[go: up one dir, main page]

JP2000178684A - Method for producing thin steel sheet and high-strength press-formed body excellent in heat treatment hardening ability - Google Patents

Method for producing thin steel sheet and high-strength press-formed body excellent in heat treatment hardening ability

Info

Publication number
JP2000178684A
JP2000178684A JP35249398A JP35249398A JP2000178684A JP 2000178684 A JP2000178684 A JP 2000178684A JP 35249398 A JP35249398 A JP 35249398A JP 35249398 A JP35249398 A JP 35249398A JP 2000178684 A JP2000178684 A JP 2000178684A
Authority
JP
Japan
Prior art keywords
heat treatment
steel sheet
steel
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35249398A
Other languages
Japanese (ja)
Other versions
JP3447233B2 (en
Inventor
Takeshi Nishiwaki
武志 西脇
Yuichi Taniguchi
裕一 谷口
Kazumasa Yamazaki
一正 山崎
Hidefumi Aiko
英史 愛甲
Shinji Shibata
新次 柴田
Hiroshi Kawaguchi
博史 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Steel Corp
Priority to JP35249398A priority Critical patent/JP3447233B2/en
Publication of JP2000178684A publication Critical patent/JP2000178684A/en
Application granted granted Critical
Publication of JP3447233B2 publication Critical patent/JP3447233B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

(57)【要約】 【課題】 本発明は、プレス成形後の低温の熱処理にお
いて、60MPa以上の強度上昇が図れる鋼板およびプ
レス成形体の製造方法を提供する。 【解決手段】 C:0.01〜0.20%、Mn:0.010 〜3.0
%、S:0.001 〜0.020 %、N:0.0002〜0.01%、Si:
0.01〜3.0 %、Al:0.005 〜2.0 %、P:0.005 〜0.2
%を含有するか、またさらに加えて、Mo:0.01〜2.0%、
Cr:0.01〜2.0%、Ti:0.005 〜0.10%、Nb:0.005 〜0.
10%、V:0.005 〜0.10%、B:0.0003〜0.0050%の1
種あるいは2種以上を含有し、かつ鋼の平均結晶粒径が
20μm以下、鉄炭素化合物の平均粒径が1μm以下であ
り、塑性相当ひずみで2%以上のひずみが加えられるプ
レス成形を施した後、17,000<T(30+lnt)<30,000で表
される温度T(K)と時間t秒の範囲に保持する低温熱処理
を施す熱処理硬化能に優れた薄鋼板、および、高強度プ
レス成形体の製造方法にある。
(57) Abstract: The present invention provides a method for producing a steel sheet and a press-formed body capable of increasing the strength by 60 MPa or more in low-temperature heat treatment after press-forming. SOLUTION: C: 0.01 to 0.20%, Mn: 0.010 to 3.0
%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si:
0.01 to 3.0%, Al: 0.005 to 2.0%, P: 0.005 to 0.2
%, Or in addition, Mo: 0.01-2.0%,
Cr: 0.01 to 2.0%, Ti: 0.005 to 0.10%, Nb: 0.005 to 0.
10%, V: 0.005 to 0.10%, B: 0.0003 to 0.0050%
Or two or more species, and the average grain size of the steel is
After performing press forming in which the average particle diameter of the iron-carbon compound is 1 μm or less and the plastic equivalent strain is 2% or more, the temperature T (expressed by 17,000 <T (30 + lnt) <30,000 The present invention relates to a method for producing a thin steel sheet excellent in heat treatment hardening ability for performing low-temperature heat treatment maintained in the range of K) and time t seconds, and a high-strength pressed molded body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車の構造用部
品などのように、構造上の強度、特に変形時の強度及び
又は剛性が必要とされる箇所に適用されるに好適な、プ
レス等による加工成形後に所定温度域で引張り強さ上昇
熱処理がなされる成形体の素材として用いられる熱処理
硬化能(成形後強度上昇熱処理硬化能)に優れた高強度
薄鋼板およびその薄鋼板を用いた高強度プレス成形体の
製造方法に関するものである。本発明の熱処理硬化能と
は、成形後の引張り強さ及び降伏強さの両方の強さの上
昇能を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a press or the like suitable for application to a place where structural strength, particularly strength and / or rigidity at the time of deformation is required, such as structural parts of an automobile. High-strength steel sheet with excellent heat-hardening ability (heat-strength heat-hardening ability after molding) used as a material for a molded body subjected to a tensile strength increase heat treatment in a predetermined temperature range after work forming by high temperature The present invention relates to a method for producing a strength press molded body. The heat treatment hardening ability of the present invention means an ability to increase both the tensile strength and the yield strength after molding.

【0002】[0002]

【従来の技術】薄鋼板からなるプレス成形体を製造する
に際し、プレス成形前は軟質でプレス成形しやすく、プ
レス成形後に硬化させ部品強度を高める方法としては、
200℃以下で塗装焼付する方法などがある。例えば、
特開昭55−141526号公報、特開昭55−141555号公報に記
載のようなNb添加鋼において、鋼中のC ,N ,AI含有量
に応じてNbを添加して、at%でNb/(固溶C +固溶N )
をある範囲内に制限し、さらに、焼鈍後の冷却速度を制
御することにより鋼板中の固溶C ,固溶N を調整する方
法や、特公昭61−45689 号公報に記載のようにTiとNbの
複合添加によって焼付硬化性を向上させることが開示さ
れている。
2. Description of the Related Art In manufacturing a press-formed body made of a thin steel sheet, there is a method of increasing the strength of parts by softening before press-forming and easy to press-forming, and hardening after press-forming.
There is a method of baking at 200 ° C. or lower. For example,
In an Nb-added steel as described in JP-A-55-141526 and JP-A-55-141555, Nb is added in accordance with the content of C, N, and AI in the steel, and Nb is added in at%. / (Solute C + Solute N)
Is controlled within a certain range, and the cooling rate after annealing is controlled to adjust the solute C and solute N in the steel sheet. Alternatively, as described in JP-B-61-45689, Ti and It is disclosed that the bake hardenability is improved by the complex addition of Nb.

【0003】しかしながら、前述のような鋼板は、深絞
り性に優れる材質とするため、鋼板の強度は低く、構造
用材料としてとしては必ずしも十分ではない。また、さ
らに、特開昭57-143464 号公報に記載のようにSi添加
によって鋼中の固溶Cを増加せしめ焼付硬化性を向上す
る技術や、特開平5-25549号公報に記載のように鋼にW,
Cr,Mo の単独または複合添加によって焼付硬化性を向上
させる技術が開示されている。しかしながら、焼付硬化
により強度が上昇するのは、鋼板中に含まれる固溶C、
固溶Nを利用するため、材料の降伏強度のみを上昇させ
るだけであり、引張強さを上昇させるものではない。こ
のため、部品の変形の開始応力を高める効果しかなく、
部品の変形開始から変形終了まで変形中全域にわたって
変形に要する応力(変形強度特性)を高める効果につい
ては、必ずしも十分ではない。
However, since the above-mentioned steel sheet is made of a material having excellent deep drawability, the strength of the steel sheet is low and is not always sufficient as a structural material. Further, as disclosed in Japanese Patent Application Laid-Open No. 577-143464, a technique of increasing the solid solution C in steel by adding Si to improve the bake hardenability, or as described in Japanese Patent Application Laid-Open No. 5-25549. W on steel,
A technique for improving bake hardenability by adding Cr or Mo alone or in combination is disclosed. However, the increase in strength due to bake hardening is due to solid solution C contained in the steel sheet,
Since solid solution N is used, only the yield strength of the material is increased, but the tensile strength is not increased. For this reason, there is only an effect of increasing the starting stress of deformation of the part,
The effect of increasing the stress required for deformation (deformation strength characteristic) over the entire area during deformation from the start of deformation to the end of deformation of the component is not necessarily sufficient.

【0004】また、これらの固溶C、固溶Nを利用した
焼付硬化型鋼板は、常温時効性が劣化しない範囲で固溶
C、固溶Nを残すため、焼付硬化能には限度があった。
一方、プレス成形体の塗装焼付以外の硬化方法として
は、プレス成形後に軟窒化処理による方法がある。例え
ば、特開平2-80539 号公報に記載のように窒化処理によ
り強度が高まるように、Cr,Al,V 等の窒化物形成元素を
鋼中に含有させる方法や、特開平3-122255号公報に記載
のように窒化処理の熱を利用して、Cuを析出硬化させ
部材の硬さを高める方法などが開示されている。しかし
ながら、これらの方法では、加熱温度が高く、熱処理時
間も長いため熱処理後の部品精度の狂いが生じ易いとい
う欠点を有していた。また、特開平2-57634 号公報に
は、300 〜800 ℃の熱処理によりTi,Vを析出させる技術
が開示されている。しかしながら、 Ti,Vを析出させるた
め、300-500 ℃の低い温度の範囲では少なくとも10分
以上の長時間の熱処理が必要であり、また、300 ℃以下
の熱処理では鋼の強度(特に引張強さ)を十分に強化さ
せることができなかった。
[0004] In addition, bake hardening type steel sheets using these solid solution C and solid solution N have a limited bake hardening ability because solid solution C and solid solution N are left as long as the aging property at normal temperature is not deteriorated. Was.
On the other hand, as a curing method other than the baking of the press-formed body, there is a method by soft nitriding after press-forming. For example, as described in JP-A-2-80539, a method in which a nitride-forming element such as Cr, Al, V, or the like is contained in steel so that the strength is increased by nitriding, or JP-A-3-122255. Discloses a method of increasing the hardness of a member by precipitating and hardening Cu using the heat of nitriding treatment. However, these methods have the drawback that the heating temperature is high and the heat treatment time is long, so that the accuracy of the parts after the heat treatment tends to be disordered. Japanese Patent Application Laid-Open No. 2-57634 discloses a technique of depositing Ti and V by heat treatment at 300 to 800 ° C. However, long-term heat treatment of at least 10 minutes is required in the low temperature range of 300-500 ° C to precipitate Ti and V. In the case of heat treatment at 300 ° C or less, the strength of steel (particularly tensile strength) ) Could not be sufficiently strengthened.

【0005】このように、加工成形前は比較的軟質の高
強度鋼でプレス成形等の加工成形がしやすく、プレス成
形等の成形加工後に強度上昇を目的とした低温での短時
間熱処理を行うことで、引張強さ又は硬さが上昇し部材
や部品の変形強度を高めるか、あるいは剛性を高めるこ
とが可能な素材としての薄鋼板が強く望まれていた。
[0005] As described above, before forming, it is easy to perform forming such as press forming with relatively soft high-strength steel, and after forming such as press forming, heat treatment is performed at a low temperature for a short time to increase the strength. As a result, there has been a strong demand for a thin steel plate as a material capable of increasing the tensile strength or hardness and increasing the deformation strength of a member or component, or increasing the rigidity.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上記の
ような問題点を解決するべく、薄鋼板からなる各種成形
材料や部品の形状を成形する上での加工性、部材や部品
を熱処理することで硬化させる熱処理方法、および該鋼
板からなる部品としてのプレス成形体の変形強度特性な
ど鋭意研究を行った。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present inventors have studied the workability in forming various molding materials and parts made of thin steel sheets, and the members and parts. We conducted intensive research on the heat treatment method of hardening by heat treatment, and the deformation strength characteristics of a press-formed body as a part made of the steel sheet.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋼の平均
結晶粒径が20μm以下であり、かつ鋼中の鉄炭素化合物
の平均粒径が1μm以下である鋼板を200℃超〜50
0℃の温度域に加熱した際に短時間で高い強度上昇(又
は硬さ上昇)が得られることを新たに発見し、本発明を
成し遂げたものである。
Means for Solving the Problems The present inventors have proposed a steel plate having an average crystal grain size of steel of 20 μm or less and an average particle size of iron carbon compound in the steel of 1 μm or less, exceeding 200 ° C. to 50 ° C.
The present inventors have newly found that a high strength increase (or an increase in hardness) can be obtained in a short time when heated to a temperature range of 0 ° C., thereby achieving the present invention.

【0008】その要旨は, (1)重量%で、C :0.01〜0.20%、Mn:0.010 〜3.0
%、S :0.001 〜0.020 %、N :0.0002〜0.01%、Si:
0.01〜3.0 %、Al:0.005 〜2.0 %、P :0.005 〜0.2
%、を含有し、残部が鉄および不可避的不純物からなる
鋼であり、かつ前記鋼の平均結晶粒径が20μm以下であ
り、かつ鋼中の鉄炭素化合物の平均粒径が1μm以下で
あることを特徴とする成形後強度上昇熱処理硬化能に優
れた薄鋼板。 (2)重量%で、C :0.01〜0.20%、Mn:0.010 〜3.0
%、S :0.001 〜0.020 %、N :0.0002〜0.01%、Si:
0.01〜3.0 %、Al:0.005 〜2.0 %、P :0.005 〜0.2
%、を含有し、更に重量%でSi,Al,Pを0.2 ≦S
i%+1.4Al%+6.3P%≦3.0の範囲で含有
し、かつ鋼の平均結晶粒径が20μm以下であり、かつ鋼
中の鉄炭素化合物の平均粒径が1μm以下であることを
特徴とする成形後強度上昇熱処理硬化能に優れた薄鋼
板。
The gist is as follows: (1) C: 0.01 to 0.20%, Mn: 0.010 to 3.0% by weight.
%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si:
0.01 to 3.0%, Al: 0.005 to 2.0%, P: 0.005 to 0.2
%, The balance being iron and unavoidable impurities, and the steel having an average crystal grain size of 20 μm or less and an iron carbon compound in the steel having an average particle size of 1 μm or less. Thin steel sheet with excellent heat treatment hardening ability after strength increase after forming. (2) By weight%, C: 0.01 to 0.20%, Mn: 0.010 to 3.0
%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si:
0.01 to 3.0%, Al: 0.005 to 2.0%, P: 0.005 to 0.2
%, And in terms of weight%, Si, Al, P is 0.2 ≦ S
i% + 1.4 Al% + 6.3 P% ≦ 3.0, the average grain size of the steel is 20 μm or less, and the average grain size of the iron-carbon compound in the steel is 1 μm or less. High strength after heat treatment.

【0009】なお、ここでSi%+1.4Al%+6.
3P%で表わされる式は、薄鋼板成形後の熱処理強度上
昇能を示すものである。 (3)重量%で、C :0.01〜0.20%、Mn:0.010 〜3.0
%、S :0.001 〜0.020 %、N :0.0002〜0.01%、Si:
0.01〜3.0 %、Al:0.005 〜2.0 %、P :0.005 〜0.2
%、を含有し、更に重量%で、Mo:0.01〜2.0 %、Cr:
0.01〜2.0 %、Ti:0.005 〜0.10%、Nb:0.005 〜0.10
%、V :0.005 〜0.10%、B :0.0003〜0.0050%、の1
種または2種以上を含有せしめ、かつ鋼の平均結晶粒径
が20μm以下であり、かつ鋼中の鉄炭素化合物の平均粒
径が1μm以下であることを特徴とする成形後強度上昇
熱処理硬化能に優れた薄鋼板。 (4)重量%で、C :0.01〜0.20%、Mn:0.010 〜3.0
%、S :0.001 〜0.020 %、N :0.0002〜0.01%、Si:
0.01〜3.0 %、Al:0.005 〜2.0 %、P :0.005 〜0.2
%、を含有し、更に重量%でSi,Al,Pを 0.2 ≦Si%+1.4Al%+6.3P%≦3.0 の範囲で含有し、更に重量%で、Mo:0.01〜2.0 %、C
r:0.01〜2.0 %、Ti:0.005 〜0.10%、Nb:0.005 〜
0.10%、V :0.005 〜0.10%、B :0.0003〜0.0050%、
の1種または2種以上を含有せしめ、かつ鋼の平均結晶
粒径が20μm以下であり、かつ鋼中の鉄炭素化合物の平
均粒径が1μm以下であることを特徴とする成形後強度
上昇熱処理硬化能に優れた薄鋼板。 (5)(1)〜(4)のいずれかの項に記載の薄鋼板
を、少なくとも強度が必要な部位に2%以上の塑性歪み
が加わるプレス成形を行い、その後、17000 <T(30+1n
t)<30,000で表される温度T(K)と時間t秒の範囲に保持
する熱処理を施すことを特徴とする高強度プレス成形体
の製造方法。
Here, Si% + 1.4Al% + 6.
The expression represented by 3P% indicates the ability to increase the heat treatment strength after forming a thin steel sheet. (3) By weight%, C: 0.01 to 0.20%, Mn: 0.010 to 3.0
%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si:
0.01 to 3.0%, Al: 0.005 to 2.0%, P: 0.005 to 0.2
%, And by weight%, Mo: 0.01 to 2.0%, Cr:
0.01 to 2.0%, Ti: 0.005 to 0.10%, Nb: 0.005 to 0.10
%, V: 0.005 to 0.10%, B: 0.0003 to 0.0050%, 1
A steel having an average crystal grain size of not more than 20 μm and an iron carbon compound in the steel having an average particle size of not more than 1 μm. Excellent thin steel plate. (4) By weight%, C: 0.01 to 0.20%, Mn: 0.010 to 3.0
%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si:
0.01 to 3.0%, Al: 0.005 to 2.0%, P: 0.005 to 0.2
%, Si, Al, P in the range of 0.2 ≦ Si% + 1.4 Al% + 6.3 P% ≦ 3.0 by weight%, and further, by weight%, Mo: 0.01 to 2.0%, C
r: 0.01 to 2.0%, Ti: 0.005 to 0.10%, Nb: 0.005 to
0.10%, V: 0.005 to 0.10%, B: 0.0003 to 0.0050%,
Wherein the steel has an average crystal grain size of not more than 20 μm and an average particle size of the iron-carbon compound in the steel is not more than 1 μm. Thin steel sheet with excellent hardening ability. (5) The thin steel sheet according to any one of (1) to (4) is subjected to press forming in which plastic strain of 2% or more is applied to at least a portion where strength is required, and thereafter, 17000 <T (30 + 1n
t) A method for producing a high-strength press-formed body, characterized by performing a heat treatment for maintaining the temperature T (K) represented by <30,000 and a time period t seconds.

【0010】この成形後強度上昇熱処理とは、塑性相当
ひずみで2%以上のひずみが加わる成形加工を施した
後、17000 <T(30+lnt)<30,000で表される温度T(K)と
時間t秒の範囲に保持する熱処理において、加工熱処理
後の引張強さが加工前の引張強さと比較して強さが60
MPa以上(更に好ましくは90Mp以上)向上可能な
処理を示す。または、ビッカース硬さ(Hv)で加工熱
処理後に18以上(更に好ましくは27以上)上昇可能
な熱処理を示す。但し、この熱処理は窒化処理等のよう
に成形体に外部から硬化誘発元素を添加する必要がな
い。
[0010] The post-forming strength increasing heat treatment refers to a temperature T (K) and a time t (t) expressed by 17000 <T (30 + lnt) <30,000 after a forming process in which a strain of 2% or more is applied as plastic equivalent strain. In the heat treatment held in the range of seconds, the tensile strength after the thermomechanical treatment is 60
This shows processing that can be improved by MPa or more (more preferably 90 Mp or more). Alternatively, a heat treatment capable of increasing the Vickers hardness (Hv) by 18 or more (more preferably 27 or more) after the thermomechanical treatment is shown. However, this heat treatment does not require the addition of a hardening inducing element from the outside to the molded body as in a nitriding treatment or the like.

【0011】また、ここで引張強さで60MPa以上硬
化する熱処理硬化能(ΔTS)とは、図1に示すように
公称応力の増加量のことをいう。
In addition, the heat treatment hardening ability (ΔTS) for hardening at a tensile strength of 60 MPa or more refers to an increase in nominal stress as shown in FIG.

【0012】[0012]

【発明の実施の形態】本研究者らは、部材や部品のプレ
ス成形性等の加工成形性を確保しつつ部材や部品に変形
強度特性を付与する方法として、鋼板、熱処理方法、成
形性(特にプレス成形性)について鋭意研究を行ったと
ころ、適量のC、Si、Al、Pを含有し、かつ鋼の平
均結晶粒径が20μm以下であり、かつ鋼中の鉄炭素化合
物の平均粒径が1μm以下である鋼板を2%以上の歪み
を与えるプレス成形法で加工し、 200℃超〜 500℃の熱
処理を施せば、鋼板が著しく硬化することを見出した。
また、さらに加えて、Mo、Cr、Ti、Nb、V、B
を複合添加することで硬化量が増加することを見出し
た。
BEST MODE FOR CARRYING OUT THE INVENTION The present researchers have proposed a method for imparting deformation strength characteristics to members and components while ensuring workability such as press-formability of members and components, by using a steel plate, a heat treatment method, a formability ( In particular, the present inventors have conducted intensive studies on press formability) and found that the steel contains an appropriate amount of C, Si, Al, and P, has an average crystal grain size of 20 μm or less, and has an average particle size of iron-carbon compound in steel. It has been found that if a steel sheet having a particle size of 1 μm or less is processed by a press forming method giving a strain of 2% or more and subjected to a heat treatment at a temperature of more than 200 ° C. to 500 ° C., the steel sheet is significantly hardened.
In addition, Mo, Cr, Ti, Nb, V, B
Was found to increase the amount of curing by the complex addition of.

【0013】以下に本発明を詳細に説明する。まず、以
下に鋼の成分を限定する理由について述べる。Cは、鋼
の加工性に影響を及ぼす元素であり、含有量が多くなる
と加工性は劣化するため、0.200%以下とする。また、0.
010%未満では、 17000<T(30+lnt)<30,000で表される
温度T(K)と時間t秒の範囲に保持する熱処理時に炭化物
として析出する量が少なく、熱処理の際、強度を上昇さ
せる効果が少ないので、0.010%を下限とする。
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components of steel will be described. C is an element that affects the workability of steel, and when the content is large, the workability is deteriorated. Also, 0.
If it is less than 010%, the amount of carbide precipitated during heat treatment maintained within the range of temperature T (K) represented by 17000 <T (30 + lnt) <30,000 and time t seconds is small, and the effect of increasing strength during heat treatment , The lower limit is 0.010%.

【0014】Mnは、0.010%未満では、製造コストが飛
躍的に上がり経済的でなくなるので、0.010%を下限と
し、3.00% を越えると加工性は劣化するので、3.00% を
上限とする。Sは、0.001%未満では製造コストが飛躍的
に上がり経済的でなくなるので、0.001%を下限とし、0.
020%を超えると熱間圧延時に赤熱脆性を起こし、表面で
割れる、いわゆる、熱間脆性を起こすため、0.020%を上
限とする。
If the Mn content is less than 0.010%, the production cost rises dramatically and becomes uneconomical, so the lower limit is 0.010%, and if it exceeds 3.00%, the workability deteriorates, so the upper limit is 3.00%. If S is less than 0.001%, the production cost increases dramatically and becomes uneconomical.
If it exceeds 020%, red hot embrittlement occurs at the time of hot rolling and cracks occur at the surface, that is, so-called hot embrittlement, so the upper limit is 0.020%.

【0015】Nは、加工性を確保するためには少ない方
が良いが、0.0002% 未満では製造コストが飛躍的に上が
り経済的でなくなるので、0.0002% を下限とし、0.0100
% を越えると加工性が劣化してくるので、0.0100% を上
限とする。加工成形後の所定の低温熱処理の際に、引張
強さを上昇させる効果を発揮するには、前記元素に加え
て必須元素として、更に適量のSi、Al、Pを鋼に含
有せしめる。
N is preferably as small as possible in order to ensure workability, but if it is less than 0.0002%, the production cost will increase dramatically and it will not be economical.
%, The workability deteriorates, so the upper limit is 0.0100%. In order to exhibit the effect of increasing the tensile strength at the time of the predetermined low-temperature heat treatment after the working, an appropriate amount of Si, Al, or P is further contained in the steel as an essential element in addition to the above elements.

【0016】Siは、0.010%未満では、いかに成形後に
前記の熱処理を施しても、強度(引張強さ)を上昇させ
る効果が少ないので、0.010%を下限とする。強度上昇で
更に好ましくは、0.200%以上である。3.00% を越えると
成形後熱処理後に加工性が劣化するので、3.00% を上限
とする。Alは、0.005%未満では、いかに成形後に前記
の熱処理を施しても、強度(引張強さ)を上昇させる効
果が少ないので、0.005%を下限とする。強度上昇で更に
好ましくは0.10% 以上である。2.00% を越えると加工性
は劣化するので、2.00%を上限とする。
If the content of Si is less than 0.010%, the effect of increasing the strength (tensile strength) is small even if the heat treatment is performed after molding, so the lower limit is set to 0.010%. It is more preferably 0.200% or more for increasing the strength. If it exceeds 3.00%, the workability will deteriorate after heat treatment after molding, so the upper limit is 3.00%. If the content of Al is less than 0.005%, the effect of increasing the strength (tensile strength) is small even if the heat treatment is performed after molding, so the lower limit is 0.005%. It is more preferably 0.10% or more due to an increase in strength. If it exceeds 2.00%, the workability will deteriorate, so the upper limit is 2.00%.

【0017】Pは、0.005%未満では、いかに成形後に前
記の熱処理を施しても、強度(引張強さ)を上昇させる
効果が少ないので、0.005%を下限とする。強度上昇で更
に好ましくは0.2%以上である。0.2%を越えると靭性が著
しく悪化して脆化するので、0.2%を上限とする。前述し
たようにSi、Al、Pを所定量含有する鋼板に2%以
上の歪みを付与するようなプレス成形等の加工成形を行
い、 17000<T(30+lnt)<30,000で表される温度T(K)と
時間t秒の範囲に保持する熱処理を施すと、鋼板の引張
強さが上昇する。
If P is less than 0.005%, the effect of increasing the strength (tensile strength) is small even if the heat treatment is performed after molding, so the lower limit is 0.005%. The increase in strength is more preferably 0.2% or more. If it exceeds 0.2%, the toughness deteriorates remarkably and the material becomes brittle, so the upper limit is 0.2%. As described above, a steel sheet containing a predetermined amount of Si, Al, and P is subjected to working such as press forming to impart a strain of 2% or more, and a temperature T (17000 <T (30 + lnt) <30,000 When the heat treatment is performed in the range of K) and the time t seconds, the tensile strength of the steel sheet increases.

【0018】鋼にSi、Al、Pを所定量含有せしめ、
この熱処理を施した際の引張強さの上昇理由は明らかで
はないが、2%以上の歪みの付与によって、相当量の転
位が導入され、Cの鋼中での拡散は飛躍的に高まり、ま
たさらに導入された転位を核として、転位上に炭化物が
析出が生じ、さらにSi、Al、Pが析出した炭化物の
粗大化を抑制し、炭化物を多数析出させるため部材や部
品の引張強さが高まると本発明者らは考えている。前記
の加工後熱処理における引張強さの上昇に関するSi、
Al、Pの影響度は元素ごとに異なり、AlはSiの
1.4倍、PはSiの 6.3倍であり、Si、Al、Pを複
合添加した場合の引張強さの上昇に対する効果は、薄鋼
板成形後の熱処理強度上昇能を表わす式として、Si+
1.4Al+6.3Pで示せることが判明した。Si+
1.4Al+6.3Pの範囲は、本発明の効果を得るに
は0.2%以上が望ましいが、3%を超えると加工性が劣化す
るので、3%以下の添加が望ましい。図2に前記薄鋼板成
形後の熱処理強度上昇能を表わす式:Si+1.4Al
+6.3Pと引張応力の上昇量(ΔTS)の関係を示
す。 0.2%以上で強度上昇代が著しいことが分かる。
The steel contains predetermined amounts of Si, Al and P,
The reason for the increase in tensile strength during this heat treatment is not clear, but the application of a strain of 2% or more introduces a considerable amount of dislocation, and the diffusion of C in the steel is dramatically increased. Further, carbides are formed on the dislocations with the introduced dislocations as nuclei, and further suppress the coarsening of the carbides in which Si, Al, and P are precipitated, and increase the tensile strength of members and components because a large number of carbides are precipitated. The present inventors believe. Si relating to the increase in tensile strength in the post-processing heat treatment,
The degree of influence of Al and P differs for each element, and Al
1.4 times and P is 6.3 times that of Si. The effect on the increase in tensile strength when Si, Al and P are added in combination is as follows: Si +
It turned out that it can be shown by 1.4Al + 6.3P. Si +
The range of 1.4Al + 6.3P is preferably 0.2% or more in order to obtain the effect of the present invention, but if it exceeds 3%, the workability is deteriorated. Therefore, the addition of 3% or less is desirable. FIG. 2 shows the formula for increasing the heat treatment strength after forming the thin steel sheet: Si + 1.4Al.
The relationship between + 6.3P and the increase in the tensile stress (ΔTS) is shown. It can be seen that the strength rise is remarkable at 0.2% or more.

【0019】更に後述のように、鋼のミクロ組織の結晶
粒径が20μm以下であり、かつ鋼中の鉄炭素化合物の粒
径分布が1μm以下を主体とするときに、この効果は顕
著である。また、さらに加工成形後熱処理の際、引張強
さを上昇させるには、前記のSi、Al、Pに加えて、
選択元素として、Mo、Cr、Ti、Nb、V、Bを添加する
ことが出来る。Mo、Cr、Ti、Nb、V、Bを含有した部
材又は部品の引張強さや硬さを上昇させる効果が高まる
理由は明らかではないが、Mo、Cr、Ti、Nb、V、Bを
添加すると,前記のSi、Al、P添加による低温熱処
理での作用と相乗作用を発揮する。
As will be described later, this effect is remarkable when the crystal grain size of the steel microstructure is 20 μm or less and the particle size distribution of the iron-carbon compound in the steel is mainly 1 μm or less. . In addition, in order to further increase the tensile strength during the heat treatment after forming, in addition to the above Si, Al, and P,
Mo, Cr, Ti, Nb, V, and B can be added as selective elements. It is not clear why the effect of increasing the tensile strength and hardness of the member or component containing Mo, Cr, Ti, Nb, V, and B increases, but when Mo, Cr, Ti, Nb, V, and B are added. , Synergistic with the action of the low-temperature heat treatment by the addition of Si, Al and P.

【0020】Moは、プレス成形によって鋼板中に与え
られた転位が低温熱処理中に消滅するのを防ぎ、鉄炭化
物が析出してくるのを促進する作用があると本発明者ら
は考ている。0.01% 未満では、熱処理の際、強度を上昇
させる効果が少ないので、0.01% を下限とし、2.0%を越
えると加工性が劣化するので、2.0%を上限とする。Cr
は、低温熱処理の際、析出してくる鉄炭化物に固溶し、
鉄炭化物の粗大化を防ぎ、鉄炭化物を微細に析出させる
働きがあると本発明者らは考ている。0.01%未満では、
熱処理の際、強度を上昇させる効果を高める効果が小さ
いので 0.01%を下限としする。また、Crは鋼の強度を
高める元素であり、2.0 %を超えると加工性が劣化する
ので2.0%を上限とする。
The present inventors consider that Mo has an effect of preventing dislocations imparted in a steel sheet by press forming from disappearing during low-temperature heat treatment and promoting the precipitation of iron carbide. . If it is less than 0.01%, the effect of increasing the strength during heat treatment is small, so the lower limit is 0.01%, and if it exceeds 2.0%, the workability is deteriorated, so the upper limit is 2.0%. Cr
Dissolves in the precipitated iron carbide during low-temperature heat treatment,
The present inventors consider that iron carbide has a function of preventing coarsening of iron carbide and precipitating fine iron carbide. If it is less than 0.01%,
At the time of heat treatment, the effect of increasing the strength is small, so the lower limit is 0.01%. Further, Cr is an element that increases the strength of steel, and if it exceeds 2.0%, the workability deteriorates, so the upper limit is 2.0%.

【0021】Ti、Nb、Vは、鋼板中で微細な炭化物
を形成する。この微細炭化物は、プレス時に付与する歪
みに対して転位を効果的に増殖させ、歪み量を増やした
ような効果が現れるためと本発明者らは考えている。T
iは、熱処理の際、強度を上昇させる効果を高める元素
であり、 0.005%未満ではその効果が小さいので0.005%
を下限とする。また、Tiは、鋼の強度を高める元素であ
り、0.10%を超えると加工性が劣化するので 0.10%を上
限とする。
Ti, Nb and V form fine carbides in the steel sheet. The present inventors believe that the fine carbide effectively causes the dislocations to grow effectively with respect to the strain imparted during pressing, and exhibits the effect of increasing the amount of strain. T
i is an element that enhances the effect of increasing the strength during heat treatment. If it is less than 0.005%, the effect is small, so 0.005%
Is the lower limit. Further, Ti is an element that increases the strength of steel, and if it exceeds 0.10%, the workability deteriorates, so the upper limit is 0.10%.

【0022】Nbは、熱処理の際、強度を上昇させる効果
を高める元素であり、 0.005%未満ではその効果が小さ
いので0.005%を下限とする。また、Nbは、鋼の強度を高
める元素であり、0.10%を超えると加工性が劣化するの
で 0.10%を上限とする。Vは、熱処理の際、強度を上昇
させる効果を高める元素であり、 0.005%未満ではその
効果が小さいので0.005%を下限とする。また、Vは、鋼
の強度を高める元素であり、0.10%を超えると加工性が
劣化するので 0.10%を上限とする。
Nb is an element that enhances the effect of increasing the strength during heat treatment. If the content is less than 0.005%, the effect is small, so the lower limit is 0.005%. Also, Nb is an element that increases the strength of steel, and if it exceeds 0.10%, the workability deteriorates, so the upper limit is 0.10%. V is an element that enhances the effect of increasing the strength during the heat treatment. If the content is less than 0.005%, the effect is small, so the lower limit is 0.005%. Further, V is an element that increases the strength of steel, and if it exceeds 0.10%, the workability deteriorates, so the upper limit is 0.10%.

【0023】以上説明したように鋼成分を調整するが、
成形後熱処理の際、強度を上昇させる効果を高めるため
には、鋼板中のC量を成形後熱処理温度で固溶状態にし
ておくことが望ましいので、炭化物形成元素であるTi,N
b,V をTi量で、{(48/12)×C[%]+(48/
14)×N[%]}以下、もしくはNb量を、{(93
/12)×C[%]+(93/14)×N[%]}以
下、もしくはV量を、{(51×4/12/3)×C
[%]+(51/14)×N[%]}以下、もしくはT
i,Nb,Vを複合添加する場合では、{Ti[%]×
12/48+Nb[%]×12/93+V[%]×12
×3/51/4}<C[%]+N[%]×12/14、
を満足するように添加することが望ましい。
The steel composition is adjusted as described above.
In order to enhance the effect of increasing the strength during the post-forming heat treatment, it is desirable that the C content in the steel sheet be in a solid solution state at the post-forming heat treatment temperature, so that the carbide forming elements Ti, N
b, V is the amount of Ti, {(48/12) × C [%] + (48 /
14) × N [%]} or less, or the amount of Nb is {(93
/ 12) × C [%] + (93/14) × N [%]} or less, or V amount is {(51 × 4/12/3) × C
[%] + (51/14) × N [%]} or less, or T
In the case where i, Nb, and V are combined, 複合 Ti [%] ×
12/48 + Nb [%] × 12/93 + V [%] × 12
× 3/51/4} <C [%] + N [%] × 12/14,
Is desirably added to satisfy the following.

【0024】また、さらに加工成形後熱処理の際、引張
強さを上昇させるには、選択元素としてBを添加するこ
とが出来る。Bを含有した部材又は部品の引張強さや硬
さを上昇させる効果が高まる理由は明らかではないが、
Bが転位の密度の高い粒界近傍にCを引き付け、プレス
後の熱処理中に効果的に微細な炭化物を形成し鋼を硬化
させるためと本発明者らは考ている。
In order to further increase the tensile strength during the heat treatment after forming, B can be added as a selective element. It is not clear why the effect of increasing the tensile strength or hardness of the member or component containing B increases.
The present inventors consider that B attracts C to the vicinity of the grain boundary where dislocation density is high, and effectively forms fine carbides and hardens the steel during heat treatment after pressing.

【0025】Bは、熱処理の際、強度を上昇させる効果
を高める元素であり、0.0003%未満ではその効果が小さ
いので0.0003%を下限とする。また、0.0050%を超える
と効果が飽和するので0.0050%を上限とする。次いで、
鋼の組成に合せてミクロ組織を限定した理由について述
べる。鋼のミクロ組織は、平均結晶粒径を20μm以下、
かつ鋼中の平均鉄炭化物粒径を1μm以下(個数分率に
て平均を算出する。)とする。本発明の技術思想は、鋼
板の成形前(例えばプレス前)から固溶C、固溶Nが存
在する焼付硬化鋼板と異なり、成形後(例えばプレス
後)の熱処理により鉄炭化物を溶解せしめ固溶C、固溶
Nを生じさせ、その後、成形時(例えばプレス時)に導
入された転位上に再析出させることにあり、焼付硬化鋼
板と異なり薄鋼板の引張強さと降伏強度の双方を著しく
高めることができる。従来の焼付硬化鋼板のように、成
形前(例えばプレス前)に固溶C、固溶Nを残しておく
ことは必ずしも必要でない。
B is an element that enhances the effect of increasing the strength during the heat treatment. If the content is less than 0.0003%, the effect is small, so the lower limit is 0.0003%. If the content exceeds 0.0050%, the effect is saturated, so the upper limit is 0.0050%. Then
The reason why the microstructure is limited according to the composition of the steel will be described. The microstructure of steel has an average grain size of 20 μm or less,
In addition, the average iron carbide particle diameter in the steel is 1 μm or less (the average is calculated by the number fraction). The technical idea of the present invention is that, unlike a bake hardened steel sheet in which solid solution C and solid solution N are present before forming a steel sheet (for example, before pressing), heat treatment after forming (for example, after pressing) dissolves iron carbide to form a solid solution. C, to form solute N, and then to re-precipitate on dislocations introduced during forming (for example, during pressing). Unlike baking hardened steel sheets, both tensile strength and yield strength of thin steel sheets are significantly increased. be able to. It is not always necessary to leave solid solution C and solid solution N before forming (for example, before pressing) as in a conventional bake hardened steel sheet.

【0026】成形後(例えばプレス後)の熱処理によっ
て鉄炭化物を溶解させるためには、鋼中の平均鉄炭化物
粒径を1μm以下として、フェライト−鉄炭化物境界の
界面エネルギーや歪みエネルギー高め、溶解が促進され
るように鉄炭化物粒径を制御する必要がある。尚、鉄炭
化物とは鉄があれば鉄以外の金属元素を含有する炭化物
であってもかまわない。また、鋼の平均結晶粒径を20μ
m以下にすると粒界にある鉄炭化物が微細になり溶解が
早まり、さらに鉄炭化物の溶解から生じた固溶C、固溶
Nが成形後(例えばプレス後)の熱処理時間内に結晶粒
全体に行き渡るので、鋼板を硬化させる作用が高まる。
ここで言う鉄炭化物とはセメンタイト、ε炭化物、χ炭
化物、鉄−炭素コンプレックス、Nや第3元素を含有さ
せた鉄炭素化合物など、鉄と炭素の化合物ならその化学
結合形態はいずれでもかまわない。また、鉄炭化物の存
在形態はフェライト粒界、フェライト内部、フェライト
と鉄炭化物が混在した形態(微細パーライト、ベイナイ
ト)のいずれでもよく、本発明を逸脱するものではな
い。
In order to dissolve the iron carbide by heat treatment after forming (for example, after pressing), the average iron carbide particle diameter in the steel is set to 1 μm or less, and the interface energy and strain energy at the ferrite-iron carbide boundary are increased to dissolve the iron carbide. It is necessary to control the iron carbide particle size to be promoted. The iron carbide may be a carbide containing a metal element other than iron as long as iron is present. In addition, the average crystal grain size of steel is 20μ.
m or less, the iron carbides at the grain boundaries become finer and dissolve faster, and furthermore, solid solution C and solid solution N resulting from the dissolution of the iron carbide are formed over the entire crystal grains within the heat treatment time after forming (for example, after pressing). Because it is widespread, the effect of hardening the steel sheet is enhanced.
The iron carbide mentioned here may be any chemical bond form of iron and carbon as long as it is a compound of iron and carbon such as cementite, ε carbide, χ carbide, iron-carbon complex, iron-carbon compound containing N or a third element. Further, the existence form of the iron carbide may be any of a ferrite grain boundary, ferrite inside, and a form in which ferrite and iron carbide are mixed (fine pearlite, bainite), and do not depart from the present invention.

【0027】図3に平均鉄炭化物径、平均結晶粒径と熱
処理後の引張り強さの上昇量(ΔTS)の関係を示す。
平均炭化物粒径は、顕微鏡視野内の炭化物粒径ごとの個
数分布を数え、平均炭化物粒径を算出した。また、平均
結晶粒径は、JIS G 0552のフェライト結晶粒
度試験方法で測定した。ベイナイトはパケットサイズを
結晶粒径とした。本発明範囲にてΔTS60MPa 以上が得
られ、熱処理後の引張り強さの上昇量が著しいことが分
かる。
FIG. 3 shows the relationship between the average iron carbide diameter, the average crystal grain diameter, and the increase in the tensile strength (ΔTS) after the heat treatment.
The average carbide particle diameter was calculated by counting the number distribution of each carbide particle diameter in the microscope visual field and calculating the average carbide particle diameter. The average crystal grain size was measured by the ferrite crystal grain size test method of JIS G 0552. For bainite, the packet size was defined as the crystal grain size. It can be seen that ΔTS of 60 MPa or more was obtained within the range of the present invention, and the amount of increase in tensile strength after heat treatment was remarkable.

【0028】本発明の加工成形後強度(引張強さ)上昇
熱処理用鋼板とは、熱延鋼板、冷延鋼板、溶融亜鉛めっ
き鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼
板等いづれでもかまわず、本発明の効果を享受出来る
が、該薄鋼板の少なくとも片面に1mg/m2 以上の亜鉛を
含む層を付与すると、成形後(例えばプレス後)熱処理
中の酸化や脱炭が防止され、本発明の効果をより有効に
享受することが出来る。少なくとも片面に1mg/m2 以上
の亜鉛を含む層とは、電気めっき法、溶融めっき法、塗
布法、蒸着法などいずれの方法で付与しても構わず、そ
の方法は限定されるものではない。また、1mg/m2 以上
の亜鉛を含む層中には亜鉛以外の元素を含んでいても何
ら差し支えない。
The steel sheet for heat treatment for increasing the strength (tensile strength) after working according to the present invention may be any of a hot-rolled steel sheet, a cold-rolled steel sheet, a hot-dip galvanized steel sheet, a galvannealed steel sheet, an electro-galvanized steel sheet and the like. However, the effect of the present invention can be enjoyed, but when a layer containing 1 mg / m 2 or more of zinc is provided on at least one surface of the thin steel sheet, oxidation and decarburization during heat treatment after forming (for example, after pressing) are prevented, The effects of the present invention can be more effectively enjoyed. The layer containing 1 mg / m 2 or more zinc on at least one side may be applied by any method such as an electroplating method, a hot-dip plating method, a coating method, and a vapor deposition method, and the method is not limited. . Further, the layer containing 1 mg / m 2 or more of zinc may contain elements other than zinc at all.

【0029】また、本発明鋼板は、細かい結晶粒径の鋼
板が比較的容易に得られる冷延鋼板となすのが、好まし
い。また、板厚も限定されるものではないが、0.4〜
6mmで特に有効である。本発明鋼の製造方法は適宜選
択すればよく、上記成分に調整された溶鋼を連続鋳造法
にて鋳片又は鋼片となすか造塊法にて鋼片となし、高温
のまま加熱することなく熱間圧延を施すか又は加熱後に
熱間圧延を施す。熱間圧延後、脱スケール処理を施して
熱延鋼板となすか、あるいは、そのまま溶融亜鉛めっき
を行い溶融亜鉛めっき鋼板となす。溶融亜鉛めっき鋼板
は、加熱合金化処理を施して合金化溶融亜鉛めっき鋼板
となしてもよい。熱間圧延や巻取り条件に関しては特段
の制限はないが、鋼のミクロ組織の結晶粒径を20μm以
下、かつ鋼中の鉄炭素化合物の粒径分布が1μm以下を
主体とするためには、熱間圧延した後、冷却を行い、55
0 ℃以下で巻取を行うことが望ましい。
The steel sheet of the present invention is preferably a cold-rolled steel sheet from which a steel sheet having a small crystal grain size can be obtained relatively easily. Also, the thickness of the sheet is not limited.
6 mm is particularly effective. The production method of the steel of the present invention may be appropriately selected, and the molten steel adjusted to the above components is made into a slab or a slab by continuous casting, and is made into a slab by an ingot ingot method, and is heated at a high temperature. Hot rolling or hot rolling after heating. After hot rolling, a descaling treatment is performed to form a hot-rolled steel sheet, or hot-dip galvanizing is performed to form a hot-dip galvanized steel sheet. The hot-dip galvanized steel sheet may be subjected to a heat alloying treatment to form an alloyed hot-dip galvanized steel sheet. There are no particular restrictions on the hot rolling and winding conditions, but in order for the crystal grain size of the microstructure of the steel to be 20 μm or less and the iron carbon compound particle size distribution in the steel to be mainly 1 μm or less, After hot rolling, cool down, 55
It is desirable to perform winding at 0 ° C or less.

【0030】あるいは、熱間圧延後、脱スケール処理を
施し冷間圧延して冷延鋼板とする。その後焼鈍して冷延
鋼板となすか、あるいは焼鈍・溶融亜鉛めっきを行い溶
融亜鉛めっき鋼板となす。溶融亜鉛めっき鋼板は、加熱
合金化処理を施して合金化溶融亜鉛めっき鋼板となして
もよい。この際の焼鈍温度は、特段の制限はないが、鋼
のミクロ組織の結晶粒径を20μm以下、かつ鋼中の鉄炭
素化合物の粒径分布が1μm以下を主体とするために
は、Ac1変態点以上の温度で焼鈍を施し、その後冷却
するに際し、Ar1変態点を20℃/sec以上の速さで冷却
することが望ましい。また、さらに鋼中の鉄炭化物の粗
大化を避けるために250 ℃までの冷却速度を3℃/sec以
上の速さで冷却することが望ましい。加熱合金化処理の
加熱方式は特に限定されるものではなく、燃焼ガスによ
る直接加熱や、誘導加熱、直接通電加熱等、を適宜選択
出来る。
Alternatively, after hot rolling, a descaling treatment is performed and cold rolling is performed to obtain a cold-rolled steel sheet. Then, it is annealed to form a cold-rolled steel sheet, or is annealed and hot-dip galvanized to form a hot-dip galvanized steel sheet. The hot-dip galvanized steel sheet may be subjected to a heat alloying treatment to form an alloyed hot-dip galvanized steel sheet. The annealing temperature at this time is not particularly limited. However, in order that the crystal grain size of the steel microstructure is 20 μm or less and the particle size distribution of the iron carbon compound in the steel is 1 μm or less, the Ac1 transformation is required. When performing annealing at a temperature equal to or higher than the temperature, and then cooling, it is desirable to cool the Ar1 transformation point at a speed of 20 ° C./sec or more. Further, in order to avoid coarsening of iron carbide in the steel, it is desirable to cool at a cooling rate up to 250 ° C. at a rate of 3 ° C./sec or more. The heating method of the heat alloying treatment is not particularly limited, and direct heating by combustion gas, induction heating, direct current heating, or the like can be appropriately selected.

【0031】高強度熱延鋼板、冷延鋼板、亜鉛めっき鋼
板、合金化溶融亜鉛めっき鋼板となした後、加工性の向
上や、加工後の外観のために調質圧延を施した鋼板(ダ
ル仕上げ鋼板、ブライト仕上げ鋼板、表面に特定形状の
パターンを転写された鋼板等)、表面に防錆油、潤滑油
などの油膜層を有する鋼板など、通常に薄鋼板として用
いられる表面の処理を施した何れの鋼板においても、本
発明の成分範囲の鋼板であれば本発明の効果を十分に享
受することができる。
After forming a high-strength hot-rolled steel sheet, a cold-rolled steel sheet, a galvanized steel sheet, or an alloyed hot-dip galvanized steel sheet, a steel sheet (Dull) subjected to temper rolling to improve workability and appearance after processing. Finished steel sheet, bright-finished steel sheet, steel sheet with a specific shape pattern transferred on the surface, etc.), and steel sheet with an oil film layer such as rust-preventive oil and lubricating oil on the surface. In any of the steel sheets described above, the effects of the present invention can be sufficiently enjoyed as long as the steel sheet has the component range of the present invention.

【0032】また、さらに後述のように、鋼板に2%以上
の塑性歪みが付与されると熱処理後の引張り強さの上昇
量が著しいが、プレス成形体の形状によっては、プレス
成形時に鋼板全てにわたって、2%以上の歪みを付与す
ることは難しいので、予め、調質圧延にて2%以上の歪み
を付与しておくと、本発明の効果を効果的に享受するこ
とができる。
Further, as described later, when a plastic strain of 2% or more is imparted to the steel sheet, the amount of increase in tensile strength after heat treatment is remarkable. Therefore, it is difficult to impart a strain of 2% or more, so that the effect of the present invention can be effectively enjoyed by imparting a strain of 2% or more in advance by temper rolling.

【0033】次いで、上記本発明成分の鋼板を用いて加
工成形、例えば絞り加工などのプレス加工を行う。プレ
ス加工を施すにあたっては、鋼板に適当な量の転位を与
えるために強度(引張強さ)や硬度が必要とされる部位
に、2%以上の塑性相当歪みが加えられる成形を施す。
歪み量が少ない場合には、成形後に熱処理を施しても本
願発明の強度上昇の効果が十分に発揮できないので、プ
レス時に加える歪み量は2%以上、好ましくは5%以上
とする。また、プレス成形法は、2%超の歪みを付与す
る方法であれば、特に規定するものではなく、絞り加
工、張り出し加工、曲げ加工、しごき加工、打ち抜き加
工等を加えても何等差し支えない。図4にプレス成形時
の歪み量とプレス成形および熱処理後の引張り強さの上
昇量(ΔTS)の関係を示す。2%以上、好ましくは5
%以上の歪みで、引張強さの上昇量が著しい。
Then, using the steel sheet of the present invention, press forming such as drawing is performed. In carrying out the press working, a region where a strength (tensile strength) or hardness is required to give an appropriate amount of dislocation to the steel sheet is subjected to forming in which a plastic equivalent strain of 2% or more is applied.
If the amount of strain is small, the effect of increasing the strength of the present invention cannot be sufficiently exhibited even if heat treatment is performed after molding, so the amount of strain applied during pressing is set to 2% or more, preferably 5% or more. The press forming method is not particularly limited as long as it gives a strain of more than 2%, and there is no problem even if drawing, stretching, bending, ironing, punching or the like is added. FIG. 4 shows the relationship between the amount of strain during press forming and the amount of increase in tensile strength (ΔTS) after press forming and heat treatment. 2% or more, preferably 5%
%, The increase in tensile strength is remarkable.

【0034】プレス成形後、17,000<T(30+lnt)<30,0
00で表される温度T(K)と時間t秒の範囲に保持する熱処
理を施す。17,000<T(30+lnt)<30,000の範囲なら、熱
処理温度、時間は特に規定されるものではないが、熱処
理温度としてはおおむね、 200℃超〜500 ℃、熱処理時
間としては、1秒〜1時間である。この際、T(30+lnt)
≦17,000では、本願発明の効果が発現できないので17,0
00<T(30+lnt)を下限とし、T(30+lnt)≧30,000を越え
ると熱歪みにより部品精度が悪化するだけでなく、熱延
鋼板、冷延鋼板、亜鉛めっき鋼板の表面の酸化反応が進
み、できあがった部品の耐食性を損ねることがあるの
で、T(30+lnt)<30,000を上限とする。
After press molding, 17,000 <T (30 + lnt) <30,0
A heat treatment for maintaining the temperature T (K) represented by 00 and the time t seconds is performed. If the temperature is in the range of 17,000 <T (30 + lnt) <30,000, the heat treatment temperature and time are not particularly limited, but the heat treatment temperature is generally more than 200 ° C to 500 ° C, and the heat treatment time is 1 second to 1 hour. is there. At this time, T (30 + lnt)
If ≦ 17,000, the effects of the present invention cannot be exhibited, so
When T <30 (30 + lnt) is the lower limit and T (30 + lnt) ≧ 30,000, not only does the component accuracy deteriorate due to thermal strain, but also the oxidation reaction of the surface of the hot-rolled steel sheet, cold-rolled steel sheet, and galvanized steel sheet proceeds. Since the corrosion resistance of the finished component may be impaired, the upper limit is T (30 + lnt) <30,000.

【0035】17,000<T(30+lnt)<30,000の範囲に加熱
する熱処理方法としては、特に規定するものではなく、
部分高周波加熱、通電加熱、温浴熱処理、赤外線加熱、
熱風加熱など、少なくとも歪み付与部を所定範囲に加熱
する方法であれば、いずれでもかまわない。図5に熱処
理温度と熱処理後の引張り強さの上昇量(ΔTS)の関
係を示す。熱処理は50℃〜600 ℃で10分行っている。1
7,000<T(30+lnt)<30,000、好ましくは18,000<T(30
+lnt)<23,000の熱処理で、引張強さの上昇量が著しい
ことが分かる。
The heat treatment method for heating in the range of 17,000 <T (30 + lnt) <30,000 is not particularly specified.
Partial high frequency heating, energizing heating, hot bath heat treatment, infrared heating,
Any method, such as hot air heating, may be used as long as it heats at least the distortion imparting portion to a predetermined range. FIG. 5 shows the relationship between the heat treatment temperature and the amount of increase in the tensile strength (ΔTS) after the heat treatment. The heat treatment is performed at 50 ° C to 600 ° C for 10 minutes. 1
7,000 <T (30 + lnt) <30,000, preferably 18,000 <T (30
It can be seen that the amount of increase in tensile strength is remarkable in the heat treatment of (+ lnt) <23,000.

【0036】[0036]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。表1に示す成分の鋼を溶製し、常法に従い連続
鋳造でスラブとした。そして、加熱炉中で1200℃ま
で加熱し、880℃の仕上げ温度で、熱間圧延を行い、
500 ℃の温度で巻取り、ついで、酸洗を施し熱延鋼板と
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments. Steels having the components shown in Table 1 were melted and continuously cast into slabs according to a conventional method. Then, it is heated to 1200 ° C. in a heating furnace, and hot-rolled at a finishing temperature of 880 ° C.,
The film was wound at a temperature of 500 ° C. and then pickled to obtain a hot-rolled steel sheet.

【0037】また、熱延鋼板の一部は更に、80%の圧
下率で冷間圧延を行った後、830℃の温度で60秒の
再結晶焼鈍を行い、冷延鋼板となした。また、一部は電
気亜鉛めっきを施し、鋼板の表層に亜鉛層を付与した。
得られた熱延鋼板、冷延鋼板をJIS5号引張試験片に
加工し、機械的特性値(熱処理なし)の評価を行った。
A part of the hot-rolled steel sheet was further cold-rolled at a rolling reduction of 80%, and then recrystallized and annealing at a temperature of 830 ° C. for 60 seconds to obtain a cold-rolled steel sheet. In addition, a part was electrogalvanized to provide a zinc layer on the surface layer of the steel sheet.
The obtained hot-rolled steel sheet and cold-rolled steel sheet were processed into JIS No. 5 tensile test pieces, and mechanical property values (without heat treatment) were evaluated.

【0038】また、別途、該鋼板をプレスにて成形し、
図6に示されるハット型のプレス成形品となした。この
時、しわ押さえ圧を調整し、たて壁部Aに平均で5%、
平坦部Bに2%の塑性相当歪みを加えた。該部品を表1
に示す条件で熱処理し、その後空冷し、熱を加えた。該
部品のたて壁部Aと平坦部Bから引張試験片を切り出
し、引張強さを測定した。プレス加工後の引張試験で
は、真の応力−歪み関係を測定していることになるの
で、公称応力での上昇代を見るために、プレス加工前の
板厚を試験片板厚とし換算して公称応力とした。以上の
結果を表に示す。
Further, separately, the steel sheet is formed by pressing,
This was a hat-shaped press-formed product shown in FIG. At this time, the wrinkle holding pressure was adjusted, and 5%
A 2% plastic equivalent strain was applied to the flat portion B. Table 1
And then air-cooled and heated. Tensile test pieces were cut out from the vertical wall A and the flat part B of the component, and the tensile strength was measured. In the tensile test after press working, the true stress-strain relationship is measured, so in order to see the rise in nominal stress, the thickness before press working is converted to the test piece thickness. The nominal stress was used. The above results are shown in the table.

【0039】表1および表2から明らかなように、本発
明鋼板の方が熱処理硬化性に優れていることが分かる。
As is evident from Tables 1 and 2, the steel sheet of the present invention is more excellent in the heat treatment hardenability.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
成形後強度上昇熱処理によりプレス成形体の強度、剛性
を向上することができ、熱処理硬化能に優れた薄鋼板及
び高強度プレス成形体を提供することができる。
As described above, according to the present invention,
The strength and rigidity of the press-formed body can be improved by the heat treatment for increasing the strength after forming, and a thin steel sheet and a high-strength press-formed body excellent in heat treatment hardening ability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の、引張り強さで60MPa 以上硬化する熱
処理硬化能を説明する概念図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a conceptual diagram illustrating a heat treatment hardening ability of the present invention for hardening at a tensile strength of 60 MPa or more.

【図2】薄鋼板成形後の熱処理強度上昇能を表わす式と
熱処理硬化量の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a formula representing a heat treatment strength increasing ability after forming a thin steel sheet and a heat treatment hardening amount.

【図3】本発明鋼板の平均鉄炭化物径および平均結晶粒
径と熱処理硬化量の関係を示す図である。図中の数字
は、熱処理硬化量(ΔTS、MPa )を示す。
FIG. 3 is a graph showing the relationship between the average iron carbide diameter and average crystal grain size of the steel sheet of the present invention and the amount of heat treatment hardening. The numbers in the figure indicate the heat treatment hardening amounts (ΔTS, MPa).

【図4】本発明鋼板にプレス成形で付与する歪み量と熱
処理硬化量の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of strain imparted by press forming to the steel sheet of the present invention and the amount of heat treatment hardening.

【図5】熱処理温度と熱処理硬化量の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between a heat treatment temperature and a heat treatment hardening amount.

【図6】ハット型のプレス成形品の形状を示す模式図で
ある。
FIG. 6 is a schematic view showing the shape of a hat-shaped press-formed product.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 裕一 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 山崎 一正 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内 (72)発明者 愛甲 英史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 柴田 新次 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 川口 博史 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuichi Taniguchi 5-3 Tokaicho, Tokai City, Aichi Prefecture Inside Nippon Steel Corporation Nagoya Works (72) Inventor Kazumasa Yamazaki 5- Tokaicho, Tokai City, Aichi Prefecture 3 Nippon Steel Corporation Nagoya Works (72) Inventor Eiji Eiko 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (72) Inventor Shinji Shibata 1 Toyota Town, Toyota City, Aichi Prefecture Toyota (72) Inventor Hiroshi Kawaguchi 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.01〜0.20%、 Mn:0.010 〜3.0 %、 S :0.001 〜0.020 %、 N :0.0002〜0.01%、 Si:0.01〜3.0 %、 Al:0.005 〜2.0 %、 P :0.005 〜0.2 %、 を含有し,残部が鉄および不可避的不純物からなる鋼で
あり、かつ前記鋼の平均結晶粒径が20μm以下であり、
かつ鋼中の鉄炭素化合物の平均粒径が1μm以下である
ことを特徴とする熱処理硬化能に優れた薄鋼板。
C .: 0.01 to 0.20%, Mn: 0.010 to 3.0%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si: 0.01 to 3.0%, Al: 0.005 to 2.0% by weight%. , P: 0.005 to 0.2%, the balance being iron and unavoidable impurities, and the steel having an average crystal grain size of 20 μm or less;
A thin steel sheet excellent in heat-hardening ability, wherein the average particle size of the iron-carbon compound in the steel is 1 μm or less.
【請求項2】 重量%で、 C :0.01〜0.20%、 Mn:0.010 〜3.0 %、 S :0.001 〜0.020 %、 N :0.0002〜0.01%、 Si:0.01〜3.0 %、 Al:0.005 〜2.0 %、 P :0.005 〜0.2 %、 を含有し、更に重量%でSi,Al,Pを 0.2 ≦Si%+1.4Al%+6.3P%≦3 の範囲で含有し、かつ前記鋼の平均結晶粒径が20μm以
下であり、かつ鋼中の鉄炭素化合物の平均粒径が1μm
以下であることを特徴とする熱処理硬化能に優れた薄鋼
板。
2. In% by weight, C: 0.01 to 0.20%, Mn: 0.010 to 3.0%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si: 0.01 to 3.0%, Al: 0.005 to 2.0% , P: 0.005 to 0.2%, and further contains Si, Al, P by weight in the range of 0.2 ≦ Si% + 1.4Al% + 6.3P% ≦ 3, and the average grain size of the steel. Is not more than 20 μm, and the average particle size of the iron-carbon compound in the steel is 1 μm
A thin steel sheet excellent in heat treatment hardening ability, characterized in that:
【請求項3】 重量%で、 C :0.01〜0.20%、 Mn:0.010 〜3.0 %、 S :0.001 〜0.020 %、 N :0.0002〜0.01%、 Si:0.01〜3.0 %、 Al:0.005 〜2.0 %、 P :0.005 〜0.2 %、 を含有し、更に重量%で、 Mo:0.01〜2.0 %、 Cr:0.01〜2.0 %、 Ti:0.005 〜0.10%、 Nb:0.005 〜0.10%、 V :0.005 〜0.10%、 B :0.0003〜0.0050%、 の1種または2種以上を含有せしめ、かつ前記鋼の平均
結晶粒径が20μm以下であり、かつ鋼中の鉄炭素化合物
の平均粒径が1μm以下であることを特徴とする熱処理
硬化能に優れた薄鋼板。
3. In% by weight, C: 0.01 to 0.20%, Mn: 0.010 to 3.0%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si: 0.01 to 3.0%, Al: 0.005 to 2.0% , P: 0.005 to 0.2%, and by weight%, Mo: 0.01 to 2.0%, Cr: 0.01 to 2.0%, Ti: 0.005 to 0.10%, Nb: 0.005 to 0.10%, V: 0.005 to 0.10 %, B: 0.0003 to 0.0050%, and the steel has an average crystal grain size of 20 μm or less, and the iron carbon compound in the steel has an average grain size of 1 μm or less. Thin steel sheet with excellent heat-hardening ability.
【請求項4】 重量%で、 C :0.01〜0.20%、 Mn:0.010 〜3.0 %、 S :0.001 〜0.020 %、 N :0.0002〜0.01%、 Si:0.01〜3.0 %、 Al:0.005 〜2.0 %、 P :0.005 〜0.2 %、 を含有し、更に重量%でSi,Al,Pを 0.2 ≦Si%+1.4Al%+6.3P%≦3 の範囲で含有し、更に重量%で、 Mo:0.01〜2.0 %、 Cr:0.01〜2.0 %、 Ti:0.005 〜0.10%、 Nb:0.005 〜0.10%、 V :0.005 〜0.10%、 B :0.0003〜0.0050%、 の1種または2種以上を含有せしめ、かつ前記鋼の平均
結晶粒径が20μm以下であり、かつ鋼中の鉄炭素化合物
の平均粒径が1μm以下であることを特徴とする熱処理
硬化能に優れた薄鋼板。
4. In% by weight, C: 0.01 to 0.20%, Mn: 0.010 to 3.0%, S: 0.001 to 0.020%, N: 0.0002 to 0.01%, Si: 0.01 to 3.0%, Al: 0.005 to 2.0% , P: 0.005 to 0.2%, and further containing Si, Al, P in the range of 0.2 ≦ Si% + 1.4Al% + 6.3P% ≦ 3 by weight%, and further, by weight%, Mo: 0.01% ~ 2.0%, Cr: 0.01 ~ 2.0%, Ti: 0.005 ~ 0.10%, Nb: 0.005 ~ 0.10%, V: 0.005 ~ 0.10%, B: 0.0003 ~ 0.0050%, one or more of the following: A thin steel sheet excellent in heat-hardening ability, wherein the steel has an average crystal grain size of 20 μm or less, and the iron-carbon compound in the steel has an average grain size of 1 μm or less.
【請求項5】 請求項1〜請求項4のいずれかの項に記
載の薄鋼板を、少なくとも強度が必要な部位に2%以上
の塑性歪みが加わるプレス成形を行い、その後、17000
<T(30+1nt)<30,000で表される温度T(K)と時間t秒の
範囲に保持する熱処理を施すことを特徴とする高強度プ
レス成形体の製造方法。
5. The thin steel sheet according to any one of claims 1 to 4, which is subjected to press forming in which a plastic strain of 2% or more is applied to at least a portion where strength is required.
A method for producing a high-strength press-formed body, characterized by performing a heat treatment for maintaining a temperature T (K) expressed by <T (30 + 1nt) <30,000 and a time period t seconds.
JP35249398A 1998-12-11 1998-12-11 Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability Expired - Fee Related JP3447233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35249398A JP3447233B2 (en) 1998-12-11 1998-12-11 Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35249398A JP3447233B2 (en) 1998-12-11 1998-12-11 Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability

Publications (2)

Publication Number Publication Date
JP2000178684A true JP2000178684A (en) 2000-06-27
JP3447233B2 JP3447233B2 (en) 2003-09-16

Family

ID=18424456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35249398A Expired - Fee Related JP3447233B2 (en) 1998-12-11 1998-12-11 Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability

Country Status (1)

Country Link
JP (1) JP3447233B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP2002129279A (en) * 2000-08-16 2002-05-09 Kawasaki Steel Corp Ultra-high-strength hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same
WO2003076675A1 (en) * 2002-03-08 2003-09-18 Jfe Steel Corporation Steel plate subjected to heat treatment and process for producing the same
JP2005081356A (en) * 2003-09-04 2005-03-31 Nissan Motor Co Ltd Strengthened member
JP2005527701A (en) * 2002-03-11 2005-09-15 ユジノール Ultra high strength low density hot rolled steel sheet and method for producing the same
JP2006152361A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Thin steel plate, method for producing the same, and method for producing parts having excellent shape freezing property
RU2387731C2 (en) * 2008-03-31 2010-04-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Steel and item made from it (versions)
JP2011246794A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp High strength hot-rolled steel sheet and method for manufacturing the same
CN104862583A (en) * 2015-04-23 2015-08-26 江苏省沙钢钢铁研究院有限公司 Pickling plate for 400 MPa-level automobile structure and production method thereof
US11220731B2 (en) 2015-12-24 2022-01-11 Posco Hot-rolled coated steel sheet with excellent workability and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001355042A (en) * 2000-04-10 2001-12-25 Kawasaki Steel Corp Hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP2002129279A (en) * 2000-08-16 2002-05-09 Kawasaki Steel Corp Ultra-high-strength hot-rolled steel sheet excellent in strain age hardening characteristics and method for producing the same
WO2003076675A1 (en) * 2002-03-08 2003-09-18 Jfe Steel Corporation Steel plate subjected to heat treatment and process for producing the same
JP2005527701A (en) * 2002-03-11 2005-09-15 ユジノール Ultra high strength low density hot rolled steel sheet and method for producing the same
US7695824B2 (en) 2003-09-04 2010-04-13 Nissan Motor Co., Ltd. Reinforced member
JP2005081356A (en) * 2003-09-04 2005-03-31 Nissan Motor Co Ltd Strengthened member
JP2006152361A (en) * 2004-11-29 2006-06-15 Jfe Steel Kk Thin steel plate, method for producing the same, and method for producing parts having excellent shape freezing property
RU2387731C2 (en) * 2008-03-31 2010-04-27 Открытое акционерное общество "Северсталь" (ОАО "Северсталь") Steel and item made from it (versions)
JP2011246794A (en) * 2010-05-31 2011-12-08 Jfe Steel Corp High strength hot-rolled steel sheet and method for manufacturing the same
WO2011152328A1 (en) * 2010-05-31 2011-12-08 Jfeスチール株式会社 Hot-rolled high-strength steel sheet and process for production thereof
US9284618B2 (en) 2010-05-31 2016-03-15 Jfe Steel Corporation High strength hot-rolled steel sheet and method for manufacturing the same
CN104862583A (en) * 2015-04-23 2015-08-26 江苏省沙钢钢铁研究院有限公司 Pickling plate for 400 MPa-level automobile structure and production method thereof
US11220731B2 (en) 2015-12-24 2022-01-11 Posco Hot-rolled coated steel sheet with excellent workability and manufacturing method therefor

Also Published As

Publication number Publication date
JP3447233B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP6475861B2 (en) Steel plates used for hot stamping, hot stamping process and hot stamping components
CN107709598B (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloyed hot-dip galvanized steel sheet
JP7269588B2 (en) Steels used for hot stamping, hot stamping methods and formed components
JP5425896B2 (en) Method for producing cold rolled duplex stainless steel with extremely high strength and steel plate produced thereby
CN102348821B (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP5732907B2 (en) Hot three-dimensional bending steel, hot three-dimensional bending steel and manufacturing method thereof
CN109642263B (en) Method for producing a high-strength steel strip with improved properties during further processing, and such a steel strip
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP2011052317A (en) Dual phase steel sheet and method for manufacturing the same
CA3025469C (en) Method for the manufacture of twip steel sheet having an austenitic matrix
CN113061812A (en) 980MPa grade cold-rolled alloyed galvanized quenched partition steel and preparation method thereof
WO2017203314A1 (en) Twip steel sheet having an austenitic matrix
CN111334796A (en) Manufacturing method of hot stamping steel, hot stamping steel and hot stamping part manufacturing method
JP3962186B2 (en) Thin steel plate excellent in heat treatment hardening ability and method for producing high-strength press-formed body using the steel plate
JP6052476B1 (en) High strength steel plate and manufacturing method thereof
CN103732777B (en) Hot-dip galvanizing sheet steel and its manufacture method
JP3447233B2 (en) Method for producing thin steel sheet and high-strength pressed body excellent in heat-hardening ability
JP4299377B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with increased heat treatment performance after forming
JP2000080418A (en) Production of thin steel sheet for working
JP2003268491A (en) High-strength steel sheet for a processed member, a method for producing the same, and a method for producing a processed member having a processed surface having excellent wear resistance,
JPH03294463A (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JP6780804B1 (en) High-strength steel sheet and its manufacturing method
JP3822711B2 (en) Alloyed hot-dip galvanized steel sheet
JP4114521B2 (en) Ultra-high strength cold-rolled steel sheet having excellent formability and method for producing the same
CN110117756A (en) A kind of Cu alloying deep-draw dual phase sheet steel and preparation method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030527

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees