[go: up one dir, main page]

JP4501285B2 - Glass melting furnace - Google Patents

Glass melting furnace Download PDF

Info

Publication number
JP4501285B2
JP4501285B2 JP2001028309A JP2001028309A JP4501285B2 JP 4501285 B2 JP4501285 B2 JP 4501285B2 JP 2001028309 A JP2001028309 A JP 2001028309A JP 2001028309 A JP2001028309 A JP 2001028309A JP 4501285 B2 JP4501285 B2 JP 4501285B2
Authority
JP
Japan
Prior art keywords
glass
melting
chamber
melting furnace
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001028309A
Other languages
Japanese (ja)
Other versions
JP2002234734A (en
Inventor
昭 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001028309A priority Critical patent/JP4501285B2/en
Publication of JP2002234734A publication Critical patent/JP2002234734A/en
Application granted granted Critical
Publication of JP4501285B2 publication Critical patent/JP4501285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高放射性廃液ガラス固化施設に設置されるガラス溶融炉に関する。
【0002】
【従来の技術】
原子力施設において発生する高放射性廃液は、高放射性廃液ガラス固化施設のガラス溶融炉により溶融し、ガラス固化体として処理された後、放射性廃棄物保管施設に保管される。
【0003】
上記のガラス固化施設においては、ガラス溶融炉の内部で原料ガラスを溶融する際に高放射性廃液を混入し、この高放射性廃液が混入した溶融ガラスを固化容器に注入し、溶融ガラスを固化させることにより、ガラス固化体を形成している。
【0004】
図2は従来のガラス溶融炉の一例を示す縦断正面図、図3は図2の縦断側面図であり、図2、図3において2は溶融炉本体であり、該溶融炉本体2は、内部に溶融空間1を形成するように耐蝕性の耐火レンガ2aにて構成されている。
【0005】
溶融炉本体2の上下中間部左右側には、主電極3が対向して設けられていてその内端が溶融空間1に突出しており、又溶融空間1下部の狭くなっている炉底部4には、底部電極5が設けられていてその内端が溶融空間1に突出している。図2、図3において、6は溶融炉本体2の上部に設けられて原料ガラス、高放射性廃液等を供給するための原料供給口、7は廃ガス取出管、8は廃ガス処理装置、9は補助電極、10は炉底部4に形成されて溶融されたガラスを取り出すためのガラス取出口、11はガラス取出口10を加熱するためのヒータ、Gは溶融ガラスである。
【0006】
上記ガラス溶融炉では、溶融炉本体2に形成された溶融空間1(以下溶融室1と称す)に原料ガラス及び高放射性廃液を供給し、対向配置した主電極3,3間の通電(放電)によるジュール熱によって原料ガラスを溶融し、溶融室1底部のガラス取出口10から溶融ガラスGを取り出すようになっている。
【0007】
【発明が解決しようとする課題】
ところで、溶融室1内におけるガラスは静止した状態にあリ、そのために主電極3,3による加熱時における熱の伝達率は比較的低い状態にある。又、溶融室1の上面には、仮焼層12が形成されており、この仮焼層12は、溶融室1の上部空間への熱の伝達を抑制してしまい、このために、仮焼層12の上部に供給されてくる原料ガラスへの熱の伝達が押えられて、溶融効率が低下する問題があった。
【0008】
このため、従来では、ガラス溶融炉における処理量、即ち原料ガラスの溶融処理量は、溶融室1の容積(特に溶融ガラスGの上面の面積)に略比例するとされている。従って、処理量を増やすためには、ガラス溶融炉全体を大型化することが考えられる。
【0009】
しかし、ガラス溶融炉が大型化すると、それを構築するための耐食性の耐火レンガ2aの使用量が増大し、更にガラス溶融炉を納める建屋、及びクレーン等のハンドリング装置も大型化するために、建設コストが大幅に増加するという問題がある。
【0010】
本発明は、設備構成を大型化することなく処理能力を向上させることが可能なガラス溶融炉を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、高放射能性廃液ガラス固化施設に設置されるガラス溶融炉において、溶融炉本体に、原料ガラスの溶融を行う溶融室と、この溶融室と底部で連通する側室とを設け、さらにガラス固化施設の外部から前記側室の上部空間に加圧空気を送り込む撹拌空気供給装置を設けており、該撹拌空気供給装置が、ガラス固化施設の外部から側室の上部空間に加圧空気を供給する空気供給管と、該空気供給管から分岐して溶融室の上部空間に連通する空気逃がし管と、前記空気供給管に配置した第1調整弁と、前記空気逃がし管に配置した第2調整弁とを備えていることを特徴とするガラス溶融炉、に係るものである。
【0013】
溶融室内において、溶融ガラス表面に形成される仮焼層を含めて、その下方の溶融ガラス全域を効率よく加熱することができれば、処理速度を高めて処理量を増やすことができる。
【0014】
本発明ではこのような観点から、溶融室内の溶融ガラスを攪拌するようにしている。即ち、側室の上部空間に加圧空気を送って、側室内の溶融ガラス面を押し下げる。すると、側室の底部は溶融室に繋がっているために、側室内の溶融ガラスが連通路を通って溶融室に流入し、これにより、溶融室内の溶融ガラスに流動が生じる。
【0015】
又、第1調整弁と第2調整弁の開閉を制御して、空気逃がし管により側室の上部空間に供給された加圧空気を溶融室の上部空間に逃がすと、溶融室の溶融ガラスの一部が側室に戻るように流動し、溶融室の溶融ガラス面は下降する。上記操作を繰返すと、溶融ガラスが溶融室と側室との間を繰り返し流動することによって熱伝達係数が高まり、よって仮焼層を含めて溶融ガラス全域に熱が速やかに伝わり、処理速度が向上する。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
【0017】
図1は本発明の実施の形態に係るガラス溶融炉の縦断正面図である。図中、図2、図3と同一のものには同一の符号を付して詳細な説明は省略する。
【0018】
ガラス固化施設13の内部に、ガラス溶融炉の溶融炉本体14を備えている。溶融炉本体14は、原料ガラスの溶融を行う溶融室1と、溶融室1内の溶融ガラスGを流動(攪拌)させるための側室15とを備えている。
【0019】
溶融室1の底部近傍の側部と、側室15の底部とは、連通路16で繋がっている。溶融室1には、紙面と鉛直の方向に対向する主電極3が設けられていて、主電極3,3間での通電(放電)によりジュール熱で、原料ガラスの溶融を行うようになっている。又側室15にも、電気ヒータ17を設けて側室15内の溶融ガラスGを加熱し、溶融ガラスGの温度が低下して固まらないようにしている。
【0020】
溶融室1と側室15は連通路16で繋がっているため、通常では両方の溶融ガラス面の高さは等しくなっている。又溶融室1の底部にはガラス取出口10が設けられており、該ガラス取出口10を取り囲むように底部電極5が設けられている。
【0021】
ガラス固化施設13の外方には、空気槽(アキュムレータ)18が設けてあり、該空気槽18には、前記溶融炉本体14に加圧空気(圧縮空気)を送って溶融ガラスGの撹拌を行うようにした撹拌空気供給装置19が接続されている。
【0022】
前記撹拌空気供給装置19は、前記ガラス固化施設13の外部の空気槽18から側室15の上部空間に加圧空気を供給する空気供給管20と、該空気供給管20から分岐して溶融室1の上部空間に連通する空気逃がし管21と、前記空気供給管20に配置した第1調整弁22と、前記空気逃がし管21に配置した第2調整弁23とを備えている。又、空気供給管20におけるガラス固化施設13の外側には、手動安全弁24が設けてあり、さらに空気槽18の上流側には元弁25が設けてある。
【0023】
次に、上記形態例の作動を説明する。
【0024】
溶融室1の上方から原料ガラス及び高放射性廃液を供給し、対向配置されている主電極3,3間での通電(放電)によるジュール熱により原料ガラスを溶融する。
【0025】
ここで、第1調整弁22を閉じ、元弁25を開くことで空気槽18に加圧空気を溜める。その後、元弁25と第2調整弁23を閉じ、第1調整弁22を開くと、空気槽18内の加圧空気は、空気供給管20を通って、側室15の上部空間に供給される。
【0026】
すると、側室15の溶融ガラスG面は、加圧空気によって所定の高さL1(破線の位置)まで押し下げられ、これにより、側室15の溶融ガラスGが連通路16を通って溶融室1に移動することにより溶融室位置に流動Sが生じ、溶融室1内の溶融ガラスG面は所要高さL2(破線の位置)まで上昇する。
【0027】
次に、第2調整弁23を開いて、側室15内の加圧空気を溶融室1の上部空間に逃がすと、溶融室1の溶融ガラスGの一部が側室15に戻るように流動し、溶融室1の溶融ガラスG面は下降する。この時、側室15内の加圧空気を溶融室1に逃がすようにしているので、汚染した加圧空気を別個に処理することなく、溶融室1の上部空間のガスと一緒に処理することができる。
【0028】
上記操作を繰返すことにより、溶融ガラスGが溶融室1と側室15との間を繰り返し移動することになり、このときの流動Sによって、溶融室1内の溶融ガラスGが有効に撹拌され、よって主電極3の通電によるジュール熱が速やかに溶融ガラスGの全域に伝わり、よって、図2、図3に示した仮焼層12に対する伝熱も上昇し、この結果、溶融炉本体14による処理速度が高められて処理量を増加することができる。又、前記撹拌空気供給装置19では、ガラス固化施設13の外部において、元弁25と、第1調整弁22と、第2調整弁23の開閉を行うのみの簡単な操作によって、溶融ガラスGを効果的に撹拌できる。
【0029】
このように、溶融ガラスGを撹拌することによって、溶融炉本体14による処理量を増加でき、よって、従来と同一の処理量を処理する場合には、溶融炉本体14の構成を従来に比して著しく小型化できることになる。
【0030】
【発明の効果】
以上説明したように本発明によれば、側室上方に加圧空気を送って側室内の溶融ガラス面を押し下げることにより、側室と繋がっている溶融室に溶融ガラスの流動を生じさせ、又側室の上部空間に供給された加圧空気を溶融室の上部空間に逃がすことにより、溶融室の溶融ガラスを側室に戻すという操作を繰返すことにより、溶融ガラスが溶融室と側室との間を繰り返し流動して熱伝達係数が高まり、よって仮焼層を含め溶融ガラス全域に熱が速やかに伝わることになり、処理速度が高められて処理量を増加することができる効果がある。
【0031】
このように、溶融炉本体による処理量を増加できることにより、従来と同一の処理量を処理する場合には、溶融炉本体の構成を従来に比して著しく小型化できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るガラス溶融炉の縦断正面図である。
【図2】従来のガラス溶融炉の一例を示す縦断正面図である。
【図3】図2の縦断側面図である。
【符号の説明】
1 溶融室(溶融空間)
13 ガラス固化施設
14 溶融炉本体
15 側室
19 撹拌空気供給装置
20 空気供給管
21 空気逃がし管
22 第1調整弁
23 第2調整弁
G 溶融ガラス
S 流動
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass melting furnace installed in a highly radioactive waste liquid vitrification facility.
[0002]
[Prior art]
The high radioactive waste liquid generated in the nuclear facility is melted by the glass melting furnace of the high radioactive waste liquid glass solidification facility, treated as a glass solid, and then stored in the radioactive waste storage facility.
[0003]
In the above-mentioned glass solidification facility, when the raw glass is melted inside the glass melting furnace, the high radioactive waste liquid is mixed, and the molten glass mixed with this high radioactive waste liquid is injected into the solidification container to solidify the molten glass. Thus, a vitrified body is formed.
[0004]
FIG. 2 is a longitudinal front view showing an example of a conventional glass melting furnace, FIG. 3 is a longitudinal side view of FIG. 2, and in FIGS. 2 and 3, 2 is a melting furnace body. It is comprised with the corrosion-resistant firebrick 2a so that the fusion | melting space 1 may be formed in this.
[0005]
On the left and right sides of the upper and lower middle part of the melting furnace body 2, a main electrode 3 is provided to face the inner end of the melting furnace body 2, and its inner end protrudes into the melting space 1. Is provided with a bottom electrode 5 whose inner end protrudes into the melting space 1. 2 and 3, 6 is a raw material supply port for supplying raw glass, highly radioactive waste liquid, etc. provided on the upper part of the melting furnace body 2, 7 is a waste gas take-out pipe, 8 is a waste gas treatment device, 9 Is an auxiliary electrode, 10 is a glass outlet for taking out the glass formed on the furnace bottom 4, 11 is a heater for heating the glass outlet 10, and G is molten glass.
[0006]
In the glass melting furnace, raw glass and highly radioactive liquid waste are supplied to a melting space 1 (hereinafter referred to as a melting chamber 1) formed in the melting furnace body 2 and energization (discharge) between the main electrodes 3 and 3 arranged opposite to each other. The raw glass is melted by the Joule heat generated by the above, and the molten glass G is taken out from the glass outlet 10 at the bottom of the melting chamber 1.
[0007]
[Problems to be solved by the invention]
By the way, the glass in the melting chamber 1 is in a stationary state, so that the heat transfer rate during heating by the main electrodes 3 and 3 is relatively low. In addition, a calcined layer 12 is formed on the upper surface of the melting chamber 1, and this calcined layer 12 suppresses the transfer of heat to the upper space of the melting chamber 1. There is a problem that the heat transfer to the raw glass supplied to the upper part of the layer 12 is suppressed and the melting efficiency is lowered.
[0008]
For this reason, conventionally, the processing amount in the glass melting furnace, that is, the melting processing amount of the raw glass, is assumed to be substantially proportional to the volume of the melting chamber 1 (particularly, the area of the upper surface of the molten glass G). Therefore, it is conceivable to increase the size of the entire glass melting furnace in order to increase the processing amount.
[0009]
However, as the size of the glass melting furnace increases, the amount of corrosion-resistant refractory bricks 2a used to construct the glass melting furnace increases, and the building that houses the glass melting furnace and the handling equipment such as cranes also increase in size. There is a problem that the cost is greatly increased.
[0010]
An object of this invention is to provide the glass melting furnace which can improve a processing capacity, without enlarging an equipment structure.
[0011]
[Means for Solving the Problems]
The present invention provides a glass melting furnace installed in a highly radioactive waste liquid glass solidification facility, the melting furnace body is provided with a melting chamber for melting the raw glass, and a side chamber communicating with the melting chamber at the bottom, An agitation air supply device that sends pressurized air from the outside of the vitrification facility to the upper space of the side chamber is provided , and the agitation air supply device supplies pressurized air to the upper space of the side chamber from the outside of the vitrification facility An air supply pipe, an air relief pipe branched from the air supply pipe and communicating with the upper space of the melting chamber, a first regulating valve arranged in the air supply pipe, and a second regulating valve arranged in the air relief pipe And a glass melting furnace characterized by comprising:
[0013]
In the melting chamber, if the entire molten glass underneath including the calcined layer formed on the surface of the molten glass can be efficiently heated, the processing rate can be increased and the processing amount can be increased.
[0014]
In the present invention, from such a viewpoint, the molten glass in the melting chamber is stirred. That is, pressurized air is sent to the upper space of the side chamber to push down the molten glass surface in the side chamber. Then, since the bottom part of the side chamber is connected to the melting chamber, the molten glass in the side chamber flows into the melting chamber through the communication path, thereby causing the molten glass in the melting chamber to flow.
[0015]
In addition, if the pressurized air supplied to the upper space of the side chamber is released to the upper space of the melting chamber by controlling the opening and closing of the first adjusting valve and the second adjusting valve, the molten glass in the melting chamber is discharged. The part flows back to the side chamber, and the molten glass surface of the melting chamber descends. When the above operation is repeated, the heat transfer coefficient is increased by the molten glass repeatedly flowing between the melting chamber and the side chamber, so that heat is quickly transmitted to the entire molten glass including the calcined layer, and the processing speed is improved. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a longitudinal sectional front view of a glass melting furnace according to an embodiment of the present invention. In the figure, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0018]
A melting furnace body 14 of a glass melting furnace is provided inside the glass solidification facility 13. The melting furnace body 14 includes a melting chamber 1 for melting the raw glass and a side chamber 15 for flowing (stirring) the molten glass G in the melting chamber 1.
[0019]
The side part near the bottom of the melting chamber 1 and the bottom part of the side chamber 15 are connected by a communication path 16. The melting chamber 1 is provided with a main electrode 3 opposed to the paper surface in a vertical direction, and the raw glass is melted by Joule heat by energization (discharge) between the main electrodes 3 and 3. Yes. The side chamber 15 is also provided with an electric heater 17 to heat the molten glass G in the side chamber 15 so that the temperature of the molten glass G is not lowered and solidified.
[0020]
Since the melting chamber 1 and the side chamber 15 are connected by the communication path 16, the heights of both molten glass surfaces are usually equal. A glass outlet 10 is provided at the bottom of the melting chamber 1, and a bottom electrode 5 is provided so as to surround the glass outlet 10.
[0021]
An air tank (accumulator) 18 is provided outside the vitrification facility 13, and pressurized air (compressed air) is sent to the melting furnace body 14 in the air tank 18 to stir the molten glass G. An agitating air supply device 19 is connected.
[0022]
The stirring air supply device 19 includes an air supply pipe 20 that supplies pressurized air from an air tank 18 outside the vitrification facility 13 to an upper space of the side chamber 15, and a branch from the air supply pipe 20 to the melting chamber 1. An air relief pipe 21 that communicates with the upper space, a first regulating valve 22 disposed in the air supply pipe 20, and a second regulating valve 23 disposed in the air relief pipe 21. A manual safety valve 24 is provided outside the vitrification facility 13 in the air supply pipe 20, and a main valve 25 is provided upstream of the air tank 18.
[0023]
Next, the operation of the above embodiment will be described.
[0024]
The raw glass and the high radioactive waste liquid are supplied from above the melting chamber 1, and the raw glass is melted by Joule heat generated by energization (discharge) between the main electrodes 3 and 3 arranged opposite to each other.
[0025]
Here, the first adjusting valve 22 is closed, and the original valve 25 is opened, whereby the pressurized air is stored in the air tank 18. Thereafter, when the main valve 25 and the second adjustment valve 23 are closed and the first adjustment valve 22 is opened, the pressurized air in the air tank 18 is supplied to the upper space of the side chamber 15 through the air supply pipe 20. .
[0026]
Then, the molten glass G surface of the side chamber 15 is pushed down to a predetermined height L 1 (the position indicated by the broken line) by the pressurized air, whereby the molten glass G in the side chamber 15 passes through the communication path 16 into the melting chamber 1. By moving, a flow S is generated at the position of the melting chamber, and the surface of the molten glass G in the melting chamber 1 rises to the required height L 2 (position of the broken line).
[0027]
Next, when the second regulating valve 23 is opened and the pressurized air in the side chamber 15 is allowed to escape to the upper space of the melting chamber 1, the molten glass G in the melting chamber 1 flows so that part of the molten glass G returns to the side chamber 15, The molten glass G surface of the melting chamber 1 descends. At this time, since the pressurized air in the side chamber 15 is allowed to escape to the melting chamber 1, the contaminated pressurized air can be treated together with the gas in the upper space of the melting chamber 1 without being separately treated. it can.
[0028]
By repeating the above operation, the molten glass G repeatedly moves between the melting chamber 1 and the side chamber 15, and the molten glass G in the melting chamber 1 is effectively stirred by the flow S at this time. Joule heat due to energization of the main electrode 3 is quickly transferred to the entire area of the molten glass G, and thus heat transfer to the calcined layer 12 shown in FIGS. 2 and 3 is also increased. As a result, the processing speed by the melting furnace body 14 is increased. Can be increased to increase the throughput. Further, in the agitating air supply device 19, the molten glass G can be obtained by a simple operation of simply opening and closing the main valve 25, the first adjustment valve 22, and the second adjustment valve 23 outside the vitrification facility 13. Stir effectively.
[0029]
Thus, by stirring the molten glass G, the processing amount by the melting furnace main body 14 can be increased. Therefore, when processing the same processing amount as the conventional one, the structure of the melting furnace main body 14 is compared with the conventional one. Can be significantly reduced in size.
[0030]
【The invention's effect】
As described above, according to the present invention, by sending pressurized air to the upper side of the side chamber and pushing down the molten glass surface in the side chamber, the molten glass is caused to flow in the molten chamber connected to the side chamber. By letting the pressurized air supplied to the upper space escape to the upper space of the melting chamber, the operation of returning the molten glass in the melting chamber to the side chamber is repeated, so that the molten glass repeatedly flows between the melting chamber and the side chamber. Thus, the heat transfer coefficient is increased, so that heat is quickly transmitted to the entire molten glass including the calcined layer, and there is an effect that the processing speed can be increased and the processing amount can be increased.
[0031]
As described above, since the processing amount by the melting furnace body can be increased, there is an effect that the structure of the melting furnace body can be remarkably reduced as compared with the conventional case when processing the same processing amount as before.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view of a glass melting furnace according to an embodiment of the present invention.
FIG. 2 is a longitudinal front view showing an example of a conventional glass melting furnace.
FIG. 3 is a longitudinal side view of FIG. 2;
[Explanation of symbols]
1 Melting chamber (melting space)
13 Vitrification Facility 14 Melting Furnace Body 15 Side Chamber 19 Stirring Air Supply Device 20 Air Supply Pipe 21 Air Relief Pipe 22 First Regulating Valve 23 Second Regulating Valve G Molten Glass S Flow

Claims (1)

高放射能性廃液ガラス固化施設に設置されるガラス溶融炉において、溶融炉本体に、原料ガラスの溶融を行う溶融室と、この溶融室と底部で連通する側室とを設け、さらにガラス固化施設の外部から前記側室の上部空間に加圧空気を送り込む撹拌空気供給装置を設けており、該撹拌空気供給装置が、ガラス固化施設の外部から側室の上部空間に加圧空気を供給する空気供給管と、該空気供給管から分岐して溶融室の上部空間に連通する空気逃がし管と、前記空気供給管に配置した第1調整弁と、前記空気逃がし管に配置した第2調整弁とを備えていることを特徴とするガラス溶融炉。In a glass melting furnace installed in a highly radioactive waste liquid glass solidification facility, a melting chamber for melting raw material glass and a side chamber communicating with the melting chamber at the bottom are provided in the melting furnace main body, and further the glass solidification facility An agitation air supply device that sends pressurized air from the outside to the upper space of the side chamber , and the agitation air supply device includes an air supply pipe that supplies the pressurized air from the outside of the vitrification facility to the upper space of the side chamber; An air relief pipe that branches off from the air supply pipe and communicates with the upper space of the melting chamber, a first adjustment valve that is arranged in the air supply pipe, and a second adjustment valve that is arranged in the air relief pipe. glass melting furnace, characterized in that there.
JP2001028309A 2001-02-05 2001-02-05 Glass melting furnace Expired - Fee Related JP4501285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028309A JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028309A JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Publications (2)

Publication Number Publication Date
JP2002234734A JP2002234734A (en) 2002-08-23
JP4501285B2 true JP4501285B2 (en) 2010-07-14

Family

ID=18892831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028309A Expired - Fee Related JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP4501285B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267797B2 (en) * 2009-01-14 2013-08-21 株式会社Ihi Glass melting furnace
KR101238800B1 (en) * 2011-09-19 2013-03-04 한국수력원자력 주식회사 Induction melter having asymmetric sloped bottom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295443A (en) * 1987-05-27 1988-12-01 Canon Inc Structure of outflow part for fused glass
JPH03223122A (en) * 1990-01-26 1991-10-02 Olympus Optical Co Ltd Method for continuously discharging molten glass at constant rate and apparatus therefor
JPH0556925U (en) * 1992-01-09 1993-07-30 動力炉・核燃料開発事業団 Glass melting furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295443A (en) * 1987-05-27 1988-12-01 Canon Inc Structure of outflow part for fused glass
JPH03223122A (en) * 1990-01-26 1991-10-02 Olympus Optical Co Ltd Method for continuously discharging molten glass at constant rate and apparatus therefor
JPH0556925U (en) * 1992-01-09 1993-07-30 動力炉・核燃料開発事業団 Glass melting furnace

Also Published As

Publication number Publication date
JP2002234734A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
KR100439547B1 (en) Melting/retaining furnace for aluminum ingot
CN109855427B (en) Vacuum smelting furnace with stirring function
EP0967034A1 (en) Dispensing apparatus and method
EP0717119A2 (en) Method of manufacturing copper alloy containing active metal
CZ297606B6 (en) Metallurgical vessel having a tapping apparatus
JPS6116958B2 (en)
JP3848302B2 (en) Glass melting furnace and operating method thereof
JP4501285B2 (en) Glass melting furnace
US6841120B2 (en) Dispensing apparatus and method
JPS6172987A (en) Electric melting furnace and method of inducing mineral meltcomposition for manufacturing wool
JPH0661610B2 (en) Pressurized pouring furnace
JPH01219495A (en) Melting furnace bottom discharge method and its bottom discharge device
EP0795037B1 (en) Equipment for treatment in molten cast iron baths with reaction materials having a low or high production of gas
US20090277226A1 (en) Modular melter
JP2003533355A5 (en)
JPH0556925U (en) Glass melting furnace
TWI480890B (en) Electric-arc furnace for low-radioactive wastes having two-stage slurry-discharge device
JP5455983B2 (en) Method for supplying metallurgically improved molten metal
KR100780992B1 (en) Method and apparatus for delivering molten metal with improved metallurgy
JPH06328221A (en) Metal melting and holding furnace
CN116592367A (en) Typical hazardous waste incineration ash and slag inductance melting treatment system
JP2005082417A (en) Glass melting furnace
JPH1121133A (en) Glass melting furnace
JPH072441U (en) Glass melting furnace
JPH1010293A (en) Melting furnace and method of supplying raw materials to melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees