることなる。これに対して、本発明によれば、(メジアン径)/(粒子断面の1次粒子径の平均長径)の値が1.0〜3.0の範囲にあり、かくして、本発明によるリチウム複合酸化物は、1次粒子の粒径が大きく、均一であると共に、そのような1次粒子の殆どが空間によってのみ囲まれており、従って、正極活物質として用いるとき、サイクル特性にすぐれるリチウム二次電池を与える。勿論、本発明の方法による正極活物質にも、粒界又はこれと空間によって囲まれた1次粒子も存在するが、その割合は小さい。 As the number of primary particles forming the secondary particles increases, the value of (median diameter) / (average major axis of primary particle diameter of particle cross section) increases and exceeds 3.0. On the other hand, according to the present invention, the value of (median diameter) / (average major diameter of primary particle diameter of particle cross section) is in the range of 1.0 to 3.0, and thus the lithium composite according to the present invention. The oxide has a large primary particle size and is uniform, and most of such primary particles are surrounded only by a space. Therefore, when used as a positive electrode active material, lithium has excellent cycle characteristics. Give a secondary battery. Of course, in the positive electrode active material according to the method of the present invention, there are also primary particles surrounded by grain boundaries or spaces, but the ratio is small.
本発明によるリチウム二次電池は、上述した正極活物質を含む正極を備えてなるものである。例えば、上述した正極活物質を導電剤、結着剤、充填剤等と混合し、混練して、合剤とし、これを用いて正極を形成して、電池を製作する。より詳細には、例えば、上述した正極活物質を合剤とし、これを、例えば、ステンレスメッシュからなる正極集電体に塗布、圧着し、減圧下に加熱乾燥して、正極とする。しかし、必要に応じて、上記合剤を円板状等、適宜の形状に加圧成形し、必要に応じて、真空下に熱処理して、正極としてもよい。このようにして形成した正極をその他の電池要素と組み合わせて、リチウム二次電池を構成する。 The lithium secondary battery according to the present invention comprises a positive electrode containing the positive electrode active material described above. For example, the above-described positive electrode active material is mixed with a conductive agent, a binder, a filler, and the like, kneaded to form a mixture, and a positive electrode is formed using the mixture to manufacture a battery. More specifically, for example, the positive electrode active material described above is used as a mixture, and this is applied to a positive electrode current collector made of, for example, a stainless mesh, pressure-bonded, and heated and dried under reduced pressure to obtain a positive electrode. However, if necessary, the mixture may be pressure-molded into an appropriate shape such as a disk, and heat treated under vacuum as necessary to form a positive electrode. The positive electrode thus formed is combined with other battery elements to constitute a lithium secondary battery.
本発明によるリチウム二次電池は、上述したような正極活物質を含む正極を備えておればよく、その他の構成は、従来、知られているリチウム二次電池と同じであってよい。例えば、上述した正極活物質を導電剤、結着剤、充填剤等と混合し、混練して、合剤とし、これを用いて正極を形成して、電池を製作する。より詳細には、例えば、上述した正極活物質を合剤とし、これを、例えば、ステンレスメッシュからなる正極集電体に塗布、圧着し、減圧下に加熱乾燥して、正極とする。しかし、必要に応じて、上記合剤を円板状等、適宜の形状に加圧成形し、必要に応じて、真空下に熱処理して、正極としてもよい。 The lithium secondary battery according to the present invention only needs to include a positive electrode containing the positive electrode active material as described above, and other configurations may be the same as those of conventionally known lithium secondary batteries. For example, the above-described positive electrode active material is mixed with a conductive agent, a binder, a filler, and the like, kneaded to form a mixture, and a positive electrode is formed using the mixture to manufacture a battery. More specifically, for example, the positive electrode active material described above is used as a mixture, and this is applied to a positive electrode current collector made of, for example, a stainless mesh, pressure-bonded, and heated and dried under reduced pressure to obtain a positive electrode. However, if necessary, the mixture may be pressure-molded into an appropriate shape such as a disk, and heat treated under vacuum as necessary to form a positive electrode.
このようにして形成した正極をその他の電池要素と組み合わせて、リチウム二次電池を構成する。即ち、本発明によるリチウム二次電池は、正極と負極を有し、これらは、非水電解液を含浸させたセパレータを介して対向して、電池容器内に収容されている。上記正極は、正極集電体を介して正極用リード線に接続されており、また、負極は負極集電体を介して負極用リード線に接続されており、かくして、電池内部で生じた化学エネルギーは、上記正極用リード線と負極用リード線から電気エネルギーとして外部へ取り出される。 The positive electrode thus formed is combined with other battery elements to constitute a lithium secondary battery. That is, the lithium secondary battery according to the present invention has a positive electrode and a negative electrode, and these are accommodated in a battery container facing each other through a separator impregnated with a non-aqueous electrolyte. The positive electrode is connected to the lead wire for the positive electrode through the positive electrode current collector, and the negative electrode is connected to the lead wire for the negative electrode through the negative electrode current collector. Energy is taken out from the positive lead wire and the negative lead wire as electric energy.
上記導電剤は、リチウム二次電池において、化学変化を起こさない電子伝導性材料であれば、特に限定されない。従って、導電剤として、例えば、天然黒鉛、人工黒鉛、カーボンブラック、ケッチェンブラック、炭素繊維、金属粉、金属繊維、ポリフェニレン等の導電性高分子物質等を挙げることができる。これらは単独で用いてもよく、また、2種以上を併用してもよい。導電剤の配合量は、特に限定されないが、通常、上記合剤において、1〜50重量%の範囲であり、好ましくは、2〜30重量%の範囲である。 The conductive agent is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the lithium secondary battery. Accordingly, examples of the conductive agent include conductive polymer materials such as natural graphite, artificial graphite, carbon black, ketjen black, carbon fiber, metal powder, metal fiber, and polyphenylene. These may be used alone or in combination of two or more. Although the compounding quantity of a electrically conductive agent is not specifically limited, Usually, it is the range of 1-50 weight% in the said mixture, Preferably, it is the range of 2-30 weight%.
上記結着剤も、特に限定されず、例えば、デンプン、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリ塩化ビニル、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、スチレン−ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポリエチレンオキサイド等を挙げることができる。これらも単独で用いてもよく、また、2種以上併用してもよい。結着剤の配合量も、特に限定されないが、通常、上記合剤において、1〜50重量%の範囲が好ましく、特に、2〜30重量%の範囲が好ましい。 The binder is not particularly limited, and for example, starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene , Ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, styrene-butadiene rubber, polybutadiene, fluororubber, polyethylene oxide and the like. These may be used alone or in combination of two or more. The blending amount of the binder is not particularly limited, but usually in the above mixture, the range of 1 to 50% by weight is preferable, and the range of 2 to 30% by weight is particularly preferable.
上記充填剤は、必要に応じて、合剤に配合される。充填剤としては、リチウム二次電池において、化学変化を起こさない繊維状材料であれば、特に限定されず、従来より知られているものが適宜に用いられる。従って、このような充填剤として、例えば、ポリプロピレン樹脂、ポリエチレン樹脂等のポリオレフィン樹脂繊維、ガラス繊維、炭素繊維等を挙げることができる。充填剤の配合量も、特に、限定されるものではないが、通常、上記合剤において、0〜30重量%の範囲である。 The said filler is mix | blended with a mixture as needed. As a filler, if it is a fibrous material which does not raise | generate a chemical change in a lithium secondary battery, it will not specifically limit, The conventionally known thing is used suitably. Accordingly, examples of such a filler include polyolefin resin fibers such as polypropylene resin and polyethylene resin, glass fibers, and carbon fibers. The blending amount of the filler is not particularly limited, but is usually in the range of 0 to 30% by weight in the above mixture.
本発明によるリチウム二次電池において、負極材料としては、従来、リチウム二次電池に用いられているものであれば、特に限定されるものではないが、例えば、金属リチウムやリチウム合金のほか、リチウムイオンを吸蔵、放出可能な炭素材料を挙げることができる。 In the lithium secondary battery according to the present invention, the negative electrode material is not particularly limited as long as it is conventionally used in a lithium secondary battery. For example, in addition to metal lithium and lithium alloy, lithium Examples thereof include carbon materials that can occlude and release ions.
正極及び負極は、通常、集電体上に形成される。この集電体としては、特に、限定されるものではないが、通常、ステンレス鋼やそのメッシュ等が用いられる。 The positive electrode and the negative electrode are usually formed on a current collector. Although it does not specifically limit as this electrical power collector, Usually, stainless steel, its mesh, etc. are used.
また、非水電解液も、従来から知られているものであれば、いずれでもよいが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート、ジメチルカーボネート(DMC)、ジエチルカーボネート等のようなカーボネート類、スルホラン類、ラクトン類、1,2−ジメトキシエタン、1,2−ジエトキシエタン、エトキシメトキシエタン等のようなエーテル類等の有機溶媒中に過塩素酸リチウム(LiClO4)やヘキサフルオロリン酸リチウム(LiPF6)等の解離性リチウム塩類を溶解させたものを挙げることができる。セパレータとしては、例えば、ポリエチレンやポリプロピレン等のようなポリオレフィン樹脂からなる多孔性フィルム等が用いられるが、これに限定されるものではない。 In addition, the non-aqueous electrolyte solution may be any conventionally known one. For example, carbonates such as ethylene carbonate (EC), propylene carbonate, dimethyl carbonate (DMC), diethyl carbonate, Lithium perchlorate (LiClO 4 ) or lithium hexafluorophosphate in organic solvents such as sulfolanes, lactones, ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, etc. there may be mentioned those obtained by dissolving dissociable lithium salts (LiPF 6) or the like. As the separator, for example, a porous film made of a polyolefin resin such as polyethylene or polypropylene is used, but the separator is not limited thereto.
また、本発明においては、上述したようなリチウム塩を含む高分散固体電解質をセパレータを兼ねる電解質として用いることができる。 In the present invention, a highly dispersed solid electrolyte containing the lithium salt as described above can be used as an electrolyte that also serves as a separator.
本発明によるこのようなリチウム二次電池は、例えば、ノート型パソコン、携帯電話、ビデオムービー等の携帯電子機器類に好適に用いることができるほか、移動体搭載用バッテリー、家庭用補助電源等の大型電池としての応用も可能である。 Such a lithium secondary battery according to the present invention can be suitably used for portable electronic devices such as a notebook computer, a mobile phone, and a video movie, as well as a battery mounted on a mobile body, a household auxiliary power source, etc. Application as a large battery is also possible.
以下に実施例と共に比較例を挙げて本発明を説明するが、本発明はこれら実施例によって何ら限定されるものではない。また、以下において、得られた正極活物質の粒度分布は次のようにして測定した。 Hereinafter, the present invention will be described with reference to comparative examples together with examples, but the present invention is not limited to these examples. In the following, the particle size distribution of the obtained positive electrode active material was measured as follows.
(正極活物質の粒度分布)
レーザー回折式粒度分布測定装置((株)堀場製作所製LA−500)を用いて、体積基準の累積分布の5%径(D5)、50%径(メジアン径又はD50)及び95%径(D95)を測定した。
(Particle size distribution of positive electrode active material)
Using a laser diffraction particle size distribution analyzer (LA-500 manufactured by Horiba, Ltd.), a volume-based cumulative distribution of 5% diameter (D5), 50% diameter (median diameter or D50) and 95% diameter (D95) ) Was measured.
(正極活物質のクロスセクションポリッシャ処理とその処理断面の1次粒子径の平均長径)
正極活物質と樹脂(エポキシG2)をガラス板上で同体積程度混合し、シリコンプレートに塗布し、80℃で10分間真空脱泡処理を行なった後、120℃で30分間加熱してエポキシ樹脂を硬化させた。正極活物質を含む硬化物を日本電子(株)製クロスセクションポリッシャSM−09010を用い、イオン加速電圧4.0kVで20時間処理して、上記硬化物の断面を調製した。
(Cross-section polisher treatment of positive electrode active material and average major axis of primary particle diameter of the treated cross section)
The positive electrode active material and the resin (epoxy G2) are mixed on the glass plate in the same volume, applied to a silicon plate, vacuum defoamed at 80 ° C. for 10 minutes, and then heated at 120 ° C. for 30 minutes for epoxy resin. Was cured. The cured product containing the positive electrode active material was treated with a cross section polisher SM-09010 manufactured by JEOL Ltd. at an ion acceleration voltage of 4.0 kV for 20 hours to prepare a cross section of the cured product.
上記断面を走査型電子顕微鏡(SEM)で観察し、断面上の一次粒子の数が10となる視野をランダムに5視野選択し、合計50個の一次粒子について長径(最大径)を測定し、その平均値を求めて、1次粒子径の平均長径とした。 The cross section is observed with a scanning electron microscope (SEM), and five visual fields are randomly selected in which the number of primary particles on the cross section is 10, and the major axis (maximum diameter) is measured for a total of 50 primary particles. The average value was calculated | required and it was set as the average major axis of the primary particle diameter.
(メジアン径/クロスセクションポリッシャ処理断面の1次粒子径の平均長径)
上記メジアン径とクロスセクションポリッシャ処理断面の1次粒子径の平均長径から計算にて求めた。
(Median diameter / average major axis of primary particle diameter of cross section polished cross section)
It calculated | required by calculation from the said median diameter and the average long diameter of the primary particle diameter of a cross section polisher process cross section.
(その他の正極活物質の粒子特性)
メジアン径/クロスセクションポリッシャ処理断面の1次粒子径の平均長径、メジアン径/3及びメジアン径の3倍は上記粒度分布測定とクロスセクションポリッシャ処理断面の1次粒子径の平均長径の測定の結果から計算にて求めた。
(Particle characteristics of other positive electrode active materials)
The average major diameter of the primary particle diameter of the median diameter / cross section polisher treated cross section, the median diameter / 3 and the median diameter three times are the results of the above particle size distribution measurement and the average major diameter of the primary particle diameter of the cross section polished cross section. From the calculation.
(電池特性)
得られた正極活物質1gとアセチレンブラック(電気化学工業(株)製デンカブラック粒状品)0.06gとポリフッ化ビニリデン溶液(呉羽化学工業(株)製KFポリマーL#1120とN−メチル−2−ピロリドン重量比1/1溶液)1.16gを混合し、乳鉢で2分間混練してペーストとした。このペーストをロールコータを用いて20μm厚のアルミニウム箔上に乾燥後の活物質重量が0.01g/cm2 になるように塗布し、120℃で真空乾燥した後、直径1.5cmの円板状に打ち抜いて正極とした。
(Battery characteristics)
1 g of the obtained positive electrode active material, 0.06 g of acetylene black (Denka black granular product manufactured by Denki Kagaku Kogyo Co., Ltd.), a polyvinylidene fluoride solution (KF Polymer L # 1120 manufactured by Kureha Chemical Industry Co., Ltd.) and N-methyl-2 -Pyrrolidone weight ratio 1/1 solution) 1.16 g was mixed and kneaded in a mortar for 2 minutes to obtain a paste. This paste was applied onto a 20 μm thick aluminum foil using a roll coater so that the weight of the active material after drying was 0.01 g / cm 2 , vacuum-dried at 120 ° C., and then a disc having a diameter of 1.5 cm. The positive electrode was punched into a shape.
負極としてリチウム金属を用い、電解液として1M濃度のヘキサフルオロリン酸リチウムを支持塩とするエチレンカーボネートとジメチルカーボネートの等量混合溶液を用いた。露点が−80℃に管理されたアルゴン雰囲気のグローブボックス中でモデルセルを作製した。充放電は、正極に対する電流密度0.5mA/cm2、カットオフ電圧4.3〜3.0Vとし、45℃で測定して、1サイクル(c)目の放電容量d1と100c目の放電容量d100を求め、これより100c目の放電容量維持率(d100/d1)×100(%)を求めた。 Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate and dimethyl carbonate using 1M lithium hexafluorophosphate as a supporting salt was used as the electrolyte. A model cell was produced in a glove box in an argon atmosphere in which the dew point was controlled at −80 ° C. Charging / discharging was performed at 45 ° C. with a current density of 0.5 mA / cm 2 with respect to the positive electrode and a cut-off voltage of 4.3 to 3.0 V, and the discharge capacity d 1 at the first cycle (c) and the discharge at the 100th c The capacity d 100 was determined, and the discharge capacity maintenance rate (d 100 / d 1 ) × 100 (%) of the 100th c was determined therefrom.
実施例1
硫酸ニッケルと硫酸コバルトの混合物(Ni/Coモル比0.84/0.16)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、120℃で乾燥して、Ni0.84Co0.16(OH)2 なる組成を有する水酸化物粒子を得た。
Example 1
A sodium hydroxide aqueous solution and an aqueous ammonia solution were added dropwise to an aqueous solution of a mixture of nickel sulfate and cobalt sulfate (Ni / Co molar ratio 0.84 / 0.16) at a pH of 12 and a temperature of 40 ° C. The obtained reaction product was filtered, washed with water, and then dried at 120 ° C. to obtain hydroxide particles having a composition of Ni 0.84 Co 0.16 (OH) 2 .
この水酸化物粒子にLi/(Ni+Co)モル比が3.33となるように水酸化リチウム1水和物を加え、ミキサー(松下電器産業(株)製ファイバーミキサーMX−V200、以下、同じ)を用いて、10分間、乾式混合した。以下の実施例及び比較例において、乾式混合は、このように、上記ミキサーを用いて、10分間、行なった。 Lithium hydroxide monohydrate was added to the hydroxide particles so that the Li / (Ni + Co) molar ratio was 3.33, and a mixer (Fiber Mixer MX-V200 manufactured by Matsushita Electric Industrial Co., Ltd., hereinafter the same). Was dry mixed for 10 minutes. In the following Examples and Comparative Examples, dry mixing was thus performed for 10 minutes using the mixer.
得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウム元素を十分に除去した後、120℃で24時間真空乾燥して、組成Li1.00Ni0.84Co0.16O2の焼成物を得た。 The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium element, and then vacuum-dried at 120 ° C. for 24 hours to obtain a fired product of composition Li 1.00 Ni 0.84 Co 0.16 O 2. Obtained.
得られた焼成物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.00Ni0.84Co0.16O2を有する正極活物質を得た。 The obtained fired product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 .
実施例2
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が2.16となるように水酸化リチウム1水和物を乾式混合し、以下、実施例1と同様にして、組成式Li1.00Ni0.84Co0.16O2を有する焼成物を得た。
Example 2
Lithium hydroxide monohydrate was dry-mixed with the hydroxide particles having the composition Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 2.16. Thereafter, in the same manner as in Example 1, a fired product having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 was obtained.
得られた焼成物と水酸化リチウムをLi/(Ni+Co)モル比が1.05となるように混合し、得られた焼成物と水酸化リチウム1水和物の混合物を酸素雰囲気中、650℃で8時間焼成して、組成式Li1.05Ni0.84Co0.16O2を有する正極活物質を得た。 The obtained calcined product and lithium hydroxide were mixed so that the Li / (Ni + Co) molar ratio was 1.05, and the resulting calcined product and lithium hydroxide monohydrate mixture was 650 ° C. in an oxygen atmosphere. And a positive electrode active material having the composition formula Li 1.05 Ni 0.84 Co 0.16 O 2 was obtained.
この正極活物質のCP処理断面の走査型電子顕微鏡写真に基づいて、模式的に描いた正極活物質を図1に示す。本発明による正極活物質は、このように、殆どが空間によって囲まれた粒径の大きい1次粒子からなり、CP処理断面の1次粒子径の長径が大きいことが理解される。 FIG. 1 shows a positive electrode active material schematically drawn based on a scanning electron micrograph of a CP-treated cross section of this positive electrode active material. Thus, it is understood that the positive electrode active material according to the present invention is composed of primary particles having a large particle diameter surrounded by a space, and the major axis of the primary particle diameter of the CP-treated cross section is large.
実施例3
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.70となるように水酸化リチウム1水和物を加え、乾式混合した。
Example 3
Lithium hydroxide monohydrate was added to the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.70, and then dry-type. Mixed.
得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で72時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウム元素を十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.00Ni0.84Co0.16O2を有する焼成物を得た。 The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 72 hours in an oxygen atmosphere. The obtained fired product was washed with water, filtered, and this was repeated to sufficiently remove excess lithium element, and then vacuum-dried at 120 ° C. for 24 hours to obtain a fired product having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 I got a thing.
この焼成物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.00Ni0.84Co0.16O2を有する正極活物質を得た。 The fired product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having a composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 .
比較例1
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.23となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で72時間焼成して、組成式Li1.08Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 1
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.23. . The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 72 hours in an oxygen atmosphere to obtain a positive electrode active material having a composition formula of Li 1.08 Ni 0.84 Co 0.16 O 2 .
比較例2
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.07となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成して、組成式Li1.05Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 2
Lithium hydroxide monohydrate was dry-mixed with the hydroxide particles having the composition Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.07. . The obtained mixture of hydroxide particles and lithium hydroxide was fired at 850 ° C. for 24 hours in an oxygen atmosphere to obtain a positive electrode active material having a composition formula of Li 1.05 Ni 0.84 Co 0.16 O 2 .
比較例3
硫酸ニッケルと硫酸コバルトの混合物(Ni/Coモル比0.84/0.16)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、水に懸濁させて、1モル/L濃度のNi0.84Co0.16(OH)2なる組成を有する水酸化物粒子のスラリーを得た。
Comparative Example 3
A sodium hydroxide aqueous solution and an aqueous ammonia solution were added dropwise to an aqueous solution of a mixture of nickel sulfate and cobalt sulfate (Ni / Co molar ratio 0.84 / 0.16) at a pH of 12 and a temperature of 40 ° C. The obtained reaction product was filtered and washed with water, and then suspended in water to obtain a slurry of hydroxide particles having a composition of Ni 0.84 Co 0.16 (OH) 2 having a concentration of 1 mol / L.
このスラリーにLi/(Ni+Co)モル比が1.07となるように3.5モル/L濃度の水酸化リチウム水溶液を滴下した後、噴霧乾燥を行った。得られた噴霧乾燥物を1000kg/cm2の圧力で1分間プレス成型し、得られた成型品を酸素雰囲気中、850℃で24時間焼成して、組成式Li1.07Ni0.84Co0.16O2を有する正極活物質を得た。 To this slurry, a lithium hydroxide aqueous solution having a concentration of 3.5 mol / L was dropped so that the Li / (Ni + Co) molar ratio was 1.07, followed by spray drying. The obtained spray-dried product was press-molded at a pressure of 1000 kg / cm 2 for 1 minute, and the obtained molded product was fired at 850 ° C. for 24 hours in an oxygen atmosphere to obtain the composition formula Li 1.07 Ni 0.84 Co 0.16 O 2 . A positive electrode active material was obtained.
上記においてプレス成型は、3.0gの噴霧乾燥物を直径20mmの円形金型を用いて成型した(以下、同じ)。 In the above press molding, 3.0 g of the spray-dried product was molded using a circular mold having a diameter of 20 mm (hereinafter the same).
上記正極活物質のCP処理断面の走査型電子顕微鏡写真に基づいて、模式的に描いた正極活物質の粒子を図2に示すように、この正極活物質は、粒界又はこれと空間によって囲まれた粒径の小さい多数の1次粒子の凝集体である2次粒子からなることが理解される。 As shown in FIG. 2, the positive electrode active material schematically drawn on the basis of a scanning electron micrograph of the cross section of the positive electrode active material treated with CP is surrounded by a grain boundary or a space between the positive electrode active material and the positive electrode active material. It is understood that the secondary particles are aggregates of a large number of primary particles having a small particle diameter.
比較例4
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.00となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成して、組成式Li1.00Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 4
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.00. . The obtained mixture of hydroxide particles and lithium hydroxide was calcined in an oxygen atmosphere at 850 ° C. for 24 hours to obtain a positive electrode active material having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 .
比較例5
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.23となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.22Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 5
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.23. . The obtained mixture of hydroxide particles and lithium hydroxide was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 1.22 Ni 0.84 Co 0.16 O 2 .
比較例6
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.07となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.07Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 6
Lithium hydroxide monohydrate was dry-mixed with the hydroxide particles having the composition Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.07. . The obtained mixture of hydroxide particles and lithium hydroxide was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 1.07 Ni 0.84 Co 0.16 O 2 .
比較例7
比較例3で得られた水酸化物粒子のスラリーにLi/(Ni+Co)モル比が1.07となるように3.5モル/L濃度の水酸化リチウム水溶液を滴下した後、噴霧乾燥を行った。得られた噴霧乾燥物を1000kg/cm2の圧力で1分間プレス成型し、得られた成型品を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.07Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 7
A lithium hydroxide aqueous solution having a concentration of 3.5 mol / L was added dropwise to the hydroxide particle slurry obtained in Comparative Example 3 so that the Li / (Ni + Co) molar ratio was 1.07, followed by spray drying. It was. The obtained spray-dried product was press-molded at a pressure of 1000 kg / cm 2 for 1 minute, and the obtained molded product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain the composition formula Li 1.07 Ni 0.84 Co 0.16 O 2 . A positive electrode active material was obtained.
比較例8
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.00となるように水酸化リチウム1水和物を加え、乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.00Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 8
Lithium hydroxide monohydrate was added to the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.00, and dry-type. Mixed. The obtained mixture of hydroxide particles and lithium hydroxide was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2 .
実施例4
硫酸ニッケルと硫酸コバルトと硫酸マグネシウムの混合物(Ni/Co/Mgモル比0.79/0.16/0.05)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、120℃で乾燥して、Ni0.79Co0.16Mg0.05(OH)2 なる組成を有する水酸化物粒子を得た。
Example 4
While adding sodium hydroxide aqueous solution and aqueous ammonia solution little by little to an aqueous solution of a mixture of nickel sulfate, cobalt sulfate and magnesium sulfate (Ni / Co / Mg molar ratio 0.79 / 0.16 / 0.05), pH 12 and temperature The reaction was carried out at 40 ° C. The obtained reaction product was filtered and washed with water, and then dried at 120 ° C. to obtain hydroxide particles having a composition of Ni 0.79 Co 0.16 Mg 0.05 (OH) 2 .
この水酸化物粒子にLi/(Ni+Co+Mg)モル比が3.29となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、880℃で0.5時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.00Ni0.79Co0.16Mg0.05O2を有する焼成物を得た。 Lithium hydroxide monohydrate was dry mixed with the hydroxide particles so that the Li / (Ni + Co + Mg) molar ratio was 3.29. The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 880 ° C. for 0.5 hour in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium and then vacuum-dried at 120 ° C. for 24 hours to have the composition formula Li 1.00 Ni 0.79 Co 0.16 Mg 0.05 O 2 A fired product was obtained.
この焼成物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.00.Ni0.79Co0.16Mg0.05O2を有する正極活物質を得た。 The fired product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having a composition formula of Li 1.00. Ni 0.79 Co 0.16 Mg 0.05 O 2 .
実施例5
硫酸ニッケルと硫酸コバルトの混合物(Ni/Coモル比0.841/0.159)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、120℃で乾燥して、Ni0.841Co0.159(OH)2 なる組成を有する水酸化物粒子を得た。
Example 5
A sodium hydroxide aqueous solution and an aqueous ammonia solution were dropped little by little into an aqueous solution of a mixture of nickel sulfate and cobalt sulfate (Ni / Co molar ratio 0.841 / 0.159), and the mixture was reacted at pH 12 and a temperature of 40 ° C. The obtained reaction product was filtered, washed with water, and then dried at 120 ° C. to obtain hydroxide particles having a composition of Ni 0.841 Co 0.159 (OH) 2 .
この水酸化物粒子にNi/Co/Srモル比が0.837/0.158/0.005となるように水酸化ストロンチウムを加えると共に、Li/(Ni+Co+Sr)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。 Strontium hydroxide is added to the hydroxide particles so that the Ni / Co / Sr molar ratio is 0.837 / 0.158 / 0.005, and the Li / (Ni + Co + Sr) molar ratio is 3.33. Lithium hydroxide monohydrate was dry mixed.
得られた水酸化物粒子/水酸化ストロンチウム/水酸化リチウム混合物を酸素雰囲気中、800℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.00Ni0.837Co0.158Sr0.005O2を有する焼成物を得た。 The obtained hydroxide particle / strontium hydroxide / lithium hydroxide mixture was calcined at 800 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium and then vacuum-dried at 120 ° C. for 24 hours to have the composition formula Li 1.00 Ni 0.837 Co 0.158 Sr 0.005 O 2 A fired product was obtained.
得られた焼成物と水酸化リチウム1水和物をLi/(Ni+Co+Sr)モル比が1.05となるように混合し、得られた焼成物と水酸化リチウムの混合物を酸素雰囲気中、700℃で5時間焼成して、組成式Li1.05Ni0.837Co0.158Sr0.005O2を有する正極活物質を得た。 The obtained calcined product and lithium hydroxide monohydrate were mixed so that the Li / (Ni + Co + Sr) molar ratio was 1.05, and the resulting calcined product and lithium hydroxide mixture was 700 ° C. in an oxygen atmosphere. And a positive electrode active material having the composition formula Li 1.05 Ni 0.837 Co 0.158 Sr 0.005 O 2 was obtained.
実施例6
硫酸ニッケルと硫酸コバルトと硫酸マンガンの混合物(Ni/Co/Mnモル比0.79/0.16/0.05)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、120℃で乾燥して、Ni0.79Co0.16Mn0.05(OH)2 なる組成を有する水酸化物粒子を得た。
Example 6
While adding aqueous sodium hydroxide solution and aqueous ammonia solution little by little to an aqueous solution of a mixture of nickel sulfate, cobalt sulfate and manganese sulfate (Ni / Co / Mn molar ratio 0.79 / 0.16 / 0.05), pH 12 and temperature The reaction was carried out at 40 ° C. The obtained reaction product was filtered, washed with water, and then dried at 120 ° C. to obtain hydroxide particles having a composition of Ni 0.79 Co 0.16 Mn 0.05 (OH) 2 .
この水酸化物粒子にLi/(Ni+Co+Mn)モル比が3.32となるように水酸化リチウム1水和物を乾式混合した。 Lithium hydroxide monohydrate was dry mixed with the hydroxide particles so that the Li / (Ni + Co + Mn) molar ratio was 3.32.
得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.00Ni0.79Co0.16Mn0.05O2を有する焼成物を得た。 The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium and then vacuum-dried at 120 ° C. for 24 hours to have the composition formula Li 1.00 Ni 0.79 Co 0.16 Mn 0.05 O 2 A fired product was obtained.
この焼成物を酸素雰囲気中、900℃で1時間焼成して、組成式Li1.00Ni0.79Co0.16Mn0.05O2を有する正極活物質を得た。 The fired product was fired at 900 ° C. for 1 hour in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 1.00 Ni 0.79 Co 0.16 Mn 0.05 O 2 .
実施例7
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で72時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.01Ni0.84Co0.16O2を有する焼成物を得た。
Example 7
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 3.33. . The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 72 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this process was repeated to sufficiently remove excess lithium and then vacuum-dried at 120 ° C. for 24 hours to obtain a fired product having the composition formula Li 1.01 Ni 0.84 Co 0.16 O 2 Got.
この焼成物に水に加え、攪拌して、スラリーとし、このスラリーにアルミン酸ナトリウム(NaAlO2) をAl/(Ni+Co+Al)モル比が0.05となるように加えた後、硫酸を加えて、スラリーが6〜7のpHを有するように中和した。得られた中和物を濾過、水洗した後、120℃で乾燥した。 The fired product is added to water and stirred to form a slurry. To this slurry, sodium aluminate (NaAlO 2 ) is added so that the Al / (Ni + Co + Al) molar ratio is 0.05, and then sulfuric acid is added. The slurry was neutralized to have a pH of 6-7. The obtained neutralized product was filtered, washed with water, and dried at 120 ° C.
この乾燥物を酸素雰囲気中、750℃で5時間焼成して、組成式Li0.97Ni0.80Co0.15Al0.05O2を有する正極活物質を得た。 The dried product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 0.97 Ni 0.80 Co 0.15 Al 0.05 O 2 .
実施例8
硫酸ニッケルと硫酸コバルトの混合物(Ni/Coモル比0.841/0.159)の水溶液に水酸化ナトリウム水溶液とアンモニア水溶液を少量ずつ滴下しながら、pH12及び温度40℃で反応させた。得られた反応生成物を濾過、水洗した後、120℃で乾燥して、Ni0.841Co0.159(OH)2 なる組成を有する水酸化物粒子を得た。
Example 8
A sodium hydroxide aqueous solution and an aqueous ammonia solution were dropped little by little into an aqueous solution of a mixture of nickel sulfate and cobalt sulfate (Ni / Co molar ratio 0.841 / 0.159), and the mixture was reacted at pH 12 and a temperature of 40 ° C. The obtained reaction product was filtered, washed with water, and then dried at 120 ° C. to obtain hydroxide particles having a composition of Ni 0.841 Co 0.159 (OH) 2 .
この水酸化物粒子にNi/Co/Siモル比が0.837/0.158/0.005となるようにメタケイ酸ナトリウムを加え、更に、Li/(Ni+Co+Si)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。 Sodium metasilicate is added to the hydroxide particles so that the Ni / Co / Si molar ratio is 0.837 / 0.158 / 0.005, and the Li / (Ni + Co + Si) molar ratio is 3.33. Thus, lithium hydroxide monohydrate was dry mixed.
得られた水酸化物粒子とメタケイ酸ナトリウムと水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成Li1.00Ni0.837Co0.158Si0.005O2を有する焼成物を得た。 The obtained mixture of hydroxide particles, sodium metasilicate and lithium hydroxide was calcined at 850 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium, followed by vacuum drying at 120 ° C. for 24 hours, and firing having the composition Li 1.00 Ni 0.837 Co 0.158 Si 0.005 O 2 I got a thing.
この焼成物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.00Ni0.837Co0.158Si0.005O2を有する正極活物質を得た。 This fired product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having a composition formula Li 1.00 Ni 0.837 Co 0.158 Si 0.005 O 2 .
実施例9
実施例8で得られたNi0.841Co0.159(OH)2 なる組成を有する水酸化物粒子200gに1Lの水を加え、攪拌して、スラリーとした。このスラリーにZr含有量1重量%のオキシ塩化ジルコニウム水溶液と1モル/L濃度の水酸化ナトリウム水溶液を少量ずつ滴下しながら、pH7.5で反応させ、オキシ塩化ジルコニウム水溶液の滴下量がNi/Co/Zrモル比が0.837/0.158/0.005になった時点で反応を止めた。
Example 9
1 L of water was added to 200 g of hydroxide particles having a composition of Ni 0.841 Co 0.159 (OH) 2 obtained in Example 8 and stirred to obtain a slurry. To this slurry, a zirconium oxychloride aqueous solution having a Zr content of 1% by weight and a 1 mol / L sodium hydroxide aqueous solution were dropped little by little, and reacted at pH 7.5. The reaction was stopped when the / Zr molar ratio reached 0.837 / 0.158 / 0.005.
得られた反応生成物を濾過、水洗した後、120℃で乾燥した。得られた乾燥物にLi/(Ni+Co+Zr)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。 The obtained reaction product was filtered, washed with water, and dried at 120 ° C. Lithium hydroxide monohydrate was dry mixed with the obtained dried product so that the Li / (Ni + Co + Zr) molar ratio was 3.33.
得られた乾燥物と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成Li1.00Ni0.837Co0.158Zr0.005O2を有する焼成物を得た。 The obtained mixture of dried product and lithium hydroxide was calcined at 850 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium, followed by vacuum drying at 120 ° C. for 24 hours, and firing having the composition Li 1.00 Ni 0.837 Co 0.158 Zr 0.005 O 2 I got a thing.
この焼成物を酸素雰囲気中、750℃で5時間焼成して、組成Li1.00Ni0.837Co0.158Zr0.005O2を有する正極活物質を得た。 This fired product was fired at 750 ° C. for 5 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition Li 1.00 Ni 0.837 Co 0.158 Zr 0.005 O 2 .
実施例10
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、750℃で1時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li0.98Ni0.84Co0.16O2を有する焼成物を得た。
Example 10
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 3.33. . The resulting mixture of hydroxide particles and lithium hydroxide was calcined at 750 ° C. for 1 hour in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium, followed by vacuum drying at 120 ° C. for 24 hours to obtain a fired product having the composition formula Li 0.98 Ni 0.84 Co 0.16 O 2 Got.
得られた焼成物と水酸化リチウム1水和物をLi/(Ni+Co)モル比が1.05となるように混合し、得られた焼成物/水酸化リチウム混合物を酸素雰囲気中、750℃で1時間焼成して、組成式Li1.05Ni0.84Co0.16O2を有する正極活物質を得た。 The obtained calcined product and lithium hydroxide monohydrate were mixed so that the Li / (Ni + Co) molar ratio was 1.05, and the obtained calcined product / lithium hydroxide mixture was 750 ° C. in an oxygen atmosphere. and calcined for 1 hour to obtain a cathode active material having a composition formula Li 1.05 Ni 0.84 Co 0.16 O 2 .
比較例9
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が3.33となるように水酸化リチウム1水和物を乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、700℃で72時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li0.97Ni0.84Co0.16O2を有する焼成物を得た。
Comparative Example 9
Lithium hydroxide monohydrate was dry mixed with the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 3.33. . The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 700 ° C. for 72 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium and then vacuum-dried at 120 ° C. for 24 hours to obtain a fired product having the composition formula Li 0.97 Ni 0.84 Co 0.16 O 2 Got.
得られた焼成物と水酸化リチウム1水和物をLi/(Ni+Co)モル比が1.05となるように混合し、得られた焼成物/水酸化リチウム混合物を酸素雰囲気中、750℃で5時間焼成して、組成式Li1.05Ni0.84Co0.16O2を有する正極活物質を得た。 The obtained calcined product and lithium hydroxide monohydrate were mixed so that the Li / (Ni + Co) molar ratio was 1.05, and the obtained calcined product / lithium hydroxide mixture was 750 ° C. in an oxygen atmosphere. and calcined 5 hours to obtain a cathode active material having a composition formula Li 1.05 Ni 0.84 Co 0.16 O 2 .
比較例10
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が1.00となるように水酸化リチウム1水和物を加え、ミキサーを用いて、10分間、乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、1000℃で24時間焼成して、組成式Li0.96Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 10
Lithium hydroxide monohydrate was added to the hydroxide particles having a composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 so that the Li / (Ni + Co) molar ratio was 1.00, and a mixer was added. Was dry mixed for 10 minutes. The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 1000 ° C. for 24 hours in an oxygen atmosphere to obtain a positive electrode active material having the composition formula Li 0.96 Ni 0.84 Co 0.16 O 2 .
比較例11
実施例1で得られたNi0.84Co0.16(OH)2 なる組成を有する水酸化物粒子にLi/(Ni+Co)モル比が3.33となるように水酸化リチウム1水和物をミキサーを用いて、10分間、乾式混合した。得られた水酸化物粒子と水酸化リチウムの混合物を酸素雰囲気中、850℃で24時間焼成した。得られた焼成物を水洗、濾過し、これを繰り返して、余剰のリチウムを十分に除去した後、120℃で24時間真空乾燥して、組成式Li1.00Ni0.84Co0.16O2を有する正極活物質を得た。
Comparative Example 11
Lithium hydroxide monohydrate was added to the hydroxide particles having the composition of Ni 0.84 Co 0.16 (OH) 2 obtained in Example 1 using a mixer so that the Li / (Ni + Co) molar ratio was 3.33. And dry mixed for 10 minutes. The obtained mixture of hydroxide particles and lithium hydroxide was calcined at 850 ° C. for 24 hours in an oxygen atmosphere. The obtained fired product was washed with water and filtered, and this was repeated to sufficiently remove excess lithium, followed by vacuum drying at 120 ° C. for 24 hours to obtain a positive electrode active material having the composition formula Li 1.00 Ni 0.84 Co 0.16 O 2. Obtained material.
以上の実施例及び比較例において得られたリチウム複合酸化物の組成(前記一般式(I)における元素M、x、y及びz)と共に、CP処理断面について測定した1次粒子の平均長径、レーザー回折式粒度分布測定装置によって測定した粒度特性及び得られたリチウム二次電池のサイクル特性を表1に示す。 Along with the composition of the lithium composite oxide obtained in the above examples and comparative examples (elements M, x, y and z in the general formula (I)), the average major axis of the primary particles measured on the CP-treated cross section, laser Table 1 shows the particle size characteristics measured by the diffraction particle size distribution measuring apparatus and the cycle characteristics of the obtained lithium secondary battery.
表1に示す結果から明らかなように、本発明による正極活物質を含む正極を備えたリチウムイオン二次電池においては、1c目の放電容量が140mAh/g以上であると共に、100c目の放電容量維持率が90%以上であるという条件を満たすが、比較例による正極活物質を含む正極を備えたリチウムイオン二次電池においては、上記条件の少なくとも一方が満たされない。 As is clear from the results shown in Table 1, in the lithium ion secondary battery including the positive electrode containing the positive electrode active material according to the present invention, the discharge capacity at 1c is 140 mAh / g or more, and the discharge capacity at 100c. Although the condition that the maintenance ratio is 90% or more is satisfied, in the lithium ion secondary battery including the positive electrode including the positive electrode active material according to the comparative example, at least one of the above conditions is not satisfied.
Claims (3)
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法。 (A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) A method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is secondarily fired at 600 to 900 ° C. in an oxidizing atmosphere.
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、焼成物から余剰のリチウム元素を除去した後、
(d)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法。 (A) Li / (Co + Ni + M) molar ratio of 1.5 to 5.0 on nickel hydroxide particles containing at least one element M selected from Mg, Mn, Sr, Si, Zr and Al together with cobalt element Mix lithium hydroxide in the range,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water and removing excess lithium element from the fired product,
(D) A method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is secondarily fired at 600 to 900 ° C. in an oxidizing atmosphere.
(b)得られた混合物を酸化性雰囲気下に730〜950℃で一次焼成し、
(c)得られた焼成物を水洗して、余剰のリチウム元素を除去した後、
(d)この焼成物にMg、Mn、Sr、Si、Zr及びAlから選ばれる少なくとも1種の元素Mを含有させ、次いで、
(e)この焼成物を酸化性雰囲気下に600〜900℃で二次焼成することを特徴とするリチウム二次電池用正極活物質の製造方法。
(A) Lithium hydroxide is mixed with nickel hydroxide particles containing cobalt element in the range of Li / (Co + Ni) molar ratio of 1.5 to 5.0,
(B) The obtained mixture is primarily fired at 730 to 950 ° C. in an oxidizing atmosphere,
(C) After washing the obtained fired product with water to remove excess lithium element,
(D) The fired product contains at least one element M selected from Mg, Mn, Sr, Si, Zr and Al,
(E) A method for producing a positive electrode active material for a lithium secondary battery, wherein the fired product is secondarily fired at 600 to 900 ° C. in an oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008116741A JP5266861B2 (en) | 2008-04-28 | 2008-04-28 | Method for producing positive electrode active material for lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008116741A JP5266861B2 (en) | 2008-04-28 | 2008-04-28 | Method for producing positive electrode active material for lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009266712A JP2009266712A (en) | 2009-11-12 |
JP5266861B2 true JP5266861B2 (en) | 2013-08-21 |
Family
ID=41392269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008116741A Expired - Fee Related JP5266861B2 (en) | 2008-04-28 | 2008-04-28 | Method for producing positive electrode active material for lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5266861B2 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010116839A1 (en) * | 2009-04-10 | 2010-10-14 | 日立マクセル株式会社 | Electrode active material, method for producing same, electrode for nonaqueous secondary battery, and nonaqueous secondary battery |
US8586247B2 (en) | 2009-12-11 | 2013-11-19 | Samsung Sdi Co., Ltd. | Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same |
JP5638542B2 (en) * | 2010-01-21 | 2014-12-10 | 住友金属鉱山株式会社 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same |
JP2013060319A (en) * | 2011-09-13 | 2013-04-04 | Toyota Industries Corp | Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery |
KR101515678B1 (en) | 2011-12-07 | 2015-04-28 | 주식회사 엘지화학 | Positive-electrode active material with improved output and secondary battery including them |
US9590234B2 (en) | 2012-10-30 | 2017-03-07 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP6388573B2 (en) * | 2013-03-25 | 2018-09-12 | 住友化学株式会社 | Method for producing positive electrode active material |
CN103400978A (en) * | 2013-08-01 | 2013-11-20 | 奇瑞汽车股份有限公司 | Method for modifying lithium nickel manganese oxide material, lithium nickel manganese oxide material and lithium ion battery |
KR101644684B1 (en) * | 2014-02-28 | 2016-08-01 | 주식회사 엘지화학 | Lithium-nikel based cathod active material, preparation method thereof and lithium secondary battery comprising the same |
JP6202335B2 (en) * | 2014-03-25 | 2017-09-27 | 株式会社豊田自動織機 | Non-aqueous secondary battery |
JP6627241B2 (en) * | 2014-12-15 | 2020-01-08 | 住友金属鉱山株式会社 | Positive active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery |
JP6624885B2 (en) * | 2015-02-19 | 2019-12-25 | パナソニック株式会社 | Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP6655943B2 (en) | 2015-02-27 | 2020-03-04 | パナソニック株式会社 | Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP6530640B2 (en) * | 2015-05-29 | 2019-06-12 | 日本化学産業株式会社 | Method of treating positive electrode active material for lithium secondary battery |
US10777815B2 (en) * | 2015-10-09 | 2020-09-15 | Sumitomo Metal Mining Co., Ltd. | Lithium nickel containing composite oxide and manufacturing method thereof, and nonaqueous-electrolyte secondary battery |
JP2017182927A (en) * | 2016-03-28 | 2017-10-05 | Jx金属株式会社 | Method for producing prismatic lithium ion battery and positive electrode active material for lithium ion battery |
US20210111404A1 (en) * | 2018-04-02 | 2021-04-15 | Sumitomo Metal Mining Co., Ltd. | Cathode active material for lithium ion secondary battery and method for producing same |
JP7601866B2 (en) | 2019-10-17 | 2024-12-17 | 中国石油化工股▲ふん▼有限公司 | Precursor of lithium battery positive electrode material, its preparation method and its application |
CN111965204A (en) * | 2020-08-14 | 2020-11-20 | 厦门厦钨新能源材料股份有限公司 | Method for evaluating electrical activity of lithium ion battery anode material |
KR20220101316A (en) | 2021-01-11 | 2022-07-19 | 주식회사 엘지화학 | Manufacturing method of positive electrode active material and positive electrode active material |
CN115548277A (en) | 2021-06-30 | 2022-12-30 | 北京当升材料科技股份有限公司 | Positive electrode material, preparation method and application thereof, lithium ion battery positive electrode piece and lithium ion battery |
CN114420937A (en) * | 2022-03-30 | 2022-04-29 | 中南大学 | A kind of double cation co-doped high nickel ternary layered cathode material and its preparation method and application |
JP7353454B1 (en) * | 2022-11-25 | 2023-09-29 | 住友化学株式会社 | Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary batteries |
CN115763759A (en) * | 2022-11-30 | 2023-03-07 | 巴斯夫杉杉电池材料(宁乡)有限公司 | Positive active material with matched large and small particles and preparation method thereof |
CN116344791B (en) * | 2023-05-26 | 2023-08-08 | 天津巴莫科技有限责任公司 | Positive electrode material and preparation method thereof, positive electrode sheet and battery |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0834102B2 (en) * | 1990-02-16 | 1996-03-29 | 日本電池株式会社 | Organic electrolyte battery active material and method for producing the same |
JPH07335215A (en) * | 1994-04-15 | 1995-12-22 | Sumitomo Chem Co Ltd | Lithium nickelate manufacturing method and lithium secondary battery |
JP3130813B2 (en) * | 1995-11-24 | 2001-01-31 | 富士化学工業株式会社 | Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery |
JP4760805B2 (en) * | 1996-08-12 | 2011-08-31 | 戸田工業株式会社 | Lithium nickel cobalt composite oxide, production method thereof, and positive electrode active material for secondary battery |
JPH11213999A (en) * | 1996-12-20 | 1999-08-06 | Japan Storage Battery Co Ltd | Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery |
JP2001068113A (en) * | 1999-08-31 | 2001-03-16 | Nippon Telegr & Teleph Corp <Ntt> | Positive electrode active material for lithium battery, its manufacturing method, and lithium battery |
JP5030123B2 (en) * | 2000-02-29 | 2012-09-19 | 株式会社豊田中央研究所 | Lithium secondary battery |
US6737195B2 (en) * | 2000-03-13 | 2004-05-18 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery and method of preparing same |
JP4280012B2 (en) * | 2000-05-30 | 2009-06-17 | Agcセイミケミカル株式会社 | Lithium transition metal composite oxide |
JP4362355B2 (en) * | 2002-12-06 | 2009-11-11 | Jfeミネラル株式会社 | Positive electrode material powder for lithium secondary battery and lithium secondary battery |
JP3709446B2 (en) * | 2002-12-09 | 2005-10-26 | 三井金属鉱業株式会社 | Positive electrode active material for lithium secondary battery and method for producing the same |
JP4301875B2 (en) * | 2003-06-30 | 2009-07-22 | 三菱化学株式会社 | Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery |
JP4504074B2 (en) * | 2004-04-15 | 2010-07-14 | 株式会社東芝 | Positive electrode active material for non-aqueous electrolyte battery, positive electrode and non-aqueous electrolyte battery |
-
2008
- 2008-04-28 JP JP2008116741A patent/JP5266861B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009266712A (en) | 2009-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5266861B2 (en) | Method for producing positive electrode active material for lithium secondary battery | |
JP6341318B2 (en) | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP4973825B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery | |
JP5162945B2 (en) | Mixture of lithium phosphate transition metal compound and carbon, electrode provided with the same, battery provided with the electrode, method for producing the mixture, and method for producing the battery | |
JP6201277B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
CN106133960A (en) | The precursor of positive electrode active material for nonaqueous electrolyte secondary battery and manufacture method thereof and positive electrode active material for nonaqueous electrolyte secondary battery and manufacture method thereof | |
JP2008147068A (en) | Lithium composite oxide for nonaqueous electrolyte secondary battery | |
JP2008153017A (en) | Positive active material for nonaqueous electrolyte secondary battery | |
CN107078292A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery | |
KR102314042B1 (en) | Composite for anode active material, anode including the composite, lithium secondary battery including the anode, and method of preparing the composite | |
CN109891641B (en) | Cobalt oxide, method for preparing same, lithium cobalt oxide, and lithium secondary battery | |
JP5145994B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP7276324B2 (en) | Positive electrode active material for lithium ion secondary battery and method for producing the same | |
JP4524821B2 (en) | Lithium manganese composite oxide particulate composition, method for producing the same, and secondary battery | |
JP2020009756A (en) | Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5176317B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP5181455B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP7630559B2 (en) | Lithium nickel-containing composite oxide, and positive electrode active material for lithium ion secondary battery using the lithium nickel-containing composite oxide as a base material and method for producing the same | |
JP5141356B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP6125838B2 (en) | Lithium composite oxide production apparatus and production method, lithium composite oxide obtained by the production method, positive electrode active material for secondary battery including the same, positive electrode for secondary battery including the same, and lithium ion using the same as positive electrode Secondary battery | |
JP4479874B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP2014044897A (en) | Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode | |
JP6037679B2 (en) | Method for producing lithium composite oxide | |
JP7271891B2 (en) | Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery | |
JP4882154B2 (en) | Method for producing lithium transition metal composite oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5266861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |