[go: up one dir, main page]

JP4556348B2 - Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same - Google Patents

Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same Download PDF

Info

Publication number
JP4556348B2
JP4556348B2 JP2001162628A JP2001162628A JP4556348B2 JP 4556348 B2 JP4556348 B2 JP 4556348B2 JP 2001162628 A JP2001162628 A JP 2001162628A JP 2001162628 A JP2001162628 A JP 2001162628A JP 4556348 B2 JP4556348 B2 JP 4556348B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
group
hot
age hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001162628A
Other languages
Japanese (ja)
Other versions
JP2002129279A (en
Inventor
英尚 川辺
章男 登坂
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001162628A priority Critical patent/JP4556348B2/en
Publication of JP2002129279A publication Critical patent/JP2002129279A/en
Application granted granted Critical
Publication of JP4556348B2 publication Critical patent/JP4556348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、歪時効硬化特性に優れた超高強度熱延鋼板およびその製造方法に関する。
本発明において、化学成分含有量(濃度)の単位は質量%であり、%と略記される。また、本発明において、「N/Al」、「固溶N」、「超高強度」、「歪時効硬化特性に優れた」なる用語はそれぞれ以下の通りに定義される。
【0002】
N/Al=== N含有量(%)/Al含有量(%)
固溶N=== 固溶状態のN
超高強度=== 引張強さ(以下、TSと記す)が780MPa以上であること
歪時効硬化特性に優れた=== 引張歪(予歪量)5%の予変形後、170 ℃の温度に20分保持する条件で時効処理したとき、この時効処理前後の変形応力増加量(以下、BHと記す;BH=時効処理後の降伏応力−時効処理前の予変形応力)が80MPa 以上であり、かつ歪時効処理(前記予変形+前記時効処理)前後のTS増加量(以下、ΔTSと記す;ΔTS=時効処理後のTS−予変形前のTS)が40MPa 以上であること
前記超高強度熱延鋼板は、主として自動車用構造部材およびバンパー、インパクトビームなど衝突部材に適用される高加工性熱延薄鋼板に属しうる。さらに、冷延鋼板の代替となる薄物熱延鋼板にも属しうる。この薄物熱延鋼板は、従来は熱延での製造が困難ということで、冷延鋼板が適用されていた板厚4.0 mm程度以下の薄物製品である。この薄物製品は、軽度の曲げ加工やロールフォーミングしてパイプに成形されるような比較的軽加工用途に適するものであり、これを母板とした電気めっき鋼板、溶融Znめっき鋼板なども同用途に適する。
【0003】
【従来の技術】
自動車の車体用素材には、多くの薄鋼板が適用されているが、優れた成形性が要求される用途にはこれまで冷間圧延鋼板が使われていた。しかし、鋼組成(化学成分)の調整および熱間圧延条件の最適化により、高成形性(高加工性)熱延鋼板が製造できるようになり、同鋼板の自動車の車体用素材への用途が拡大しつつある。
【0004】
昨今の地球環境問題からの排出ガス規制に関連し、車体重量の軽減は極めて重要な課題である。車体重量軽減のためには鋼板を高張力化して鋼板板厚を低減することが有効である。しかし、高張力化・薄肉化の対象となる自動車部品を考えると、これらの部品ではその役割に応じて課されるパフォーマンスが必要かつ十分に発揮されなければならない。かかるパフォーマンスとしては、例えば曲げ、ねじり変形に対する静的強度、疲労強度、耐衝撃特性などがある。したがって、適用される高張力鋼板は、成形加工後に、かかる特性にも優れる必要がある。
【0005】
一方、部品を作る過程においては、鋼板に対してプレス成形が行われるが、鋼板の強度が高すぎると、
・形状凍結性が劣化する、
・延性が劣化するため成形時に割れやネッキングなどの不具合を生ずる、
・耐デント性(局部的な圧縮荷重負荷により生ずる凹みに対する耐性)が劣化する、
といった問題が生じ、これらの問題が自動車車体への高張力鋼板の適用拡大を阻んでいた。
【0006】
これを打開するための手法として、例えば外板パネル用の冷延鋼板では、例えば極低炭素鋼を素材とし、最終的に固溶状態で残存するC量を適正範囲に制御する鋼板製造技術が知られている。この技術は、プレス成形後に行われる 170℃×20分程度の塗装焼付け工程で起こる歪時効硬化現象を利用することで、成形時は軟質に保って形状凍結性、延性を確保し、成形後は歪時効硬化による降伏応力(以下、YSと記す)上昇を得て耐デント性を確保しようとするものである。しかし、この技術では、表面欠陥となるストレッチャーストレインの発生を防止する観点から、そのYS上昇量は低く抑えられ、実際の鋼板の薄肉化に寄与するところは小さいという難点があった。
【0007】
一方、外観があまり問題とならない用途に対しては、固溶Nを用いて焼付け硬化量をさらに増加させた鋼板(特公平7−30408 号公報)や、組織をフェライトとマルテンサイトからなる複合組織とすることで焼付け硬化性をより一層向上させた鋼板(特公平8−23048 号公報)などが提案されている。
しかし、特公平7−30408 号公報に開示される鋼板では、塗装焼付け後にYSがある程度上昇し高い焼付け硬化量が得られるものの、TSまでは上昇させることはできず、成形後の耐疲労特性、耐衝撃特性の大きな向上が期待できない。このため、耐疲労特性、耐衝撃特性が要求される使途への適用ができないという問題があった。また、特公平8−23048 号公報に開示される鋼板は、製造時に複合組織化のための冷却パターンの制御が必要であり、また極低温巻取を必須としているため、特に板厚が薄い鋼板を製造しようとすると安定製造が困難であり、YSの増加量が大きくばらつくなど機械的性質の変動も大きいため、現在要望されている自動車部品の軽量化に寄与できるほどの鋼板の薄肉化が期待できないという問題もあった。さらに、とくに薄肉化を達成するために板厚が2.0 mm以下の薄物の鋼板を製造する場合には、鋼板の形状が大きく乱れるため、プレス成形が著しく困難になるという問題もあった。
【0008】
さらに、超高強度熱延鋼板に目を向けると、特開平6−145894号公報にTS780MPa以上の熱延鋼板を得る技術が開示されはいるものの、加工熱処理による歪時効硬化によりTSが増加するという知見は得られていない。
【0009】
【発明が解決しようとする課題】
本発明は、上記した従来技術の限界を打破し、高い成形性と安定した品質特性を有するうえ、自動車部品に成形したのちに十分な自動車部品強度が得られ、自動車車体の軽量化に十分に寄与できる、歪時効硬化特性に優れた超高強度熱延鋼板を、その有利な、すなわち該鋼板を工業的に安価にかつ形状を乱さずに製造できる製造方法とともに提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、上記の問題を解決するために成分および製造法を種々変えて鋼板を製造し、多くの材質評価実験を行った。その結果、高加工性が要求される分野では従来あまり積極的に利用されることがなかったNを強化元素として、かかる強化元素の作用により発現する大きな歪み時効硬化現象を有利に活用することにより、成形性の向上と成形後の高強度化とを容易に両立させうることを知見した。
【0011】
さらに、本発明者らは、Nによる歪時効硬化現象を有利に活用するためには、Nによる歪時効硬化現象を自動車の塗装焼付け条件、あるいはさらに積極的に成形後の熱処理条件と有利に結合させる必要があり、このために、熱延条件を適正化して鋼板の微視組織と固溶N量とをある範囲に制御することが有効であることを見いだした。また、Nによる歪時効硬化現象を安定して発現させるためには、組成の面で、特にAl含有量をN含有量に応じて制御することが極めて重要であることも見いだした。さらに、微視組織を有利に制御して超高強度を得るためには、Mnを増量し、かつTi,Nbを複合添加することが有効であることも見いだした。
【0012】
すなわち、Nを強化元素として用い、キーとなる元素であるAl含有量と適正な範囲に制御し、さらに熱延条件を適正化して微視組織と固溶Nを最適化することにより、従来の固溶強化型のC−Mn鋼板、析出強化鋼板(従来鋼板)に比べて格段に優れた成形性とこれらの従来鋼板にない優れた歪時効硬化特性を有する鋼板(本発明鋼板)が得られる。さらに、Mn増量とTi,Nb複合添加とにより微視組織を有利に制御できて超高強度を達成することができる。
【0013】
また、従来は引張試験結果を基に焼付け硬化性を評価していた。しかし、本発明者らの検討によれば、従来鋼板では引張試験により所望の焼付け硬化性を有すると評価されたものであっても実プレス条件に沿って塑性変形させたときの強度に大きなばらつきが存在し、信頼性を要求される部品に適用するには必ずしも十分とはいえない。これに対し、本発明鋼板では、引張試験による焼付け硬化性の評価値が従来鋼板よりも高位にあるのみならず、実プレス条件に沿って塑性変形させたときの強度のばらつきが小さく、安定した部品強度特性が得られることがわかった。
【0014】
本発明は、これらの知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1) C:0.05〜0.10%、Si:0.05〜1.5 %、Mn:2.5 〜3.5 %、P:0.05%以下、S:0.0050%以下、Al:0.02%以下、Ti:0.001 〜0.050 %、Nb:0.005 〜0.100 %、N:0.0050〜0.0250%、固溶N:0.0010%以上を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなり、平均結晶粒径が10μm以下であることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板。
【0015】
(2) C:0.05〜0.10%、Si:0.05〜1.5 %、Mn:2.5 〜3.5 %、P:0.05%以下、S:0.0050%以下、Al:0.02%以下、Ti:0.001 〜0.050 %、Nb:0.005 〜0.100 %、N:0.0050〜0.0250%、固溶N:0.0010%以上を含有し、さらに、下記A群〜D群の何れか1群または2群以上を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなり、平均結晶粒径が10μm以下であることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板。
【0016】

A群:Cu、Ni、Cr、Mo:1種または2種以上合計1.0 %以下
B群:V、Zr :1種または2種合計0.1 %以下
C群:B :0.005 %以下
D群:Ca、REM :1種または2種合計0.005 %以下
(3) (1)または(2)に記載の熱延鋼板の表面に金属めっき層を有してなることを特徴とする歪時効硬化特性に優れた超高強度めっき鋼板。
【0017】
(4) C:0.05〜0.10%、Si:0.05〜1.5 %、Mn:2.5 〜3.5 %、P:0.05%以下、S:0.0050%以下、Al:0.02%以下、Ti:0.001 〜0.050 %、Nb:0.005 〜0.100 %、N:0.0050〜0.0250%を含有し、あるいはさらに前記A群〜D群の何れか1群または2群以上を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなる鋼スラブを1000℃以上に加熱後、粗圧延してシートバーとなし、該シートバーを仕上圧延出側温度800 ℃以上として仕上圧延した後、0.5 秒以内に冷却速度40℃/s以上で冷却し、 650℃以下で巻き取ることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板の製造方法。
【0018】
(5) 巻取後の鋼板に、調質圧延および/またはレベラ掛けによる伸び率0.5 〜10%の加工と酸洗とを、この順またはこの逆の順に施すことを特徴とする(4)記載の方法。
【0019】
【発明の実施の形態】
まず、本発明における鋼の組成(化学組成)について説明する。
C:0.05〜0.10%
Cは、低温変態相を利用して鋼を強化するために必要不可欠な元素あるが、0.05%未満ではTS780MPa以上を達成できず、一方、0.10%超では鋼中の炭化物分率が増加し鋼板の延性が顕著に悪化して成形性が劣化するうえ、スポット溶接性、アーク溶接性なども顕著に低下し、さらには、比較的広幅薄肉鋼板の熱間圧延時に、特にオーステナイト低温域以下で変形抵抗が顕著に増加し、圧延荷重が急上昇して、とくに薄物の熱延鋼板に関わる本発明鋼板の製造を困難にする。よって、Cは0.05〜0.10%とする。なお、成形性を向上させる観点からは、0.08%以下が好ましい。
【0020】
Si:0.05〜1.5 %
Siは、鋼の延性を顕著に低下させることなく鋼板を高強度化できる有用な強化元素であるが、0.05%未満ではその効果が得られず、一方、多量すぎると変態点(=Ar3 変態点)が高くなりすぎて仕上圧延時に多量のフェライト相が生じ、あるいは、表面性状とくに美麗さを損なうようになるが、1.5 %以下であればMn量の調整によりSiの顕著な変態点上昇作用を抑制でき、良好な表面性状も確保できる。よって、Siは0.05〜1.5 %とする。なお、TS780MPa超級で高延性を確保したい場合は、強度と延性のバランスの観点から、0.5 %以下が好ましい。
【0021】
Mn:2.5 〜3.5 %
Mnは、これの変態点下降作用をSiの変態点上昇作用に対抗させうるほか、Sによる熱間割れの防止に有効な元素であり、熱間割れ防止の観点からはS量に応じて添加するのが好ましい。また、Mnは結晶粒を微細化する効果があるため、積極的に添加して材質改善に利用することが望ましい。とくにTS780MPa級鋼板についてSを安定して固定するには、Mnは2.5 %以上、好ましくは2.7 %以上、特にTS980MPa級とするためには3.0 %超、とする必要がある。Mn量をこのレベルまで高めると、熱延条件の変動に対する鋼板の機械的性質および歪時効硬化特性のばらつきが低減するので、品質安定化にも効果的である。
【0022】
しかし、Mnが3.5 %を超過すると、詳細な機構は不明であるが、鋼板の熱間変形抵抗が増加する傾向があり、また、溶接性や溶接部の成形性にも悪化の傾向が現れ、そればかりか、フェライトの生成が顕著に抑制されて延性が劣化するため、Mnは3.5 %以下に限ることとした。
P:0.05%以下
Pは、鋼の固溶強化元素として有用であるが、過度に含有すると鋼を脆化させ、さらに鋼板の伸びフランジ加工性を悪化させ、また、鋼中で偏析する傾向が強いためそれに起因した溶接部の脆化をもたらすことから、0.05%以下とした。なお、伸びフランジ加工性や溶接部靱性が特に重要視される場合は0.04%以下が好ましい。
【0023】
S:0.0050%以下
Sは、介在物として存在し、鋼板の延性を劣化させ、さらに耐食性の劣化をももたらす元素なので、0.0050%以下に制限する。特に良好な加工性が要求される用途においては、0.0030%以下が望ましい。さらに、特にS量に敏感な伸びフランジ性での要求レベルが高い場合は、0.0015%以下が好ましい。また詳細な機構は不明であるが、Sを0.0030%以下まで低減すると、熱延鋼板の歪時効硬化特性の高位安定化傾向が強まるため、この点からも0.0030%以下が好ましい。
【0024】
Al:0.02%以下
Alは、鋼の脱酸元素として添加され、鋼の清浄度を向上させるのに有効な元素であり、鋼の組織微細化のためにも添加が望ましい元素である。しかし、本発明では過剰のAl添加は表面性状の悪化につながり、また固溶Nを確保し難くなる。また、固溶Nを確保できたとしても、Alが0.02%を超えると製造条件の変動による歪時効硬化特性のばらつきが大きくなる。そのためAlは0.02%以下に制限される。なお、材質安定性の観点からは、0.001 〜0.020 %がさらに望ましい。
【0025】
Ti:0.001 〜0.050 %
Tiは、加熱および熱延時の溶解・析出挙動を通じてスラブ加熱時の結晶粒粗大化を防止し、最終的に得られる組織を微細化する効果があるが、0.001 %未満ではかかる効果に乏しく、一方、0.050 %超では鋼中に硬質な炭化物などを形成し、伸びフランジ性を低下させるなど材料特性に悪影響をおよぼす。したがって、Tiは0.001 〜0.050 %とする。なお、好ましくは0.005 〜0.020 %である。
【0026】
Nb:0.005 〜0.100 %
Nbは、NbC などの析出物の存在形態や再結晶温度への影響を介して熱延後の結晶粒成長を抑制して組織を微細化かつ均一化する効果があるが、0.005 %未満ではかかる効果に乏しく、一方、0.100 %超では鋼中に硬質な析出物を多量に形成し、材料特性、なかでも特に伸びフランジ性を低下させる。したがって、Nbは0.005 〜0.100 %とする。なお、好ましくは0.010 〜0.050 %である。
【0027】
N:0.0050〜0.0250%
Nは、本発明においては最も重要な成分元素である。すなわち、Nを適量添加して製造条件を制御することにより、母板(熱延ままの鋼板)で固溶Nを必要かつ十分な量だけ確保することができ、それによって固溶強化と歪時効硬化での強度上昇硬化が十分に発揮され、TS780MPa以上、BH80MPa 以上、ΔTS40MPa 以上という本発明鋼板の機械的性質要件を安定して満足することができる。また、Nには鋼の変態点を下げる働きもあり、薄物で変態点を大きく割り込んだ圧延が忌避される状況下での操業安定化にも有用である。
【0028】
Nが0.0050%未満では、上記の強度上昇効果が安定して発現しにくい。一方、Nが0.0250%超では、鋼板の内部欠陥発生率が高くなるとともに、連続鋳造時のスラブ割れなどが多発するようになる。よって、Nは0.0050〜0.0250%とした。なかでも、製造工程全体を考慮した材質の安定性・歩留り向上の観点からは、0.0070〜0.0170%が好ましい。なお、本発明範囲内のN量であれば、溶接性への悪影響は全くなく、また、熱間変形抵抗の増加も殆どない。
【0029】
固溶N:0.0010%以上
母板で十分な強度が確保され、さらにNによる歪時効硬化が十分に発揮される、すなわちBHを80MPa 以上かつΔTSを40MPa 以上とするには、鋼中に固溶Nが0.0010%以上存在する必要がある。なお、より高位のBH、ΔTSを達成するには0.0020%以上、さらに高位の場合は0.0030%以上が好ましい。
【0030】
ここで、固溶N量は、鋼中の全N量から析出N量を差し引いて求める。析出Nの抽出法、すなわち地鉄を溶解する方法としては、酸分解法、ハロゲン法および電解法があるが、本発明者らがこれら抽出法について比較検討した結果、電解法は炭化物、窒化物等の極めて不安定な析出物を分解することなく、安定して地鉄のみを溶解できる。このため、本発明では電解法により析出Nを抽出するものとする。また、電解液としてアセチル・アセトン系の液を用い、低電位にて電解する。以上の電解法により抽出した残渣を化学分析して、残渣中のN量を求め、これを析出N量とする。
【0031】
N/Al:0.3 以上
前述のように、製造条件の変動によらず安定して母板に固溶Nを0.0010%以上残すには、Nを強力に固定する元素であるAlの量を制限する必要があり、Alを0.02%以下とする必要がある。本発明の組成範囲内でN量とAl量の組合せを広範囲に変えた鋼について熱延後の固溶Nが0.0010%以上になる条件を探索した結果、かかる条件を成立させるには、N/Alを0.3 以上として、仕上圧延後の冷却条件および巻取温度条件を後述の範囲とする必要があることがわかった。したがって、Al量はN/0.3 以下に制限される。
【0032】
A群:Cu、Ni、Cr、Mo:1種または2種以上合計1.0 %以下
A群の元素Cu、Ni、Cr、Moは、何れも鋼板の強度上昇に寄与するので適宜単独または複合添加することができる。しかし、量が多すぎると熱間変形抵抗の増加、化成処理性や広義の表面処理特性の悪化、溶接部の硬化に由来する溶接部成形性の劣化などをもたらすので、A群は合計で1.0 %以下が好ましい。なお、前記効果を得るためにはA群は合計で0.05%以上含有することが好ましい。
【0033】
B群:V、Zr:1種または2種合計0.1 %以下
B群の元素V、Zrは、何れも結晶粒径の微細化・均一化に寄与するので適宜単独または複合添加することができる。しかし、量が多すぎると熱間変形抵抗の増加、化成処理性や広義の表面処理特性の悪化、溶接部の硬化に由来する溶接部成形性の劣化などをもたらすので、B群は合計で1.0 %以下が好ましい。なお、前記効果を得るためにはB群は合計で0.001 %以上含有することが好ましい。
【0034】
C群:B:0.005 %以下
C群の元素Bは、鋼の焼入れ性を向上させる効果があるので、フェライト以外の組織相を低温変態相にして鋼の強度を増加させる目的で適宜添加することができる。しかし、量が多すぎるとBNとして析出して固溶Nの確保が困難となるなどの問題をもたらすので、添加する場合はBは0.005 %以下とする必要がある。
【0035】
なお、前記効果を得るためにはBは0.0004%以上含有することが好ましい。
D群:Ca、REM :1種または2種合計0.005 %以下
D群の元素Ca、REM はそれぞれ介在物形態制御に役立つものであり、特に伸びフランジ成形性に寄与するので、適宜単独または複合添加することができる。しかし、合計が0.005 %を超えると表面欠陥の発生が目立つようになる。よって、D群は合計で0.005 %以下の範囲で添加することが好ましい。
【0036】
なお、前記効果を得るためにはD群は合計で0.0005%以上含有することが好ましい。
次に、鋼板の組織および機械的性質について説明する。
組織の平均結晶粒径:10μm以下
本発明では、結晶粒径として、ナイタールエッチングにより結晶粒界を現出させた試料の断面組織のSEM観察写真からASTMに規定の求積法により算出した値と、同じく切断法により求めた公称粒径(例えば梅本ら:熱処理24(1984)334 参照)との、何れか大きい方を採用する。
【0037】
本発明の鋼板の組織は、1相からなる単相組織、2相以上からなる複合組織のいずれであってもよく、また、組織構成相は、フェライト相、パーライト相、ベイナイト相、マルテンサイト相、残留オーステナイト相のうち何れの1種または2種以上であってもよいが、強度確保の点からは、べイナイト相またはマルテンサイト相が35vol %以上あるいは、これらの合計で35vol %以上であることが好ましい。また、組織の平均結晶粒径は10μm以下でなければならない。組織構成相毎の粒界の判別は、SEM観察写真より行える。
【0038】
なおここで、フェライトとしては通常の意味のフェライト(ポリゴナルフェライト)のみならず、炭化物を含まないベイニティックフェライト、アシキュラーフェライトをも含むものとする。また、鋼板中に残留オーステナイト相を含有すると延性は向上するが、穴拡げ率は低下するため、良好な穴拡げ率−延性バランスを確保するためには残留オーステナイト相は3vol %未満であることが好ましい。
【0039】
本発明では、母板で固溶Nを確保するが、固溶N量を一定に保っても鋼板組織の平均結晶粒径が10μmを超えると歪時効硬化特性に大きなばらつきが生じる。この理由は、詳細な機構は不明であるが、結晶粒界への合金元素の偏析と析出、さらにはこれらに及ぼす加工、熱処理の影響に関係するものと推定されるが、理由はどうあれ、歪時効硬化特性の安定化を図るには、平均結晶粒径は10μm以下とする必要がある。なお、BHおよびΔTSのさらなる高位安定化の観点からは、前記平均結晶粒径は8μm以下が好ましい。
【0040】
TS:780MPa以上
TSが780MPaを下回る鋼板では、構造部材的または衝突部材的な要素をもつ部材に広く適用することができないため、TSは780MPa以上であるものとする。なお、衝突部材により一層適合させる観点からは、TS980MPa以上のものが望ましい。
【0041】
歪時効硬化特性について
本発明において、「歪時効硬化特性に優れた」とは、前述のように、引張歪5%の予変形(予歪付与)後、170 ℃の温度に20分保持する条件で時効処理を行うという歪時効処理を行ったとき、前記時効処理前後の変形応力増加量(BHと記す;BH=時効処理後の降伏応力−時効処理前の予変形応力)が80MPa 以上であり、かつ前記歪時効処理(前記予変形+前記時効処理)前後の引張強さ増加量(ΔTSと記す;ΔTS=時効処理後の引張強さ−予変形前の引張強さ)が40MPa 以上であることを意味する。
〔引張歪5%の予変形〕
歪時効硬化特性を規定する場合、予歪(予変形)量が重要な因子となる。本発明者らは、自動車用鋼板に適用される変形様式を想定して、歪時効硬化特性に及ぼす予歪量の影響について調査し、その結果、▲1▼前記変形様式における変形応力は、極めて深い絞り加工の場合を除き、概ね1軸相当歪(引張歪)量で整理できること、▲2▼実部品ではこの1軸相当歪量が概ね5%を上回っていること、▲3▼部品強度(実部品の強度)が、予歪5%の歪時効処理後に得られる強度と良く対応することを突き止めた。この知見をもとに、本発明では、歪時効処理の予変形を引張歪5%に定めた。
〔時効処理条件:(加熱温度)170 ℃×(保持時間)20分〕
従来の塗装焼付け処理条件は、170 ℃×20分が標準として採用されている。このため、170 ℃×20分を時効処理条件に定めた。なお、多量の固溶Nを含む本発明鋼板に5%以上の歪が加わる場合は、より緩やかな(低温側の)処理でも硬化が達成され、言い換えれば時効条件をより幅広くとることも可能である。また、一般に、硬化量を稼ぐには、軟化させない限りにおいて、より高温により長時間保持することが有利である。
【0042】
具体的に述べると、本発明鋼板では、予変形後に硬化が顕著となる加熱温度の下限は概ね100 ℃である。一方、加熱温度が300 ℃を超えると硬化が頭打ちとなり、逆にやや軟化する傾向が現れるほか、熱歪やテンパーカラーの発生が目立つようになる。また、保持時間については、加熱温度200 ℃程度のとき概ね30秒程度以上とすれば略十分な硬化が達成される。さらに大きな安定した硬化を得るには保持時間60秒以上が好ましい。しかし、20分を超える保持では、さらなる硬化を望みえないばかりか、生産効率も著しく低下して実用面では不利である。
【0043】
以上のことから、本発明鋼板を使用する際には、加工の後に、時効処理条件の加熱温度を100 〜300 ℃、保持時間を30秒〜20分とすることが好ましい。本発明では、従来の塗装焼付け型鋼板では十分な硬化が達成されない低温加熱・短時間保持の時効処理条件下でも、大きな硬化が得られるという利点をも有する。なお、加熱の仕方はとくに制限されず、通常の塗装焼付けに採用されている炉による雰囲気加熱のほか、たとえば誘導加熱や、無酸化炎、レーザ、プラズマなどによる加熱などのいずれも好ましく用いうる。
〔BH:80MPa 以上、ΔTS:40MPa 以上〕
自動車用の部品強度は外部からの複雑な応力負荷に抗しうる必要があり、それゆえ素材鋼板では小さな歪域での強度特性だけでなく大きな歪域での強度特性も重要となる。本発明者らはこの点に鑑み、自動車部品の素材となすべき本発明鋼板のBHを80MPa 以上に制限するとともに、ΔTSを40MPa 以上に制限した。より好ましくは、BHでは100MPa以上、ΔTSでは50MPa 以上である。なお、以上の制限範囲は5%予歪付与後170 ℃×20分の時効処理という条件におけるBH,ΔTSを規定するものであるが、BHとΔTSは、時効処理の加熱温度をより高温側に、および/または、保持時間をより長時間側に、設定することによっても大きくすることが可能である。
【0044】
また、本発明鋼板には、成形加工後に、加熱による加速時効(人工的な時効)を行わずとも、室温で放置しておくだけで、最低限でも完全時効時の40%程度に相当する強度増加が期待でき、しかも、一方において、成形加工されない状態では、室温で長時間放置されても時効劣化(YSが増加しかつEl(伸び)が減少する現象)は起こらないという、従来にない利点が備わっている。
【0045】
ところで、本発明の効果は製品板厚が比較的厚い場合でも発揮されうるが、製品板厚が4.0mm を超える場合は、鋼板製造段階の塑性加工(圧延加工)の面で変形抵抗に対する規制がそれほど厳しくないことに加え、自動車用鋼板の用途では対象となる部品が限定されるため、本発明の優位性が目立たなくなる。したがって、本発明鋼板は、板厚4.0 mm以下のものが好ましい。
【0046】
また、本発明では、母板に電気めっきまたは溶融めっきを施したものも、めっき前と同程度のTS、BH、ΔTSを有する。めっきの種類としては、電気亜鉛めっき、溶融亜鉛めっき、合金化溶融亜鉛めっき、電気錫めっき、電気クロムめっき、電気ニッケルめっき等、いずれも好ましく適用しうる。
次に本発明鋼板の製造方法について説明する。
【0047】
本発明鋼板は、基本的に、本発明範囲内の組成になる鋼スラブを加熱後粗圧延してシートバーとなし、該シートバーを仕上圧延後、冷却して巻き取る熱延工程により製造される。スラブは、成分のマクロな偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法、薄スラブ連鋳法で製造してもよい。また、スラブを製造後いったん室温まで冷却して再度加熱する通常プロセスのほか、冷却せず温片のままで加熱炉に挿入する、あるいは僅かの保熱を行った後に直ちに圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。とくに、固溶Nを有効に確保するには、直送圧延は有用な技術の一つである。
【0048】
熱延条件は以下のように規定される。
スラブ加熱温度:1000℃以上
初期の固溶N量を確保して製品での固溶N量の目標(0.0010%以上)を満たすには、スラブ加熱温度(SRTと記す)を1000℃以上とする。なお、酸化重量の増加に伴うロスの増大を避ける観点からはSRTは1280℃以下が好ましい。
【0049】
加熱後のスラブをシートバーにする粗圧延は常法により行えばよい。
粗圧延後は、シートバーに仕上圧延を施す。なお、本発明では、粗圧延と仕上圧延の間で、相前後するシートバー同士を接合し、連続的に仕上圧延することが好ましい。接合手段としては、溶融圧接法、レーザ溶接法、電子ビーム溶接法などを適宜に用いうる。
【0050】
これにより、仕上圧延およびその後の冷却において形状の乱れを生じやすい非定常部(被処理材の先端部および後端部)の存在割合が減少し、安定圧延長さ(同一条件で圧延できる連続長さ)および安定冷却長さ(張力をかけたまま冷却できる連続長さ)が延長して、製品の形状・寸法精度および歩留りが向上する。
また、従来のシートバー毎の単発圧延では通板性や噛込み性の問題により実施が難しかった薄物・広幅に対する潤滑圧延が容易に実施できるようになり、圧延荷重およびロール面圧が低減してロール寿命が延長する。
【0051】
また、本発明では、粗圧延と仕上圧延の間で、シートバー幅端部を加熱するシートバーエッジヒータ、シートバー長さ端部を加熱するシートバーヒータのいずれか一方または両方を使用して、シートバーの幅方向および長手方向の温度分布を均一化することが好ましい。これにより、鋼板内の材質ばらつきをさらに小さくすることができる。シートバーエッジヒータ、シートバーヒータは誘導加熱方式のものが好ましい。
【0052】
使用手順は、まずシートバーエッジヒータにより幅方向の温度差を補償することが望ましい。このときの加熱量は、鋼組成などにもよるが、仕上圧延出側での幅方向温度範囲が概ね20℃以下となるように設定するのが好ましい。次いでシートバーヒータにより長手方向の温度差を補償する。このときの加熱量は、長さ端部温度が中央部温度よりも20℃程度高くなるように設定するのが好ましい。
【0053】
仕上圧延出側温度:800 ℃以上
仕上圧延では、鋼板の組織を均一かつ微細に整えるために、仕上圧延出側温度(FDTと記す)を800 ℃以上とする。FDTが800 ℃を下回ると仕上圧延温度が低くなりすぎて組織が不均一となり、一部に加工組織が残留したりして、プレス成形時に種々の不具合を発生する危険性が高まる。かかる加工組織の残留は、高温巻取により回避できるが、高温巻取を行うと粗大粒が発生して強度が低下し、また固溶N量も大きく低下するため、目標TS780MPa以上を得ることが困難となる。なお、機械的性質をさらに改善させるには、FDTは820 ℃以上が望ましい。
【0054】
また、とくに仕上圧延において、熱間加工時に荷重を低減するために潤滑圧延を行うことは、形状・材質の均一化のために有効である。その場合、摩擦係数は0.25〜0.10の範囲が好ましく、さらに、前述の連続圧延との併合実施が、熱間圧延の操業安定性の観点からも望ましい。
圧延後の冷却:圧延後0.5 秒以内に開始する冷却速度40℃/s以上の冷却
圧延終了後は、直ちに(概ね0.5 秒以内に)冷却を開始し、該冷却は平均冷却速度を40℃/s以上の急冷とする必要がある。この要件が満足されないと、粒成長が進みすぎて結晶粒径の微細化が達成されず、また、圧延で導入された歪エネルギーによるAlN の析出が進みすぎて固溶N量が欠乏する。なお、材質・形状の均一性を確保する観点からは、平均冷却速度は300 ℃/s以下が好ましい。
【0055】
巻取温度:650 ℃以下
巻取温度(CTと記す)の低下につれて鋼板強度は増加し、CT650 ℃以下で目標TS780MPa以上に達するため、CTは650 ℃以下とする。なお、CTが200 ℃を下回ると鋼板形状が乱れやすくなり、実使用上の不具合を生じる危険性が高まるので、CTは200 ℃以上が望ましい。また、材質均一性の面からはCT300 ℃以上、強度確保の点では、特にTS980MPa級とするためには450 ℃以下が望ましい。
【0056】
さらに、本発明では、巻取後、調質圧延、レベラ掛けのいずれか一方または両方により伸び率0.5 〜10%の加工(熱延後加工)を行うことが好ましい。ここに、調質圧延での伸び率は圧下率と同値である。
調質圧延やレベラ掛けは、通常は表面粗さ調整や形状矯正のために行われるが、本発明では、それのみならず、BH、ΔTSをさらに増大かつ安定化させる効果がある。この効果は伸び率0.5 %以上で顕現するが、一方、伸び率10%超では延性が劣化する。よって、熱延後加工は伸び率0.5 〜10%の範囲で行うのが望ましい。なお、調質圧延とレベラ掛けとでは加工様式が相異なる(前者は圧延、後者は反復曲げ伸ばし)が、両者の伸び率は、本発明鋼板の歪時効硬化特性に対する影響の度合いが略同等である。また、本発明では、熱延後加工の前あるいは後に酸洗を行ってもかまわない。
【0057】
【実施例】
(実施例1)
表1に示す組成になる鋼を転炉で溶製し、連続鋳造によりスラブとなし、該スラブを表2に示す各No.の条件で熱間圧延し、さらに調質圧延して、板厚1.8 mmの熱延鋼板を得た。仕上圧延ではシートバーを接合せず個別にタンデム圧延した。表2の「冷却遅れ時間」は、仕上圧延完了から冷却開始までの時間を意味する(以下同じ)。なお、冷却は水冷とした(以下同じ)。
【0058】
得られた熱延鋼板について、固溶N、微視組織、引張特性、穴拡げ率、曲げ割れ、遅れ破壊、歪時効硬化特性を以下の要領で調査した。
・固溶N量:前記方法により測定する。
・微視組織:C断面(圧延方向に直交する断面)の表裏各々から厚み表層各10%を除く部分について腐食現出組織の拡大像を画像解析し、相構成(体積%)と平均結晶粒径を測定する。
【0059】
・引張特性:引張試験によりYS,TS,伸び(El)を測定する(TS測定値=TS0 )。
・穴拡げ率:日本鉄鋼連盟規格JFS T1001に規定される穴拡げ試験にて測定する。穴拡げ率λ(%)は次式で定義する。
λ=(Dh −Do )/Do ×100
o :初期穴径(Do =10mm)
h :破断後の穴径(mm)
・曲げ割れ:先端部の角度60°かつ曲げ半径3mmRのV曲げ時に割れ発生の有無で評価する。
【0060】
・遅れ破壊:曲げ半径4mmRの180 °U曲げにて加工した試験片を240 時間、大気中に放置、エチルアルコールに浸漬、純水中浸漬にて、それぞれ割れ発生の有無で評価する。
・歪時効硬化特性:引張試験により予歪量x(%)で予変形して変形応力を測定(測定値をFS(x) とする)し、除荷して時効温度Θ(℃)×時効時間τ(秒)の時効熱処理を施し、再び引っ張ってYS,TSを測定する(YS測定値=YS1 ,TS測定値=TS1 )手続きにおいて、標準条件(x=5%,Θ=170 ℃,τ=1200秒(20分))での変形応力増加量YS1-FS(5) (すなわちBH)およびTS増加量TS1-TS0 (すなわちΔTS)を求め、あるいはさらに、非標準条件(#)での変形応力増加量YS1-FS(x) (BH#と記す)およびTS増加量TS1-TS0 (ΔTS#と記す)を求める。
【0061】
・引張特性と歪時効硬化特性の調査に係る引張試験は、JIS5号試験片を用いJISZ2241に準拠した方法で行う。
結果を表3に示す。同表のNo.1,2,8〜23は本発明例であり、これら本発明例では何れにおいてもTS≧780MPa、BH≧80MPa 、ΔTS≧40MPa が達成され、さらに、広範囲な非標準条件(#)での歪時効処理でも、BH#≧80MPa 、ΔTS#≧40MPa が得られた。
【0062】
【表1】

Figure 0004556348
【0063】
【表2】
Figure 0004556348
【0064】
【表3】
Figure 0004556348
【0065】
(実施例2)
0.078%C-0.15%Si-3.15%Mn-0.12%P-0.0015%S-0.012%Al-0.0135%N の組成になる鋼を転炉で溶製し、連続鋳造によりスラブとなし、該スラブを、SRT=1150℃の条件で加熱し、粗圧延して板厚25mmのシートバーとなし、該シートバーを表4に示す各No.の条件で処理したのち、FDT= 870℃の条件で仕上圧延し、冷却遅れ時間= 0.4秒、平均冷却速度=90℃/sの条件で冷却し、CT= 420℃の条件で巻き取り、さらに圧下率 0.8%で調質圧延して、板厚 1.6mmの熱延鋼板を得た。なお、シートバー接合は、相前後するシートバーの相互対向端部を高周波加熱して溶融させ圧接する方法により行った(以下同じ)。
【0066】
得られた熱延鋼板について、固溶N、微視組織、引張特性、穴拡げ率、曲げ割れ、遅れ破壊、歪時効硬化特性を調査した(調査要領は実施例1に同じ)。また、各鋼板の熱延仕上板厚精度を±30μmオンゲージ率(%)で比較した。
結果を表4に示す。同表のNo.26〜30はすべて本発明例であり、何れにおいてもTS≧780MPa、BH≧80MPa 、ΔTS≧40MPa が達成され、さらに、予歪量x=8%の場合でもBH#≧80MPa 、ΔTS#≧40MPa となった。また、熱延仕上板厚精度は、シートバーヒータ、シートバーエッジヒータの活用により相当向上し、シートバー接合による無端仕上圧延の実施によりさらに一段と向上することが認められた。
【0067】
【表4】
Figure 0004556348
【0068】
(実施例3)
0.075%C-0.18%Si-2.84%Mn-0.009%P-0.0014%S-0.012%Al-0.0142%Nの組成になる鋼を転炉で溶製し、連続鋳造によりスラブとなし、該スラブを、SRT=1105℃の条件で加熱し、粗圧延して板厚25mmのシートバーとなし、該シートバーを表5に示す各No.の条件で処理したのち、FDT=890 ℃の条件で仕上圧延し、冷却遅れ時間= 0.4秒、平均冷却速度= 100℃/sの条件で冷却し、CT= 400℃の条件で巻き取り、さらに圧下率 0.7%で調質圧延して、板厚1.8mm の熱延鋼板を得た。さらに条件32〜36については、熱延鋼板を酸洗したのち連続溶融亜鉛めっきライン(該ライン内での焼鈍温度= 750℃)に通して溶融亜鉛めっき鋼板を得た。
【0069】
得られた熱延鋼板または溶融亜鉛めっき鋼板について、固溶N、微視組織、引張特性、穴拡げ率、曲げ割れ、遅れ破壊、歪時効硬化特性を調査した(調査要領は実施例1に同じ)。また、各鋼板の熱延仕上板厚精度を±30μmオンゲージ率(%)で比較した。
結果を表5に示す。同表のNo.31〜36はすべて本発明例(No.31は熱延鋼板、No.32〜36は溶融亜鉛めっき鋼板)であり、めっき後に若干TSが低下する(No.31、32の比較)ものの、何れにおいてもTS≧780MPa、BH≧80MPa 、ΔTS≧40MPa が達成され、さらに、予歪量x=7%,時効時間τ=1000秒の場合でもBH#≧80MPa 、ΔTS#≧40MPa となった。また、熱延仕上板厚精度は、シートバーヒータ、シートバーエッジヒータの活用により相当向上し、シートバー接合による無端仕上圧延の実施によりさらに一段と向上することが認められた。
【0070】
【表5】
Figure 0004556348
【0071】
【発明の効果】
本発明の超高強度熱延鋼板は、固溶Nを適切に活用したことにより、TS780MPa以上のなかでも高位なTS880 〜1180MPa 程度の母板強度特性を有し、歪時効処理された後に、BH80MPa 以上、ΔTS40MPa 以上を安定してクリアできる優れた歪時効硬化特性を有し、また、めっき後も同様の特性を有し、しかも形状を乱さず安価に熱延製造でき、また、酸洗なしで表面スケール層を利用する用途にも適用できて、自動車部品用鋼板の板厚を例えば2.0 mm程度から1.6 mm程度へと1グレード低減することができ、自動車車体の軽量化推進に大きく寄与するという優れた効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultra-high strength hot-rolled steel sheet having excellent strain age hardening characteristics and a method for producing the same.
In the present invention, the unit of chemical component content (concentration) is mass% and is abbreviated as%. In the present invention, the terms “N / Al”, “solid solution N”, “ultra-high strength”, and “excellent in strain age hardening characteristics” are defined as follows.
[0002]
N / Al === N content (%) / Al content (%)
Solid solution N === Solid solution N
Ultra high strength === Tensile strength (hereinafter referred to as TS) is 780 MPa or more
Excellent strain age hardening characteristics === After pre-deformation of 5% tensile strain (pre-strain amount), when subjected to aging treatment at a temperature of 170 ° C for 20 minutes, the amount of deformation stress increase before and after this aging treatment ( Hereinafter, it is described as BH; BH = yield stress after aging treatment−predeformation stress before aging treatment) is 80 MPa or more, and TS increase before and after strain aging treatment (predeformation + the aging treatment) (hereinafter, ΔTS = ΔTS = TS after aging treatment-TS before pre-deformation) 40MPa or more
The ultra-high-strength hot-rolled steel sheet can belong to a high-workability hot-rolled thin steel sheet that is mainly applied to automobile structural members, bumpers, impact beams and other impact members. Furthermore, it can also belong to a thin hot-rolled steel sheet as an alternative to a cold-rolled steel sheet. This thin hot-rolled steel sheet is a thin product having a thickness of about 4.0 mm or less, to which cold-rolled steel sheets have been applied, because it is difficult to manufacture by hot rolling. This thin product is suitable for relatively light processing applications such as mild bending and roll forming to form pipes. Electroplated steel sheets and hot-dip zinc plated steel sheets that use this as the base plate are also used in the same way. Suitable for.
[0003]
[Prior art]
Many thin steel plates have been applied to automobile body materials, but cold rolled steel plates have been used for applications that require excellent formability. However, by adjusting the steel composition (chemical composition) and optimizing the hot rolling conditions, it becomes possible to produce high formability (high workability) hot-rolled steel sheets, which can be used for automobile body materials. It is expanding.
[0004]
Reducing vehicle weight is an extremely important issue in connection with the recent exhaust gas regulations due to global environmental problems. In order to reduce the weight of the vehicle body, it is effective to reduce the steel plate thickness by increasing the tension of the steel plate. However, considering automobile parts that are subject to high tension and thinning, these parts must exhibit the necessary and sufficient performance according to their roles. Such performance includes, for example, static strength against bending and torsional deformation, fatigue strength, and impact resistance. Therefore, the applied high-tensile steel sheet needs to be excellent in such characteristics after forming.
[0005]
On the other hand, in the process of making parts, press forming is performed on the steel plate, but if the strength of the steel plate is too high,
・ Shape freezeability deteriorates,
・ Because the ductility deteriorates, problems such as cracking and necking occur during molding.
・ Dent resistance (resistance to dents caused by local compressive load) deteriorates.
These problems have arisen, and these problems hindered the expansion of the application of high-tensile steel sheets to automobile bodies.
[0006]
As a method for overcoming this, for example, in cold-rolled steel sheets for outer panels, steel sheet manufacturing technology that uses ultra-low carbon steel as a raw material and finally controls the amount of C remaining in a solid solution state to an appropriate range is available. Are known. This technology uses the strain age hardening phenomenon that occurs in the baking process of 170 ° C x 20 minutes, which is performed after press molding, so that it is soft during molding to ensure shape freezing and ductility. An attempt is made to secure dent resistance by obtaining an increase in yield stress (hereinafter referred to as YS) due to strain age hardening. However, with this technique, from the viewpoint of preventing the occurrence of stretcher strains that become surface defects, the amount of increase in YS is kept low, and there is a problem that the portion that contributes to the actual thinning of the steel sheet is small.
[0007]
On the other hand, for applications where the appearance does not matter much, a steel sheet (Japanese Patent Publication No. 7-30408) with a further increased bake hardening amount using solute N or a composite structure composed of ferrite and martensite. Thus, a steel plate (Japanese Patent Publication No. 8-23048) having further improved bake hardenability has been proposed.
However, in the steel sheet disclosed in Japanese Examined Patent Publication No. 7-30408, although YS increases to some extent after baking and a high bake hardening amount is obtained, it cannot be increased to TS, and fatigue resistance after forming, No significant improvement in impact resistance can be expected. For this reason, there has been a problem that it cannot be applied to uses where fatigue resistance and impact resistance are required. In addition, the steel sheet disclosed in Japanese Patent Publication No. 8-23048 requires a cooling pattern for complex organization at the time of manufacture, and requires extremely low temperature winding, so that the steel sheet is particularly thin. Is difficult to achieve, and the fluctuations in mechanical properties, such as large variations in the amount of YS, are large. Therefore, it is expected that the steel sheet will be thin enough to contribute to the weight reduction of automobile parts that are currently required. There was also a problem that it was not possible. Furthermore, when manufacturing a thin steel plate having a thickness of 2.0 mm or less in order to achieve a reduction in thickness, the shape of the steel plate is greatly disturbed, so that press forming becomes extremely difficult.
[0008]
Furthermore, when looking at the ultra-high strength hot-rolled steel sheet, Japanese Patent Laid-Open No. 6-145894 discloses a technique for obtaining a hot-rolled steel sheet of TS780 MPa or more, but TS increases due to strain age hardening by thermomechanical treatment. No knowledge has been obtained.
[0009]
[Problems to be solved by the invention]
The present invention overcomes the limitations of the prior art described above, has high moldability and stable quality characteristics, and provides sufficient strength for automobile parts after molding into automobile parts, which is sufficient for reducing the weight of automobile bodies. It is an object of the present invention to provide an ultra-high strength hot-rolled steel sheet excellent in strain age hardening characteristics that can contribute, together with its advantageous, that is, a manufacturing method capable of manufacturing the steel sheet industrially at low cost and without disturbing the shape.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors manufactured steel sheets by changing various components and manufacturing methods, and conducted many material evaluation experiments. As a result, by utilizing the large strain age hardening phenomenon expressed by the action of the strengthening element as a strengthening element, N which has not been actively used so far in fields where high workability is required is advantageously utilized. It has been found that improvement of moldability and high strength after molding can be easily achieved.
[0011]
Furthermore, in order to make the best use of the strain age hardening phenomenon caused by N, the present inventors advantageously combined the strain age hardening phenomenon caused by N with the paint baking conditions of automobiles or more actively with the heat treatment conditions after molding. For this reason, it has been found effective to optimize the hot rolling conditions and control the microstructure and the amount of solute N in the steel sheet within a certain range. In addition, in order to stably develop the strain age hardening phenomenon due to N, it has also been found that it is extremely important to control the Al content according to the N content, particularly in terms of composition. Furthermore, it has been found that increasing the amount of Mn and adding Ti and Nb in combination is effective for controlling the microscopic structure advantageously to obtain ultrahigh strength.
[0012]
That is, using N as a reinforcing element, controlling the Al content as a key element and an appropriate range, further optimizing the hot rolling conditions and optimizing the microstructure and solid solution N, Compared to solid solution strengthened C-Mn steel sheets and precipitation strengthened steel sheets (conventional steel sheets), steel sheets (present invention steel sheets) having excellent formability and excellent strain age hardening characteristics not found in these conventional steel sheets can be obtained. . Furthermore, the microstructure can be advantageously controlled by increasing the amount of Mn and the combined addition of Ti and Nb, and ultra-high strength can be achieved.
[0013]
Conventionally, bake hardenability has been evaluated based on the tensile test results. However, according to the study by the present inventors, even if the conventional steel plate is evaluated to have a desired bake hardenability by a tensile test, the strength when plastically deformed according to the actual press conditions varies greatly. Therefore, it is not always sufficient to apply to parts that require reliability. On the other hand, in the steel sheet of the present invention, the evaluation value of bake hardenability by the tensile test is not only higher than that of the conventional steel sheet, but also the variation in strength when plastically deformed according to the actual press conditions is small and stable. It was found that the component strength characteristics can be obtained.
[0014]
This invention is made | formed based on these knowledge, The place made into the summary is as follows.
(1) C: 0.05-0.10%, Si: 0.05-1.5%, Mn: 2.5-3.5%, P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less, Ti: 0.001-0.050%, Nb : 0.005 to 0.100%, N: 0.0050 to 0.0250%, solid solution N: 0.0010% or more, N / Al is 0.3 or more, the balance is Fe and inevitable impurities, and the average crystal grain size is 10 μm An ultra-high-strength hot-rolled steel sheet with excellent strain age hardening characteristics characterized by the following:
[0015]
(2) C: 0.05 to 0.10%, Si: 0.05 to 1.5%, Mn: 2.5 to 3.5%, P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less, Ti: 0.001 to 0.050%, Nb : 0.005 to 0.100%, N: 0.0050 to 0.0250%, solid solution N: 0.0010% or more, and further contains any one group or two groups or more of the following groups A to D, and N / Al is An ultra-high strength hot-rolled steel sheet having excellent strain age hardening characteristics, characterized by being 0.3 or more, the balance being Fe and inevitable impurities, and an average crystal grain size of 10 μm or less.
[0016]
Record
Group A: Cu, Ni, Cr, Mo: 1 type or 2 types or more and 1.0% or less in total
Group B: V, Zr: 1 type or 2 types total 0.1% or less
Group C: B: 0.005% or less
Group D: Ca, REM: 1 type or 2 types total 0.005% or less
(3) An ultra-high-strength plated steel sheet having excellent strain age hardening characteristics, comprising a metal plating layer on the surface of the hot-rolled steel sheet according to (1) or (2).
[0017]
(4) C: 0.05 to 0.10%, Si: 0.05 to 1.5%, Mn: 2.5 to 3.5%, P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less, Ti: 0.001 to 0.050%, Nb : 0.005 to 0.100%, N: 0.0050 to 0.0250%, or further contains any one group or two or more groups of the A group to D group, N / Al is 0.3 or more, and the balance is Fe After heating the steel slab composed of inevitable impurities to 1000 ° C or higher, roughly rolling it into a sheet bar, and finishing rolling the sheet bar to a finish rolling exit temperature of 800 ° C or higher, cooling rate 40 within 0.5 seconds A method for producing an ultra-high strength hot-rolled steel sheet having excellent strain age hardening characteristics, characterized by cooling at ℃ / s or higher and winding at 650 ° C or lower.
[0018]
(5) The steel sheet after winding is subjected to temper rolling and / or leveling and processing with an elongation of 0.5 to 10% and pickling in this order or in the reverse order. the method of.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First, the composition (chemical composition) of steel in the present invention will be described.
C: 0.05-0.10%
C is an indispensable element for strengthening steel using the low-temperature transformation phase. However, if it is less than 0.05%, TS780MPa or more cannot be achieved. On the other hand, if it exceeds 0.10%, the carbide fraction in steel increases. The ductility of the steel significantly deteriorates, the formability deteriorates, the spot weldability, arc weldability, etc. also remarkably decrease.In addition, during hot rolling of relatively wide thin steel plates, deformation occurs particularly in the austenite low temperature range or lower. The resistance increases remarkably and the rolling load rises rapidly, making it difficult to produce the steel sheet of the present invention particularly related to thin hot-rolled steel sheets. Therefore, C is set to 0.05 to 0.10%. In addition, from the viewpoint of improving moldability, 0.08% or less is preferable.
[0020]
Si: 0.05-1.5%
Si is a useful strengthening element that can increase the strength of a steel sheet without significantly reducing the ductility of the steel, but if it is less than 0.05%, the effect cannot be obtained, while if it is too much, the transformation point (= Ar Three The transformation point becomes too high, and a large amount of ferrite phase is produced during finish rolling, or the surface properties, especially the beauty, are impaired. However, if it is 1.5% or less, the Mn content can be adjusted to significantly increase the transformation point of Si. The action can be suppressed and good surface properties can be secured. Therefore, Si is set to 0.05 to 1.5%. When it is desired to ensure high ductility at a TS780MPa class or higher, 0.5% or less is preferable from the viewpoint of balance between strength and ductility.
[0021]
Mn: 2.5-3.5%
Mn is an element effective for preventing hot cracking due to S in addition to making this transformation point lowering action counteract with Si's transformation point raising action. It is added according to the amount of S from the viewpoint of hot cracking prevention. It is preferable to do this. Further, since Mn has the effect of refining crystal grains, it is desirable to add it positively and use it for improving the material. In particular, in order to stably fix S in a TS780MPa class steel plate, Mn needs to be 2.5% or more, preferably 2.7% or more, and more than 3.0% in particular to make the TS980MPa class. When the amount of Mn is increased to this level, variations in mechanical properties and strain age hardening characteristics of the steel sheet with respect to fluctuations in hot rolling conditions are reduced, which is effective in stabilizing the quality.
[0022]
However, when Mn exceeds 3.5%, the detailed mechanism is unknown, but the hot deformation resistance of the steel sheet tends to increase, and the weldability and weldability formability also tend to deteriorate, In addition, since the ferrite formation is remarkably suppressed and the ductility deteriorates, Mn is limited to 3.5% or less.
P: 0.05% or less
P is useful as a solid solution strengthening element of steel, but if contained excessively, it causes the steel to become brittle, further deteriorates the stretch flangeability of the steel sheet, and also because it has a strong tendency to segregate in the steel. Since it causes embrittlement of the welded portion, the content was made 0.05% or less. When stretch flange workability and weld toughness are particularly important, 0.04% or less is preferable.
[0023]
S: 0.0050% or less
S is an element that exists as an inclusion and deteriorates the ductility of the steel sheet and also causes deterioration of the corrosion resistance, so is limited to 0.0050% or less. In applications where particularly good workability is required, 0.0030% or less is desirable. Further, when the required level of stretch flangeability sensitive to the amount of S is particularly high, 0.0015% or less is preferable. Further, although the detailed mechanism is unknown, when S is reduced to 0.0030% or less, the tendency of high-order stabilization of the strain age hardening characteristics of the hot-rolled steel sheet is strengthened. Therefore, 0.0030% or less is preferable.
[0024]
Al: 0.02% or less
Al is added as a deoxidizing element for steel and is an effective element for improving the cleanliness of steel, and is also an element that is desirable to be added to refine the structure of steel. However, in the present invention, excessive addition of Al leads to deterioration of surface properties, and it becomes difficult to secure solid solution N. Even if solid solution N can be secured, if Al exceeds 0.02%, the variation in strain age hardening characteristics due to fluctuations in production conditions increases. Therefore, Al is limited to 0.02% or less. From the viewpoint of material stability, 0.001 to 0.020% is more desirable.
[0025]
Ti: 0.001 to 0.050%
Ti has the effect of preventing grain coarsening during slab heating through melting and precipitation behavior during heating and hot rolling, and refines the final structure. However, if it is less than 0.001%, such an effect is poor. If it exceeds 0.050%, hard carbides will be formed in the steel, which will adversely affect the material properties, such as reducing stretch flangeability. Therefore, Ti is 0.001 to 0.050%. In addition, Preferably it is 0.005-0.020%.
[0026]
Nb: 0.005 to 0.100%
Nb has the effect of suppressing grain growth after hot rolling through the presence of precipitates such as NbC and the effect on the recrystallization temperature, and refines and homogenizes the structure, but it takes less than 0.005%. On the other hand, if it exceeds 0.100%, a large amount of hard precipitates are formed in the steel, and the material properties, particularly stretch flangeability, are deteriorated. Therefore, Nb is set to 0.005 to 0.100%. In addition, Preferably it is 0.010 to 0.050%.
[0027]
N: 0.0050-0.0250%
N is the most important component element in the present invention. That is, by controlling the production conditions by adding an appropriate amount of N, it is possible to secure a necessary and sufficient amount of solid solution N on the base plate (as-rolled steel plate), thereby enhancing solid solution strengthening and strain aging. The strength-enhancement hardening by hardening is sufficiently exhibited, and the mechanical property requirements of the steel sheet of the present invention such as TS780 MPa or more, BH80 MPa or more, ΔTS40 MPa or more can be stably satisfied. N also has a function of lowering the transformation point of steel, and is useful for stabilizing the operation in a situation where rolling with a thin material that greatly cuts the transformation point is avoided.
[0028]
When N is less than 0.0050%, the above-described strength increasing effect is not easily stably exhibited. On the other hand, if N exceeds 0.0250%, the rate of occurrence of internal defects in the steel sheet increases, and slab cracking during continuous casting frequently occurs. Therefore, N is set to 0.0050 to 0.0250%. Of these, 0.0070 to 0.0170% is preferable from the viewpoint of improving the stability and yield of the material considering the entire manufacturing process. If the N amount is within the range of the present invention, there is no adverse effect on weldability and there is almost no increase in hot deformation resistance.
[0029]
Solid solution N: 0.0010% or more
In order to ensure sufficient strength in the base plate and sufficient strain aging hardening by N, that is, BH of 80 MPa or more and ΔTS of 40 MPa or more, solid solution N exists in the steel in an amount of 0.0010% or more. There is a need. In order to achieve higher levels of BH and ΔTS, 0.0020% or more is preferable, and in the case of higher levels, 0.0030% or more is preferable.
[0030]
Here, the solute N amount is obtained by subtracting the precipitated N amount from the total N amount in the steel. There are acid decomposition method, halogen method and electrolysis method as the extraction method of precipitated N, that is, the method of dissolving the base iron. As a result of comparison of these extraction methods by the present inventors, the electrolysis method is a carbide, nitride. Without dissolving the extremely unstable precipitates such as, it is possible to stably dissolve only the base iron. For this reason, in this invention, precipitation N shall be extracted by the electrolytic method. In addition, electrolysis is performed at a low potential using an acetyl / acetone-based liquid as the electrolytic solution. The residue extracted by the above electrolytic method is chemically analyzed to determine the amount of N in the residue, and this is defined as the amount of precipitated N.
[0031]
N / Al: 0.3 or more
As described above, in order to stably maintain a solid solution N of 0.0010% or more on the base plate regardless of fluctuations in production conditions, it is necessary to limit the amount of Al that is an element that strongly fixes N. It must be 0.02% or less. As a result of searching for a condition in which the solid solution N after hot rolling is 0.0010% or more for a steel in which the combination of the N content and the Al content is changed in a wide range within the composition range of the present invention, N / It was found that the cooling condition and the coiling temperature condition after finish rolling should be within the ranges described below with Al set to 0.3 or more. Therefore, the amount of Al is limited to N / 0.3 or less.
[0032]
Group A: Cu, Ni, Cr, Mo: 1 type or 2 types or more and 1.0% or less in total
All of the elements A, Cu, Ni, Cr, and Mo contribute to an increase in the strength of the steel sheet, and can be added alone or in combination as appropriate. However, if the amount is too large, it causes an increase in hot deformation resistance, deterioration of chemical conversion treatment and broad surface treatment characteristics, deterioration of weld formability resulting from hardening of the weld, and so on. % Or less is preferable. In addition, in order to acquire the said effect, it is preferable that A group contains 0.05% or more in total.
[0033]
Group B: V, Zr: 1 type or 2 types total 0.1% or less
Group B elements V and Zr both contribute to the refinement and uniformity of the crystal grain size, and can be added singly or in combination as appropriate. However, if the amount is too large, it causes an increase in hot deformation resistance, deterioration of chemical conversion treatment and broad surface treatment characteristics, deterioration of weld formability resulting from hardening of the weld, and so on. % Or less is preferable. In addition, in order to acquire the said effect, it is preferable to contain B group 0.001% or more in total.
[0034]
Group C: B: 0.005% or less
The group B element B has an effect of improving the hardenability of the steel, and therefore can be appropriately added for the purpose of increasing the strength of the steel by making the structural phase other than ferrite into a low-temperature transformation phase. However, if the amount is too large, it causes precipitation such as BN, which makes it difficult to secure solid solution N. Therefore, when B is added, B needs to be 0.005% or less.
[0035]
In addition, in order to acquire the said effect, it is preferable to contain B 0.0004% or more.
Group D: Ca, REM: 1 type or 2 types total 0.005% or less
The elements D and Ca in the group D are useful for controlling the form of inclusions, and particularly contribute to stretch flange formability. Therefore, they can be added alone or in combination as appropriate. However, when the total exceeds 0.005%, the occurrence of surface defects becomes conspicuous. Therefore, it is preferable to add the D group in a total range of 0.005% or less.
[0036]
In addition, in order to acquire the said effect, it is preferable to contain 0.0005% or more of D group in total.
Next, the structure and mechanical properties of the steel plate will be described.
Average crystal grain size of the structure: 10 μm or less
In the present invention, as the crystal grain size, the value calculated by the quadrature method prescribed in ASTM from the SEM observation photograph of the cross-sectional structure of the sample in which the crystal grain boundary is exposed by the nital etching, and the nominal value obtained by the cutting method are also used. The larger particle size (for example, Umemoto et al .: see Heat Treatment 24 (1984) 334) is used.
[0037]
The structure of the steel sheet of the present invention may be a single-phase structure composed of one phase or a composite structure composed of two or more phases, and the structure constituent phases are ferrite phase, pearlite phase, bainite phase, martensite phase. Any one or two or more of the retained austenite phases may be used, but from the viewpoint of securing the strength, the bainite phase or martensite phase is 35 vol% or more, or the total of these is 35 vol% or more. It is preferable. In addition, the average crystal grain size of the structure must be 10 μm or less. The grain boundary for each structural phase can be determined from a SEM observation photograph.
[0038]
Here, the ferrite includes not only a ferrite having a normal meaning (polygonal ferrite) but also bainitic ferrite and acicular ferrite not containing carbide. In addition, when the retained austenite phase is contained in the steel sheet, the ductility is improved, but the hole expansion ratio is lowered. Therefore, in order to ensure a good hole expansion ratio-ductility balance, the residual austenite phase may be less than 3 vol%. preferable.
[0039]
In the present invention, solid solution N is ensured by the base plate. However, even if the amount of solid solution N is kept constant, if the average crystal grain size of the steel sheet structure exceeds 10 μm, the strain age hardening characteristics vary greatly. The detailed mechanism is unknown, but it is estimated that it is related to the segregation and precipitation of alloy elements at the grain boundaries, and further to the effects of processing and heat treatment on these, but for whatever reason, In order to stabilize the strain age hardening characteristics, the average crystal grain size needs to be 10 μm or less. From the viewpoint of further stabilization of BH and ΔTS, the average crystal grain size is preferably 8 μm or less.
[0040]
TS: 780MPa or more
A steel sheet having a TS of less than 780 MPa cannot be widely applied to members having structural or collisional elements, and therefore, TS is assumed to be 780 MPa or more. In addition, TS980MPa or more is desirable from the viewpoint of further adapting to the collision member.
[0041]
Strain age hardening characteristics
In the present invention, “excellent in strain age hardening characteristics” means that, as described above, after pre-deformation (pre-straining) with a tensile strain of 5%, aging treatment is performed under the condition of holding at a temperature of 170 ° C. for 20 minutes. When the strain aging treatment is performed, the amount of increase in deformation stress before and after the aging treatment (BH; BH = yield stress after aging treatment−predeformation stress before aging treatment) is 80 MPa or more, and the strain aging treatment It means that the amount of increase in tensile strength before and after treatment (predeformation + aging treatment) (denoted as ΔTS; ΔTS = tensile strength after aging treatment−tensile strength before predeformation) is 40 MPa or more.
[Pre-deformation with 5% tensile strain]
When the strain age hardening characteristic is specified, the amount of pre-strain (pre-deformation) is an important factor. Assuming the deformation mode applied to the steel sheet for automobiles, the present inventors investigated the influence of the amount of pre-strain on the strain age hardening characteristics. As a result, (1) the deformation stress in the deformation mode is extremely high. Except in the case of deep drawing, it is possible to organize by the amount of strain equivalent to uniaxial (tensile strain). (2) In actual parts, the amount of strain equivalent to uniaxial exceeds about 5%. (3) Component strength ( It has been found that the strength of the actual part corresponds well with the strength obtained after the strain aging treatment with a pre-strain of 5%. Based on this knowledge, in the present invention, the pre-deformation of the strain aging treatment is set to 5% tensile strain.
[Aging treatment conditions: (heating temperature) 170 ° C x (holding time) 20 minutes]
Conventional baking conditions are 170 ° C x 20 minutes as standard. For this reason, 170 ° C. × 20 minutes was set as an aging treatment condition. In addition, when a strain of 5% or more is applied to the steel sheet of the present invention containing a large amount of solute N, hardening can be achieved even by a more gradual (low temperature side) treatment, in other words, it is possible to take a wider range of aging conditions. is there. In general, in order to earn a hardened amount, it is advantageous to hold at a higher temperature for a longer time unless softening is performed.
[0042]
Specifically, in the steel sheet of the present invention, the lower limit of the heating temperature at which hardening becomes significant after pre-deformation is approximately 100 ° C. On the other hand, when the heating temperature exceeds 300 ° C., the curing reaches its peak, and on the contrary, there is a tendency to slightly soften, and the occurrence of thermal distortion and temper color becomes conspicuous. Further, if the holding time is about 30 seconds or longer when the heating temperature is about 200 ° C., substantially sufficient curing is achieved. A holding time of 60 seconds or more is preferable to obtain a larger and more stable cure. However, if the holding time exceeds 20 minutes, further curing cannot be expected, and the production efficiency is significantly reduced, which is disadvantageous in practical use.
[0043]
From the above, when using the steel sheet of the present invention, it is preferable to set the heating temperature under the aging treatment conditions to 100 to 300 ° C. and the holding time to 30 seconds to 20 minutes after processing. In the present invention, there is also an advantage that large hardening can be obtained even under aging treatment conditions of low-temperature heating and short-time holding, in which sufficient hardening cannot be achieved with conventional paint-baked steel sheets. The heating method is not particularly limited, and any of induction heating, heating with a non-oxidizing flame, laser, plasma, etc., for example, can be preferably used in addition to atmospheric heating with a furnace employed for ordinary paint baking.
[BH: 80 MPa or more, ΔTS: 40 MPa or more]
The strength of parts for automobiles must be able to withstand complex stress loads from the outside. Therefore, in a steel plate, not only strength characteristics in a small strain range but also strength characteristics in a large strain range are important. In view of this point, the present inventors limited BH of the steel sheet of the present invention to be a material for automobile parts to 80 MPa or more and ΔTS to 40 MPa or more. More preferably, it is 100 MPa or more for BH and 50 MPa or more for ΔTS. The above limit range defines BH and ΔTS under the condition of aging treatment at 170 ° C. × 20 minutes after applying 5% pre-strain, but BH and ΔTS increase the heating temperature of aging treatment to a higher temperature side. It is also possible to increase the holding time by setting the holding time to a longer time.
[0044]
In addition, the steel sheet according to the present invention has a strength equivalent to at least about 40% of the complete aging when it is left at room temperature without being subjected to accelerated aging (artificial aging) by heating after forming. On the other hand, in the state where it is not molded, on the other hand, aging deterioration (a phenomenon in which YS increases and El (elongation) decreases) does not occur even when left at room temperature for a long time. Is equipped.
[0045]
By the way, the effect of the present invention can be exhibited even when the product plate thickness is relatively thick. However, when the product plate thickness exceeds 4.0 mm, there is a restriction on deformation resistance in terms of plastic working (rolling processing) in the steel plate manufacturing stage. In addition to being not so severe, the parts of interest are limited in the use of steel sheets for automobiles, so that the advantages of the present invention are not noticeable. Therefore, the steel sheet of the present invention preferably has a thickness of 4.0 mm or less.
[0046]
Moreover, in this invention, what performed electroplating or hot dipping on the base plate also has TS, BH, and ΔTS comparable to those before plating. As the type of plating, any of electrogalvanizing, hot dip galvanizing, alloying hot dip galvanizing, electrotin plating, electrochromic plating, electronickel plating, etc. can be preferably applied.
Next, the manufacturing method of this invention steel plate is demonstrated.
[0047]
The steel sheet of the present invention is basically manufactured by a hot rolling process in which a steel slab having a composition within the scope of the present invention is heated and roughly rolled to form a sheet bar, and the sheet bar is finish-rolled and then cooled and wound. The The slab is desirably produced by a continuous casting method to prevent macro segregation of components, but may be produced by an ingot forming method or a thin slab continuous casting method. In addition to the normal process of cooling the slab once to room temperature and reheating it, it is inserted directly into the furnace without being cooled and inserted into the heating furnace, or rolled immediately after performing a little heat retention. Energy saving processes such as rolling can also be applied without problems. In particular, direct feed rolling is one of the useful techniques for ensuring solid solution N effectively.
[0048]
The hot rolling conditions are specified as follows.
Slab heating temperature: 1000 ℃ or more
In order to secure the initial amount of solute N and satisfy the target of the amount of solute N in the product (0.0010% or more), the slab heating temperature (denoted as SRT) is set to 1000 ° C. or more. From the viewpoint of avoiding an increase in loss accompanying an increase in oxidized weight, SRT is preferably 1280 ° C. or lower.
[0049]
Rough rolling using the slab after heating as a sheet bar may be performed by a conventional method.
After rough rolling, finish rolling is performed on the sheet bar. In the present invention, it is preferable to join successive sheet bars between rough rolling and finish rolling and continuously finish rolling. As a joining means, a melt pressure welding method, a laser welding method, an electron beam welding method, or the like can be appropriately used.
[0050]
As a result, the proportion of unsteady parts (the front end and the rear end of the material to be processed) that are likely to be disturbed in finish rolling and subsequent cooling decreases, and the stable rolling length (continuous length that can be rolled under the same conditions) And the stable cooling length (continuous length that can be cooled with tension applied) are extended, and the shape / dimensional accuracy and yield of the product are improved.
In addition, it has become possible to easily carry out lubrication rolling for thin objects and wide widths, which was difficult to perform due to problems with sheeting and biting by conventional single roll rolling for each sheet bar, reducing rolling load and roll surface pressure. Roll life is extended.
[0051]
In the present invention, either one or both of a sheet bar edge heater that heats the sheet bar width end and a sheet bar length end is used between rough rolling and finish rolling. The temperature distribution in the width direction and the longitudinal direction of the sheet bar is preferably made uniform. Thereby, the material dispersion | variation in a steel plate can be made still smaller. The sheet bar edge heater and the sheet bar heater are preferably of the induction heating type.
[0052]
As for the use procedure, it is desirable to first compensate for the temperature difference in the width direction by the sheet bar edge heater. The heating amount at this time is preferably set so that the temperature range in the width direction on the finish rolling exit side is approximately 20 ° C. or less, although it depends on the steel composition and the like. Next, the temperature difference in the longitudinal direction is compensated by the sheet bar heater. The heating amount at this time is preferably set so that the length end temperature is about 20 ° C. higher than the center temperature.
[0053]
Finishing rolling delivery temperature: 800 ℃ or more
In finish rolling, the finish rolling exit temperature (denoted as FDT) is set to 800 ° C. or higher in order to prepare the structure of the steel sheet uniformly and finely. When FDT is less than 800 ° C., the finish rolling temperature becomes too low, the structure becomes non-uniform, and the processed structure remains in part, thereby increasing the risk of various problems occurring during press forming. Residue of such a processed structure can be avoided by high-temperature winding, but when high-temperature winding is performed, coarse grains are generated, the strength is reduced, and the amount of solute N is also greatly reduced, so that the target TS780 MPa or more can be obtained. It becomes difficult. In order to further improve the mechanical properties, the FDT is desirably 820 ° C. or higher.
[0054]
Further, particularly in finish rolling, performing lubrication rolling to reduce the load during hot working is effective for making the shape and material uniform. In that case, the friction coefficient is preferably in the range of 0.25 to 0.10, and it is also desirable from the viewpoint of the operational stability of hot rolling to be combined with the aforementioned continuous rolling.
Cooling after rolling: Cooling at a cooling rate of 40 ° C / s or more starting within 0.5 seconds after rolling
Immediately after the end of rolling, cooling is started (approximately within 0.5 seconds), and the cooling needs to be rapidly cooled at an average cooling rate of 40 ° C./s or more. If this requirement is not satisfied, the grain growth proceeds too much and the refinement of the crystal grain size cannot be achieved, and the precipitation of AlN by the strain energy introduced by rolling proceeds too much, resulting in a deficiency in the amount of dissolved N. From the viewpoint of ensuring the uniformity of the material and shape, the average cooling rate is preferably 300 ° C./s or less.
[0055]
Winding temperature: 650 ℃ or less
As the coiling temperature (referred to as CT) decreases, the strength of the steel sheet increases and reaches the target TS780MPa or higher at CT650 ° C or lower. In addition, when CT is less than 200 ° C., the shape of the steel sheet tends to be disturbed, and the risk of causing problems in actual use increases. Further, in terms of material uniformity, CT is 300 ° C. or higher, and in terms of ensuring strength, 450 ° C. or lower is particularly desirable for achieving a TS980 MPa class.
[0056]
Furthermore, in the present invention, after winding, it is preferable to perform processing (post-hot rolling processing) with an elongation of 0.5 to 10% by one or both of temper rolling and levelering. Here, the elongation in temper rolling is the same as the rolling reduction.
Temper rolling and leveling are usually performed for surface roughness adjustment and shape correction. In the present invention, however, there is an effect of further increasing and stabilizing BH and ΔTS. This effect is manifested at an elongation of 0.5% or more, while ductility deteriorates when the elongation exceeds 10%. Therefore, it is desirable to perform the post-hot rolling process in an elongation range of 0.5 to 10%. In addition, although the processing modes are different between temper rolling and levelering (the former is rolling, the latter is repeated bending and stretching), the degree of influence on the strain age hardening characteristics of the steel sheet of the present invention is almost the same. is there. In the present invention, the pickling may be performed before or after the hot rolling.
[0057]
【Example】
Example 1
The steel having the composition shown in Table 1 is melted in a converter and formed into a slab by continuous casting. The slab is hot-rolled under the conditions of No. shown in Table 2 and further temper-rolled to obtain a plate thickness. A 1.8 mm hot-rolled steel sheet was obtained. In finish rolling, tandem rolling was performed individually without joining the sheet bars. “Cooling delay time” in Table 2 means the time from the completion of finish rolling to the start of cooling (the same applies hereinafter). The cooling was water cooling (the same applies hereinafter).
[0058]
The obtained hot-rolled steel sheet was examined for solid solution N, microstructure, tensile characteristics, hole expansion ratio, bending cracking, delayed fracture, and strain age hardening characteristics in the following manner.
-Solid solution N amount: Measured by the above method.
・ Microscopic structure: Image analysis of the enlarged image of the corrosion appearance structure of the portion excluding 10% of each thickness surface layer from the front and back of the C cross section (cross section orthogonal to the rolling direction), and the phase composition (volume%) and average crystal grains Measure the diameter.
[0059]
-Tensile properties: YS, TS, and elongation (El) are measured by a tensile test (TS measurement value = TS0).
-Hole expansion rate: Measured by the hole expansion test specified in JFS T1001. The hole expansion rate λ (%) is defined by the following equation.
λ = (D h -D o ) / D o × 100
D o : Initial hole diameter (D o = 10mm)
D h : Hole diameter after fracture (mm)
Bending cracking: Evaluated by the presence or absence of cracking during V-bending at an angle of 60 ° at the tip and a bending radius of 3 mmR.
[0060]
-Delayed fracture: Test specimens processed by 180 ° U-bending with a bending radius of 4 mmR are evaluated for the presence or absence of cracks by leaving them in the atmosphere for 240 hours, immersing them in ethyl alcohol, and immersing them in pure water.
・ Strain age hardening characteristics: Pre-deformation by tensile test with pre-strain amount x (%) and measure deformation stress (measured value is FS (x)), unload and age temperature Θ (℃) x aging In the procedure of performing aging heat treatment for time τ (seconds) and measuring YS and TS by pulling again (YS measurement value = YS1, TS measurement value = TS1), standard conditions (x = 5%, Θ = 170 ° C., τ = Deformation stress increase YS1-FS (5) (ie BH) and TS increase TS1-TS0 (ie ΔTS) at 1200 seconds (20 minutes), or further deformation under non-standard conditions (#) A stress increase amount YS1-FS (x) (denoted as BH #) and a TS increase amount TS1-TS0 (denoted as ΔTS #) are obtained.
[0061]
-The tensile test related to the investigation of tensile properties and strain age hardening properties is performed by a method based on JISZ2241 using a JIS No. 5 test piece.
The results are shown in Table 3. Nos. 1, 2, and 8 to 23 in the table are examples of the present invention. In these examples of the present invention, TS ≧ 780 MPa, BH ≧ 80 MPa, ΔTS ≧ 40 MPa are achieved, and a wide range of non-standard conditions ( In the strain aging treatment in #), BH # ≧ 80 MPa and ΔTS # ≧ 40 MPa were obtained.
[0062]
[Table 1]
Figure 0004556348
[0063]
[Table 2]
Figure 0004556348
[0064]
[Table 3]
Figure 0004556348
[0065]
(Example 2)
0.078% C-0.15% Si-3.15% Mn-0.12% P-0.0015% S-0.012% Al-0.0135% N composition steel was melted in a converter and made into a slab by continuous casting. , Heated under conditions of SRT = 1150 ° C., roughly rolled to form a sheet bar having a thickness of 25 mm, and processed under the conditions of No. shown in Table 4 and finished under the conditions of FDT = 870 ° C. Rolled, cooled under cooling delay time = 0.4 seconds, average cooling rate = 90 ° C / s, wound up under CT = 420 ° C, further temper rolled at 0.8% reduction, plate thickness 1.6mm A hot rolled steel sheet was obtained. The sheet bar bonding was performed by a method in which the mutually facing end portions of the adjacent sheet bars were melted by high-frequency heating (hereinafter the same).
[0066]
The obtained hot-rolled steel sheet was examined for solid solution N, microstructure, tensile properties, hole expansion rate, bending cracking, delayed fracture, and strain age hardening properties (the investigation procedure is the same as in Example 1). Moreover, the hot-rolled finishing plate thickness accuracy of each steel plate was compared at ± 30 μm on-gauge rate (%).
The results are shown in Table 4. Nos. 26 to 30 in the table are all examples of the present invention. In any case, TS ≧ 780 MPa, BH ≧ 80 MPa, ΔTS ≧ 40 MPa are achieved, and even when the predistortion amount x = 8%, BH # ≧ 80 MPa ΔTS # ≧ 40 MPa. In addition, it was confirmed that the hot rolled finishing plate thickness accuracy was considerably improved by utilizing a sheet bar heater and a sheet bar edge heater, and further improved by endless finishing rolling by sheet bar joining.
[0067]
[Table 4]
Figure 0004556348
[0068]
(Example 3)
0.075% C-0.18% Si-2.84% Mn-0.009% P-0.0014% S-0.012% Al-0.0142% N composition steel was melted in a converter and made into a slab by continuous casting. , Heated under conditions of SRT = 1105 ° C., roughly rolled to form a sheet bar with a thickness of 25 mm, and processed under the conditions of No. shown in Table 5 and then finished under the conditions of FDT = 890 ° C. Rolled, cooled under cooling delay time = 0.4 seconds, average cooling rate = 100 ° C / s, rolled up under CT = 400 ° C, further temper rolled at 0.7% reduction, plate thickness 1.8mm A hot rolled steel sheet was obtained. Further, for conditions 32 to 36, the hot-rolled steel sheet was pickled and then passed through a continuous hot-dip galvanizing line (annealing temperature in the line = 750 ° C.) to obtain a hot-dip galvanized steel sheet.
[0069]
The obtained hot-rolled steel sheet or hot-dip galvanized steel sheet was examined for solid solution N, microstructure, tensile properties, hole expansion rate, bending cracking, delayed fracture, and strain age hardening properties (the investigation procedure is the same as in Example 1). ). Moreover, the hot-rolled finishing plate thickness accuracy of each steel plate was compared at ± 30 μm on-gauge rate (%).
The results are shown in Table 5. Nos. 31 to 36 in the table are all examples of the present invention (No. 31 is a hot-rolled steel sheet, Nos. 32 to 36 are hot-dip galvanized steel sheets), and TS slightly decreases after plating (Nos. 31 and 32). (Comparative) In all cases, TS ≧ 780 MPa, BH ≧ 80 MPa, ΔTS ≧ 40 MPa are achieved, and even when pre-strain amount x = 7% and aging time τ = 1000 seconds, BH # ≧ 80 MPa, ΔTS # ≧ 40 MPa It became. Moreover, it was recognized that the hot-rolled finishing plate thickness accuracy was considerably improved by utilizing a sheet bar heater and a sheet bar edge heater, and further improved by endless finishing rolling by sheet bar joining.
[0070]
[Table 5]
Figure 0004556348
[0071]
【The invention's effect】
The ultra-high strength hot-rolled steel sheet of the present invention has a base strength property of about TS880 to 1180 MPa, which is higher than TS780MPa, by appropriately utilizing solute N, and after being subjected to strain aging treatment, BH80MPa As described above, it has excellent strain age hardening characteristics that can stably clear ΔTS40MPa or more, and has the same characteristics after plating, and can be hot-rolled inexpensively without disturbing the shape, and without pickling It can also be applied to applications that use the surface scale layer, and can reduce the thickness of steel plates for automobile parts by one grade, for example, from about 2.0 mm to about 1.6 mm, greatly contributing to the promotion of weight reduction of automobile bodies. Excellent effect.

Claims (5)

質量%で
C:0.05〜0.10%、 Si:0.05〜1.5 %、 Mn:2.5 〜3.5 %、
P:0.05%以下、 S:0.0050%以下、 Al:0.02%以下、
Ti:0.001 〜0.050 %、 Nb:0.005 〜0.100 %、 N:0.0050〜0.0250%、
固溶N:0.0010%以上
を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなり、平均結晶粒径が10μm以下であることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板。
C: 0.05 to 0.10% by mass%, Si: 0.05 to 1.5%, Mn: 2.5 to 3.5%,
P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less,
Ti: 0.001 to 0.050%, Nb: 0.005 to 0.100%, N: 0.0050 to 0.0250%,
Solid age N: 0.0010% or more, N / Al is 0.3 or more, the balance is Fe and inevitable impurities, and the average crystal grain size is 10 μm or less. Excellent ultra high strength hot rolled steel sheet.
質量%で
C:0.05〜0.10%、 Si:0.05〜1.5 %、 Mn:2.5 〜3.5 %、
P:0.05%以下、 S:0.0050%以下、 Al:0.02%以下、
Ti:0.001 〜0.050 %、 Nb:0.005 〜0.100 %、 N:0.0050〜0.0250%、
固溶N:0.0010%以上
を含有し、さらに、下記A群〜D群の何れか1群または2群以上を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなり、平均結晶粒径が10μm以下であることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板。

A群:Cu、Ni、Cr、Mo:1種または2種以上合計1.0 %以下
B群:V、Zr :1種または2種合計0.1 %以下
C群:B :0.005 %以下
D群:Ca、REM :1種または2種合計0.005 %以下
C: 0.05 to 0.10% by mass%, Si: 0.05 to 1.5%, Mn: 2.5 to 3.5%,
P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less,
Ti: 0.001 to 0.050%, Nb: 0.005 to 0.100%, N: 0.0050 to 0.0250%,
Solid solution N: It contains 0.0010% or more, and further contains any one group or two groups of the following groups A to D, N / Al is 0.3 or more, and the balance is Fe and inevitable impurities. An ultra-high strength hot-rolled steel sheet having excellent strain age hardening characteristics, characterized in that the average crystal grain size is 10 μm or less.
Group A: Cu, Ni, Cr, Mo: 1 or more types total 1.0% or less Group B: V, Zr: 1 type or 2 types total 0.1% or less Group C: B: 0.005% or less D group: Ca REM: 1 type or 2 types total 0.005% or less
請求項1または2に記載の熱延鋼板の表面に金属めっき層を有してなることを特徴とする歪時効硬化特性に優れた超高強度めっき鋼板。An ultra-high-strength plated steel sheet having excellent strain age hardening characteristics, comprising a metal plating layer on the surface of the hot-rolled steel sheet according to claim 1. 質量%で
C:0.05〜0.10%、 Si:0.05〜1.5 %、 Mn:2.5 〜3.5 %、 P:0.05%以下、 S:0.0050%以下、 Al:0.02%以下、
Ti:0.001 〜0.050 %、 Nb:0.005 〜0.100 %、 N:0.0050〜0.0250%
を含有し、あるいはさらに下記A群〜D群の何れか1群または2群以上を含有し、かつN/Alが0.3 以上であり、残部がFeおよび不可避的不純物からなる鋼スラブを1000℃以上に加熱後、粗圧延してシートバーとなし、該シートバーを仕上圧延出側温度800 ℃以上として仕上圧延した後、0.5 秒以内に冷却速度40℃/s以上で冷却し、 650℃以下で巻き取ることを特徴とする歪時効硬化特性に優れた超高強度熱延鋼板の製造方法。

A群:Cu、Ni、Cr、Mo:1種または2種以上合計1.0 %以下
B群:V、Zr :1種または2種合計0.1 %以下
C群:B :0.005 %以下
D群:Ca、REM :1種または2種合計0.005 %以下
C: 0.05-0.10%, Si: 0.05-1.5%, Mn: 2.5-3.5%, P: 0.05% or less, S: 0.0050% or less, Al: 0.02% or less,
Ti: 0.001 to 0.050%, Nb: 0.005 to 0.100%, N: 0.0050 to 0.0250%
Or a steel slab containing any one or more of the following groups A to D, N / Al is 0.3 or more, and the balance is Fe and inevitable impurities: 1000 ° C. or more After heating to a rough bar and forming a sheet bar, the sheet bar is finish-rolled at a finish rolling exit temperature of 800 ° C or higher, then cooled at a cooling rate of 40 ° C / s or higher within 0.5 seconds, at 650 ° C or lower. A method for producing an ultra-high strength hot-rolled steel sheet having excellent strain age hardening characteristics, characterized by winding.
Group A: Cu, Ni, Cr, Mo: 1 or more types total 1.0% or less Group B: V, Zr: 1 type or 2 types total 0.1% or less Group C: B: 0.005% or less D group: Ca REM: 1 type or 2 types total 0.005% or less
巻取後の鋼板に、調質圧延および/またはレベラ掛けによる伸び率0.5 〜10%の加工と酸洗とを、この順またはこの逆の順に施すことを特徴とする請求項4記載の方法。5. The method according to claim 4, wherein the steel sheet after winding is subjected to temper rolling and / or leveling and processing with an elongation of 0.5 to 10% and pickling in this order or vice versa.
JP2001162628A 2000-08-16 2001-05-30 Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same Expired - Fee Related JP4556348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162628A JP4556348B2 (en) 2000-08-16 2001-05-30 Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000246701 2000-08-16
JP2000-246701 2000-08-16
JP2001162628A JP4556348B2 (en) 2000-08-16 2001-05-30 Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002129279A JP2002129279A (en) 2002-05-09
JP4556348B2 true JP4556348B2 (en) 2010-10-06

Family

ID=26597992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162628A Expired - Fee Related JP4556348B2 (en) 2000-08-16 2001-05-30 Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same

Country Status (1)

Country Link
JP (1) JP4556348B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580157B2 (en) * 2003-09-05 2010-11-10 新日本製鐵株式会社 Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
JP4486334B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength hot-rolled steel sheet and high yield ratio high strength hot dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high strength alloyed hot dip galvanized steel sheet and manufacturing method thereof
KR101165168B1 (en) 2003-09-30 2012-07-11 신닛뽄세이테쯔 카부시키카이샤 High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
JP4513552B2 (en) * 2003-12-26 2010-07-28 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same
JP5035162B2 (en) * 2008-07-23 2012-09-26 住友金属工業株式会社 Hot-rolled steel sheet and manufacturing method thereof
JP5228722B2 (en) * 2008-09-10 2013-07-03 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5582284B2 (en) * 2009-09-04 2014-09-03 Jfeスチール株式会社 Thin steel plate having a high proportional limit and method for producing the same
US12180569B2 (en) * 2018-10-31 2024-12-31 Jfe Steel Corporation High-strength member, method for manufacturing high-strength member, and method for manufacturing steel sheet for high-strength member
CN115537664B (en) * 2022-10-13 2023-05-30 马鞍山钢铁股份有限公司 Hot-rolled pickled enamel steel with yield strength more than or equal to 300MPa after enameling and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2000178684A (en) * 1998-12-11 2000-06-27 Nippon Steel Corp Method for producing thin steel sheet and high-strength press-formed body excellent in heat treatment hardening ability
JP2001303180A (en) * 2000-04-21 2001-10-31 Kawasaki Steel Corp High yield ratio type high tension galvanized steel sheet excellent in workability and strain aging hardening characteristic, and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
JP2000178684A (en) * 1998-12-11 2000-06-27 Nippon Steel Corp Method for producing thin steel sheet and high-strength press-formed body excellent in heat treatment hardening ability
JP2001303180A (en) * 2000-04-21 2001-10-31 Kawasaki Steel Corp High yield ratio type high tension galvanized steel sheet excellent in workability and strain aging hardening characteristic, and its producing method

Also Published As

Publication number Publication date
JP2002129279A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP5163356B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4524850B2 (en) High-tensile cold-rolled steel sheet with excellent ductility and strain age hardening characteristics and method for producing high-tensile cold-rolled steel sheet
KR100611541B1 (en) Cold rolled steel with excellent strain aging hardening properties and its manufacturing method
KR100595946B1 (en) High tensile cold rolled steel with excellent strain aging hardening properties and its manufacturing method
JP3846206B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP4265545B2 (en) High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
WO2001090431A1 (en) Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP4206642B2 (en) High tensile hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4839527B2 (en) Cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP4362948B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
JP4665302B2 (en) High-tensile cold-rolled steel sheet having high r value, excellent strain age hardening characteristics and non-aging at room temperature, and method for producing the same
JP4556348B2 (en) Ultra-high strength hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2003313636A (en) Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
JP4519373B2 (en) High-tensile cold-rolled steel sheet excellent in formability, strain age hardening characteristics and room temperature aging resistance, and method for producing the same
JP3870868B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in stretch flangeability, strength-ductility balance and strain age hardening characteristics, and method for producing the same
JP5035268B2 (en) High tensile cold-rolled steel sheet
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
JP4747473B2 (en) Hot-rolled steel sheet and hot-dip galvanized steel sheet excellent in stretch flangeability and methods for producing them
JP3959934B2 (en) High-tensile cold-rolled steel sheet excellent in strain age hardening characteristics, impact resistance characteristics and workability, and a method for producing the same
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP2002115027A (en) Thin sheet of galvanized soft steel and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees