JP4571393B2 - Organopolymer siloxane and its use - Google Patents
Organopolymer siloxane and its use Download PDFInfo
- Publication number
- JP4571393B2 JP4571393B2 JP2003397726A JP2003397726A JP4571393B2 JP 4571393 B2 JP4571393 B2 JP 4571393B2 JP 2003397726 A JP2003397726 A JP 2003397726A JP 2003397726 A JP2003397726 A JP 2003397726A JP 4571393 B2 JP4571393 B2 JP 4571393B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- sulfonic acid
- organic polymer
- catalyst
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 title claims description 69
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 81
- 239000003054 catalyst Substances 0.000 claims description 72
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 70
- 229920000620 organic polymer Polymers 0.000 claims description 59
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 50
- 239000011148 porous material Substances 0.000 claims description 49
- 238000002360 preparation method Methods 0.000 claims description 16
- 230000018044 dehydration Effects 0.000 claims description 12
- 238000006297 dehydration reaction Methods 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 8
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 238000006703 hydration reaction Methods 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 150000001299 aldehydes Chemical class 0.000 claims description 4
- 150000002576 ketones Chemical class 0.000 claims description 4
- 238000005804 alkylation reaction Methods 0.000 claims description 3
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 7
- 150000001491 aromatic compounds Chemical class 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 125000005372 silanol group Chemical group 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 48
- -1 alkyl aromatic compounds Chemical class 0.000 description 45
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 42
- 150000002430 hydrocarbons Chemical group 0.000 description 38
- 238000003786 synthesis reaction Methods 0.000 description 37
- 125000005358 mercaptoalkyl group Chemical group 0.000 description 33
- 239000011973 solid acid Substances 0.000 description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 30
- 238000003756 stirring Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 21
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 21
- 239000007787 solid Substances 0.000 description 21
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 239000007795 chemical reaction product Substances 0.000 description 18
- 230000006866 deterioration Effects 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 238000004811 liquid chromatography Methods 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 8
- 150000001298 alcohols Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000006277 sulfonation reaction Methods 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- VBAOEVKQBLGWTH-UHFFFAOYSA-N 2-pyridin-4-ylethanethiol Chemical group SCCC1=CC=NC=C1 VBAOEVKQBLGWTH-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 5
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 239000005054 phenyltrichlorosilane Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- ORVMIVQULIKXCP-UHFFFAOYSA-N trichloro(phenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=CC=C1 ORVMIVQULIKXCP-UHFFFAOYSA-N 0.000 description 5
- HSAYSFNFCZEPCN-UHFFFAOYSA-N 3-(dimethylamino)propane-1-thiol Chemical compound CN(C)CCCS HSAYSFNFCZEPCN-UHFFFAOYSA-N 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000010306 acid treatment Methods 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 230000002194 synthesizing effect Effects 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- AXSMNPPSEOLAGB-UHFFFAOYSA-N 2-pyridin-4-ylethanethiol;hydrochloride Chemical compound Cl.SCCC1=CC=NC=C1 AXSMNPPSEOLAGB-UHFFFAOYSA-N 0.000 description 2
- SDDJGMDHEDWWKH-UHFFFAOYSA-N CC(=O)[O-].C[N+](C)(C)CCCS Chemical compound CC(=O)[O-].C[N+](C)(C)CCCS SDDJGMDHEDWWKH-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 2
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical group OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethanethiol Chemical compound CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229920000592 inorganic polymer Polymers 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- MTYAXMYKCRHHIG-UHFFFAOYSA-O trimethyl(3-sulfanylpropyl)azanium Chemical compound C[N+](C)(C)CCCS MTYAXMYKCRHHIG-UHFFFAOYSA-O 0.000 description 2
- 125000006527 (C1-C5) alkyl group Chemical group 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- NJUDGWVAKJCALG-UHFFFAOYSA-N 2-pyridin-2-ylethanethiol Chemical compound SCCC1=CC=CC=N1 NJUDGWVAKJCALG-UHFFFAOYSA-N 0.000 description 1
- JSGRWQZZLGODNQ-UHFFFAOYSA-N 3-(dibutylamino)propane-1-thiol Chemical compound CCCCN(CCCC)CCCS JSGRWQZZLGODNQ-UHFFFAOYSA-N 0.000 description 1
- XQFQYOHHVAEHPL-UHFFFAOYSA-N 3-(diethylamino)propane-1-thiol Chemical compound CCN(CC)CCCS XQFQYOHHVAEHPL-UHFFFAOYSA-N 0.000 description 1
- GCIQRAUWUUWZES-UHFFFAOYSA-N 3-(dipropylamino)propane-1-thiol Chemical compound CCCN(CCC)CCCS GCIQRAUWUUWZES-UHFFFAOYSA-N 0.000 description 1
- MBXKCLHOVPXMCJ-UHFFFAOYSA-N 3-(mercaptomethylene)pyridine Chemical compound SCC1=CC=CN=C1 MBXKCLHOVPXMCJ-UHFFFAOYSA-N 0.000 description 1
- YLBIOIADVQMNJP-UHFFFAOYSA-N 3-(propylamino)propane-1-thiol Chemical compound CCCNCCCS YLBIOIADVQMNJP-UHFFFAOYSA-N 0.000 description 1
- OTJZEVPQOMSIJB-UHFFFAOYSA-N 3-pyridin-2-ylpropane-1-thiol Chemical compound SCCCC1=CC=CC=N1 OTJZEVPQOMSIJB-UHFFFAOYSA-N 0.000 description 1
- QLSFQTWZHNUXGY-UHFFFAOYSA-N 3-pyridin-4-ylpropane-1-thiol Chemical compound SCCCC1=CC=NC=C1 QLSFQTWZHNUXGY-UHFFFAOYSA-N 0.000 description 1
- 125000003349 3-pyridyl group Chemical group N1=C([H])C([*])=C([H])C([H])=C1[H] 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- VZQGHOBWGDERTA-UHFFFAOYSA-N C1CN(CCC1CCS)CCCCCS Chemical compound C1CN(CCC1CCS)CCCCCS VZQGHOBWGDERTA-UHFFFAOYSA-N 0.000 description 1
- ZMDDBHVDWLXXRS-UHFFFAOYSA-O CCCC[N+](CCCC)(CCCC)CCCS Chemical compound CCCC[N+](CCCC)(CCCC)CCCS ZMDDBHVDWLXXRS-UHFFFAOYSA-O 0.000 description 1
- ZNHSTVIXZWLCPZ-UHFFFAOYSA-N CCO.CCO[SiH3] Chemical compound CCO.CCO[SiH3] ZNHSTVIXZWLCPZ-UHFFFAOYSA-N 0.000 description 1
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical group [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 150000001334 alicyclic compounds Chemical group 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- SJIIDWBFRZACDQ-UHFFFAOYSA-N pyridin-2-ylmethanethiol Chemical compound SCC1=CC=CC=N1 SJIIDWBFRZACDQ-UHFFFAOYSA-N 0.000 description 1
- YUWAUUTYKFAJBH-UHFFFAOYSA-N pyridin-4-ylmethanethiol Chemical compound SCC1=CC=NC=C1 YUWAUUTYKFAJBH-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- JCVQKRGIASEUKR-UHFFFAOYSA-N triethoxy(phenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1 JCVQKRGIASEUKR-UHFFFAOYSA-N 0.000 description 1
- NYKOSQYKBTVBFI-UHFFFAOYSA-O triethyl(3-sulfanylpropyl)azanium Chemical compound CC[N+](CC)(CC)CCCS NYKOSQYKBTVBFI-UHFFFAOYSA-O 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Silicon Polymers (AREA)
Description
本発明は、有機高分子シロキサンに関し、詳しくは固体酸触媒として有用な有機高分子シロキサン、それを用いた触媒及びその用途に関し、更に詳しくはスルホン酸基含有炭化水素基を有する有機高分子シロキサン、それを用いた触媒及びその用途に関する。 The present invention relates to an organic polymer siloxane, in particular, an organic polymer siloxane useful as a solid acid catalyst, a catalyst using the same and a use thereof, more specifically, an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group , The present invention relates to a catalyst using the catalyst and its use .
スルホン酸基を有する強酸性イオン交換体は種々の化学合成において固体酸触媒として広く利用されている。具体的には、(1)アルコール類の分子内脱水によるオレフィンや環状エーテルの合成、アルコール類同士の分子間脱水によるエーテル類の合成、アルコール類とカルボン酸類の分子間脱水によるエステル類の合成、アルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成といった脱水縮合反応、(2)オレフィン類の水和によるアルコール類の合成といった水和反応、(3)芳香族類とオレフィン類との反応によるアルキル芳香族の合成といったアルキル化反応のように種々の反応において固体酸触媒として用いられている。ほとんどの場合使用されるカチオン交換体はポリスチレン骨格を有し、フェニルスルホン酸基を有する一般的に陽イオン交換樹脂と呼ばれるものである。陽イオン交換樹脂は耐熱性が低く、一般的に100〜130℃が使用の上限とされている。また、著しい膨潤性による破壊、機械的強度の脆さ等の不利な点を有している。これに対して無機ポリマー系の場合、強固な構造、非膨潤性、高い温度に対する安定性を有しており、かかる欠点の大部分を避けることが可能である。無機ポリマー系イオン交換体の例としてスルホン酸基含有炭化水素基を有する有機高分子シロキサンが挙げられる。スルホン酸基含有炭化水素基を有する有機高分子シロキサンは特開昭59−20325号、特開昭61−272237号、特開平6−207021号、特開平5−271243号、J.Mol.Catal.,43,41(1987)に、いずれも高い耐熱性、物理的強度の高さを有していることが記載されている。これらの有機高分子シロキサンはいずれも多孔質物質であり、高表面積を有し、500Å以上のマクロポーラス部、20〜500Åのメソポーラス部、20Å以下のミクロポーラス部を有しているが細孔の大部分はメソポーラス部に存在している。そのため上記特許記載の有機高分子シロキサンを固体酸触媒として用いた場合、メソポーラス部において反応にともなう副生成物が触媒上に堆積して、最終的には細孔が閉塞することによって触媒活性が失活するという問題を有している。 Strongly acidic ion exchangers having sulfonic acid groups are widely used as solid acid catalysts in various chemical syntheses. Specifically, (1) synthesis of olefins and cyclic ethers by intramolecular dehydration of alcohols, synthesis of ethers by intermolecular dehydration of alcohols, synthesis of esters by intermolecular dehydration of alcohols and carboxylic acids, Dehydration condensation reaction such as synthesis of alkyl aromatic compounds by intermolecular dehydration of aldehydes or ketones and aromatics, (2) Hydration reaction such as synthesis of alcohols by hydration of olefins, (3) Aromatics It is used as a solid acid catalyst in various reactions such as alkylation reactions such as synthesis of alkyl aromatics by reaction of olefins with olefins. The cation exchanger used in most cases has what is called a cation exchange resin having a polystyrene skeleton and having phenylsulfonic acid groups. Cation exchange resins have low heat resistance, and the upper limit of use is generally 100 to 130 ° C. Further, it has disadvantages such as breakage due to remarkable swelling and brittleness of mechanical strength. On the other hand, the inorganic polymer system has a strong structure, non-swelling property, and stability to a high temperature, and most of such defects can be avoided. Examples of the inorganic polymer ion exchanger include organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. Organic polymer siloxanes having sulfonic acid group-containing hydrocarbon groups are disclosed in JP-A-59-20325, JP-A-61-272237, JP-A-6-207021, JP-A-5-271243, J. Pat. Mol. Catal. , 43, 41 (1987) all have high heat resistance and high physical strength. All of these organic polymer siloxanes are porous materials, have a high surface area, have a macroporous part of 500 mm or more, a mesoporous part of 20 to 500 mm, and a microporous part of 20 kg or less, but are porous. Most are present in the mesoporous region. For this reason, when the organic polymer siloxane described in the above patent is used as a solid acid catalyst, by-products resulting from the reaction are deposited on the catalyst in the mesoporous region, and eventually the pores are blocked, resulting in a loss of catalytic activity. It has a problem of being alive.
スルホン酸基を有する強酸性イオン交換体の用途の一つとして、固体酸触媒としてビスフェノールA[2,2−ビス(4−ヒドロキシフェニル)プロパン]の合成に用いることが可能である。ビスフェノールAは通常固体酸触媒にアセトンとモル比にして8〜15倍の過剰のフェノールを通液する、いわゆる固定床流通反応の形態で連続的に製造されている。ビスフェノールA合成用触媒としてはスルホン酸点の一部を2−(4−ピリジル)エタンチオール(特開昭57−035533号)、N,N,N−トリメチル−3−メルカプトプロピルアンモニウム(特開平08−089819号)N,N−ジメチル−3−メルカプトプロピルアンモニウム(特開平08−187436号)、1−(5−メルカプトペンチル)−4−(2−メルカプトエチル)ピペリジン(特開平10−211434号)等のメルカプトアルキル基を有する含窒素化合物により修飾した触媒が知られている。
また、特開平8−208545に記載のスルホン酸基含有炭化水素とメルカプトアルキル基含有炭化水素を共にケイ素骨格に固定化した有機高分子シロキサンは、高い触媒活性を有することが記載されている。しかしながら、この有機高分子シロキサンを固定床流通反応で用いた場合、特開2000−297056、特開2000−290208、特開2001−212465に記載されているように、触媒活性が連続的に低下する。上記特許明細書には、原料であるアセトンとフェノールへの水の添加、スルホン酸基含有炭化水素基とメルカプト基含有炭化水素基の合計量を有機高分子シロキサンの単位比表面積(1m2/g)あたり0.3〜2.0μmol/m2の範囲に限定するといった方法を用いることで劣化の抑制が可能であることが示されている。しかし、反応時間の経過による連続的な触媒活性の低下という問題は解決されていない。そのため、そのような触媒をそのまま固定床に充填すると、使用とともに触媒活性が低下し満足な生産性の維持が困難になる。また、媒触活性が低下すると触媒の入れ替え作業が必要となるが、連続的な触媒活性の低下が大きい触媒を用いると触媒の使用期間が短くなり、触媒コストが増大し経済的な損失が大きくなる。さらに、入れ替えのためには一定期間生産を停止しなければならない。以上のような問題のため触媒活性が連続的に低下する触媒を用いることは、工業的に不利である。
Further, it is described that an organic polymer siloxane in which both a sulfonic acid group-containing hydrocarbon and a mercaptoalkyl group-containing hydrocarbon described in JP-A-8-208545 are immobilized on a silicon skeleton has high catalytic activity. However, when this organic polymer siloxane is used in a fixed bed flow reaction, as described in JP 2000-297056 A, JP 2000-290208 A, JP 2001-212465 A, the catalytic activity continuously decreases. . In the above patent specification, water is added to the raw materials acetone and phenol, and the total amount of sulfonic acid group-containing hydrocarbon group and mercapto group-containing hydrocarbon group is expressed as a unit specific surface area (1 m 2 / g of organic polymer siloxane). It is shown that deterioration can be suppressed by using a method of limiting to 0.3 to 2.0 μmol / m 2 . However, the problem of continuous decrease in catalytic activity due to the passage of reaction time has not been solved. Therefore, if such a catalyst is filled in a fixed bed as it is, the catalyst activity decreases with use and it becomes difficult to maintain satisfactory productivity. In addition, if the catalyst activity decreases, replacement work of the catalyst becomes necessary. However, if a catalyst having a large continuous decrease in catalyst activity is used, the period of use of the catalyst is shortened, the catalyst cost increases, and economic loss increases. Become. In addition, production must be stopped for a certain period for replacement. It is industrially disadvantageous to use a catalyst whose catalytic activity continuously decreases due to the above problems.
本発明は、細孔径が20〜500Åであるメソポーラス部の細孔の存在割合が、特定の値以下である新規なスルホン酸基含有有機高分子シロキサンを提供とすることを目的としている。さらに本発明は、有機高分子シロキサンを固体酸触媒として用いた場合に、反応にともなう副生成物がメソポーラス部において堆積し、触媒活性が失活するという問題を解決することを課題としている。 An object of the present invention is to provide a novel sulfonic acid group-containing organic polymer siloxane in which the proportion of pores in the mesoporous region having a pore diameter of 20 to 500 mm is a specific value or less. Another object of the present invention is to solve the problem that, when an organic polymer siloxane is used as a solid acid catalyst, a by-product accompanying the reaction is deposited in the mesoporous region and the catalytic activity is deactivated.
本発明者らは、かかる問題点を解決するため鋭意研究を行い、有機高分子シロキサンに存在する細孔のうち、細孔径が20〜500Åであるものの存在比が特定の範囲にあると、触媒活性の失活を抑制できることを見出した。すなわち窒素ガス吸着法により測定される細孔径が9〜500Åである細孔の全容積に対し、細孔径20〜500Åのメソポーラス細孔が占める割合が、容積比で0〜20%であると触媒活性の失活を抑制できることを見出し、さらに、このような有機高分子シロキサンは、以下に詳述するように特定のスルホン酸基含有炭化水素基を有するアルコキシシランまたは該アルコキシシランの加水分解物を用いて、特定の製造方法により得られることを見出して本発明を完成するに至った。さらにこの有機高分子シロキサンのスルホン酸の一部をメルカプト基を有する含窒素化合物により修飾しビスフェノールA合成反応に使用したところ、驚くべきことに触媒寿命が大幅に向上することを見出した。 The present inventors have intensively studied to solve such problems, and among the pores present in the organic polymer siloxane, if the abundance ratio of those having a pore diameter of 20 to 500 mm is in a specific range, the catalyst It has been found that the deactivation of activity can be suppressed. That is, when the ratio of the mesoporous pores having a pore diameter of 20 to 500 to the total volume of the pores having a pore diameter of 9 to 500 mm measured by the nitrogen gas adsorption method is 0 to 20% by volume, the catalyst It has been found that the deactivation of the activity can be suppressed . Further, as described in detail below, such an organic polymer siloxane is obtained by using an alkoxysilane having a specific sulfonic acid group-containing hydrocarbon group or a hydrolyzate of the alkoxysilane. The present invention was completed by finding that it was obtained by a specific production method . Furthermore, when a part of the sulfonic acid of the organic polymer siloxane was modified with a nitrogen-containing compound having a mercapto group and used for the bisphenol A synthesis reaction, it was surprisingly found that the catalyst life was greatly improved.
本発明の方法により、細孔径9〜500Åの細孔容積に対し、細孔径20〜500Åのメソポーラス部の細孔容積の存在割合が0〜20%であるスルホン基含有炭化水素基を有する有機高分子シロキサンを調製することで、触媒寿命が著しく向上し、さらに反応器の流路閉塞など生じることのない、プロセス上、安全かつ経済的な触媒として工業上重要であるビスフェノールA等種々の化合物の製造をプロセス上および経済上著しく優位に行うことができる。 According to the method of the present invention, an organic polymer having a sulfone group-containing hydrocarbon group having a pore volume of a mesoporous part having a pore diameter of 20 to 500 mm is 0 to 20% with respect to a pore volume having a pore diameter of 9 to 500 mm. By preparing molecular siloxane, the life of the catalyst is remarkably improved, and the flow path of the reactor is not clogged. Further, various compounds such as bisphenol A, which are industrially important as a process-safe and economical catalyst, can be obtained. Manufacture can be made significantly more process and economical.
本発明におけるスルホン酸基含有炭化水素基を有する有機高分子シロキサンとは、特開昭59−20325号、特開昭61−272237号、特開平6−207021号、特開平5−271243、J.Mol.Cata1.,43,41(1987)に記載されているシロキサン結合からなるシリカマトリックス中に、部分的にスルホン酸基含有炭化水素基が直接シリカマトリックス中のケイ素原子と炭素−ケイ素結合した構造を有する有機高分子シロキサンである。
本発明のスルホン酸基を有する有機高分子シロキサンは、種々の化学合成において固体酸触媒として用いることができるが、とりわけ次の反応に好適に用いられる。
(1)アルコール類の分子内脱水によるオレフィンや環状エーテルの合成、アルコール類同士の分子間脱水によるエーテル類の合成、アルコール類とカルボン酸類の分子間脱水によるエステル類の合成、アルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成といった脱水縮合反応;
(2)オレフィン類の水和によるアルコール類の合成といった水和反応;(3)芳香族類とオレフィン類との反応によるアルキル芳香族の合成といったアルキル化反応。
とりわけアルデヒド類もしくはケトン類と芳香族類との分子間脱水によるアルキル芳香族化合物の合成反応に好適に用いることができ、とりわけビスフェノール類の合成に好適に用いることが出来る。例えばアセトンとフェノールからビスフェノールAを合成する反応、ホルムアルデヒドとフェノールからビスフェノールFを合成する反応等が例示される。
Examples of the organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group in the present invention include JP-A-59-20325, JP-A-61-272237, JP-A-6-207021, JP-A-5-271243, J. Pat. Mol. Cat1. 43, 41 (1987), the organic matrix having a structure in which a sulfonic acid group-containing hydrocarbon group is partially carbon-silicon bonded directly to a silicon atom in the silica matrix. Molecular siloxane.
The organic polymer siloxane having a sulfonic acid group of the present invention can be used as a solid acid catalyst in various chemical syntheses, but is particularly suitable for the following reaction.
(1) Synthesis of olefins and cyclic ethers by intramolecular dehydration of alcohols, synthesis of ethers by intermolecular dehydration of alcohols, synthesis of esters by intermolecular dehydration of alcohols and carboxylic acids, aldehydes or ketones Dehydration condensation reaction such as synthesis of alkylaromatic compounds by intermolecular dehydration of benzene and aromatics;
(2) Hydration reaction such as synthesis of alcohols by hydration of olefins; (3) Alkylation reaction such as synthesis of alkyl aromatics by reaction of aromatics and olefins.
In particular, it can be suitably used for the synthesis reaction of alkyl aromatic compounds by intermolecular dehydration of aldehydes or ketones and aromatics, and particularly preferably for the synthesis of bisphenols. Examples thereof include a reaction for synthesizing bisphenol A from acetone and phenol, and a reaction for synthesizing bisphenol F from formaldehyde and phenol.
スルホン酸基を有する炭化水素基は、少なくとも1個のスルホン酸基(−SO3H)を有する炭化水素基であれば、いかなる炭化水素基であっても本発明に使用することが可能である。スルホン酸基を有する炭化水素としては、好ましくはスルホン酸基含有炭化水素基を少なくとも1個有する、炭素数1以上20以下の炭化水素基があげられる。より好ましくは炭素数6以上20以下、更に好ましくは炭素数6以上15以下の、少なくとも1個のスルホン酸基を有する置換ないしは無置換の芳香族炭化水素基(芳香族基に直接スルホン酸基が置換された基でも、芳香族基に置換された炭化水素基にスルホン酸基が置換された基でもよい)、また好ましくは少なくとも1個のスルホン酸基を有する炭素数1以上15以下、更に好ましくは炭素数1以上10以下の置換ないしは無置換の脂肪族および脂環式炭化水素基よりなる群から選ばれた少なくとも1種の炭化水素基があげられる。 As the hydrocarbon group having a sulfonic acid group, any hydrocarbon group having at least one sulfonic acid group (—SO 3 H) can be used in the present invention. The hydrocarbon having a sulfonic acid group is preferably a hydrocarbon group having at least one sulfonic acid group-containing hydrocarbon group and having 1 to 20 carbon atoms. More preferably, it is a substituted or unsubstituted aromatic hydrocarbon group having 6 or more and 20 or less carbon atoms, more preferably 6 or more and 15 or less carbon atoms and having at least one sulfonic acid group (a sulfonic acid group is directly bonded to the aromatic group). Or a hydrocarbon group substituted with an aromatic group may be substituted with a sulfonic acid group), and preferably has at least one sulfonic acid group having 1 to 15 carbon atoms, more preferably Includes at least one hydrocarbon group selected from the group consisting of substituted or unsubstituted aliphatic and alicyclic hydrocarbon groups having 1 to 10 carbon atoms.
このようなスルホン酸基含有炭化水素基を有する炭化水素基の例としては、少なくとも1個のスルホン酸基により核置換されたフェニル基、トリル基、ナフチル基、メチルナフチル基等の芳香族基、ベンジル基、ナフチルメチル基等の芳香族置換アルキル基等、少なくとも1個のスルホン酸基で置換された、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、直鎖または分枝のペンチル基、直鎖または分枝のヘキシル基、直鎖または分枝のヘプチル基、直鎖または分枝のオクチル基、シクロヘキシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等があげられる。さらにこれらの芳香族炭化水素基、または飽和・不飽和の脂肪族炭化水素(脂環式化合物を含む)基は、スルホン酸基の他にハロゲン原子、アルコキシ基、ニトロ基、ヒドロキシ基等の置換基を有する炭化水素基であってもよい。 Examples of the hydrocarbon group having such a sulfonic acid group-containing hydrocarbon group include aromatic groups such as a phenyl group, a tolyl group, a naphthyl group, and a methylnaphthyl group that are nucleus-substituted by at least one sulfonic acid group, A methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i- group substituted with at least one sulfonic acid group such as an aromatic substituted alkyl group such as a benzyl group or a naphthylmethyl group. Butyl group, t-butyl group, linear or branched pentyl group, linear or branched hexyl group, linear or branched heptyl group, linear or branched octyl group, cyclohexyl group, methylcyclohexyl group And an ethylcyclohexyl group. Furthermore, these aromatic hydrocarbon groups or saturated / unsaturated aliphatic hydrocarbon (including alicyclic compounds) groups are substituted with halogen atoms, alkoxy groups, nitro groups, hydroxy groups, etc. in addition to sulfonic acid groups. It may be a hydrocarbon group having a group.
このような有機高分子シロキサンの調製法としては以下に示す(1)〜(3)の方法で調製が可能である。実施しうる調製方法として、(1)スルホン酸基含有炭化水素基を有するアルコキシシランとテトラアルコキシシランとを任意の割合で混合し、加水分解、共縮合する調製法、(2)水溶性のスルホン酸基含有炭化水素基を有するアルコキシシランの加水分解物とテトラアルコキシシランとを任意の割合で混合し加水分解させて共縮合する調製法、といったいわゆるアルコキシシランのゾル−ゲル法による調製法や、(3)スルホン酸基含有炭化水素基を有するアルコキシシランを有機高分子シロキサンに存在するシラノール基にシリル化しスルホン酸基を固定する、いわゆるシリル化による調製法が挙げられる。
上記(1)〜(3)のいずれかの調製法により得られるこれらの有機高分子シロキサンは多孔性物質であり、9〜500Åの細孔の比表面積は500〜1500m2/gと非常に高く、一般に表面積の大部分はメソポーラス部(20〜500Å)が占めている。本発明で重要なのは、この多孔性物質である有機高分子シロキサンの細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合を0〜20%とすることで、メルカプト基を有する含窒素化合物により修飾した有機高分子シロキサンの触媒寿命が大幅に向上することを見出したことである。細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合を減少させる方法として以下の方法で調製することが可能である。
Such an organic polymer siloxane can be prepared by the following methods (1) to (3) . As preparation methods that can be carried out , ( 1) a preparation method in which an alkoxysilane having a sulfonic acid group-containing hydrocarbon group and a tetraalkoxysilane are mixed at an arbitrary ratio, followed by hydrolysis and cocondensation, (2) a water-soluble sulfone A preparation method by a sol-gel method of so-called alkoxysilane, such as a preparation method in which a hydrolyzate of an alkoxysilane having an acid group-containing hydrocarbon group and a tetraalkoxysilane are mixed and hydrolyzed and co-condensed at an arbitrary ratio, (3) an alkoxysilane having a sulfonic acid group-containing hydrocarbon group to fix the silylated sulfonic acid silanol groups present on polyorganosiloxanes, preparation by a so-called silylation and the like.
These organic polymer siloxanes obtained by any one of the preparation methods (1) to (3) are porous materials, and the specific surface area of 9 to 500 mm pores is as extremely high as 500 to 1500 m 2 / g. In general, most of the surface area is occupied by the mesoporous part (20 to 500 cm). What is important in the present invention is that the existence ratio of the pore volume having a pore diameter of 20 to 500 mm (mesoporous part) is 0 to 20% with respect to the pore volume having a pore diameter of 9 to 500 mm of the organic polymer siloxane as the porous material. Thus, it has been found that the catalyst life of the organic polymer siloxane modified with the nitrogen-containing compound having a mercapto group is significantly improved. Can der be prepared in the following manner as a method of reducing the existence ratio of the pore volume of pore diameter 20~500A (mesoporous portion) Ru.
実施しやすい調製法としては、スルホン酸基含有炭化水素基を調製する際のスルホン化の収率を向上させ、さらに「テトラエトキシシランのモル量」と「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」との比を調整することにより調製が可能である。具体的に説明すると、フェニルスルホン酸を有するアルコキシシランの合成において、原料であるフェニルトリクロロシランに対し、スルホン化剤の無水硫酸を2.5当量と過剰に加え、反応温度を上げスルホン化する。さらにアルコールによりアルコキシ化したものをゾル−ゲル調製の原料として用いる。アルコールとしては特に限定されることがないが、好ましくは炭素数1〜5のアルキル基を有する直鎖飽和炭素を有するアルコールがあげられる。有機高分子シロキサンのゾル−ゲル調製法としては、上記したスルホン酸基含有炭化水素基を有するアルコキシシランとテトラエトキシシランを混合し、エタノール等を用い均一な混合溶媒とする。この際、「スルホン酸基含有炭化水素基を有するアルコキシシランのモル量」:「テトラエトキシシランのモル量」が1:3〜7であることが重要である。これに加水分解基量に対して1当量の水を加えた後、加熱攪拌し、酸性条件下で濃縮する。 An easy preparation method is to improve the yield of sulfonation when preparing a sulfonic acid group-containing hydrocarbon group, and further to improve the molar amount of tetraethoxysilane and alkoxy having a sulfonic acid group-containing hydrocarbon group. It can be prepared by adjusting the ratio to the “molar amount of silane”. Specifically, in the synthesis of an alkoxysilane having phenylsulfonic acid, an excess of 2.5 equivalents of sulfuric anhydride as a sulfonating agent is added to the raw material phenyltrichlorosilane to raise the reaction temperature and sulfonate. Further, an alkoxylated product with alcohol is used as a raw material for preparing a sol-gel. Although it does not specifically limit as alcohol, Preferably the alcohol which has a linear saturated carbon which has a C1-C5 alkyl group is mention | raise | lifted. As a method for preparing a sol-gel of an organic polymer siloxane, alkoxysilane having a sulfonic acid group-containing hydrocarbon group and tetraethoxysilane are mixed, and ethanol or the like is used as a uniform mixed solvent. At this time, it is important that “molar amount of alkoxysilane having a sulfonic acid group-containing hydrocarbon group”: “molar amount of tetraethoxysilane” is 1: 3-7. After adding 1 equivalent of water to the amount of hydrolyzable groups, the mixture is heated and stirred and concentrated under acidic conditions.
得られた高粘度の液体は一般にシリカゾルと呼ばれるものである。上記したシリカゾルに、加水分解基量に対して過剰の水とアンモニア水等を加え、塩基性条件下でゲル化させる。また、この時必要であるならば、加熱し長時間熟成させることもできる。得られたゲルは、溶媒を留去することにより単離できる。このゲルはスルホン酸がアンモニウム塩型であるため、固体酸触媒として用いるために酸処理により酸型に戻す必要がある。 The obtained high-viscosity liquid is generally called silica sol. To the silica sol described above, excess water, aqueous ammonia and the like are added with respect to the amount of hydrolyzable groups, and gelled under basic conditions. Moreover, if necessary at this time, it can be heated and aged for a long time. The resulting gel can be isolated by distilling off the solvent. In this gel, the sulfonic acid is in the ammonium salt form, so that it must be returned to the acid form by acid treatment in order to be used as a solid acid catalyst.
本発明で使用するメルカプト基を有する含窒素化合物としては、下記一般式[1]で表されるメルカプトアルキル基を有するピリジン化合物、下記一般式[2]で表されるメルカプトアルキル基を有するテトラアルキルアンモニウムカチオン、下記一般式[3]で表されるメルカプトアルキル基を有するトリアルキルアミン化合物等がある。
メルカプトアルキル基を有するピリジン化合物とは、ピリジン環にメルカプトアルキル基が結合した含窒素化合物であり、下記一般式[1]で表される。
Examples of the nitrogen-containing compound having a mercapto group used in the present invention include a pyridine compound having a mercaptoalkyl group represented by the following general formula [1], and a tetraalkyl having a mercaptoalkyl group represented by the following general formula [2]. ammonium cation, a trialkyl amine compound having a mercaptoalkyl group represented by the following general formula [3].
The pyridine compounds having a mercaptoalkyl group, a nitrogen-containing compound der the mercaptoalkyl group to a pyridine ring bonded is, represented by the following general formula [1].
このような含窒素化合物としては、具体的には例えば、4-ピリジンメタンチオール、3-ピリジルメタンチオール、2-ピリジルメタンチオール、2-(4-ピリジル)エタンチオール、2-(3-ピリジル)エタンチオール、2-(2-ピリジル)エタンチオール、3-(4-ピリジル)プロパンチオール、3-(2-ピリジル)プロパンチオール等があげられる。
Specific examples of such nitrogen-containing compounds include 4-pyridinemethanethiol, 3-pyridylmethanethiol, 2-pyridylmethanethiol, 2- (4-pyridyl) ethanethiol, and 2- (3-pyridyl). Examples include ethanethiol, 2- (2-pyridyl) ethanethiol, 3- (4-pyridyl) propanethiol, 3- (2-pyridyl) propanethiol, and the like.
本発明で使用するメルカプトアルキル基を有するテトラアルキルアンモニウムカチオンとは、アミンの窒素原子にメルカプトアルキル基以外に三つのアルキル基が結合した含窒素化合物(メルカプトアルキル基含有テトラアルキルアンモニウム化合物)から導かれるカチオンである。
このような含窒素化合物としては、下記一般式[2]で表されるものがある。
The tetraalkylammonium cation having a mercaptoalkyl group used in the present invention is derived from a nitrogen-containing compound (mercaptoalkyl group-containing tetraalkylammonium compound) in which three alkyl groups other than the mercaptoalkyl group are bonded to the nitrogen atom of the amine. It is a cation.
Such nitrogen-containing compounds include those represented by the following general formula [2].
R1の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、、n−ヘプチル基等が挙げられる。これらの中では、メチル基、エチル基、n−プロピル基、n−ブチル基等が好ましい。
上記式[2]のメルカプトアルキル基としては、メルカプトプロピル基が好ましい。このような含窒素化合物としては、具体的には例えば、N,N,N−トリメチル−3−メルカプトプロピルアンモニウム、N,N,N−トリエチル−3−メルカプトプロピルアンモニウム、N,N,N−トリプロピル−3−メルカプトプロピルアンモニウム、N,N,N−トリブチル−3−メルカプトプロピルアンモニウム等があげられる。また、通常これらアンモニウムカチオンは、カウンターアニオンにCl-、Br-等のハロゲンが用いられる。
Examples of R 1 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group. In these, a methyl group, an ethyl group, n-propyl group, n-butyl group etc. are preferable.
The mercaptoalkyl group of the above formula [2] is preferably a mercaptopropyl group. Specific examples of such nitrogen-containing compounds include N, N, N-trimethyl-3-mercaptopropylammonium, N, N, N-triethyl-3-mercaptopropylammonium, N, N, N-trimethyl. Examples thereof include propyl-3-mercaptopropylammonium, N, N, N-tributyl-3-mercaptopropylammonium and the like. Usually, these ammonium cations use halogens such as Cl − and Br − as counter anions.
本発明で使用するメルカプトアルキル基を有するトリアルキルアミン化合物とは、アミンの窒素原子にメルカプトアルキル基以外に二つのアルキル基が結合した含窒素化合物である。
このような含窒素化合物としては、下記一般式[3]で表されるものがある。
The trialkyl amine compound having a mercaptoalkyl group to be used in the present invention, a nitrogen-containing compound in which two alkyl groups bonded to non-mercaptoalkyl group to the nitrogen atom of the amine.
Such nitrogen-containing compounds include those represented by the following general formula [3].
[3]
(式中のR4・R5は、それぞれ独立に炭素数が1〜10のアルキル基を表し、cは1〜6の整数である)
R1の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基等が挙げられる。これらの中では、メチル基、エチル基、n−プロピル基、n−ブチル基等が好ましい。
メルカプトアルキル基としては、メルカプトプロピル基が好ましい。このような含窒素化合物としては、具体的には例えば、N,N−ジメチル−3−メルカプトプロピルアンモニウム、N,N−ジエチル−3−メルカプトプロピルアンモニウム、N,N−ジプロピル−3−メルカプトプロピルアンモニウム、N,N−ジブチル−3−メルカプトプロピルアンモニウム等があげられる。
[3]
(Wherein R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, and c is an integer of 1 to 6)
Examples of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group and the like. In these, a methyl group, an ethyl group, n-propyl group, n-butyl group etc. are preferable.
As the mercaptoalkyl group, a mercaptopropyl group is preferable. Specific examples of such nitrogen-containing compounds include N, N-dimethyl-3-mercaptopropylammonium, N, N-diethyl-3-mercaptopropylammonium, and N, N-dipropyl-3-mercaptopropylammonium. N, N-dibutyl-3-mercaptopropylammonium and the like.
メルカプト基を有する含窒素化合物による修飾は、スルホン酸基を有する有機高分子シロキサンとともに溶媒中で混合させることにより行うことができる。溶媒としては、メルカプト基を有する含窒素化合物を溶解させうるものであれば、特に限定されない。反応温度としては常温または加温が採用され、反応時間は特に長時間を必要とせず数分で十分であるが、均一に反応させるため反応混合物は攪拌されていることが好ましい。この反応においては、未修飾有機高分子シロキサン中に含まれるスルホン酸基の一部、43〜95%、好ましくは43〜50%がメルカプトアルキル基に変換されるように行うのがよい。 Modification with a nitrogen-containing compound having a mercapto group can be carried out by mixing in a solvent with an organic polymer siloxane having a sulfonic acid group. The solvent is not particularly limited as long as it can dissolve a nitrogen-containing compound having a mercapto group. As the reaction temperature, normal temperature or warming is adopted, and the reaction time does not require a long time, and a few minutes is sufficient. However, the reaction mixture is preferably stirred for uniform reaction. In this reaction, a part of the sulfonic acid group contained in the unmodified organic polymer siloxane , 43 to 95 %, preferably 43 to 50%, is preferably converted into a mercaptoalkyl group.
メルカプトアルキル基で修飾したスルホン酸基含有有機高分子シロキサンを充填した固定床流通式反応装置を用いてビスフェノールAを製造する場合、原料であるアセトンとフェノールのモル比は通常1:3〜15の範囲好ましくは1:5〜10の範囲、また反応温度は通常70℃〜130℃の範囲好ましくは70℃〜100℃の範囲で一般的な条件の下に実施される。固体触媒の酸量は、過剰の塩化ナトリウム水溶液でイオン交換し、遊離した塩酸を定量する事で求められる。またメルカプト量は、塩化ナトリウムで酸点をイオン交換したのち、濾別した触媒を硝酸銀水溶液を用いてメルカプト基と銀メルカプチドを生成させ、遊離した硝酸を定量することにより求めることが可能である。その他にも、ヨウ素による酸化還元滴定により定量可能である。
[実施例]
When bisphenol A is produced using a fixed bed flow reactor filled with a sulfonic acid group-containing organic polymer siloxane modified with a mercaptoalkyl group, the molar ratio of the raw material acetone to phenol is usually from 1: 3 to 15. The reaction is carried out under general conditions in the range of preferably 1: 5 to 10 and the reaction temperature is usually in the range of 70 ° C to 130 ° C, preferably in the range of 70 ° C to 100 ° C. The acid amount of the solid catalyst can be determined by ion exchange with an excess aqueous sodium chloride solution and quantifying the liberated hydrochloric acid. The amount of mercapto can be determined by ion-exchanging acid sites with sodium chloride, and then forming a mercapto group and a silver mercaptide using a silver nitrate aqueous solution, and quantifying the liberated nitric acid. In addition, it can be quantified by oxidation-reduction titration with iodine.
[Example]
以下、本発明を実施例、および比較例により具体的に説明する。しかしながら、この実施例は単なる例示であって、本発明はこれらに限定されるものではない。また、実施例において、触媒の寿命を300時間後の劣化率(アセトン転化率において20時間の値と300時間の値との差を20時間の値で除した値)で表わした。また、細孔径9〜500Åの細孔容積に対し、細孔径20〜500Å(メソポーラス部)の細孔容積の存在割合をメソ孔存在割合(20〜500Åの細孔容積の値を、9〜500Åの細孔容積の値で除した値)として表わした。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, this embodiment is merely an example, and the present invention is not limited thereto. Further, in the examples, the life of the catalyst was expressed by the deterioration rate after 300 hours (the value obtained by dividing the difference between the value of 20 hours and the value of 300 hours by the value of 20 hours in the acetone conversion). Further, with respect to the pore volume with a pore diameter of 9 to 500 mm, the ratio of the pore volume with a pore diameter of 20 to 500 mm (mesoporous part) is the mesopore presence ratio (the value of the pore volume with 20 to 500 mm is 9 to 500 mm). The value is divided by the value of the pore volume.
(1)スルホン酸基含有アルコキシシランの合成
スルホン酸基含有アルコキシシラン1
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン39.1g(0.19mol)を加え、氷冷した。これに無水硫酸37.3g(0.47mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後外温を60℃にし、還流下2時間反応を行いスルホン化反応を行った。次に、外温60℃でエタノール46.0gを塩化水素を除きながら1時間かけて滴下し、ついで外温を100℃にし、塩化メチレンを留去した。さらに、エタノール46.0gを滴下し、外温100℃で2時間還流してエトキシ化反応を行った。得られた不純物を含むスルホン酸基含有エトキシシランのエタノール溶液162.7gをスルホン酸基含有アルコキシシラン1とし、スルホン酸基含有炭化水素基を有する有機高分子シロキサンのゾル−ゲル調製におけるスルホン酸成分の原料として用いた。この際、スルホン酸基含有アルコキシシラン1とテトラエトキシシランを任意の割合で混合し、ゾル−ゲル調製によりスルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製し、その固体酸量を測定する。その求めた酸量から得られる、仕込時のスルホン酸基含有アルコキシシラン1の濃度から、スルホン化収率(仕込みフェニルトリクロロシランに対する、生成したスルホン酸基含有エトキシシランの収率)を求めた。スルホン酸基含有アルコキシシラン1でのスルホン化収率は70%であった。
(1) Synthesis of sulfonic acid group-containing alkoxysilane
Sulfonic acid group-containing alkoxysilane 1
100 ml of methylene chloride was placed in a two-necked 300 ml round bottom flask equipped with a dropping funnel, and 39.1 g (0.19 mol) of phenyltrichlorosilane was added thereto, followed by ice cooling. To this, 20 ml of a methylene chloride solution containing 37.3 g (0.47 mol) of anhydrous sulfuric acid was added dropwise over 1 hour. After dripping, the external temperature was set to 60 ° C., and the reaction was carried out for 2 hours under reflux to carry out sulfonation reaction. Next, 46.0 g of ethanol was added dropwise over 1 hour while removing hydrogen chloride at an external temperature of 60 ° C., and then the external temperature was raised to 100 ° C. to distill off methylene chloride. Further, 46.0 g of ethanol was added dropwise and refluxed at an external temperature of 100 ° C. for 2 hours to carry out an ethoxylation reaction. The sulfonic acid component in the sol-gel preparation of the organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group is obtained by using 162.7 g of the obtained sulfonic acid group-containing ethoxysilane ethanol solution containing the impurity as the sulfonic acid group-containing alkoxysilane 1. Used as a raw material. At this time, the sulfonic acid group-containing alkoxysilane 1 and tetraethoxysilane are mixed in an arbitrary ratio to prepare an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group by sol-gel preparation, and the solid acid amount is measured. To do. From the concentration of the sulfonic acid group-containing alkoxysilane 1 at the time of charging, which was obtained from the determined acid amount, the sulfonation yield (the yield of the generated sulfonic acid group-containing ethoxysilane with respect to the charged phenyltrichlorosilane) was determined. The sulfonation yield in the sulfonic acid group-containing alkoxysilane 1 was 70%.
スルホン酸基含有アルコキシシラン2
滴下ロートを取り付けた2口の300mlの丸底フラスコに塩化メチレンを100ml入れ、これにフェニルトリクロロシラン130.0g(0.62mol)を加え、氷冷した。これに無水硫酸50.0g(0.63mol)の塩化メチレン溶液20mlを、1時間かけて滴下した。滴下後、室温で1時間攪拌し、スルホン化反応を行った。次に、外温を100℃にし塩化メチレンを留去した。ついで、外温100℃で無水エタノール114gを塩化水素を除きながら、2時間かけて滴下しエトキシ化反応を行った。得られた不純物を含むフェニルスルホン酸基含有エトキシシランのエタノール溶液214.0gをスルホン酸基含有アルコキシシラン2とし、スルホン酸基含有炭化水素基を有する有機高分子シロキサンのゾル−ゲル調製におけるスルホン酸成分の原料として用いた。この際、スルホン酸基含有アルコキシシラン2とテトラエトキシシランを任意の割合で混合し、ゾル−ゲル調製によりスルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製し、その固体酸量を測定する。その求めた酸量から得られる、スルホン酸基含有アルコキシシラン2の濃度から、スルホン化収率(仕込みフェニルトリクロロシランに対する、生成したスルホン酸基含有エトキシシランの収率)を求めた。スルホン酸基含有アルコキシシラン2でのスルホン化収率は、45%であった。
Sulfonic acid group-containing alkoxysilane 2
100 ml of methylene chloride was placed in a two-neck 300 ml round bottom flask equipped with a dropping funnel, and 130.0 g (0.62 mol) of phenyltrichlorosilane was added to the flask, and the mixture was ice-cooled. To this, 20 ml of a methylene chloride solution containing 50.0 g (0.63 mol) of anhydrous sulfuric acid was added dropwise over 1 hour. After the dropwise addition, the mixture was stirred at room temperature for 1 hour to carry out a sulfonation reaction. Next, the external temperature was set to 100 ° C., and methylene chloride was distilled off. Subsequently, 114 g of anhydrous ethanol was dropped at an external temperature of 100 ° C. over 2 hours while removing hydrogen chloride to carry out an ethoxylation reaction. The obtained sulfonic acid group-containing ethoxysilane-containing ethanol solution 214.0 g containing the resulting impurity was used as the sulfonic acid group-containing alkoxysilane 2, and the sulfonic acid in the sol-gel preparation of the organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. Used as ingredient raw material. In this case, sulfonic acid group-containing alkoxysilane 2 and tetraethoxysilane are mixed at an arbitrary ratio, and an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group is prepared by sol-gel preparation, and its solid acid amount is measured. To do. From the concentration of the sulfonic acid group-containing alkoxysilane 2 obtained from the determined acid amount, the sulfonation yield (the yield of the generated sulfonic acid group-containing ethoxysilane with respect to the charged phenyltrichlorosilane) was determined. The sulfonation yield in the sulfonic acid group-containing alkoxysilane 2 was 45%.
(2)有機高分子シロキサンの調製
触媒1
攪拌棒を取り付けた2口の1000mlの丸底フラスコに上記したスルホン酸基含有アルコキシシラン1を138.0g(0.11mol)、テトラエトキシシランを119.0g(0.57mol)、エタノール100mlを入れて混合した。これに水24.0gを15分かけて滴下し、60℃で3時間攪拌した。放冷後、水120.0gを1分間かけて滴下し、さらに28%アンモニア水35mlを滴下すると反応液は急速に固形化した。これを室温で4時間放置した後、60℃で3日間熟成させた。熟成後10mmHgの減圧下100℃で溶媒留去し、乾燥固体を得た。ついで2Nの塩酸300mlを加え、室温で30分間攪拌する操作を2回繰り返し、スルホン酸基をH+型にもどした。酸処理後、イオン交換水500mlで洗浄し、これを10mmHgの減圧下100℃で10時間乾燥させた。以上の操作により、スルホン酸基含有炭化水素基を有する有機高分子シロキサン55.1gを得、触媒1とした。この触媒1の固体酸量を測定したところ、1.42meq/gであった。また、窒素ガス吸着法により測定した比表面積は464m2/g、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åでは細孔の存在は認められず、メソ孔存在割合は0%であった。結果を表1に示す。
(2) Preparation of organic polymer siloxane
Catalyst 1
Place 138.0 g (0.11 mol) of the sulfonic acid group-containing alkoxysilane 1, 119.0 g (0.57 mol) of tetraethoxysilane, and 100 ml of ethanol in a two-neck 1000 ml round bottom flask equipped with a stir bar. And mixed. To this, 24.0 g of water was added dropwise over 15 minutes and stirred at 60 ° C. for 3 hours. After allowing to cool, 120.0 g of water was added dropwise over 1 minute, and when 35 ml of 28% aqueous ammonia was added dropwise, the reaction solution rapidly solidified. This was allowed to stand at room temperature for 4 hours and then aged at 60 ° C. for 3 days. After aging, the solvent was distilled off at 100 ° C. under a reduced pressure of 10 mmHg to obtain a dry solid. Subsequently, the operation of adding 300 ml of 2N hydrochloric acid and stirring for 30 minutes at room temperature was repeated twice to return the sulfonic acid group to the H + type. After the acid treatment, it was washed with 500 ml of ion-exchanged water and dried at 100 ° C. under a reduced pressure of 10 mmHg for 10 hours. By the above operation, 55.1 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was obtained, and used as catalyst 1. It was 1.42 meq / g when the amount of solid acids of this catalyst 1 was measured. In addition, the specific surface area measured by the nitrogen gas adsorption method was 464 m 2 / g, the pore volume of pore diameter 9 to 500 mm was 0.21 cc / g, and the presence of pores was not recognized when the pore diameter was 20 to 500 mm. The existence ratio was 0%. The results are shown in Table 1.
触媒2
攪拌棒を取り付けた2口の1000mlの丸底フラスコに上記したスルホン酸基含有アルコキシシラン2を42.0g(0.06mol)、テトラエトキシシラン150.0g(0.72mol)、エタノール100mlを入れて混合した。これに水29.0gを15分かけて滴下し、60℃で3時間攪拌した。放冷後、水140.0gを1分間かけて滴下し、さらに28%アンモニア水35mlを滴下すると反応液は急速に固形化した。これを室温で4時間放置した後、60℃で3日間熟成させた。熟成後10mmHgの減圧下100℃で溶媒留去し乾燥固体を得た。ついで2Nの塩酸300mlを加え、室温で30分間攪拌する操作を2回繰り返し、スルホン酸基をH+型にもどした。酸処理後、イオン交換水500mlで洗浄し、これを10mmHgの減圧下100℃で10時間乾燥させスルホン酸基含有炭化水素基を有する有機高分子シロキサン62.0gを得、触媒2とした。この触媒2の固体酸量を測定したところ、0.87meq/gであった。また、窒素ガス吸着法により測定した比表面積は741m2/gであり、細孔径9〜500Åの細孔容積は0.49cc/g、細孔径20〜500Åの細孔容積は0.14cc/gでありメソ孔存在割合は30%であった。結果を表1に示す。
Catalyst 2
42.0 g (0.06 mol) of the sulfonic acid group-containing alkoxysilane 2 described above, 150.0 g (0.72 mol) of tetraethoxysilane, and 100 ml of ethanol were placed in a two-neck 1000 ml round bottom flask equipped with a stir bar. Mixed. Water 29.0g was dripped at this over 15 minutes, and it stirred at 60 degreeC for 3 hours. After allowing to cool, 140.0 g of water was added dropwise over 1 minute, and when 35 ml of 28% aqueous ammonia was added dropwise, the reaction solution rapidly solidified. This was allowed to stand at room temperature for 4 hours and then aged at 60 ° C. for 3 days. After aging, the solvent was distilled off at 100 ° C. under a reduced pressure of 10 mmHg to obtain a dry solid. Subsequently, the operation of adding 300 ml of 2N hydrochloric acid and stirring for 30 minutes at room temperature was repeated twice to return the sulfonic acid group to the H + type. After the acid treatment, it was washed with 500 ml of ion-exchanged water and dried at 100 ° C. for 10 hours under reduced pressure of 10 mmHg to obtain 62.0 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. It was 0.87 meq / g when the amount of solid acids of this catalyst 2 was measured. Further, the specific surface area measured by the nitrogen gas adsorption method is 741 m 2 / g, the pore volume of pore diameter 9 to 500 mm is 0.49 cc / g, and the pore volume of pore diameter 20 to 500 mm is 0.14 cc / g. The mesopore existence ratio was 30%. The results are shown in Table 1.
触媒3
J.Mol.Cata1.,43,41(1987)記載の方法にしたがって、スルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製した。攪拌棒を取り付けた2口の1000mlの丸底フラスコに、フェニルトリエトキシシラン72.0g(0.30mol)、テトラエトキシシラン145.6g(0.70mol)、エタノール125mlを入れて混合した。これに0.01Nの塩酸35mlを滴下したのち、混合溶液の体積が120mlとなるまで加熱攪拌した。放冷後、エタノール60mlとシクロヘキサン90mlを加え混合した。ついで、水270gを滴下し、さらにアンモニア水50mlを滴下した。これを室温で4時間攪拌した後、濾別した。ついで水洗し、これを減圧下120℃で乾燥させ、フェニル基を有する有機高分子シロキサン80.0gを得た。
500mlの2口の丸底フラスコに、上記で得たフェニル基を有する有機高分子シロキサン10.0g、モル比でクロロスルホン酸:クロロホルム=1:4の混合溶液200mlを混合し、還流下で3時間スルホン化を行いスルホン酸基含有炭化水素基を有する有機高分子シロキサン8.5gを得、触媒3とした。この触媒3の固体酸量を測定したところ、1.10meq/gであった。また、窒素ガス吸着法により測定した比表面積は772m2/gであり、細孔径9〜500Åの細孔容積は0.21cc/g、細孔径20〜500Åの細孔容積は0.06cc/gでありメソ孔存在割合は30%であった。結果を表1に示す。
Catalyst 3
J. et al. Mol. Cata1. , 43, 41 (1987), an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was prepared. 72.0 g (0.30 mol) of phenyltriethoxysilane, 145.6 g (0.70 mol) of tetraethoxysilane, and 125 ml of ethanol were mixed in a two-neck 1000 ml round bottom flask equipped with a stir bar. To this was added dropwise 35 ml of 0.01N hydrochloric acid, and the mixture was heated and stirred until the volume of the mixed solution reached 120 ml. After allowing to cool, 60 ml of ethanol and 90 ml of cyclohexane were added and mixed. Subsequently, 270 g of water was added dropwise, and 50 ml of aqueous ammonia was further added dropwise. This was stirred at room temperature for 4 hours and then filtered off. Subsequently, it was washed with water and dried at 120 ° C. under reduced pressure to obtain 80.0 g of an organic polymer siloxane having a phenyl group.
In a 500 ml two-necked round bottom flask, 10.0 g of the organic polymer siloxane having a phenyl group obtained above and 200 ml of a mixed solution of chlorosulfonic acid: chloroform = 1: 4 at a molar ratio were mixed. Sulfonation was carried out for a time to obtain 8.5 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group. It was 1.10 meq / g when the amount of solid acids of this catalyst 3 was measured. Further, the specific surface area measured by the nitrogen gas adsorption method is 772 m 2 / g, the pore volume of pore diameter 9 to 500 mm is 0.21 cc / g, and the pore volume of pore diameter 20 to 500 mm is 0.06 cc / g. The mesopore existence ratio was 30%. The results are shown in Table 1.
触媒4
特開昭59−20325記載の方法にしたがって、スルホン酸基含有炭化水素基を有する有機高分子シロキサンを調製した。ボールミルで2時間粉砕した S2(CH2CH2CH2SiO2/3)2の単位からなるオルガノポリシロキサン8gを、イオン交換水50mlに懸濁させた。懸濁役に35%の過酸化水素水水溶液154gを加え、室温で7時間攪拌した。引き続き固体を濾別し、水1000mlで洗浄し、減圧下120℃で8時間乾燥した。以上の操作によりスルホン酸基含有炭化水素基を有する有機高分子シロキサン8.9gを得、触媒4とした。この触媒4の固体酸量を測定したところ、1.82meq/gであった。また、窒素ガス吸着法により測定した比表面積は747m2/gであり、細孔径9〜500Åの細孔容積は0.46cc/g、細孔径20〜500Åの細孔容積は0.11cc/gでありメソ孔存在割合は24%であった。結果を表1に示す。
Catalyst 4
According to the method described in JP-A-59-20325, an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was prepared. 8 g of an organopolysiloxane composed of units of S 2 (CH 2 CH 2 CH 2 SiO 2/3 ) 2 pulverized with a ball mill for 2 hours was suspended in 50 ml of ion-exchanged water. To the suspension, 154 g of 35% aqueous hydrogen peroxide solution was added and stirred at room temperature for 7 hours. Subsequently, the solid was filtered off, washed with 1000 ml of water, and dried at 120 ° C. under reduced pressure for 8 hours. By the above operation, 8.9 g of an organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group was obtained and used as catalyst 4. The solid acid amount of the catalyst 4 was measured and found to be 1.82 meq / g. Further, the specific surface area measured by the nitrogen gas adsorption method is 747 m 2 / g, the pore volume of pore diameter 9 to 500 mm is 0.46 cc / g, and the pore volume of pore diameter 20 to 500 mm is 0.11 cc / g. The mesopore existing ratio was 24%. The results are shown in Table 1.
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒1を15.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール塩酸塩9.6mmolを20mlの水に溶解させた溶液を滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン15.8gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、個体酸量は0.73mmol/g、固体メルカプト量は0.70mmol/gであった。すなわちスルホン酸基の49%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を、円筒形反応器(直径1.50cm、長さ15cm)に充填した。この反応器の下側から、モル比が5:1:0.4のフェノール/アセトン/水混合物を、10.5g/hrの速度で触媒中を通過させた。反応温度は100℃とし、20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は58.5%であり、ビスフェノールAの選択率は88.2%であった。 反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は58.5%であり、触媒の劣化はまったく認められなかった。表2に結果を示す。比較例1の触媒の劣化率4%と比較して、実施例1の触媒の劣化率は0%であり、活性低下が大きく抑制されていることがわかる。
(1) Modification of organopolymer siloxane with pyridine compound having mercaptoalkyl group 15.0 g of catalyst 1 obtained above and 50 ml of ethanol were placed in a 500 ml beaker, and the mixture was stirred and suspended with a stirrer equipped with a stir bar. A solution prepared by dissolving 9.6 mmol of 2- (4-pyridyl) ethanethiol hydrochloride in 20 ml of water was dropped over 5 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 15.8 g of organic high molecular siloxane modified with the pyridine compound which has a mercaptoalkyl group. When the amount of solid acid and the amount of solid mercapto were measured by the method described above, the amount of solid acid was 0.73 mmol / g, and the amount of solid mercapto was 0.70 mmol / g. That is, it is calculated that 49% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction 8.2 g (11 cc) of the pyridine compound-modified organic polymer siloxane obtained above was charged into a cylindrical reactor (diameter 1.50 cm, length 15 cm). From the bottom of the reactor, a phenol / acetone / water mixture with a molar ratio of 5: 1: 0.4 was passed through the catalyst at a rate of 10.5 g / hr. The reaction temperature was 100 ° C., and the reaction product obtained after 20 hours was analyzed by liquid chromatography. As a result, the conversion of acetone was 58.5% and the selectivity for bisphenol A was 88.2%. . The reaction was continued and the reaction product obtained after 300 hours was analyzed in the same manner. As a result, the conversion of acetone was 58.5%, and no deterioration of the catalyst was observed. Table 2 shows the results. Compared with the deterioration rate of 4% of the catalyst of Comparative Example 1, the deterioration rate of the catalyst of Example 1 is 0%, indicating that the decrease in activity is greatly suppressed.
(1)メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンによる有機高分子シロキサンの修飾
500mlビーカー中に、上記で得た触媒1を20g、水100mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。N,N,N−トリメチル−3−メルカプトプロピルアンモニウム酢酸塩12.8mmolを、滴下ロートを用い30分かけて滴下した。室温で30分攪拌した後、濾別し得られた触媒をガラス製カラムに充填した。触媒を充填したガラスカラムに、1,4ジオキサン/イオン交換水=1/1の混合溶液を700ml通液し、さらにイオン交換水1500mlをLHSV1hr-1で通液し、溶媒を置換したのち濾別した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンで修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、個体酸量は0.58mmol/g、固体メルカプト量は0.44mmol/gであった。すなわちスルホン酸基の43%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たテトラアンモニウムカチオン修飾有機高分子シロキサン8.2g(11cc)を使用し、実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は44.8%であり、ビスフェノールAの選択率は87.5%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は44.8%であり、触媒の劣化率はまったく認められなかった。表2に結果を示す。比較例2の触媒2の劣化率10%と比較して、実施例2の触媒の劣化率は0%であり、活性低下が大きく抑制されていることがわかる。
(1) Modification of organopolymer siloxane with tetraalkylammonium cation having a mercaptoalkyl group Into a 500 ml beaker, 20 g of catalyst 1 obtained above and 100 ml of water were placed and stirred and suspended with a stirrer equipped with a stir bar. . 12.8 mmol of N, N, N-trimethyl-3-mercaptopropylammonium acetate was added dropwise over 30 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the catalyst obtained by filtration was packed into a glass column. 700 ml of a mixed solution of 1,4 dioxane / ion-exchanged water = 1/1 is passed through a glass column packed with a catalyst, and further 1500 ml of ion-exchanged water is passed through LHSV 1 hr −1 to replace the solvent, followed by filtration. did. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 21.0 g of organic polymer siloxane modified with the tetraalkylammonium cation which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.58 mmol / g and the solid mercapto amount was 0.44 mmol / g. That is, it is calculated that 43% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction Bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the tetraammonium cation-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion of acetone was 44.8% and the selectivity for bisphenol A was 87.5%. The reaction was continued and the reaction product obtained after 300 hours was analyzed in the same manner. As a result, the conversion rate of acetone was 44.8%, and no deterioration rate of the catalyst was observed. Table 2 shows the results. It can be seen that the deterioration rate of the catalyst of Example 2 is 0% as compared with the deterioration rate of 10% of the catalyst 2 of Comparative Example 2, and the decrease in activity is largely suppressed.
(1)メルカプトアルキル基を有するトリアルキルアミン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒1を20.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。3−メルカプトプロピルジメチルアミン12.8mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するトリアルキルアミン化合物で修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.70mmol/g、固体メルカプト量は0.71mmol/gであった。すなわちスルホン酸基の50%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たジメチルアミン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は69.6%であり、ビスフェノールAの選択率は87.5%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は67.0%であり、触媒の劣化率は4%であった。表2に結果を示す。比較例3の触媒2の劣化率15%と比較して、実施例3の触媒の劣化率は4%であり、活性低下が大きく抑制されていることがわかる。
(1) the catalyst 1 obtained above in the modified 500ml beaker polyorganosiloxanes according trialkyl amine compound having a mercaptoalkyl group placed 20.0 g, ethanol 50 ml, is stirred with a stirring rod with stirrer suspended It was. A solution prepared by dissolving 12.8 mmol of 3-mercaptopropyldimethylamine in 20 ml of ethanol was dropped over 5 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Further a reduced pressure of 10 mmHg, dried 4 hours at 100 ° C., to obtain a polyorganosiloxane 21.0g modified with trialkyl amine compound having a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.70 mmol / g and the solid mercapto amount was 0.71 mmol / g. That is, it is calculated that 50% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the dimethylamine-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion of acetone was 69.6%, and the selectivity of bisphenol A was 87.5%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in the same manner, the conversion rate of acetone was 67.0%, and the deterioration rate of the catalyst was 4%. Table 2 shows the results. Compared with 15% of the deterioration rate of the catalyst 2 of the comparative example 3, the deterioration rate of the catalyst of Example 3 is 4%, and it turns out that the fall of activity is suppressed greatly.
[比較例1]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を11.6g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.5mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン11.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.53mmol/g、固体メルカプト量は0.40mmol/gであった。すなわちスルホン酸基の43%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は56.3%であり、ビスフェノールAの選択率は88.3%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は54.1%であり、触媒の劣化率は4%であった。表2に結果を示す。
[Comparative Example 1]
(1) Modification of organopolymer siloxane with a pyridine compound having a mercaptoalkyl group 11.6 g of the catalyst 2 obtained above and 50 ml of ethanol were placed in a 500 ml beaker, and stirred and suspended with a stirrer equipped with a stir bar. A solution prepared by dissolving 4.5 mmol of 2- (4-pyridyl) ethanethiol in 20 ml of ethanol was dropped over 5 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 11.0g of organic polymer siloxane modified with the pyridine compound which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.53 mmol / g and the solid mercapto amount was 0.40 mmol / g. That is, it is calculated that 43% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the pyridine compound-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion rate of acetone was 56.3% and the selectivity of bisphenol A was 88.3%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in the same manner, the conversion rate of acetone was 54.1%, and the deterioration rate of the catalyst was 4%. Table 2 shows the results.
[比較例2]
(1)メルカプトアルキルを有するテトラアルキルアンモニウムカチオンによる有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を17.7g、水200mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。N,N,N−トリメチル−3−メルカプトプロピルアンモニウム酢酸塩水溶液5.2mmolを、滴下ロートを用い30分かけて滴下した。室温で30分攪拌した後、濾別し得られた触媒をガラス製カラムに充填した。触媒を充填したガラスカラムに1,4ジオキサン/イオン交換水=1/1の混合溶液を700ml通液し、さらにイオン交換水1500mlをLHSV1hr-1で通液し、溶媒を置換したのち濾別した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するテトラアルキルアンモニウムカチオンで修飾した有機高分子シロキサン17.8gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.51mmol/g、固体メルカプト量は0.26mmol/gであった。すなわちスルホン酸基の34%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たテトラアルキルアンモニウムカチオン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は56.3%であり、ビスフェノールAの選択率は88.4%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は50.5%であり、触媒の劣化率は10%であった。表2に結果を示す。
[Comparative Example 2]
(1) Modification of organopolymer siloxane with tetraalkylammonium cation having mercaptoalkyl 17.7 g of catalyst 2 obtained above and 200 ml of water were placed in a 500 ml beaker, and stirred and suspended with a stirrer equipped with a stir bar. . 5.2 mmol of N, N, N-trimethyl-3-mercaptopropylammonium acetate aqueous solution was added dropwise over 30 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the catalyst obtained by filtration was packed into a glass column. 700 ml of a mixed solution of 1,4 dioxane / ion-exchanged water = 1/1 was passed through a glass column packed with a catalyst, and further 1500 ml of ion-exchanged water was passed through LHSV 1 hr −1 to replace the solvent, followed by filtration. . Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 17.8 g of organic high molecular siloxane modified with the tetraalkylammonium cation which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.51 mmol / g and the solid mercapto amount was 0.26 mmol / g. That is, it is calculated that 34% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction Bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the tetraalkylammonium cation-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion of acetone was 56.3% and the selectivity of bisphenol A was 88.4%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in the same manner, the conversion rate of acetone was 50.5% and the deterioration rate of the catalyst was 10%. Table 2 shows the results.
[比較例3]
(1)メルカプトアルキル基を有するトリアルキルアンモニウム化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒2を20.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。3−メルカプトプロピルジメチルアミン7.4mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するトリアルキルアンモニウム化合物で修飾した有機高分子シロキサン21.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.51mmol/g、固体メルカプト量は0.37mmol/gであった。すなわちスルホン酸基の42%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たジメチルアミン修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は58.2%であり、ビスフェノールAの選択率は88.1%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は49.3%であり、触媒の劣化率は15%であった。表2に結果を示す。
[Comparative Example 3]
(1) Modification of organopolymeric siloxane with a trialkylammonium compound having a mercaptoalkyl group 20.0 g of the catalyst 2 obtained above and 50 ml of ethanol were placed in a 500 ml beaker and stirred and suspended with a stirrer equipped with a stir bar. It was. A solution prepared by dissolving 7.4 mmol of 3-mercaptopropyldimethylamine in 20 ml of ethanol was dropped over 5 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 21.0g of organic polymer siloxane modified with the trialkylammonium compound which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.51 mmol / g and the solid mercapto amount was 0.37 mmol / g. That is, 42% of the sulfonic acid groups are calculated by ion exchange.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the dimethylamine-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion of acetone was 58.2%, and the selectivity for bisphenol A was 88.1%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in a similar manner, the conversion rate of acetone was 49.3%, and the deterioration rate of the catalyst was 15%. Table 2 shows the results.
[比較例4]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒3を10.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.9mmolを20mlのエタノールに溶解させた溶液を、滴下ロートを用い5分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン10.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は0.57mmol/g、固体メルカプト量は0.22mmol/gであった。すなわちスルホン酸基の28%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。20時間後に得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は47.9%であり、ビスフェノールAの選択率は82.7%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は40.6%であり、触媒の劣化率は15%であった。表2に結果を示す。
[Comparative Example 4]
(1) Modification of organopolymer siloxane with a pyridine compound having a mercaptoalkyl group 10.0 g of the catalyst 3 obtained above and 50 ml of ethanol were placed in a 500 ml beaker, and stirred and suspended with a stirrer equipped with a stir bar. A solution prepared by dissolving 4.9 mmol of 2- (4-pyridyl) ethanethiol in 20 ml of ethanol was dropped over 5 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 10.0 g of organic polymer siloxane modified with the pyridine compound which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 0.57 mmol / g and the solid mercapto amount was 0.22 mmol / g. That is, it is calculated that 28% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the pyridine compound-modified organic polymer siloxane obtained above. As a result of analyzing the reaction product obtained after 20 hours by liquid chromatography, the conversion of acetone was 47.9%, and the selectivity of bisphenol A was 82.7%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in the same manner, the conversion rate of acetone was 40.6% and the deterioration rate of the catalyst was 15%. Table 2 shows the results.
[比較例5]
(1)メルカプトアルキル基を有するピリジン化合物による有機高分子シロキサンの修飾
500mlビーカー中に上記で得た触媒4を10.0g、エタノール50mlを入れ、攪拌棒つき攪拌器で攪拌し懸濁させた。2−(4−ピリジル)エタンチオール4.0mmolを20mlのエタノールに溶解させた溶液を滴下ロートを用い20分かけて滴下した。室温で30分攪拌した後、濾別し水500mlで洗浄した。さらに10mmHgの減圧下、100℃で4時間乾燥し、メルカプトアルキル基を有するピリジン化合物で修飾した有機高分子シロキサン11.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると個体酸量は1.20mmol/g、固体メルカプト量は0.26mmol/gであった。すなわちスルホン酸基の18%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾有機高分子シロキサン8.2g(11cc)を使用し実施例1と同様にして、ビスフェノールA合成反応を行った。得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は24.1%であり、ビスフェノールAの選択率は82.6%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は21.6%であり、触媒の劣化率は10%であった。表2に結果を示す。
[Comparative Example 5]
(1) Modification of organopolymer siloxane with a pyridine compound having a mercaptoalkyl group 10.0 g of the catalyst 4 obtained above and 50 ml of ethanol were placed in a 500 ml beaker, and stirred and suspended with a stirrer equipped with a stir bar. A solution prepared by dissolving 4.0 mmol of 2- (4-pyridyl) ethanethiol in 20 ml of ethanol was dropped over 20 minutes using a dropping funnel. After stirring at room temperature for 30 minutes, the mixture was filtered and washed with 500 ml of water. Furthermore, it dried at 100 degreeC under pressure reduction of 10 mmHg for 4 hours, and obtained 11.0g of organic polymer siloxane modified with the pyridine compound which has a mercaptoalkyl group. When the solid acid amount and the solid mercapto amount were measured by the method described above, the solid acid amount was 1.20 mmol / g and the solid mercapto amount was 0.26 mmol / g. That is, it is calculated that 18% of the sulfonic acid groups are ion-exchanged.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 8.2 g (11 cc) of the pyridine compound-modified organic polymer siloxane obtained above. As a result of analyzing the obtained reaction product by liquid chromatography, the conversion of acetone was 24.1% and the selectivity of bisphenol A was 82.6%. The reaction was continued and the reaction product obtained after 300 hours was analyzed in the same manner. As a result, the conversion rate of acetone was 21.6%, and the deterioration rate of the catalyst was 10%. Table 2 shows the results.
[比較例6]
(1)メルカプトアルキル基を有するピリジン化合物によるイオン交換樹脂の修飾
ビーカー中に、イオン交換水150mlに懸濁させたアンバーリスト31(ローム&ハース社製、交換容量5.0meq/g)21.0gに2−(4−ピリジル)エタンチオール塩酸塩21.0mmolを20mlのイオン交換水に溶解させた溶液を、滴下ロートを用い30分かけて滴下した。室温で60分攪拌した後、濾別しイオン交換水500mlで洗浄した。さらに10mmHgの減圧下、80℃で5時間乾燥し、メルカプトプロピル基含有ピリジン化合物で修飾したイオン交換樹脂22.0gを得た。この固体酸量、固体メルカプト量を上記した方法により測定すると、3.90meq/g、固体メルカプト量は0.77meq/gであった。すなわち、スルホン酸基の17%がイオン交換された計算となる。
(2)ビスフェノールA合成反応
上記で得たピリジン化合物修飾イオン交換樹脂6.5g(11cc)を実施例1と同様にして、ビスフェノールA合成反応を行った。得られた反応生成物を液体クロマトグラフィーで分析した結果、アセトンの転化率は74.6%であり、ビスフェノールAの選択率は84.9%であった。反応を継続し300時間後に得られた反応生成物を同様に分析した結果、アセトンの転化率は71.2%であり、触媒の劣化率は5%であった。表2に結果を示す。
[Comparative Example 6]
(1) Modification of ion exchange resin with pyridine compound having a mercaptoalkyl group Amberlyst 31 (Rohm & Haas, exchange capacity 5.0 meq / g) 21.0 g suspended in 150 ml of ion exchange water A solution prepared by dissolving 21.0 mmol of 2- (4-pyridyl) ethanethiol hydrochloride in 20 ml of ion-exchanged water was dropped over 30 minutes using a dropping funnel. After stirring at room temperature for 60 minutes, the mixture was filtered and washed with 500 ml of ion exchange water. Furthermore, it dried at 80 degreeC under pressure reduction of 10 mmHg for 5 hours, and obtained 22.0 g of ion exchange resins modified with the mercaptopropyl group containing pyridine compound. When the amount of the solid acid and the amount of the solid mercapto were measured by the above-described method, it was 3.90 meq / g, and the amount of the solid mercapto was 0.77 meq / g. That is, the calculation results in 17% of the sulfonic acid groups being ion-exchanged.
(2) Bisphenol A synthesis reaction A bisphenol A synthesis reaction was carried out in the same manner as in Example 1 using 6.5 g (11 cc) of the pyridine compound-modified ion exchange resin obtained above. As a result of analyzing the obtained reaction product by liquid chromatography, the conversion of acetone was 74.6%, and the selectivity of bisphenol A was 84.9%. As a result of continuing the reaction and analyzing the reaction product obtained after 300 hours in the same manner, the conversion rate of acetone was 71.2% and the deterioration rate of the catalyst was 5%. Table 2 shows the results.
Claims (5)
(1)スルホン酸基含有炭化水素基を有するアルコキシシランとテトラアルコキシシランとを任意の割合で混合し、加水分解、共縮合する調製法、
(2)水溶性のスルホン酸基含有炭化水素基を有するアルコキシシランの加水分解物とテトラアルコキシシランとを任意の割合で混合し加水分解、共縮合する調製法、
(3)スルホン酸基含有炭化水素基を有するアルコキシシランを有機高分子シロキサンに存在するシラノール基にシリル化しスルホン酸基を固定する調製法。
(一般式[1]中、aは1〜6の整数である。)
(一般式[2]中、R 1 、R 2 及びR 3 は、それぞれ独立に炭素数が1〜10のアルキル基を表し、bは1〜6の整数である。)
(一般式[3]中、R 4 及びR 5 は、それぞれ独立に炭素数が1〜10のアルキル基を表し、cは1〜6の整数である。) An organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group in which the proportion of the pore volume of the mesoporous portion having a pore diameter of 20 to 500 mm is 0 to 20% with respect to the pore volume of a pore diameter of 9 to 500 mm , The organic polymer siloxane is prepared by any of the preparation methods shown in the following (1) to (3), and 43 to 95% of the sulfonic acid groups are represented by the following general formulas [1] to [3]. ] An organic polymer siloxane having a sulfonic acid group-containing hydrocarbon group modified with one or more selected from nitrogen-containing compounds having a mercapto group .
(1) A preparation method in which an alkoxysilane having a sulfonic acid group-containing hydrocarbon group and a tetraalkoxysilane are mixed at an arbitrary ratio, followed by hydrolysis and cocondensation.
(2) A preparation method in which a hydrolyzate of an alkoxysilane having a water-soluble sulfonic acid group-containing hydrocarbon group and a tetraalkoxysilane are mixed at an arbitrary ratio to perform hydrolysis and cocondensation,
(3) A preparation method in which an alkoxysilane having a sulfonic acid group-containing hydrocarbon group is silylated to a silanol group present in the organic polymer siloxane to fix the sulfonic acid group.
(In general formula [1], a is an integer of 1-6.)
(In general formula [2], R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 10 carbon atoms, and b is an integer of 1 to 6).
(In General Formula [3], R 4 and R 5 each independently represents an alkyl group having 1 to 10 carbon atoms, and c is an integer of 1 to 6).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003397726A JP4571393B2 (en) | 2002-11-27 | 2003-11-27 | Organopolymer siloxane and its use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002344072 | 2002-11-27 | ||
JP2003397726A JP4571393B2 (en) | 2002-11-27 | 2003-11-27 | Organopolymer siloxane and its use |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004190021A JP2004190021A (en) | 2004-07-08 |
JP4571393B2 true JP4571393B2 (en) | 2010-10-27 |
Family
ID=32774822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003397726A Expired - Fee Related JP4571393B2 (en) | 2002-11-27 | 2003-11-27 | Organopolymer siloxane and its use |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4571393B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152263A (en) * | 2004-10-27 | 2006-06-15 | Tokyo Institute Of Technology | Organic-inorganic hybrid mesoporous material, method for producing the same, and solid catalyst |
WO2015177756A1 (en) * | 2014-05-21 | 2015-11-26 | Bridgestone Corporation | Rubber compound to produce tyres |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735533A (en) * | 1980-08-12 | 1982-02-26 | Mitsubishi Chem Ind Ltd | Preparation of bisphenol |
JPH06207018A (en) * | 1992-08-06 | 1994-07-26 | Degussa Ag | Molded organosiloxane polycondensate, its production, its after treatment, adsorption of gaseous organic compound, preparation of homogeneous catalyst and adsorption of metal from aqueous solution or organic solution |
JPH0889819A (en) * | 1994-09-20 | 1996-04-09 | Mitsubishi Chem Corp | Ion exchange resin |
JPH08187436A (en) * | 1994-04-08 | 1996-07-23 | Mitsubishi Chem Corp | Modified ion exchange resin and its use |
JPH08208545A (en) * | 1994-07-21 | 1996-08-13 | Mitsui Toatsu Chem Inc | Production of bisphnol a |
JPH09110989A (en) * | 1995-09-29 | 1997-04-28 | Degussa Ag | Formed organopolysiloxane containing sulfonate and mercapto groups, production thereof, and condensation catalyst and bisphenol a synthesis catalyst which comprise the oranosiloxane or contain it |
JPH10218817A (en) * | 1997-02-04 | 1998-08-18 | Degussa Ag | Selective production of 2,2'-bis(4-hydroxyphenyl)propane |
JPH10225638A (en) * | 1996-12-10 | 1998-08-25 | Mitsui Chem Inc | Catalyst for producing bisphenol, its preparation and production of bisphenol |
JPH11209472A (en) * | 1998-01-22 | 1999-08-03 | Mitsui Chem Inc | Preparation of sulfonic group-containing organic macromolecular siloxane |
JP2000281607A (en) * | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000281608A (en) * | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000290208A (en) * | 1999-04-09 | 2000-10-17 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000297056A (en) * | 1999-04-09 | 2000-10-24 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000296337A (en) * | 1999-04-12 | 2000-10-24 | Mitsui Chemicals Inc | Method for packing organopolysiloxane catalyst |
JP2000302715A (en) * | 1999-04-19 | 2000-10-31 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000319215A (en) * | 1999-05-13 | 2000-11-21 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000319216A (en) * | 1999-05-14 | 2000-11-21 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000327611A (en) * | 1999-05-17 | 2000-11-28 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000344699A (en) * | 1999-06-01 | 2000-12-12 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2001104794A (en) * | 1999-10-08 | 2001-04-17 | Mitsui Chemicals Inc | Organic polymer siloxane carrying catalyst |
JP2001212465A (en) * | 2000-02-01 | 2001-08-07 | Mitsui Chemicals Inc | Organic high molecular siloxane catalyst |
JP2001232209A (en) * | 2000-02-23 | 2001-08-28 | Mitsui Chemicals Inc | Organic polymeric siloxane catalyst |
JP2001233812A (en) * | 2000-02-24 | 2001-08-28 | Mitsui Chemicals Inc | Method for producing bisphenol a |
JP2001247502A (en) * | 2000-03-06 | 2001-09-11 | Mitsui Chemicals Inc | Method of producing bisphenol a |
JP2002211917A (en) * | 2000-11-20 | 2002-07-31 | Mitsubishi Chemicals Corp | Zeolite having organic group in skelton |
JP2002219365A (en) * | 2000-11-22 | 2002-08-06 | Mitsui Chemicals Inc | Method for regenerating solid catalyst for producing bisphenol a |
WO2003023831A1 (en) * | 2001-09-12 | 2003-03-20 | Dow Corning Corporation | Silicone resins and porous materials produced therefrom |
-
2003
- 2003-11-27 JP JP2003397726A patent/JP4571393B2/en not_active Expired - Fee Related
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5735533A (en) * | 1980-08-12 | 1982-02-26 | Mitsubishi Chem Ind Ltd | Preparation of bisphenol |
JPH06207018A (en) * | 1992-08-06 | 1994-07-26 | Degussa Ag | Molded organosiloxane polycondensate, its production, its after treatment, adsorption of gaseous organic compound, preparation of homogeneous catalyst and adsorption of metal from aqueous solution or organic solution |
JPH08187436A (en) * | 1994-04-08 | 1996-07-23 | Mitsubishi Chem Corp | Modified ion exchange resin and its use |
JPH08208545A (en) * | 1994-07-21 | 1996-08-13 | Mitsui Toatsu Chem Inc | Production of bisphnol a |
JPH0889819A (en) * | 1994-09-20 | 1996-04-09 | Mitsubishi Chem Corp | Ion exchange resin |
JPH09110989A (en) * | 1995-09-29 | 1997-04-28 | Degussa Ag | Formed organopolysiloxane containing sulfonate and mercapto groups, production thereof, and condensation catalyst and bisphenol a synthesis catalyst which comprise the oranosiloxane or contain it |
JPH10225638A (en) * | 1996-12-10 | 1998-08-25 | Mitsui Chem Inc | Catalyst for producing bisphenol, its preparation and production of bisphenol |
JPH10218817A (en) * | 1997-02-04 | 1998-08-18 | Degussa Ag | Selective production of 2,2'-bis(4-hydroxyphenyl)propane |
JPH11209472A (en) * | 1998-01-22 | 1999-08-03 | Mitsui Chem Inc | Preparation of sulfonic group-containing organic macromolecular siloxane |
JP2000281607A (en) * | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000281608A (en) * | 1999-03-29 | 2000-10-10 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000297056A (en) * | 1999-04-09 | 2000-10-24 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000290208A (en) * | 1999-04-09 | 2000-10-17 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000296337A (en) * | 1999-04-12 | 2000-10-24 | Mitsui Chemicals Inc | Method for packing organopolysiloxane catalyst |
JP2000302715A (en) * | 1999-04-19 | 2000-10-31 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000319215A (en) * | 1999-05-13 | 2000-11-21 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000319216A (en) * | 1999-05-14 | 2000-11-21 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000327611A (en) * | 1999-05-17 | 2000-11-28 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2000344699A (en) * | 1999-06-01 | 2000-12-12 | Mitsui Chemicals Inc | Production of bisphenol a |
JP2001104794A (en) * | 1999-10-08 | 2001-04-17 | Mitsui Chemicals Inc | Organic polymer siloxane carrying catalyst |
JP2001212465A (en) * | 2000-02-01 | 2001-08-07 | Mitsui Chemicals Inc | Organic high molecular siloxane catalyst |
JP2001232209A (en) * | 2000-02-23 | 2001-08-28 | Mitsui Chemicals Inc | Organic polymeric siloxane catalyst |
JP2001233812A (en) * | 2000-02-24 | 2001-08-28 | Mitsui Chemicals Inc | Method for producing bisphenol a |
JP2001247502A (en) * | 2000-03-06 | 2001-09-11 | Mitsui Chemicals Inc | Method of producing bisphenol a |
JP2002211917A (en) * | 2000-11-20 | 2002-07-31 | Mitsubishi Chemicals Corp | Zeolite having organic group in skelton |
JP2002219365A (en) * | 2000-11-22 | 2002-08-06 | Mitsui Chemicals Inc | Method for regenerating solid catalyst for producing bisphenol a |
WO2003023831A1 (en) * | 2001-09-12 | 2003-03-20 | Dow Corning Corporation | Silicone resins and porous materials produced therefrom |
Also Published As
Publication number | Publication date |
---|---|
JP2004190021A (en) | 2004-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59210036A (en) | Manufacture of phenol and acetone | |
JPH0660117B2 (en) | Method for producing para-ethylphenol | |
US3496239A (en) | Production of aromatic condensation products | |
US6229037B1 (en) | Polyorganosiloxane catalyst | |
JP4571393B2 (en) | Organopolymer siloxane and its use | |
JPH0116767B2 (en) | ||
JP2000319216A (en) | Production of bisphenol a | |
JP2001233812A (en) | Method for producing bisphenol a | |
JP3592418B2 (en) | Glutardialdehyde production method | |
CN106518600B (en) | Method for preparing cyclohexylbenzene by liquid phase alkylation | |
CN105439802A (en) | A method of preparing phenylcyclohexane by hydroalkylation | |
JPH01180835A (en) | Method for reaction in liquid phase using zsm-5 | |
JP2001335522A (en) | Method for producing bisphenol | |
CN105367371A (en) | Method for preparing phenylcyclohexane through liquid phase alkylate | |
JPS62158235A (en) | Novel phenylacetoaldehyde | |
JP4357393B2 (en) | Method for producing aromatic polyamine | |
JP3888936B2 (en) | Bisphenol A production method | |
CN102010307A (en) | Method for preparing 3,3,3-trifluoro-propionaldehyde | |
JP3888937B2 (en) | Production method of bisphenol A | |
JP2001104794A (en) | Organic polymer siloxane carrying catalyst | |
CN107930680B (en) | Catalyst suitable for cyclohexylbenzene production and preparation method thereof | |
JPS59107921A (en) | Crystalline borosilicic acid, its manufacture and manufacture of p-xylene using it | |
JP4371388B2 (en) | Organopolymer siloxane catalyst | |
WO2016099408A1 (en) | A process for improving stability of zeolite catalyst to use in cumene production by alkylation of benzene with isopropyl alchol | |
JP3761342B2 (en) | Method for regenerating catalyst for bisphenol A production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060612 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080213 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091002 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100810 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100812 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4571393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |