[go: up one dir, main page]

JP2002234734A - Glass melting furnace - Google Patents

Glass melting furnace

Info

Publication number
JP2002234734A
JP2002234734A JP2001028309A JP2001028309A JP2002234734A JP 2002234734 A JP2002234734 A JP 2002234734A JP 2001028309 A JP2001028309 A JP 2001028309A JP 2001028309 A JP2001028309 A JP 2001028309A JP 2002234734 A JP2002234734 A JP 2002234734A
Authority
JP
Japan
Prior art keywords
melting
chamber
glass
melting furnace
side chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001028309A
Other languages
Japanese (ja)
Other versions
JP4501285B2 (en
Inventor
Akira Ono
昭 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP2001028309A priority Critical patent/JP4501285B2/en
Publication of JP2002234734A publication Critical patent/JP2002234734A/en
Application granted granted Critical
Publication of JP4501285B2 publication Critical patent/JP4501285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

(57)【要約】 【課題】 大型化することなく処理能力を向上させるこ
とが可能なガラス溶融炉を提供する。 【解決手段】 高放射能性廃液ガラス固化施設13に設
置されるガラス溶融炉において、溶融炉本体14に、原
料ガラスの溶融を行う溶融室1と、この溶融室1と底部
で連通する側室15とを設け、さらに外部から側室15
の上部空間に加圧空気を送り込む撹拌空気供給装置19
を設ける。
(57) [Summary] [PROBLEMS] To provide a glass melting furnace capable of improving the processing capacity without increasing the size. SOLUTION: In a glass melting furnace installed in a highly radioactive liquid waste vitrification facility 13, a melting chamber 1 for melting raw material glass and a side chamber 15 communicating with the melting chamber 1 at the bottom at a melting furnace main body 14. And a side chamber 15 from outside.
Air supply device 19 for feeding pressurized air into the upper space of
Is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高放射性廃液ガラ
ス固化施設に設置されるガラス溶融炉に関する。
The present invention relates to a glass melting furnace installed in a highly radioactive liquid waste vitrification facility.

【0002】[0002]

【従来の技術】原子力施設において発生する高放射性廃
液は、高放射性廃液ガラス固化施設のガラス溶融炉によ
り溶融し、ガラス固化体として処理された後、放射性廃
棄物保管施設に保管される。
2. Description of the Related Art Highly radioactive liquid waste generated in nuclear facilities is melted by a glass melting furnace of a highly radioactive liquid waste vitrification facility, treated as vitrified material, and stored in a radioactive waste storage facility.

【0003】上記のガラス固化施設においては、ガラス
溶融炉の内部で原料ガラスを溶融する際に高放射性廃液
を混入し、この高放射性廃液が混入した溶融ガラスを固
化容器に注入し、溶融ガラスを固化させることにより、
ガラス固化体を形成している。
[0003] In the above-mentioned vitrification facility, highly radioactive waste liquid is mixed when raw glass is melted inside a glass melting furnace, and the molten glass mixed with this highly radioactive waste liquid is poured into a solidification vessel, and the molten glass is melted. By solidifying,
A vitrified body is formed.

【0004】図2は従来のガラス溶融炉の一例を示す縦
断正面図、図3は図2の縦断側面図であり、図2、図3
において2は溶融炉本体であり、該溶融炉本体2は、内
部に溶融空間1を形成するように耐蝕性の耐火レンガ2
aにて構成されている。
FIG. 2 is a vertical sectional front view showing an example of a conventional glass melting furnace, and FIG. 3 is a vertical sectional side view of FIG.
2 is a melting furnace main body. The melting furnace main body 2 has a corrosion-resistant refractory brick 2 so as to form a melting space 1 therein.
a.

【0005】溶融炉本体2の上下中間部左右側には、主
電極3が対向して設けられていてその内端が溶融空間1
に突出しており、又溶融空間1下部の狭くなっている炉
底部4には、底部電極5が設けられていてその内端が溶
融空間1に突出している。図2、図3において、6は溶
融炉本体2の上部に設けられて原料ガラス、高放射性廃
液等を供給するための原料供給口、7は廃ガス取出管、
8は廃ガス処理装置、9は補助電極、10は炉底部4に
形成されて溶融されたガラスを取り出すためのガラス取
出口、11はガラス取出口10を加熱するためのヒー
タ、Gは溶融ガラスである。
A main electrode 3 is provided on the left and right sides of the upper and lower middle portions of the melting furnace body 2 so as to face each other.
A bottom electrode 5 is provided on the narrowed furnace bottom 4 below the melting space 1, and an inner end of the bottom electrode 5 projects into the melting space 1. 2 and 3, reference numeral 6 denotes a raw material supply port provided on the upper part of the melting furnace main body 2 to supply raw glass, highly radioactive waste liquid, etc., 7 denotes a waste gas outlet pipe,
8 is a waste gas treatment device, 9 is an auxiliary electrode, 10 is a glass outlet for taking out the molten glass formed on the furnace bottom 4, 11 is a heater for heating the glass outlet 10, and G is molten glass. It is.

【0006】上記ガラス溶融炉では、溶融炉本体2に形
成された溶融空間1(以下溶融室1と称す)に原料ガラ
ス及び高放射性廃液を供給し、対向配置した主電極3,
3間の通電(放電)によるジュール熱によって原料ガラ
スを溶融し、溶融室1底部のガラス取出口10から溶融
ガラスGを取り出すようになっている。
In the above glass melting furnace, the raw glass and the highly radioactive waste liquid are supplied to a melting space 1 (hereinafter referred to as a melting chamber 1) formed in a melting furnace main body 2, and the main electrodes 3, which are disposed opposite to each other.
The raw glass is melted by Joule heat generated by the current flow (discharge) between the three, and the molten glass G is taken out from the glass outlet 10 at the bottom of the melting chamber 1.

【0007】[0007]

【発明が解決しようとする課題】ところで、溶融室1内
におけるガラスは静止した状態にあリ、そのために主電
極3,3による加熱時における熱の伝達率は比較的低い
状態にある。又、溶融室1の上面には、仮焼層12が形
成されており、この仮焼層12は、溶融室1の上部空間
への熱の伝達を抑制してしまい、このために、仮焼層1
2の上部に供給されてくる原料ガラスへの熱の伝達が押
えられて、溶融効率が低下する問題があった。
By the way, the glass in the melting chamber 1 is in a stationary state, so that the heat transfer rate during heating by the main electrodes 3 is relatively low. In addition, a calcined layer 12 is formed on the upper surface of the melting chamber 1, and the calcined layer 12 suppresses the transmission of heat to the upper space of the melting chamber 1. Layer 1
The transmission of heat to the raw material glass supplied to the upper portion of No. 2 is suppressed, and there is a problem that the melting efficiency is reduced.

【0008】このため、従来では、ガラス溶融炉におけ
る処理量、即ち原料ガラスの溶融処理量は、溶融室1の
容積(特に溶融ガラスGの上面の面積)に略比例すると
されている。従って、処理量を増やすためには、ガラス
溶融炉全体を大型化することが考えられる。
For this reason, conventionally, the processing amount in the glass melting furnace, that is, the melting processing amount of the raw glass, is assumed to be substantially proportional to the volume of the melting chamber 1 (particularly, the area of the upper surface of the molten glass G). Therefore, in order to increase the throughput, it is conceivable to enlarge the entire glass melting furnace.

【0009】しかし、ガラス溶融炉が大型化すると、そ
れを構築するための耐食性の耐火レンガ2aの使用量が
増大し、更にガラス溶融炉を納める建屋、及びクレーン
等のハンドリング装置も大型化するために、建設コスト
が大幅に増加するという問題がある。
However, when the size of the glass melting furnace is increased, the amount of the corrosion-resistant refractory bricks 2a used for constructing the furnace is increased, and furthermore, the building for accommodating the glass melting furnace and the handling equipment such as a crane are also increased in size. In addition, there is a problem that construction costs are significantly increased.

【0010】本発明は、設備構成を大型化することなく
処理能力を向上させることが可能なガラス溶融炉を提供
することを目的とする。
An object of the present invention is to provide a glass melting furnace capable of improving the processing capacity without increasing the size of the equipment configuration.

【0011】[0011]

【課題を解決するための手段】本発明は、高放射能性廃
液ガラス固化施設に設置されるガラス溶融炉において、
溶融炉本体に、原料ガラスの溶融を行う溶融室と、この
溶融室と底部で連通する側室とを設け、さらにガラス固
化施設の外部から前記側室の上部空間に加圧空気を送り
込む撹拌空気供給装置を設けたことを特徴とするガラス
溶融炉、に係るものである。
SUMMARY OF THE INVENTION The present invention relates to a glass melting furnace installed in a highly radioactive liquid waste vitrification facility.
A stir-air supply device for providing a melting chamber for melting the raw material glass and a side chamber communicating with the melting chamber at the bottom in the melting furnace body, and further for feeding pressurized air from outside the vitrification facility to an upper space of the side chamber. Provided in the glass melting furnace.

【0012】上記手段において、撹拌空気供給装置が、
ガラス固化施設の外部から側室の上部空間に加圧空気を
供給する空気供給管と、該空気供給管から分岐して溶融
室の上部空間に連通する空気逃がし管と、前記空気供給
管に配置した第1調整弁と、前記空気逃がし管に配置し
た第2調整弁とを備えていてもよい。
In the above means, the stirring air supply device is
An air supply pipe for supplying pressurized air from the outside of the vitrification facility to the upper space of the side chamber, an air release pipe branched from the air supply pipe and communicating with the upper space of the melting chamber, and the air supply pipe. The air conditioner may include a first regulating valve and a second regulating valve disposed in the air release pipe.

【0013】溶融室内において、溶融ガラス表面に形成
される仮焼層を含めて、その下方の溶融ガラス全域を効
率よく加熱することができれば、処理速度を高めて処理
量を増やすことができる。
In the melting chamber, if the entire region of the molten glass underneath, including the calcined layer formed on the surface of the molten glass, can be efficiently heated, the processing speed can be increased and the throughput can be increased.

【0014】本発明ではこのような観点から、溶融室内
の溶融ガラスを攪拌するようにしている。即ち、側室の
上部空間に加圧空気を送って、側室内の溶融ガラス面を
押し下げる。すると、側室の底部は溶融室に繋がってい
るために、側室内の溶融ガラスが連通路を通って溶融室
に流入し、これにより、溶融室内の溶融ガラスに流動が
生じる。
In the present invention, from such a viewpoint, the molten glass in the melting chamber is agitated. That is, pressurized air is sent to the upper space of the side chamber to push down the molten glass surface in the side chamber. Then, since the bottom of the side chamber is connected to the melting chamber, the molten glass in the side chamber flows into the melting chamber through the communication path, whereby the molten glass in the melting chamber flows.

【0015】又、第1調整弁と第2調整弁の開閉を制御
して、空気逃がし管により側室の上部空間に供給された
加圧空気を溶融室の上部空間に逃がすと、溶融室の溶融
ガラスの一部が側室に戻るように流動し、溶融室の溶融
ガラス面は下降する。上記操作を繰返すと、溶融ガラス
が溶融室と側室との間を繰り返し流動することによって
熱伝達係数が高まり、よって仮焼層を含めて溶融ガラス
全域に熱が速やかに伝わり、処理速度が向上する。
Further, by controlling the opening and closing of the first regulating valve and the second regulating valve to release the pressurized air supplied to the upper space of the side chamber by the air release pipe into the upper space of the melting chamber, the melting of the melting chamber is started. A part of the glass flows back to the side chamber, and the molten glass surface of the melting chamber descends. When the above operation is repeated, the heat transfer coefficient is increased by the molten glass repeatedly flowing between the melting chamber and the side chamber, so that heat is quickly transmitted to the entire molten glass including the calcined layer, and the processing speed is improved. .

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に従って説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の実施の形態に係るガラス溶
融炉の縦断正面図である。図中、図2、図3と同一のも
のには同一の符号を付して詳細な説明は省略する。
FIG. 1 is a vertical sectional front view of a glass melting furnace according to an embodiment of the present invention. In the figure, the same components as those in FIGS. 2 and 3 are denoted by the same reference numerals, and detailed description is omitted.

【0018】ガラス固化施設13の内部に、ガラス溶融
炉の溶融炉本体14を備えている。溶融炉本体14は、
原料ガラスの溶融を行う溶融室1と、溶融室1内の溶融
ガラスGを流動(攪拌)させるための側室15とを備え
ている。
A melting furnace main body 14 of a glass melting furnace is provided inside the vitrification facility 13. The melting furnace body 14
A melting chamber 1 for melting the raw material glass and a side chamber 15 for flowing (stirring) the molten glass G in the melting chamber 1 are provided.

【0019】溶融室1の底部近傍の側部と、側室15の
底部とは、連通路16で繋がっている。溶融室1には、
紙面と鉛直の方向に対向する主電極3が設けられてい
て、主電極3,3間での通電(放電)によりジュール熱
で、原料ガラスの溶融を行うようになっている。又側室
15にも、電気ヒータ17を設けて側室15内の溶融ガ
ラスGを加熱し、溶融ガラスGの温度が低下して固まら
ないようにしている。
A side portion near the bottom of the melting chamber 1 and a bottom of the side chamber 15 are connected by a communication path 16. In the melting chamber 1,
A main electrode 3 is provided so as to face the paper surface in a vertical direction, and the raw material glass is melted by Joule heat by energization (discharge) between the main electrodes 3 and 3. An electric heater 17 is also provided in the side chamber 15 to heat the molten glass G in the side chamber 15 so that the temperature of the molten glass G does not drop and harden.

【0020】溶融室1と側室15は連通路16で繋がっ
ているため、通常では両方の溶融ガラス面の高さは等し
くなっている。又溶融室1の底部にはガラス取出口10
が設けられており、該ガラス取出口10を取り囲むよう
に底部電極5が設けられている。
Since the melting chamber 1 and the side chamber 15 are connected by the communication passage 16, the heights of both molten glass surfaces are usually equal. A glass outlet 10 is provided at the bottom of the melting chamber 1.
Is provided, and a bottom electrode 5 is provided so as to surround the glass outlet 10.

【0021】ガラス固化施設13の外方には、空気槽
(アキュムレータ)18が設けてあり、該空気槽18に
は、前記溶融炉本体14に加圧空気(圧縮空気)を送っ
て溶融ガラスGの撹拌を行うようにした撹拌空気供給装
置19が接続されている。
Outside the vitrification facility 13, an air tank (accumulator) 18 is provided. In the air tank 18, pressurized air (compressed air) is sent to the melting furnace main body 14 to melt the molten glass G. A stirring air supply device 19 adapted to perform stirring is connected.

【0022】前記撹拌空気供給装置19は、前記ガラス
固化施設13の外部の空気槽18から側室15の上部空
間に加圧空気を供給する空気供給管20と、該空気供給
管20から分岐して溶融室1の上部空間に連通する空気
逃がし管21と、前記空気供給管20に配置した第1調
整弁22と、前記空気逃がし管21に配置した第2調整
弁23とを備えている。又、空気供給管20におけるガ
ラス固化施設13の外側には、手動安全弁24が設けて
あり、さらに空気槽18の上流側には元弁25が設けて
ある。
The stirring air supply device 19 includes an air supply pipe 20 for supplying pressurized air from an air tank 18 outside the vitrification facility 13 to an upper space of the side chamber 15, and branches from the air supply pipe 20. An air release pipe 21 communicating with the upper space of the melting chamber 1, a first control valve 22 disposed on the air supply pipe 20, and a second control valve 23 disposed on the air release pipe 21 are provided. A manual safety valve 24 is provided outside the vitrification facility 13 in the air supply pipe 20, and a main valve 25 is provided upstream of the air tank 18.

【0023】次に、上記形態例の作動を説明する。Next, the operation of the above embodiment will be described.

【0024】溶融室1の上方から原料ガラス及び高放射
性廃液を供給し、対向配置されている主電極3,3間で
の通電(放電)によるジュール熱により原料ガラスを溶
融する。
The raw material glass and the highly radioactive waste liquid are supplied from above the melting chamber 1 and the raw glass is melted by Joule heat generated by energization (discharge) between the opposed main electrodes 3.

【0025】ここで、第1調整弁22を閉じ、元弁25
を開くことで空気槽18に加圧空気を溜める。その後、
元弁25と第2調整弁23を閉じ、第1調整弁22を開
くと、空気槽18内の加圧空気は、空気供給管20を通
って、側室15の上部空間に供給される。
Here, the first regulating valve 22 is closed, and the main valve 25 is closed.
Is opened, pressurized air is stored in the air tank 18. afterwards,
When the main valve 25 and the second regulating valve 23 are closed and the first regulating valve 22 is opened, the pressurized air in the air tank 18 is supplied to the upper space of the side chamber 15 through the air supply pipe 20.

【0026】すると、側室15の溶融ガラスG面は、加
圧空気によって所定の高さL1(破線の位置)まで押し
下げられ、これにより、側室15の溶融ガラスGが連通
路16を通って溶融室1に移動することにより溶融室位
置に流動Sが生じ、溶融室1内の溶融ガラスG面は所要
高さL2(破線の位置)まで上昇する。
Then, the surface of the molten glass G in the side chamber 15 is pushed down to a predetermined height L 1 (position indicated by a broken line) by the pressurized air, whereby the molten glass G in the side chamber 15 is melted through the communication passage 16. By moving to the chamber 1, a flow S occurs at the position of the melting chamber, and the surface of the molten glass G in the melting chamber 1 rises to a required height L 2 (position indicated by a broken line).

【0027】次に、第2調整弁23を開いて、側室15
内の加圧空気を溶融室1の上部空間に逃がすと、溶融室
1の溶融ガラスGの一部が側室15に戻るように流動
し、溶融室1の溶融ガラスG面は下降する。この時、側
室15内の加圧空気を溶融室1に逃がすようにしている
ので、汚染した加圧空気を別個に処理することなく、溶
融室1の上部空間のガスと一緒に処理することができ
る。
Next, the second regulating valve 23 is opened and the side chamber 15 is opened.
When the pressurized air inside is released into the upper space of the melting chamber 1, a part of the molten glass G in the melting chamber 1 flows so as to return to the side chamber 15, and the molten glass G surface of the melting chamber 1 descends. At this time, since the pressurized air in the side chamber 15 is allowed to escape to the melting chamber 1, the contaminated pressurized air can be processed together with the gas in the upper space of the melting chamber 1 without separately processing. it can.

【0028】上記操作を繰返すことにより、溶融ガラス
Gが溶融室1と側室15との間を繰り返し移動すること
になり、このときの流動Sによって、溶融室1内の溶融
ガラスGが有効に撹拌され、よって主電極3の通電によ
るジュール熱が速やかに溶融ガラスGの全域に伝わり、
よって、図2、図3に示した仮焼層12に対する伝熱も
上昇し、この結果、溶融炉本体14による処理速度が高
められて処理量を増加することができる。又、前記撹拌
空気供給装置19では、ガラス固化施設13の外部にお
いて、元弁25と、第1調整弁22と、第2調整弁23
の開閉を行うのみの簡単な操作によって、溶融ガラスG
を効果的に撹拌できる。
By repeating the above operation, the molten glass G repeatedly moves between the melting chamber 1 and the side chamber 15, and the molten glass G in the melting chamber 1 is effectively stirred by the flow S at this time. As a result, Joule heat generated by energization of the main electrode 3 is quickly transmitted to the entire area of the molten glass G,
Therefore, the heat transfer to the calcined layer 12 shown in FIGS. 2 and 3 also increases, and as a result, the processing speed by the melting furnace main body 14 is increased, and the throughput can be increased. In the stirring air supply device 19, the main valve 25, the first regulating valve 22, and the second regulating valve 23 are provided outside the vitrification facility 13.
The simple operation of opening and closing the molten glass G
Can be effectively stirred.

【0029】このように、溶融ガラスGを撹拌すること
によって、溶融炉本体14による処理量を増加でき、よ
って、従来と同一の処理量を処理する場合には、溶融炉
本体14の構成を従来に比して著しく小型化できること
になる。
As described above, by stirring the molten glass G, the throughput of the melting furnace body 14 can be increased. Therefore, when the same throughput is processed as in the prior art, the structure of the melting furnace body 14 is changed to the conventional one. The size can be significantly reduced as compared with the case of FIG.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、側
室上方に加圧空気を送って側室内の溶融ガラス面を押し
下げることにより、側室と繋がっている溶融室に溶融ガ
ラスの流動を生じさせ、又側室の上部空間に供給された
加圧空気を溶融室の上部空間に逃がすことにより、溶融
室の溶融ガラスを側室に戻すという操作を繰返すことに
より、溶融ガラスが溶融室と側室との間を繰り返し流動
して熱伝達係数が高まり、よって仮焼層を含め溶融ガラ
ス全域に熱が速やかに伝わることになり、処理速度が高
められて処理量を増加することができる効果がある。
As described above, according to the present invention, the flow of the molten glass is generated in the melting chamber connected to the side chamber by sending pressurized air to the upper side of the side chamber to push down the surface of the molten glass in the side chamber. By repeating the operation of returning the molten glass in the melting chamber to the side chamber by releasing the pressurized air supplied to the upper space of the side chamber to the upper space of the melting chamber, the molten glass is moved between the melting chamber and the side chamber. The heat transfer coefficient is increased by flowing repeatedly between the layers, so that heat is quickly transmitted to the entire area of the molten glass including the calcined layer, thereby increasing the processing speed and increasing the throughput.

【0031】このように、溶融炉本体による処理量を増
加できることにより、従来と同一の処理量を処理する場
合には、溶融炉本体の構成を従来に比して著しく小型化
できる効果がある。
As described above, since the amount of processing by the melting furnace body can be increased, when processing the same amount of processing as in the past, there is an effect that the configuration of the melting furnace body can be significantly reduced in size as compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るガラス溶融炉の縦断
正面図である。
FIG. 1 is a vertical sectional front view of a glass melting furnace according to an embodiment of the present invention.

【図2】従来のガラス溶融炉の一例を示す縦断正面図で
ある。
FIG. 2 is a vertical sectional front view showing an example of a conventional glass melting furnace.

【図3】図2の縦断側面図である。FIG. 3 is a vertical sectional side view of FIG. 2;

【符号の説明】[Explanation of symbols]

1 溶融室(溶融空間) 13 ガラス固化施設 14 溶融炉本体 15 側室 19 撹拌空気供給装置 20 空気供給管 21 空気逃がし管 22 第1調整弁 23 第2調整弁 G 溶融ガラス S 流動 DESCRIPTION OF SYMBOLS 1 Melting chamber (melting space) 13 Vitrification facility 14 Melting furnace main body 15 Side chamber 19 Stirred air supply device 20 Air supply pipe 21 Air release pipe 22 First regulating valve 23 Second regulating valve G Molten glass S Flow

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G21F 9/16 541 G21F 9/16 541L 9/30 519 9/30 519K Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G21F 9/16 541 G21F 9/16 541L 9/30 519 9/30 519K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高放射能性廃液ガラス固化施設に設置さ
れるガラス溶融炉において、溶融炉本体に、原料ガラス
の溶融を行う溶融室と、この溶融室と底部で連通する側
室とを設け、さらにガラス固化施設の外部から前記側室
の上部空間に加圧空気を送り込む撹拌空気供給装置を設
けたことを特徴とするガラス溶融炉。
In a glass melting furnace installed in a highly radioactive waste liquid vitrification facility, a melting chamber for melting raw material glass and a side chamber communicating with the melting chamber at a bottom portion are provided in a melting furnace main body. A glass melting furnace further comprising a stirring air supply device for feeding pressurized air from outside the vitrification facility to an upper space of the side chamber.
【請求項2】 撹拌空気供給装置が、ガラス固化施設の
外部から側室の上部空間に加圧空気を供給する空気供給
管と、該空気供給管から分岐して溶融室の上部空間に連
通する空気逃がし管と、前記空気供給管に配置した第1
調整弁と、前記空気逃がし管に配置した第2調整弁とを
備えていることを特徴とする請求項1記載のガラス溶融
炉。
2. An air supply pipe for supplying pressurized air from outside the vitrification facility to the upper space of the side chamber, and air branched from the air supply pipe and communicating with the upper space of the melting chamber. A relief pipe, and a first pipe arranged in the air supply pipe.
The glass melting furnace according to claim 1, further comprising: a regulating valve; and a second regulating valve disposed on the air release pipe.
JP2001028309A 2001-02-05 2001-02-05 Glass melting furnace Expired - Fee Related JP4501285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001028309A JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001028309A JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Publications (2)

Publication Number Publication Date
JP2002234734A true JP2002234734A (en) 2002-08-23
JP4501285B2 JP4501285B2 (en) 2010-07-14

Family

ID=18892831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001028309A Expired - Fee Related JP4501285B2 (en) 2001-02-05 2001-02-05 Glass melting furnace

Country Status (1)

Country Link
JP (1) JP4501285B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163304A (en) * 2009-01-14 2010-07-29 Ihi Corp Glass melting furnace
JP2014505862A (en) * 2011-09-19 2014-03-06 韓国水力原子力株式会社 Induction heating melting furnace with asymmetric inclined bottom

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295443A (en) * 1987-05-27 1988-12-01 Canon Inc Structure of outflow part for fused glass
JPH03223122A (en) * 1990-01-26 1991-10-02 Olympus Optical Co Ltd Method for continuously discharging molten glass at constant rate and apparatus therefor
JPH0556925U (en) * 1992-01-09 1993-07-30 動力炉・核燃料開発事業団 Glass melting furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63295443A (en) * 1987-05-27 1988-12-01 Canon Inc Structure of outflow part for fused glass
JPH03223122A (en) * 1990-01-26 1991-10-02 Olympus Optical Co Ltd Method for continuously discharging molten glass at constant rate and apparatus therefor
JPH0556925U (en) * 1992-01-09 1993-07-30 動力炉・核燃料開発事業団 Glass melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163304A (en) * 2009-01-14 2010-07-29 Ihi Corp Glass melting furnace
JP2014505862A (en) * 2011-09-19 2014-03-06 韓国水力原子力株式会社 Induction heating melting furnace with asymmetric inclined bottom

Also Published As

Publication number Publication date
JP4501285B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
TW434061B (en) Furnace for melting aluminum block and holding the melt
CA2257544A1 (en) Method and system for high-temperature waste treatment
EP0717119A2 (en) Method of manufacturing copper alloy containing active metal
JPS609550A (en) Calcining and holding furnace for casting
CZ297606B6 (en) Metallurgical vessel having a tapping apparatus
GB2515475A (en) Metallurgical apparatus
JP3848302B2 (en) Glass melting furnace and operating method thereof
EP0228583B1 (en) An electric melting furnace for glassifying high-radioactive waste
US5170835A (en) Method and apparatus for manufacturing batteries
JP2002234734A (en) Glass melting furnace
US6841120B2 (en) Dispensing apparatus and method
US6470041B2 (en) Heater assembly and heated trough for molten aluminum
JP2005076972A (en) Melting holding furnace controlling device
EP0176296B1 (en) Melting furnace
US20090277226A1 (en) Modular melter
JPH01219495A (en) Melting furnace bottom discharge method and its bottom discharge device
JPH0661610B2 (en) Pressurized pouring furnace
JP5455983B2 (en) Method for supplying metallurgically improved molten metal
JP2568010Y2 (en) Glass melting furnace
JPH08257708A (en) Method for reusing tundish in hot-state
KR100780992B1 (en) Method and apparatus for delivering molten metal with improved metallurgy
JP3631973B2 (en) Waste melting furnace
CN108027209A (en) Channel-type induction furnace
JP2005082417A (en) Glass melting furnace
JPH1121133A (en) Glass melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees