[go: up one dir, main page]

JP4720075B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP4720075B2
JP4720075B2 JP2003342608A JP2003342608A JP4720075B2 JP 4720075 B2 JP4720075 B2 JP 4720075B2 JP 2003342608 A JP2003342608 A JP 2003342608A JP 2003342608 A JP2003342608 A JP 2003342608A JP 4720075 B2 JP4720075 B2 JP 4720075B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
aging
current
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003342608A
Other languages
Japanese (ja)
Other versions
JP2005109264A (en
Inventor
和浩 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2003342608A priority Critical patent/JP4720075B2/en
Publication of JP2005109264A publication Critical patent/JP2005109264A/en
Application granted granted Critical
Publication of JP4720075B2 publication Critical patent/JP4720075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、エージング工程での漏れ電流不良の発生を防止し、歩留まりを高めることができる固体電解コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor capable of preventing the occurrence of a leakage current failure in an aging process and increasing the yield.

タンタルあるいはアルミニウム等のような弁作用を有する金属を利用した電解コンデンサは、陽極側対向電極としての弁作用金属を焼結体あるいはエッチング箔等の形状にして誘電体を拡面化することにより、小型で大きな容量を得ることができることから、広く一般に用いられている。特に、電解質に固体電解質を用いた固体電解コンデンサは、小型、大容量、低等価直列抵抗であることに加えて、チップ化しやすく、表面実装に適している等の特質を備えていることから、電子機器の小型化、高機能化、低コスト化に欠かせないものとなっている。   An electrolytic capacitor using a metal having a valve action such as tantalum or aluminum is obtained by expanding the dielectric by making the valve action metal as the anode-side counter electrode into the shape of a sintered body or an etching foil. Since it is small and a large capacity can be obtained, it is widely used. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has features such as small size, large capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high functionality and low cost of electronic equipment.

この種の固体電解コンデンサにおいて、小型、大容量用途としては、一般に、アルミニウム等の弁作用金属からなる陽極箔と陰極箔をセパレータを介在させて巻回してコンデンサ素子を形成し、このコンデンサ素子に駆動用電解液を含浸し、アルミニウム等の金属製ケースや合成樹脂製のケースにコンデンサ素子を収納し、密閉した構造を有している。なお、陽極材料としては、アルミニウムを初めとしてタンタル、ニオブ、チタン等が使用され、陰極材料には、陽極材料と同種の金属が用いられる。   In this type of solid electrolytic capacitor, as a small-sized and large-capacity application, an anode foil and a cathode foil made of a valve metal such as aluminum are generally wound with a separator interposed therebetween to form a capacitor element. It is impregnated with a driving electrolyte, and has a sealed structure in which a capacitor element is housed in a metal case such as aluminum or a case made of synthetic resin. As the anode material, aluminum, tantalum, niobium, titanium and the like are used, and as the cathode material, the same kind of metal as the anode material is used.

また、固体電解コンデンサに用いられる固体電解質としては、二酸化マンガンや7、7、8、8−テトラシアノキノジメタン(TCNQ)錯体が知られているが、近年、反応速度が緩やかで、かつ陽極電極の酸化皮膜層との密着性に優れたポリエチレンジオキシチオフェン(以下、PEDTと記す)等の導電性ポリマーに着目した技術(特許文献1参照)が存在している。   As solid electrolytes used for solid electrolytic capacitors, manganese dioxide and 7,7,8,8-tetracyanoquinodimethane (TCNQ) complexes are known. There is a technique (see Patent Document 1) that focuses on a conductive polymer such as polyethylenedioxythiophene (hereinafter referred to as PEDT) having excellent adhesion to an oxide film layer of an electrode.

このような巻回型のコンデンサ素子にPEDT等の導電性ポリマーからなる固体電解質層を形成するタイプの固体電解コンデンサは、以下のようにして作製される。まず、アルミニウム等の弁作用金属からなる陽極箔の表面を塩化物水溶液中での電気化学的なエッチング処理により粗面化して、多数のエッチングピットを形成した後、ホウ酸アンモニウム等の水溶液中で電圧を印加して誘電体となる酸化皮膜層を形成する(化成)。陽極箔と同様に、陰極箔もアルミニウム等の弁作用金属からなるが、その表面にはエッチング処理を施すのみである。   A solid electrolytic capacitor of a type in which a solid electrolyte layer made of a conductive polymer such as PEDT is formed on such a wound capacitor element is manufactured as follows. First, the surface of the anode foil made of valve action metal such as aluminum is roughened by electrochemical etching treatment in an aqueous chloride solution to form many etching pits, and then in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical conversion). Like the anode foil, the cathode foil is made of a valve action metal such as aluminum, but the surface is only subjected to etching treatment.

このようにして表面に酸化皮膜層が形成された陽極箔とエッチングピットのみが形成された陰極箔とを、セパレータを介して巻回してコンデンサ素子を形成する。続いて、修復化成を施したコンデンサ素子に、3,4−エチレンジオキシチオフェン(以下、EDTと記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出し、あるいは両者の混合液に浸漬して、コンデンサ素子内で重合反応を促進し、PEDT等の導電性ポリマーからなる固体電解質層を生成する。その後、このコンデンサ素子を有底筒状の外装ケースに収納し、ケースの開口部を封ロゴムで封止して固体電解コンデンサを作成する。
特開平2−15611号公報
Thus, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pits are wound through a separator to form a capacitor element. Subsequently, a polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizer solution are respectively discharged into the capacitor element subjected to restoration conversion, or immersed in a mixture of both. The polymerization reaction is promoted in the capacitor element, and a solid electrolyte layer made of a conductive polymer such as PEDT is generated. Thereafter, the capacitor element is housed in a bottomed cylindrical outer case, and the opening of the case is sealed with a sealing rubber to produce a solid electrolytic capacitor.
JP-A-2-15611

ところで、従来は、定電流でエージングを行っていたが、エージングを続けても漏れ電流が低下しないコンデンサがあり、これらは漏れ電流不良となり、歩留まりを低下させる原因となっていた。
なお、このような問題点は、重合性モノマーとしてEDTを用いた場合に限らず、他のチオフェン誘導体、ピロール、アニリン等を用いた場合にも同様に生じていた。
Conventionally, aging is performed at a constant current, but there are capacitors in which the leakage current does not decrease even if aging is continued. These capacitors cause a leakage current failure and cause a reduction in yield.
Such a problem occurs not only when EDT is used as the polymerizable monomer but also when other thiophene derivatives, pyrrole, aniline, and the like are used.

本発明は、上述したような従来技術の問題点を解決するために提案されたものであり、その目的は、エージング工程での歩留まりを高め、漏れ電流特性を向上させることができる固体電解コンデンサの製造方法を提供することにある。   The present invention has been proposed to solve the above-described problems of the prior art, and its purpose is to improve the yield in the aging process and improve the leakage current characteristics. It is to provide a manufacturing method.

本発明者等は、上記課題を解決すべく、エージング工程での漏れ電流不良の発生メカニズムについて種々検討を重ねた結果、以下の結論に達したものである。
すなわち、定格電圧の異なる複数の固体電解コンデンサについて、従来から用いられている方法である定電流でエージングを行い、漏れ電流が低下しないコンデンサについて検討した結果、定格電圧の低いコンデンサに漏れ電流が低下しないものが多いことが判明した。
In order to solve the above-mentioned problems, the present inventors have made various studies on the occurrence mechanism of leakage current failure in the aging process, and as a result, have reached the following conclusion.
In other words, for a plurality of solid electrolytic capacitors with different rated voltages, aging was performed at a constant current, which is a conventionally used method, and as a result of investigating capacitors that did not reduce leakage current, leakage current decreased to capacitors with lower rated voltage. It turns out that there are many things that do not.

この知見に基づき、本発明者等は以下の仮説を立てて検討したところ、本発明を完成するに至ったものである。
すなわち、エージング工程で漏れ電流が低下するのは、導電性ポリマーの欠陥部に電流が流れて、この欠陥部が絶縁化するためであると考えられる。そして、この絶縁化には、必要となる最低電力があり、定格電圧が低く定電流である電力が小さい状態では、電力不足で絶縁化が進まないのではないかと考えられた。
Based on this knowledge, the present inventors have made the following hypothesis and examined it. As a result, the present invention has been completed.
In other words, the reason why the leakage current is reduced in the aging process is considered to be that current flows in the defective portion of the conductive polymer and the defective portion is insulated. In addition, it was thought that this insulation would have the minimum power required, and in the state where the rated voltage was low and the constant current was small, the insulation could not progress due to insufficient power.

そこで、エージングの開始段階で大きな電流を流したところ、漏れ電流不良が低減することが分かった。また、その際に、定電圧、一定電流とすると、安定した特性となることが判明した。   Thus, it was found that when a large current was passed at the start of aging, the leakage current failure was reduced. Further, at that time, it was found that stable characteristics were obtained when a constant voltage and a constant current were used.

この作用・機作は以下の通りであると考えられた。
すなわち、エージングが開始されると、大きな欠陥部の抵抗は小さいことから、その部分に電流が流れる。この場合に、電流が小さいと欠陥部を絶縁化するだけの電力がないので、欠陥部が絶縁化せずに電流が流れ続け、漏れ電流が低下しない。一方、大きな電力が与えられるように一定電流以上の電流を流すと、大きな欠陥部に電力が与えられて絶縁化し、次に大きな欠陥部に電流が流れてその部分が絶縁化するという状態になるため、漏れ電流が低減していくと考えられる。
This action and mechanism was considered as follows.
That is, when aging is started, since the resistance of the large defect portion is small, a current flows through that portion. In this case, if the current is small, there is not enough power to insulate the defective portion, so that the current continues to flow without the defective portion being insulated, and the leakage current does not decrease. On the other hand, when a current of a certain current or more is applied so that a large amount of power is applied, power is applied to a large defective portion to insulate, and then a current flows to the next large defective portion to insulate that portion. Therefore, it is considered that the leakage current is reduced.

(エージングの条件)
エージング電圧は、定格電圧の1.2〜1.5倍が好ましく、定格電圧の低いものほど大きな係数とすることが好ましい。また、エージングの電流は、5〜20mAが好ましく、定格電圧の低いものほど大きくすることが好ましい。その理由は、定格電圧の低いものほどエージングの際に加わる電力が小さくなることから、絶縁化に必要なエネルギーを得るためには、定格電圧の低いものほど大きな電力を与える必要があるためである。
なお、この電圧値及び電流値は、コンデンサの定格、サイズ等によって異なる。コンデンサの定格、サイズ等によって、導電性ポリマーの面積等の状態が異なり、それによって欠陥部の状態も異なるので、絶縁化に必要な電力の大きさが異なるからである。
(Aging conditions)
The aging voltage is preferably 1.2 to 1.5 times the rated voltage, and the lower the rated voltage, the larger the coefficient is preferable. Further, the aging current is preferably 5 to 20 mA, and it is preferable to increase the aging current as the rated voltage is lower. The reason for this is that the lower the rated voltage, the smaller the power applied during aging. Therefore, in order to obtain the energy required for insulation, the lower the rated voltage, the more power needs to be applied. .
The voltage value and current value vary depending on the rating, size, etc. of the capacitor. This is because the state of the conductive polymer varies depending on the rating, size, etc. of the capacitor, and the state of the defect also varies depending on the state, so the amount of power required for insulation varies.

(固体電解コンデンサの製造方法)
本発明に係る固体電解コンデンサの製造方法は以下の通りである。すなわち、表面に酸化皮膜層が形成された陽極箔と陰極箔を、セパレータを介して巻回してコンデンサ素子を形成し、このコンデンサ素子に修復化成を施す。続いて、このコンデンサ素子を重合性モノマーと酸化剤と所定の溶媒とを混合して調製した混合液に浸漬し、コンデンサ素子内で導電性ポリマーの重合反応を発生させ、固体電解質層を形成する。そして、このコンデンサ素子を外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した後、定格電圧の1.2〜1.5倍の電圧、5〜20mAの電流を流すことによりエージングを行い、固体電解コンデンサを形成する。
(Method for manufacturing solid electrolytic capacitor)
The manufacturing method of the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil having an oxide film layer formed on the surface thereof are wound through a separator to form a capacitor element, and this capacitor element is subjected to restoration conversion. Subsequently, the capacitor element is immersed in a mixed solution prepared by mixing a polymerizable monomer, an oxidizing agent, and a predetermined solvent, and a polymerization reaction of a conductive polymer is generated in the capacitor element to form a solid electrolyte layer. . And after inserting this capacitor | condenser element in an exterior case, attaching sealing rubber | gum to an opening edge part, and sealing by caulking process, the voltage of 1.2-1.5 times the rated voltage, 5-20mA Aging is performed by passing an electric current to form a solid electrolytic capacitor.

(EDT及び酸化剤)
重合性モノマーとしてEDTを用いた場合、コンデンサ素子に含浸するEDTとしては、EDTモノマーを用いることができるが、EDTと揮発性溶媒とを1:0〜1:3の体積比で混合したモノマー溶液を用いることもできる。
前記揮発性溶媒としては、ペンタン等の炭化水素類、テトラヒドロフラン等のエーテル類、ギ酸エチル等のエステル類、アセトン等のケトン類、メタノール等のアルコール類、アセトニトリル等の窒素化合物等を用いることができるが、なかでも、メタノール、エタノール、アセトン等が好ましい。
(EDT and oxidizing agent)
When EDT is used as the polymerizable monomer, EDT monomer can be used as EDT impregnated in the capacitor element, but a monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3. Can also be used.
Examples of the volatile solvent include hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile, and the like. Of these, methanol, ethanol, acetone and the like are preferable.

また、酸化剤としては、エタノールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ素酸の水溶液を用いることができ、酸化剤の溶媒に対する濃度は40〜65wt%が好ましく、45〜57wt%がより好ましい。酸化剤の溶媒に対する濃度が高い程、ESRは低減する。なお、酸化剤の溶媒としては、上記モノマー溶液に用いた揮発性溶媒を用いることができ、なかでもエタノールが好適である。酸化剤の溶媒としてエタノールが好適であるのは、蒸気圧が低いため蒸発しやすく、残存する量が少ないためであると考えられる。   Further, as the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in ethanol can be used, and the concentration of the oxidizing agent with respect to the solvent is preferably 40 to 65 wt%, and 45 to 57 wt%. % Is more preferable. The higher the oxidant concentration in the solvent, the lower the ESR. As the oxidant solvent, the volatile solvent used in the monomer solution can be used, and ethanol is particularly preferable. Ethanol is suitable as the oxidant solvent because it is easy to evaporate due to its low vapor pressure and the remaining amount is small.

(修復化成の化成液)
修復化成の化成液としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液を用いることができるが、なかでも、リン酸二水素アンモニウムを用いることが望ましい。また、浸漬時間は、5〜120分が望ましい。
(Chemical solution for restoration conversion)
As the chemical solution for restoration chemical conversion, phosphoric acid type chemicals such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid type chemicals such as ammonium borate, and adipic acid type chemicals such as ammonium adipate, etc. Although a liquid can be used, it is preferable to use ammonium dihydrogen phosphate. The immersion time is preferably 5 to 120 minutes.

(他の重合性モノマー)
本発明に用いられる重合性モノマーとしては、上記EDTの他に、EDT以外のチオフェン誘導体、アニリン、ピロール、フラン、アセチレンまたはそれらの誘導体であって、所定の酸化剤により酸化重合され、導電性ポリマーを形成するものであれば適用することができる。なお、チオフェン誘導体としては、下記の構造式のものを用いることができる。

Figure 0004720075
(Other polymerizable monomers)
The polymerizable monomer used in the present invention includes, in addition to the above EDT, a thiophene derivative other than EDT, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent, and is a conductive polymer. As long as it forms, it can be applied. As the thiophene derivative, one having the following structural formula can be used.
Figure 0004720075

(作用・効果)
本発明の構成で、エージング工程での歩留まりが向上し、漏れ電流特性も向上する理由は、以下の通りと考えられる。すなわち、エージングの開始段階で大きな電力が与えられるように、定電圧、一定電流以上の電流を流すと、大きな欠陥部に電力が与えられてその部分が絶縁化し、その後は、次に大きな欠陥部に電流が流れてその部分が絶縁化するという状態になるため、漏れ電流が低減すると考えられる。
(Action / Effect)
The reason why the yield in the aging process is improved and the leakage current characteristics are improved in the configuration of the present invention is considered as follows. That is, when a constant voltage and a current exceeding a certain current are applied so that a large amount of power is applied at the start of aging, power is applied to a large defect portion and the portion is insulated. It is considered that the leakage current is reduced because the current flows through and the part is insulated.

本発明によれば、エージング工程での歩留まりを高め、漏れ電流特性を向上させることができる固体電解コンデンサの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the solid electrolytic capacitor which can improve the yield in an aging process and can improve a leakage current characteristic can be provided.

続いて、以下のようにして製造した実施例及び比較例に基づいて本発明をさらに詳細に説明する。   Subsequently, the present invention will be described in more detail based on Examples and Comparative Examples manufactured as follows.

(実施例)
表面に酸化皮膜層が形成された陽極箔と陰極箔に電極引き出し手段を接続し、両電極箔をセパレータを介して巻回して、素子形状が5φ×2.8Lのコンデンサ素子を形成した。そして、このコンデンサ素子をリン酸二水素アンモニウム水溶液に40分間浸漬して、修復化成を行った。
一方、所定の容器に、EDTと45%のパラトルエンスルホン酸第二鉄のエタノール溶液を、その重量比が1:2となるように注入し、コンデンサ素子を上記混合液に10秒間浸漬し、120℃、60分加熱して、コンデンサ素子内でPEDTの重合反応を発生させ、固体電解質層を形成した。
そして、このコンデンサ素子を有底筒状の外装ケースに挿入し、開口端部に封口ゴムを装着して、加締め加工によって封止した。その後に、5.6V、10mAの電流を流すことによりエージングを行い、固体電解コンデンサを形成した。なお、この固体電解コンデンサの定格電圧は4WV、定格容量は820μFである。
(Example)
An electrode lead means was connected to the anode foil and the cathode foil having an oxide film layer formed on the surface, and both electrode foils were wound through a separator to form a capacitor element having an element shape of 5φ × 2.8L. And this capacitor | condenser element was immersed in ammonium dihydrogen phosphate aqueous solution for 40 minutes, and restoration | restoration conversion was performed.
On the other hand, an ethanol solution of EDT and 45% ferric paratoluenesulfonic acid is poured into a predetermined container so that the weight ratio is 1: 2, and the capacitor element is immersed in the mixed solution for 10 seconds. By heating at 120 ° C. for 60 minutes, a polymerization reaction of PEDT was generated in the capacitor element to form a solid electrolyte layer.
And this capacitor | condenser element was inserted in the bottomed cylindrical exterior case, the sealing rubber was attached to the opening edge part, and it sealed by the crimping process. Thereafter, aging was performed by flowing a current of 5.6 V and 10 mA to form a solid electrolytic capacitor. This solid electrolytic capacitor has a rated voltage of 4 WV and a rated capacity of 820 μF.

(従来例)
1mAの定電流でエージングを行った。その他の条件及び工程は、実施例と同様である。
(Conventional example)
Aging was performed at a constant current of 1 mA. Other conditions and steps are the same as in the examples.

[比較結果]
上記の方法により得られた実施例及び従来例について、エージング工程における歩留まりと、良品の漏れ電流を測定したところ、表1に示したような結果が得られた。

Figure 0004720075
[Comparison result]
With respect to the example and the conventional example obtained by the above method, the yield in the aging process and the leakage current of the non-defective product were measured, and the results shown in Table 1 were obtained.
Figure 0004720075

表1から明らかなように、実施例によれば、従来例に比べ良品の漏れ電流は同等ながら、歩留まりの向上が認められた。これは、実施例においては、従来例に比べて高分子の絶縁化が促進されたため、従来例では絶縁化しきれずに漏れ電流不良となっていたものが良品となったためと考えられる。
なお、これら従来は不良であるが、本発明を適用することにより良品化されたものの信頼性は従来のものと変わりないことを確認している。
As is clear from Table 1, according to the example, the yield was improved while the leakage current of the non-defective product was equal to that of the conventional example. This is presumably because, in the example, the insulation of the polymer was promoted compared to the conventional example, and in the conventional example, what was not fully insulated and had a leakage current failure became a good product.
Although these conventional devices are defective, it has been confirmed that the reliability of products made good by applying the present invention is the same as the conventional products.

Claims (3)

陽極箔と陰極箔とをセパレータを介して巻回したコンデンサ素子を、重合性モノマーと酸化剤とを含浸して導電性ポリマーからなる固定電解質層を形成し、所定のケースに封止した後、エージングの開始段階で定格電圧の1.2〜1.5倍の電圧と5〜20mAでエージングを行うことを特徴とする固定電解コンデンサの製造方法。 A capacitor element in which an anode foil and a cathode foil are wound through a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a fixed electrolyte layer made of a conductive polymer, and sealed in a predetermined case. A method for producing a fixed electrolytic capacitor, wherein aging is performed at a voltage 1.2 to 1.5 times the rated voltage and 5 to 20 mA at the start of aging. 前記重合性モノマーが、チオフェン誘導体であることを特徴とする請求項1に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative. 前記チオフェン誘導体が、3,4−エチレンジオキシチオフェンであることを特徴とする請求項2に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 2, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2003342608A 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4720075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003342608A JP4720075B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342608A JP4720075B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2005109264A JP2005109264A (en) 2005-04-21
JP4720075B2 true JP4720075B2 (en) 2011-07-13

Family

ID=34536834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342608A Expired - Fee Related JP4720075B2 (en) 2003-09-30 2003-09-30 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4720075B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3064812B1 (en) * 2017-04-03 2022-06-24 Nawatechnologies METHOD FOR MANUFACTURING ELECTROCHEMICAL CAPACITOR
CN110676054B (en) * 2019-09-25 2021-06-29 富之庆电子(深圳)有限公司 Method for improving capacitor aging efficiency and inhibiting capacitor leakage from rising

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590081A (en) * 1991-09-27 1993-04-09 Marcon Electron Co Ltd Manufacture of solid electrolytic capacitor
JPH09246114A (en) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JP2000191906A (en) * 1998-12-25 2000-07-11 Hitachi Chem Co Ltd Polyaniline-based paste, production of solid electrolytic capacitor using the same and solid electrolytic capacitor
JP2003002974A (en) * 2001-06-21 2003-01-08 Chisso Corp Crosslinked polyethylene oxide group-containing polysiloxane and solid polymer electrolyte
JP2003100565A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2003257795A (en) * 2001-12-27 2003-09-12 Nippon Chemicon Corp Solid electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590081A (en) * 1991-09-27 1993-04-09 Marcon Electron Co Ltd Manufacture of solid electrolytic capacitor
JPH09246114A (en) * 1996-03-14 1997-09-19 Matsushita Electric Ind Co Ltd Manufacture of solid electrolytic capacitor
JP2000191906A (en) * 1998-12-25 2000-07-11 Hitachi Chem Co Ltd Polyaniline-based paste, production of solid electrolytic capacitor using the same and solid electrolytic capacitor
JP2003002974A (en) * 2001-06-21 2003-01-08 Chisso Corp Crosslinked polyethylene oxide group-containing polysiloxane and solid polymer electrolyte
JP2003100565A (en) * 2001-09-27 2003-04-04 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor
JP2003257795A (en) * 2001-12-27 2003-09-12 Nippon Chemicon Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2005109264A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4474886B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003289019A (en) Manufacturing method for solid electrolytic capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor
JP4110905B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4720075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees