JP4529404B2 - Manufacturing method of solid electrolytic capacitor - Google Patents
Manufacturing method of solid electrolytic capacitor Download PDFInfo
- Publication number
- JP4529404B2 JP4529404B2 JP2003339219A JP2003339219A JP4529404B2 JP 4529404 B2 JP4529404 B2 JP 4529404B2 JP 2003339219 A JP2003339219 A JP 2003339219A JP 2003339219 A JP2003339219 A JP 2003339219A JP 4529404 B2 JP4529404 B2 JP 4529404B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolytic
- electrolytic capacitor
- metal
- producing
- cathode foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims description 65
- 239000007787 solid Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 42
- 239000002184 metal Substances 0.000 claims description 42
- 239000011888 foil Substances 0.000 claims description 33
- 239000004642 Polyimide Substances 0.000 claims description 13
- 229920001721 polyimide Polymers 0.000 claims description 13
- 239000000178 monomer Substances 0.000 claims description 12
- 150000004767 nitrides Chemical class 0.000 claims description 12
- 239000007800 oxidant agent Substances 0.000 claims description 12
- 229920001296 polysiloxane Polymers 0.000 claims description 12
- 229920001940 conductive polymer Polymers 0.000 claims description 9
- 239000007784 solid electrolyte Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 5
- 150000003577 thiophenes Chemical class 0.000 claims description 4
- ITWBWJFEJCHKSN-UHFFFAOYSA-N 1,4,7-triazonane Chemical compound C1CNCCNCCN1 ITWBWJFEJCHKSN-UHFFFAOYSA-N 0.000 claims description 2
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical group O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 12
- 239000002904 solvent Substances 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 3
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 235000019837 monoammonium phosphate Nutrition 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 1
- 239000001741 Ammonium adipate Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical class CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- -1 acetonitrile Chemical compound 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019293 ammonium adipate Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- WBJINCZRORDGAQ-UHFFFAOYSA-N formic acid ethyl ester Natural products CCOC=O WBJINCZRORDGAQ-UHFFFAOYSA-N 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- FYMCOOOLDFPFPN-UHFFFAOYSA-K iron(3+);4-methylbenzenesulfonate Chemical compound [Fe+3].CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1.CC1=CC=C(S([O-])(=O)=O)C=C1 FYMCOOOLDFPFPN-UHFFFAOYSA-K 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-M toluene-4-sulfonate Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-M 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
本発明は、静電容量の高い固体電解コンデンサを得ることができる固体電解コンデンサの製造方法に関する。 The present invention relates to a method of manufacturing a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having a high capacitance.
タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。 An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.
この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。 In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.
また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。 As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.
このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作成される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。 A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is produced as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Similar to the anode foil, the cathode foil is made of a valve metal such as aluminum, but the surface is only subjected to etching treatment.
このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
ところで、近年、電子情報機器はデジタル化され、さらにこれらの電子情報機器の心臓部であるマイクロプロセッサ(MPU)の駆動周波数の高速化が進んでいる。これに伴って、消費電力の増大化が進み、発熱による信頼性の問題が顕在化してきたため、その対策として駆動電圧の低減化が図られてきた。 By the way, in recent years, electronic information devices have been digitized, and the driving frequency of a microprocessor (MPU) which is the heart of these electronic information devices has been increased. Along with this, the power consumption has been increasing and the problem of reliability due to heat generation has become obvious. Therefore, the drive voltage has been reduced as a countermeasure.
上記駆動電圧の低減化を図るため、マイクロプロセッサに高精度な電力を供給する回路として電圧制御モジュールと呼ばれるDC−DCコンバーターが広く使用されており、その出力側コンデンサには、電圧降下を防ぐためESRの低いコンデンサが多数用いられている。このような低ESR特性を有するコンデンサとして、上述したような固体電解コンデンサが実用化され、多用されている。 In order to reduce the drive voltage, a DC-DC converter called a voltage control module is widely used as a circuit for supplying highly accurate power to the microprocessor, and the output side capacitor is used to prevent a voltage drop. Many capacitors with low ESR are used. As the capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above has been put into practical use and widely used.
しかしながら、マイクロプロセッサの駆動周波数の高速化は著しく、それに伴って消費電力がさらに増大し、それに対応するために電圧降下を防ぐためのコンデンサからの供給電力のさらなる増大化が求められている。すなわち、大きな電力を短時間で供給することができなければならず、このために固体電解コンデンサには大容量化が要求されている。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
However, the increase in the driving frequency of the microprocessor is remarkable, and accordingly, the power consumption further increases. In order to cope with this, further increase in the power supplied from the capacitor to prevent the voltage drop is required. That is, it is necessary to be able to supply a large amount of power in a short time, and for this reason, a large capacity is required for the solid electrolytic capacitor.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.
本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、静電容量の向上を可能とした固体電解コンデンサの製造方法を提供することにある。 The present invention has been proposed to solve the above-described problems of the prior art, and an object of the present invention is to provide a method of manufacturing a solid electrolytic capacitor capable of improving the capacitance. .
本発明者等は、固体電解コンデンサの静電容量の向上を図るべく、鋭意検討を重ねた結果、本発明を完成するに至ったものである。
すなわち、陰極箔の表面に金属窒化物又は金属炭化物又は金属炭窒化物からなる皮膜を形成すると共に、コンデンサ素子の修復化成後に、ポリイミドシリコーン溶液に浸漬することにより、良好な結果が得られることが判明したものである。
As a result of intensive studies aimed at improving the capacitance of the solid electrolytic capacitor, the present inventors have completed the present invention.
That is, a good result can be obtained by forming a film made of metal nitride, metal carbide or metal carbonitride on the surface of the cathode foil and immersing it in a polyimide silicone solution after the capacitor element is repaired and formed. It turns out.
(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と、表面に金属窒化物又は金属炭化物又は金属炭窒化物又はカーボン又はインジウム酸化スズからなる皮膜が形成された陰極箔を、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。その後、このコンデンサ素子をポリイミドシリコーンの0.05〜20wt%のケトン系溶液に浸漬し、引き上げた後、40〜100℃で溶媒を蒸発させ、その後、150〜200℃で熱処理する。
続いて、このコンデンサ素子を、重合性モノマーと酸化剤の混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに収納し、開口端部を封ロゴムで封止し、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil having an oxide film layer formed on the surface and a cathode foil having a film made of metal nitride, metal carbide, metal carbonitride, carbon, or indium tin oxide formed on the surface are wound through a separator. A capacitor element is formed by turning, and the capacitor element is subjected to repair formation. Thereafter, the capacitor element is immersed in a 0.05-20 wt% ketone-based solution of polyimide silicone, pulled up, evaporated at 40-100 ° C., and then heat-treated at 150-200 ° C.
Subsequently, the capacitor element is immersed in a mixed solution of a polymerizable monomer and an oxidizing agent to cause a polymerization reaction of the conductive polymer in the capacitor element, thereby forming a solid electrolyte layer. And this capacitor | condenser element is accommodated in an exterior case, and an opening edge part is sealed with sealing rubber | gum, and a solid electrolytic capacitor is formed.
(皮膜を形成する金属窒化物、金属炭化物、金属炭窒化物)
金属窒化物としては、TiN、ZrN、HfN、VN、TaN、NbNのいずれかを用いることが好ましい。また、金属炭化物としては、TiC、WC、ZrC、HfC、VC、TaC、NbCのいずれかを用いることが好ましく、金属炭窒化物としては、TiCN、WCN、ZrCN、HfCN、VCN、TaCN、NbCNのいずれかを用いることが好ましい。
また、陰極箔の表面に形成する金属窒化物又は金属炭化物又は金属炭窒化物又はカーボン又はインジウム酸化スズからなる皮膜の厚みは、0.05〜5μmとすることが好ましく、0.2〜3μmとすることがより好ましい。その理由は、この範囲未満では、静電容量向上効果が少なく、この範囲を超えると、陰極箔と皮膜の接合強度が低下するからである。
(Metal nitride, metal carbide, metal carbonitride that forms a film)
As the metal nitride, any of TiN, ZrN, HfN, VN, TaN, and NbN is preferably used. Moreover, it is preferable to use any of TiC, WC, ZrC, HfC, VC, TaC, and NbC as the metal carbide. As the metal carbonitride, TiCN, WCN, ZrCN, HfCN, VCN, TaCN, and NbCN are used. It is preferable to use either one.
Further, the thickness of the film made of metal nitride, metal carbide, metal carbonitride, carbon or indium tin oxide formed on the surface of the cathode foil is preferably 0.05 to 5 μm, and 0.2 to 3 μm. More preferably. The reason is that if the amount is less than this range, the effect of improving the electrostatic capacity is small, and if the range is exceeded, the bonding strength between the cathode foil and the film is lowered.
(陰極箔に皮膜を形成する方法)
陰極箔の表面に金属窒化物又は金属炭化物又は金属炭窒化物からなる皮膜を形成する方法としては、形成される皮膜の強度、陰極との密着性、成膜条件の制御等を考慮すると、蒸着法が好ましく、なかでも、陰極アークプラズマ蒸着法がより好ましい。
この陰極アークプラズマ蒸着法の適用条件は以下の通りである。すなわち、電流値は80〜300A、電圧値は15〜20Vである。なお、窒化チタンを用いる場合は、窒素を含む全圧が1×10-1〜1×10-4Torrの雰囲気で行う。
(Method of forming a film on the cathode foil)
As a method of forming a film made of metal nitride, metal carbide or metal carbonitride on the surface of the cathode foil, vapor deposition is performed in consideration of the strength of the formed film, adhesion to the cathode, control of film forming conditions, etc. Of these, the cathode arc plasma deposition method is more preferable.
The application conditions of this cathodic arc plasma deposition method are as follows. That is, the current value is 80 to 300 A, and the voltage value is 15 to 20V. When titanium nitride is used, it is performed in an atmosphere where the total pressure including nitrogen is 1 × 10 −1 to 1 × 10 −4 Torr.
(ポリイミドシリコーン)
ポリイミドシリコーンを溶解する溶媒としては、ポリイミドシリコーンの溶解性の良好なケトン系溶媒が好ましく、シクロヘキサノン、アセトン、メチルエチルケトン等を用いることができる。
また、ポリイミドシリコーンの濃度は、0.05〜20wt%、好ましくは1.5〜9wt%、さらに好ましくは2〜6wt%である。濃度がこの範囲未満では耐圧が十分ではなく、この範囲を超えると静電容量が低下する。
(Polyimide silicone)
As a solvent for dissolving polyimide silicone, a ketone solvent having good solubility of polyimide silicone is preferable, and cyclohexanone, acetone, methyl ethyl ketone, and the like can be used.
Moreover, the density | concentration of a polyimide silicone is 0.05-20 wt%, Preferably it is 1.5-9 wt%, More preferably, it is 2-6 wt%. If the concentration is less than this range, the withstand voltage is not sufficient, and if it exceeds this range, the capacitance decreases.
(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.
また、酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜65wt%が好ましく、45〜57wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。 As the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 65 wt%, and 45 to 57 wt%. % Is more preferable. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.
(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.
(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。
As the polymerizable monomer used in the present invention, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
(作用・効果)
本発明の構成により静電容量の向上が可能となる理由は、以下の通りと考えられる。すなわち、導体材料からなる陰極箔に金属窒化物又は金属炭化物又は金属炭窒化物からなる皮膜を形成すると、金属窒化物又は金属炭化物又は金属炭窒化物が陰極箔金属と導通して、陰極箔の容量成分がなくなり、コンデンサの合成容量は最大となって、静電容量が増大すると考えられる。
(Action / Effect)
The reason why the capacitance can be improved by the configuration of the present invention is considered as follows. That is, when a film made of metal nitride, metal carbide or metal carbonitride is formed on a cathode foil made of a conductive material, the metal nitride, metal carbide or metal carbonitride conducts with the cathode foil metal, It is considered that the capacitance component disappears, the combined capacitance of the capacitor becomes maximum, and the capacitance increases.
また、本発明においては、コンデンサ素子の修復化成後にポリイミドシリコーン溶液に浸漬することにより、ポリイミドシリコーンを構成するポリイミドとPEDT等の導電性ポリマーは共に有機化合物であるため接着性が良く、また、Siと金属窒化物等との接着性が良いため、結果として、ポリイミドシリコーン層を介して、導電性ポリマーと金属窒化物等との接着性が向上して、静電容量が増大すると考えられる。 Also, in the present invention, after the capacitor element is repaired and formed, it is immersed in a polyimide silicone solution, so that both the polyimide constituting the polyimide silicone and the conductive polymer such as PEDT are organic compounds, and thus have good adhesion. As a result, it is considered that the adhesion between the conductive polymer and the metal nitride is improved through the polyimide silicone layer, and the capacitance is increased.
本発明によれば、静電容量の向上を可能とした固体電解コンデンサの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid electrolytic capacitor which enabled the improvement of an electrostatic capacitance can be provided.
続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。 Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.
(実施例1)
表面に酸化皮膜層が形成された陽極箔と、蒸着法によって表面に窒化チタン皮膜を形成した陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回してコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。その後、このコンデンサ素子をポリイミドシリコーンの2.0wt%シクロヘキサノン溶液に浸漬し、引き上げた後、170℃で1時間熱処理した。
続いて、所定の容器に、EDTとp−トルエンスルホン酸第二鉄の45wt%ブタノール溶液を、そのモル比が6:1となるように注入して混合液を調製し、コンデンサ素子を上記混合液に10秒間浸漬してコンデンサ素子にEDTと酸化剤を含浸した。そして、このコンデンサ素子を120℃の恒温槽内に1時間放置して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。その後、このコンデンサ素子を有底筒状のアルミニウムケースに収納し、封ロゴムで封止し、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は2.5WV、定格容量は120μFである。
Example 1
Electrode extraction means was connected to the anode foil having an oxide film layer formed on the surface and the cathode foil having a titanium nitride film formed on the surface by vapor deposition, and both electrode foils were wound through a separator to form a capacitor element. . And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed. Thereafter, the capacitor element was immersed in a 2.0 wt% cyclohexanone solution of polyimide silicone, pulled up, and then heat treated at 170 ° C. for 1 hour.
Subsequently, a 45 wt% butanol solution of EDT and ferric p-toluenesulfonate is poured into a predetermined container so that the molar ratio is 6: 1 to prepare a mixed solution, and the capacitor element is mixed as described above. The capacitor element was impregnated with EDT and an oxidizing agent by dipping in the solution for 10 seconds. Then, this capacitor element was left in a constant temperature bath at 120 ° C. for 1 hour to cause a polymerization reaction of PEDT in the capacitor element, thereby forming a solid electrolyte layer. Then, this capacitor | condenser element was accommodated in the bottomed cylindrical aluminum case, and it sealed with sealing rubber | gum, and formed the solid electrolytic capacitor. The solid electrolytic capacitor has a rated voltage of 2.5 WV and a rated capacity of 120 μF.
(実施例2)
陰極箔として、炭化チタン皮膜を形成した陰極箔を用いた。他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
(実施例3)
陰極箔として、炭窒化チタン皮膜を形成した陰極箔を用いた。他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
(Example 2)
A cathode foil on which a titanium carbide film was formed was used as the cathode foil. A solid electrolytic capacitor was prepared in the same manner as in Example 1 except for other conditions.
(Example 3)
As the cathode foil, a cathode foil on which a titanium carbonitride film was formed was used. A solid electrolytic capacitor was prepared in the same manner as in Example 1 except for other conditions.
(実施例4)
陰極箔として、カーボン皮膜を形成した陰極箔を用いた。他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
(実施例5)
陰極箔として、インジウム酸化スズ皮膜を形成した陰極箔を用いた。他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
Example 4
As the cathode foil, a cathode foil on which a carbon film was formed was used. A solid electrolytic capacitor was prepared in the same manner as in Example 1 except for other conditions.
(Example 5)
A cathode foil on which an indium tin oxide film was formed was used as the cathode foil. A solid electrolytic capacitor was prepared in the same manner as in Example 1 except for other conditions.
(比較例)
通常の陰極箔を用い、ポリイミドシリコーン処理を施すことなく、他の条件は上記実施例1と同様にして固体電解コンデンサを作成した。
(Comparative example)
Using a normal cathode foil, a solid electrolytic capacitor was prepared in the same manner as in Example 1 except that the polyimide silicone treatment was not performed.
[比較結果]
上記の方法により得られた実施例及び比較例について、静電容量を調べたところ、表1に示したような結果が得られた。
When the electrostatic capacity was investigated about the Example and comparative example which were obtained by said method, the result as shown in Table 1 was obtained.
表1から明らかなように、実施例1〜5の静電容量は、いずれも比較例の約2倍になった。 As is clear from Table 1, the capacitances of Examples 1 to 5 were both about twice that of the comparative example.
Claims (8)
前記陰極箔として、予めその表面に金属窒化物又は金属炭化物又は金属炭窒化物又はカーボン又はインジウム酸化スズからなる皮膜を形成した陰極箔を用いてコンデンサ素子を形成し、このコンデンサ素子をポリイミドシリコーン溶液に浸漬した後、そのコンデンサ素子に、前記重合性モノマーと酸化剤を含浸させ、前記導電性ポリマーからなる固体電解質層を形成することを特徴とする固体電解コンデンサの製造方法。 In a method for producing a solid electrolytic capacitor in which a capacitor element obtained by winding an anode foil and a cathode foil through a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer,
As the cathode foil, a capacitor element is formed using a cathode foil in which a film made of metal nitride, metal carbide, metal carbonitride, carbon, or indium tin oxide is formed on the surface in advance. A method for producing a solid electrolytic capacitor, wherein the capacitor element is impregnated with the polymerizable monomer and the oxidizing agent to form a solid electrolyte layer made of the conductive polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003339219A JP4529404B2 (en) | 2003-09-30 | 2003-09-30 | Manufacturing method of solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003339219A JP4529404B2 (en) | 2003-09-30 | 2003-09-30 | Manufacturing method of solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005109078A JP2005109078A (en) | 2005-04-21 |
JP4529404B2 true JP4529404B2 (en) | 2010-08-25 |
Family
ID=34534459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003339219A Expired - Fee Related JP4529404B2 (en) | 2003-09-30 | 2003-09-30 | Manufacturing method of solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4529404B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4585819B2 (en) * | 2004-09-16 | 2010-11-24 | 株式会社アルバック | Cathode material for electrolytic capacitors |
JP6726886B2 (en) * | 2016-03-25 | 2020-07-22 | パナソニックIpマネジメント株式会社 | Electrolytic capacitor and manufacturing method thereof |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0135491B2 (en) * | 1982-03-18 | 1989-07-25 | Nippon Chemicon | |
JPH0471213A (en) * | 1990-07-12 | 1992-03-05 | Nippon Chemicon Corp | Aluminum electrode for electrolytic capacitor and its manufacture |
JPH0471214A (en) * | 1990-07-12 | 1992-03-05 | Nippon Chemicon Corp | Aluminum electrode for electrolytic capacitor and manufacture thereof |
JPH0819380B2 (en) * | 1987-05-11 | 1996-02-28 | 住友化学工業株式会社 | Method for producing thick film insulator forming composition |
JPH09293639A (en) * | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2000114109A (en) * | 1998-09-30 | 2000-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacture |
JP2000114108A (en) * | 1998-09-30 | 2000-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacture |
JP2003100565A (en) * | 2001-09-27 | 2003-04-04 | Nippon Chemicon Corp | Method of manufacturing solid electrolytic capacitor |
JP2003109853A (en) * | 2001-09-28 | 2003-04-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
WO2003035739A1 (en) * | 2001-10-19 | 2003-05-01 | Hitachi Chemical Co., Ltd. | Electroconductive resin composition and electronic parts using the same |
JP2003257795A (en) * | 2001-12-27 | 2003-09-12 | Nippon Chemicon Corp | Solid electrolytic capacitor |
WO2004030004A1 (en) * | 2002-09-30 | 2004-04-08 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor |
JP2004335124A (en) * | 2003-04-30 | 2004-11-25 | Shin Etsu Chem Co Ltd | Impregnant for polyimide silicone electronic component |
-
2003
- 2003-09-30 JP JP2003339219A patent/JP4529404B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0135491B2 (en) * | 1982-03-18 | 1989-07-25 | Nippon Chemicon | |
JPH0819380B2 (en) * | 1987-05-11 | 1996-02-28 | 住友化学工業株式会社 | Method for producing thick film insulator forming composition |
JPH0471213A (en) * | 1990-07-12 | 1992-03-05 | Nippon Chemicon Corp | Aluminum electrode for electrolytic capacitor and its manufacture |
JPH0471214A (en) * | 1990-07-12 | 1992-03-05 | Nippon Chemicon Corp | Aluminum electrode for electrolytic capacitor and manufacture thereof |
JPH09293639A (en) * | 1996-04-26 | 1997-11-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and manufacture thereof |
JP2000114108A (en) * | 1998-09-30 | 2000-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacture |
JP2000114109A (en) * | 1998-09-30 | 2000-04-21 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacture |
JP2003100565A (en) * | 2001-09-27 | 2003-04-04 | Nippon Chemicon Corp | Method of manufacturing solid electrolytic capacitor |
JP2003109853A (en) * | 2001-09-28 | 2003-04-11 | Nippon Chemicon Corp | Solid electrolytic capacitor and its manufacturing method |
WO2003035739A1 (en) * | 2001-10-19 | 2003-05-01 | Hitachi Chemical Co., Ltd. | Electroconductive resin composition and electronic parts using the same |
JP2003257795A (en) * | 2001-12-27 | 2003-09-12 | Nippon Chemicon Corp | Solid electrolytic capacitor |
WO2004030004A1 (en) * | 2002-09-30 | 2004-04-08 | Nippon Chemi-Con Corporation | Solid electrolytic capacitor |
JP2004335124A (en) * | 2003-04-30 | 2004-11-25 | Shin Etsu Chem Co Ltd | Impregnant for polyimide silicone electronic component |
Also Published As
Publication number | Publication date |
---|---|
JP2005109078A (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4285523B2 (en) | Electrode foil for solid electrolytic capacitor and manufacturing method thereof | |
JP4062787B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4529687B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4529404B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4329800B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4821818B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4774664B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4114700B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4720075B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4164911B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2004128048A (en) | Solid electrolytic capacitor | |
JP4363022B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4720076B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4780894B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4529403B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4042345B2 (en) | Solid electrolytic capacitor | |
JP4442361B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4114325B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4982027B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4474886B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4442286B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4314938B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4608865B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP2005085911A (en) | Method for manufacturing solid electrolytic capacitor | |
JP2005109079A (en) | Solid electrolytic capacitor and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100518 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4529404 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |