JP4386543B2 - 表面形状測定装置 - Google Patents
表面形状測定装置 Download PDFInfo
- Publication number
- JP4386543B2 JP4386543B2 JP2000155064A JP2000155064A JP4386543B2 JP 4386543 B2 JP4386543 B2 JP 4386543B2 JP 2000155064 A JP2000155064 A JP 2000155064A JP 2000155064 A JP2000155064 A JP 2000155064A JP 4386543 B2 JP4386543 B2 JP 4386543B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- surface shape
- shape measuring
- measurement object
- parallel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の属する技術分野】
本発明は,測定対象物からの反射光と所定の参照光とを干渉させて得られる干渉縞に基づいて上記測定対象物表面の形状を測定する表面形状測定装置に関するものである。
【0002】
【従来の技術】
平面や球面などの測定対象物の表面形状を測定する場合には,従来から,参照平面からの反射光と測定対象物の表面からの反射光とを干渉させて得られる干渉縞に基づいて上記測定対象物の表面形状を測定する,いわゆる干渉計が広く用いられている。このような干渉計を用いた表面形状測定装置としては,例えば特開平4−221704号公報に記載されているものが知られている。上記公報に記載の表面形状測定装置A0を,図12を用いて簡単に説明する。
上記表面形状測定装置A0では,レーザ光源101から出射された光は対物レンズ102,ピンホール103,全反射ミラー104,105を経てコリメータレンズ106において平行光となり,回折格子107に入射する。この回折格子107において,上記平行光は0次回折光108と1次回折光109とに分けられ,上記0次回折光108は参照光として直接回折格子112に入り,上記1次回折光109は物体光として測定対象物110の表面に照射された後,その反射光が上記回折格子112に入る。これらの光は,上記回折格子112においてまた0次回折光と1次回折光とに分けられる。ここでは,参照光の1次回折光と物体光の0次回折光とが重なり,干渉を起こす。干渉した光は,レンズ113,ピンホール114を通り,観察面115で干渉縞が観察される。
上記観測された干渉縞より,縞の本数を計数し,測定対象物の表面形状が評価できる。しかしながら,1つの干渉縞に基づく測定では,干渉縞1本以下の位相測定が難しく,また段差の凹凸の判定まではできないことから,上記表面形状測定装置A0では,上記測定対象物110をアクチュエータ111によって上下方向に既知量移動させて参照光と物体光との位相差を変化させ,複数の位相差で得られた干渉縞に基づく評価(位相シフト法)を行うことで,測定対象物110の3次元表面形状を高精度で測定することを可能としている。
【0003】
しかしながら,上記表面形状測定装置A0では,位相シフト法を用いるために測定対象物110をアクチュエータ111によって移動させながら複数回の測定を行う必要があるため,測定に時間がかかるという問題点があった。また,測定対象物が大きくなればなるほどそれに応じた大型且つ耐荷重の大きなアクチュエータが必要となり,装置の大型化,コスト高を招くという問題点もあった。
そこで,このような問題点を解決すべく,測定対象物を物理的に移動させることなく位相シフト法を用いた測定が可能な表面形状測定装置が,特開平4−286904号公報に提案されている。上記公報に記載の表面形状測定装置A0′を,図13を用いて簡単に説明する。尚,図13において図12と共通する部分については同符号を用い,詳細な説明は省略する。
上記表面形状測定装置A0′では,レーザ光源101からの光を偏光板121によって直線偏光としている。また,測定対象物110に近接して位相板122が設置されており,測定対象物110に照射される物体光109は回折格子112に入射するまでにこの位相板122を2回通過する。ここで,上記位相板122には,斜めから入射してくる物体光の位相を1/4波長分シフトさせる働きをもたせており,またこの位相板122の進相軸は入射する光に対して45度の角度で設置されている。これにより,上記物体光はこの位相板122を2回通過することによって偏光方向が90度変化し,上記参照光と物体光とはその偏光方向が直交することとなる。従って,回折格子112に入射した上記2つの光は干渉することなくバビネソレイユ補正板123に入射する。上記バビネソレイユ補正板123は,その進相軸及び遅相軸を上記参照光108及び物体光109に一致させており,上記バビネソレイユ補正板123を操作することにより参照光108若しくは物体光109の位相を既知量(例えば0,π/2,π,3π/2の4段階)変化させる。この後,上記参照光108及び物体光109を偏光板124において干渉させ,観察面115で上記位相差を異ならせた複数の干渉縞を得る。上記のような表面形状測定装置A0′により,測定対象物を物理的に移動させることなく位相シフト法を用いた高精度の測定が可能であるとしている。
【0004】
【発明が解決しようとする課題】
上記表面形状測定装置A0′では,測定対象物110に近接させて位相板122を設置し,これによって物体光と参照光の偏光方向を直交させている。従って,測定対象物が大きくなればなるほど大きな位相板が必要となる。しかしながら,位相板は複屈折性をもつ材料を研磨して製作されるため,大きなサイズのものを製作することは困難であり,せいぜい10mm程度が限界である。このように,上記表面形状測定装置A0′では,大サイズの測定対象物(例えば300mmウェーハなど)の測定を行うことは実質的に不可能であった。
本発明は上記事情に鑑みてなされたものであり,その目的とするところは,測定対象物を物理的に移動させることなく,測定対象物表面の3次元形状を高精度に測定することが可能な表面形状測定装置を提供することである。
【0005】
【課題を解決するための手段】
上記目的を達成するために,第1の発明は,所定の投光手段から測定対象物に対して,上記測定対象物と平行に設置された透明平行板を通して光を照射し,上記透明平行板からの反射光と上記測定対象物からの反射光とをそれらの位相差を変化させつつ干渉させることによって観測される複数の干渉縞に基づいて上記測定対象物表面の形状を測定する表面形状測定装置において,上記投光手段から出射された光を,上記測定対象物の入射面に平行な偏光成分と垂直な偏光成分とを共に有する光に変化させる偏光手段と,上記偏光手段を経た光の2つの偏光成分の位相差を変化させる位相差変更手段と,上記透明平行板を含み,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるように構成された光反射透過手段とを具備してなることを特徴とする表面形状測定装置として構成されている。
ここで,上記光反射透過手段としては,上記透明平行板の上面若しくは下面に,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるコーティングを施すことにより実現できる。これにより,参照面(透明平行板)と測定対象物との間の多重反射を防止でき,測定精度を高く維持できる。
また,上記光反射透過手段は,上記偏光手段を経た光を上記透明平行板にブリュースタ角で入射させる入射角設定手段と,上記透明平行板と上記測定対象物との間に設置され,上記測定対象物の入射面に垂直な偏光成分を透過し,平行な偏光成分を透過しない偏光子とで構成することも可能である。
また,上記位相差変更手段は,位相遅れ量の異なる複数の位相板を切り替えることにより,或いは,光軸上に並べられた位相遅れ量の異なる複数の位相板を光軸周りに所定量回転させることにより,上記位相差を変化させるように構成できる。
また,上記位相差変更手段を電気光学素子により構成すれば,機械的な駆動機構などが必要ないため,より高速での測定が可能となる。
【0006】
ここで,上記光反射透過手段を完全なものとすることは難しく,実際には僅かながら反射されるべき偏光成分の一部が透過し,透過されるべき偏光成分の一部が反射してしまう。この場合,上記光反射透過手段において透過してしまった偏光成分,或いは反射してしまった偏光成分は,位相シフト法で求められる物体光と参照光との光路差による位相差の誤差要因となり,測定精度を低下させてしまう。
そこで,上記光反射透過手段において,少なくとも反射されるべき偏光成分の一部が透過するか,或いは少なくとも透過されるべき偏光成分の一部が反射する場合には,上記光反射透過手段を用いて得られた上記複数の干渉縞の画像に所定の補正処理を施すことによって上記光反射透過手段の影響による誤差を除去するように構成すれば,更に測定精度を向上させることが可能となる。
【0007】
ここで,上記所定の補正処理は,例えば,上記複数の干渉縞画像について,それぞれ所定の統計値を算出してそれらの変動分を求め,上記各干渉縞画像から上記変動分を差し引くものとすることが考えられる。またその所定の統計値としては,例えば平均輝度,最高輝度,最低輝度,最頻値輝度等を用いることができる。
或いは,上記透明平行板の面内において,入射光の強度,上記光反射透過手段による反射率及び透過率が一定と見做せる場合には,上記所定の補正処理は,
【数2】
によって得られる画像の最高輝度IKYODO1と最低輝度IKYODO2とを求め,上記各干渉縞画像I(φ)から(IKYODO1−IKYODO2)/2×cos(φ)(但し,φは透明平行板と測定対象物からのそれぞれの反射光の位相差)を差し引くものとしてもよい。
或いは,上記光反射透過手段において,反射されるべき偏光成分が全て反射されると見做せる場合には,上記所定の補正処理は,上記測定対象物からの反射光を受光しない条件の下で上記複数の干渉縞画像に対応する補正用画像をそれぞれ取得し,上記各干渉縞画像からそれぞれに対応する上記補正用画像を差し引くものとしてもよい。
【0008】
【作用】
上記第1の発明によれば,投光手段から出射された光は,偏光手段によって測定対象物の入射面に平行な偏光成分と垂直な偏光成分とを共に有する光にされ,更に位相差変更手段によって例えば位相遅れ量の異なる複数の位相板の入れ替えによってそれら2つの偏光成分の位相差が変更され,上記透明平行板に入射される。ここで,上記透明平行板に施された,例えばS偏光成分を反射しP偏光成分を透過するコーティングにより,一方の偏光成分(例えばS偏光成分)が反射されて参照光となり,他方(例えばP偏光成分)が透過されて測定対象物で反射されて物体光となり,両者の干渉光に基づいて測定対象物の表面形状が測定される。これにより,測定対象物を物理的に移動させることなく,位相シフト法に必要な物体光と参照光との位相差を変更することができる。また,測定対象物と同程度のサイズをもつ位相板は必要ないため,大サイズの測定対象物にも問題なく対応できる。更に,上記透明平行板に施されたS偏光成分を反射しP偏光成分を透過するコーティングにより,透明平行板と測定対象物との間の多重反射を防止でき,測定精度を高く維持できる。
また,上記光反射透過手段において反射されるべき偏光成分の一部が透過し,或いは透過されるべき偏光成分の一部が反射してしまうような場合であっても,上記光反射透過手段を用いて得られた上記複数の干渉縞の画像に上述したような所定の補正処理を施すことによって上記光反射透過手段の影響による誤差を除去するように構成すれば,上記光反射透過手段において透過してしまった偏光成分,或いは反射してしまった偏光成分による誤差要因を除去することができるため,更に測定精度を向上させることが可能となる。
【0009】
【発明の実施の形態】
以下,添付図面を参照して本発明の実施の形態及び実施例につき説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態(第1の発明)に係る表面形状測定装置A1の概略構成図,図2は透明平行板9においてS偏光成分の一部S2が透過し,P偏光成分の一部P1が反射する状態を示す説明図,図3は複数の位相板の回転により位相差を変更する場合の位相板の設置例,図4は図3に示す位相板による位相差変更方法の説明図,図5は位相差変更手段のその他の構成例,図6は位相差変更手段のその他の構成例,図7は位相差変更手段のその他の構成例,図8は本発明の実施例(第2の発明)に係る表面形状測定装置A2の概略構成図,図9は干渉光強度I(x,y)に対するCCDカメラの露光タイミングの設定方法の説明図,図10は図9におけるタイミングt1を変化させたときのCCDカメラの出力P(u,v)の変化状態を示す図,図11は第2の発明の他の実施例に係る表面形状測定装置A3の概略構成図である。
本実施の形態に係る表面形状測定装置A1は,上記第1の発明を具現化した一例であり,図1に示す如く構成されている。
レーザ光源1(投光手段の一例)から出射された単色光は,偏光子2(偏光手段の一例)で入射面(後述する透明平行板9)に平行な偏光成分(P偏光)と垂直な偏光成分(S偏光)の両方をもつ偏光(ここでは,45°の直線偏光とする)とされ,移相子として作用する位相板3(位相差変更手段の一例)に入射する。ここで,S偏光成分とP偏光成分に既知の位相差が与えられた後,レンズ4,ピンホール5,レンズ6を通過して平行光となり,ミラー7,8を介して透明平行板9に入射する。この透明平行板9の上面9aには反射防止膜のコーティングが施され,更に下面9bには,S偏光成分を反射し,P偏光成分を透過するコーティングが施されている(上記のようなコーティングが施された透明平行板9が光反射透過手段の一例である)。このため,上記透明平行板9に入射した光は,下面9bにおいてS偏光成分が反射され,P偏光成分は透過されて測定対象物10(吸着器11により固定されている)の表面に到達し,反射する。即ち,上記下面9bにおいて反射されたS偏光成分が参照光,透過されたP偏光成分が物体光となる。
ここで,透明平行板を用いた従来の斜入射干渉計(例えば,特公昭63−2324号公報)では,参照面と測定対象物との間で多重反射が生じ,測定精度が低下してしまう問題点があったが,本装置A1では,参照面(下面9b)に上記のようなコーティングを施すことにより,このような問題点は解決される。
上記参照光と物体光は,共に偏光板12に入射して干渉し,該干渉光はレンズ13を経て観察面14に到達する。
【0010】
ここで,上記位相板3として1/4波長板を用い,この進相軸とS偏光方向とを合わせると(このとき,P偏光方向は遅相軸に合致する),P偏光成分(物体光)の位相をS偏光成分(参照光)よりπ/2遅らせることができる。位相板は複屈折性をもつ透明物体の厚さで位相の遅れ量を制御できるため,上記1/4波長板のほかに,位相をπ,3π/2遅らせることができる位相板,即ち1/2波長板,3/4波長板を用意しておけば,これらを入れ替えて使用することにより,位相板を使用しないときも含めて,0,π/2,π,3π/2の位相差を実現できる。
上記位相板3の入れ替えによって位相差を0,π/2,π,3π/2としたときのそれぞれの干渉縞の画像(干渉光強度)が得られれば,位相シフト法により,位相φが次式により求められる。
【数3】
上記(1)式により求められる位相φは,座標(x,y)についての物体光と参照光との光路差による位相差を表現しており,測定対象物の表面の凹凸形状を3次元的に示す情報である。即ち,上記位相φより測定対象物表面の平坦度を評価することが可能である。
【0011】
以上説明したように,本実施の形態に係る表面形状測定装置A1によれば,測定対象物を物理的に移動させることなく,複数の位相板の交換のみによって位相シフト法に必要な物体光と参照光との位相差を変更することができる。また,測定対象物と同程度のサイズを持つ位相板などは必要なく,大サイズの測定対象物にも問題なく対応できる。更に,参照面(下面9b)に,S偏光成分を反射しP偏光成分を透過するコーティングが施されているため,参照面と測定対象物との間の多重反射を防止でき,測定精度を高く維持できる。
【0012】
【実施例】
(上記実施の形態の変形例)
上記実施の形態に係る表面形状測定装置A1では,透明平行板9の下面9bに,S偏光成分を反射し,P偏光成分を透過するコーティングが施されている。しかしながら,上記コーティングを完全なものとすることは不可能であり,実際には,僅かながら上記下面9bにおいてS偏光成分の一部が透過し,P偏光成分の一部が反射してしまう。この場合,上記下面9bにおいて透過してしまったS偏光成分,或いは反射してしまったP偏光成分は,位相シフト法で求められる物体光と参照光との光路差による位相差の誤差要因となり,測定精度を低下させてしまう。
そこで,上記透明平行板9のコーティングによる誤差を取り除くことができれば,更に測定精度を向上させることが可能となる。以下,その方法について検討する。
【0013】
透明平行板9の下面9bにおいて,S偏光成分の一部が透過し,P偏光成分の一部が反射する場合(図2参照),観測面での光強度I(x,y)は次のように表される。
【数4】
上記(2)式において,第1項は,干渉縞を形成し,位相シフト法によりψを求めることができる項である。透明平行板9のコーティングが理想的なもの,即ちP1=S2=0であれば,この第1項と定数項であるCのみが残る。また,第2項は,S2≪S1,P1≪P2により無視できる項である。また,第3項は,φの変化,即ち位相シフトの操作では変化せず,Cと同様,定数と見做せる項である。定数項は,上記(1)式の計算においてキャンセルさせるため,測定結果には影響を与えない。また,第4項は,φの変化,即ち位相シフトの操作によって変動し,第1項によって求めようとするψの誤差要因となる項である。
以上のように,上記(2)式において誤差要因となるのは第4項のみであり,上記第4項の値を推定することができれば,その値を上記(2)式から差し引くことによって誤差要因を除去することが可能であることがわかる。
以下,上記(2)式における第4項の値を推定する方法について,3つの具体例を挙げる。
【0014】
(a)
上記(2)式の第4項は,物体面と参照面との光路差から生じる干渉縞とは関係せず,単に観測面全体に輝度変化をもたらせる項である。従って,上記第4項の値は,観測面全体の輝度変化に基づいて推定することが可能である。ここで,観測面全体の輝度変化は,画像の平均輝度,最高輝度,最低輝度,最頻値輝度等の統計値を用いて算出することができるが,ここでは画像の平均輝度を用いた具体例を説明する。
観測される画像に縞が多数存在する場合というのは,上記(2)式において,ψが画面全体で大きく変化していることを意味する。ψが変化するということは,上記(2)式の第1項から第3項までのcosの値が−1から+1まで振動を繰り返すことを意味する。即ち,画像全体で輝度の平均をとると,上記(2)式の第1項から第3項の平均は0に漸近する。ここで,位相シフト量φのときの平均輝度Iave (φ)は,
【数5】
となる。また,位相シフトが0,πのときの平均輝度の差を2で割った値Diffは次のようになる。
【数6】
上記(4)式のように,Diffの値は上記(2)式の第4項のcos(φ)の係数と同一となっている。ここで,cos(φ)の値は既知であるから,上記Diffの値に基づいて上記(2)式の第4項の値を推定することができる。即ち,各位相シフト量φにおける干渉縞画像に基づいて上記Diffの値(平均輝度の変化量)を求め,各干渉縞画像からDiff×cos(φ)の値,即ち上記(2)式における第4項の推定値を差し引いて得られた画像を用いて上記(1)式を計算すれば,透明平行板9のコーティングの不完全さによる誤差要因が除去でき,測定精度を向上させることが可能となる。
【0015】
(b)
上記(a)では,各干渉縞画像の輝度に関する統計値に基づいて上記(2)式における第4項の値を推定したが,入射光の強度と上記透明平行板9の反射率及び透過率が面内で一定と見做せる場合には,次のような方法によっても上記(2)式における第4項の値を推定することが可能である。
まず,次式を定義する。
【数7】
また,説明の簡略化のために上記(2)式を次のように書き直す。
【数8】
ここで,上記(5)式の意味合いを明確にするため,上記透明平行板9のコーティングが理想的なもの,即ちP1=0,S2=0の場合のIkyodo を求めてみる。この場合,B1=B2=B3=0となるため,上記(2a)式はI=Acos(ψ+φ)+Cとなる。これを上記(5)式に代入すると,Ikyodo =Aとなり,ψに無関係に目的の干渉信号の振幅値が求まることがわかる。即ち,上記(5)式は,理想的には目的の干渉信号の振幅値Aを求める式である。ここで,Aは,入射光の強度と上記透明平行板9の反射率及び透過率で決定されるため,入射光の強度と上記透明平行板9の反射率及び透過率が面内で一定であれば,上記(5)式の値は面内で一定となる。
しかしながら,上記透明平行板9のコーティングが理想的なものではない場合,即ちP1≠0,S2≠0の場合のIkyodo を求めてみると,上記(2a)式を上記(5)式に代入することにより次のようになる。尚,S2≪S1,P1≪P2よりB1は無視している。
【数9】
この式より,測定面と参照面のギャップを表す位相ψにより,Ikyodo は画面内で一定とならないことがわかる。ここで,画像Ikyodo の最高輝度,最低輝度,即ち上記(6)式の最大値,最小値は,cos(φ)がそれぞれ1,−1のときであり,A+B3,A−B3となる。従って,画像Ikyodo の最高輝度,最低輝度の差の1/2,即ち{(A+B3)−(A−B3)}/2を求めれば,上記(2a)式の第4項のcos(φ)の係数であるB3の値を求めることができる。ここで,cos(φ)の値は既知であるから,上記B3の値に基づいて上記(2a)式の第4項の値を推定することができる。
即ち,各位相シフト量φにおける干渉縞画像を用いて上記(5)式により画像Ikyodo を求め,その最高輝度,最低輝度の差の1/2により上記B3の値を求め,更に各干渉縞画像からB3×cos(φ)の値,即ち上記(2a)式における第4項の推定値を差し引いて得られた画像を用いて上記(1)式を計算すれば,透明平行板9のコーティングの不完全さによる誤差要因が除去でき,測定精度を向上させることが可能となる。
【0016】
(c)
透明平行板9のコーティングは,S偏光成分の反射率が100%,P偏光の透過率が100%となることが理想である。しかしながら,一般的には,S偏光成分の反射率については99.9%程度を実現することができ,ほぼ理想状態とすることが可能であるものの,P偏光成分の透過率については99.0%程度が限界となるのが現実である。言い換えれば,P偏光成分の透過率については理想状態とすることは不可能であるものの,S偏光成分の反射率についてはほぼ理想状態の100%とすることが可能であると言える。そこで,S偏光成分の反射率を理想状態と見做すことが可能な場合には,次のような方法によっても上記(2)式における第4項の値を推定することが可能である。
S偏光成分の反射率が100%の場合,S2は0となるから,上記(2)式は次のようになる。
【数10】
ここで,上記(7)式においては,第3項(上記(2)式の第4項に該る)が誤差要因となる項である。
ところで,上記(7)式において,仮にP2を0とおくことができれば,第1項と第2項は共に0となり,次のように誤差要因となる第3項と定数項Cのみを残すことができる。
【数11】
ここで,P2は物体面(測定面)における反射光であるから,上記(8)式で表される画像とは,即ち物体面からの反射光を受光しない状態で得られた画像ということになる。
そこで,各位相シフト量において干渉縞画像J(φ)(φ=0,π,π/2,3π/2)を取得した後(若しくは前)に,例えば測定対象物10を取り除いた画像J0(φ)(φ=0,π,π/2,3π/2)(補正用画像に相当)を取得し,I(φ)=J(φ)−J0(φ)により得られた画像I(φ)を用いて上記(1)式を計算すれば,透明平行板9のコーティングの不完全さによる誤差要因が除去でき,測定精度を向上させることが可能となる。
尚,物体面からの反射光を受光しない状態での画像の取得方法は,上記測定対象物10を取り除いて取得する方法に限られるものではない。例えば,透明平行板9を透過した光を吸収したり,観測面以外の方向に反射させる手段を用いることも可能である。
【0017】
(上記実施の形態のその他の変形例)
また,上記実施の形態における上記透明平行板9の下面9bに施したコーティング処理に代えて,例えば上記透明平行板9の下面9bに光をブリュースタ角で入射させるようにしてP偏光成分を透過させ(入射角設定手段),更に上記透明平行板9と測定対象物10との間にP偏光成分を透過してS偏光成分を透過しないように偏光子を挿入するような構成としてもよい。但し,この場合には測定対象物と同程度の大きさの偏光子が必要となるため,大サイズの測定対象物の測定には向かない。
【0018】
また,位相遅れ量の異なる複数の位相板を交換するのではなく,複数の位相板を光軸上に並べ,これらを所定量回転させることによっても同等の効果が得られる。
例えば,図3に示すように,レーザ光源1の出射光を45°方向に偏光させ,その後に1/4波長板(QP),1/2波長板(HP)を挿入する。2つの波長板の進相軸を共に45°方向に向ければ(偏光板で45°方向としてもよい),S偏光成分(Y軸方向)もP偏光成分(X軸方向)も共に位相の遅れはなく,図4(a)に示すように2つの波長板を透過後も偏光方向は変化しない。
次に,1/4波長板(QP)の進相軸をY軸方向に向ければ,P偏光成分はS偏光成分より1/4波長遅れ,図4(b)に示すように光は左回りの円偏光となる。同様にして,図5(c),(d)に示すように両波長板の軸の方向を変えれば,上記実施の形態と同様にS偏光成分とP偏光成分の位相差を4段階に切り換えることが可能となる。
尚,1/4波長板(QP),1/2波長板(HP)に,更に1/8波長板を加えることにより,1/8波長,即ちπ/4ラジアン毎に23 =8段階の位相差を与えることができる。一般的に,位相遅れ量の異なるn個の波長板を用いれば,2n 段階の位相差を与えることが可能である。位相差の分割数を増やせば位相シフト計算の精度は向上するため,必要とする精度によって適当な分割数に設定すればよい。
【0019】
また,上記のような位相板に変えて,バビネソレイユ位相板を用いて位相差を与えてもよい。
また,ポッケルスセルのような電気光学素子を用いてもよい。この場合,位相シフトに機械的な動作を全く必要としないため,より短時間での測定が可能となる。
【0020】
また,位相板等ではなく,図5〜6に示すような機構により位相差を与えてもよい。
図5では,レーザ光源1からの光を円偏光などとし,偏光ビームスプリッタ(以下,PBSという)21に入射させる。PBS21において,P偏光成分は透過して直進し,S偏光成分は反射し,ミラー23で反射されて再びPBS21に戻ってくる。このとき,上記S偏光成分は1/4波長板(進相軸を上記S偏光方向に対して45°に設定する)を2回透過することによってP偏光となっており,今度はPBS21を透過する。そして,ミラー25で反射して再度PBS21に到達するまでに1/4波長板を2回透過して今度はS偏光となり,PBS21で反射される。これにより,PBS21の下流側ではS偏光とP偏光の混合光となる。ここで,上記ミラー26をピエゾ駆動機構などで微小移動させることにより,S偏光成分とP偏光成分との間に任意の位相差を与えることができる。
また,図6では,PBS31でP偏光成分とS偏光成分とに分け,S偏光成分を三角プリズム32で反射させてPBS33に入射させ,元のP偏光成分と混合させている。ここで,上記三角プリズム32をピエゾ駆動機構などで微小移動させることにより,S偏光成分とP偏光成分との間に任意の位相差を与えることができる。
また,図7では,PBS41でP偏光成分とS偏光成分とに分け,S偏光成分をミラー42,45を経てPBS46に入射させる間に,2枚の透明平行板43,44を透過させている。上記透明平行板43,44を矢印のように回転させてS偏光成分の経路長を変化させることにより,S偏光成分とP偏光成分との間に任意の位相差を与えることができる。尚,図7の例では,透明平行板の回転によって光軸がずれないように,2枚の透明平行板を対象に回転させている。
【0021】
また,S偏光成分とP偏光成分との間に位相差を与える位置は,例えば透明平行板9と偏光子12の間などでもよい。
また,位相シフト法については,位相差をπ/2区切りとする4ステップ法に限られるものではない。一般的には3ステップ以上で可能であり,ステップを細かくすればそれだけ精度は向上する。また,精度を犠牲にすれば2ステップでも可能である。
更に,上記透明平行板9の参照面(例えばS偏光成分を反射し,P偏光成分を透過するコーティングを施す面)は,下面9bではなく上面9aでもよい。但し,この場合には透明平行板9の平行度が測定精度に影響を与える(平行板の凹凸が測定対象面の凹凸に含まれる形で評価される)ということに注意が必要である。
【0022】
(第2の発明を具現化した実施例)
図8に示す表面形状測定装置A2は,第2の発明を具現化した一例である。
レーザ光源51から出射された光は,偏光ビームスプリッタ(PBS)52で2分され,S偏光が音響光学変調器54に,P偏光がミラー53を経て音響光学変調器55に,それぞれ入射される。上記音響光学変調器54,55(周波数差設定手段の一例)は,異なる周波数(例えば80.1MHzと80.0MHz)でドライブされており,これによってS偏光とP偏光との間に周波数差F(例えば100KHz)が生じる。
上記音響光学変調器54,55を通過したS偏光とP偏光は,PBS57で合成された後,外部信号により光の遮断/透過の制御が可能な光スイッチ58,ミラー59,60,ビームエキスパンダ61を経て大径の平行光となり,透明平行板62に入射する。この透明平行板62の上面62aには反射防止膜のコーティングが施され,更に下面62bには,S偏光成分を反射し,P偏光成分を透過するコーティングが施されている。このため,上記透明平行板62に入射した光は,下面62bにおいてS偏光成分が反射され,P偏光成分は透過されて測定対象物63の表面に到達し,反射する。即ち,上記下面62bにおいて反射されたS偏光成分が参照光,透過されたP偏光成分が物体光となる。
上記参照光と物体光は,レンズ64を経て偏光板65に入射して干渉し,該干渉光はCCDカメラ66に到達する。上記CCDカメラ66で撮像された画像は,画像メモリ67に取り込まれ,コンピュータ68において上記画像に基づいて測定対象物の表面形状が計算される。
【0023】
ここで,CCDカメラ66のCCD素子上での干渉光強度I(u,v)は,次式で示すように周波数F(ビート周波数)で時間的に変化するビート波となる。
I(u,v)=A+Bcos(2πFt+φ) …(9)
ここで,A及びBは光学系の構造及び測定対象物の反射率に依存する定数,u,vはCCDカメラ66における撮像2次元位置である。またφはCCDカメラ66の撮像位置(u,v)に到達する参照光と物体光の光路差による位相差であり,透明平行板62の下面62aを基準とした測定対象物63の表面の高さ情報を含む。測定対象物63の表面高さzをf(x,y)(x,yは測定対象物の2次元座標)としたとき,φはpを定数として次のように表される。
φ=kf(x,y)+p …(10)
ここで,kは物体光の測定対象物に対する入射角に依存する定数である。従って,上記(9),(10)式より,干渉光強度I(u,v)は次のように表される。
I(u,v)=A+Bcos(2πFt+kf(x,y)+p)
…(11)
上記(11)式より明らかなように,I(u,v)における周波数成分Fの位相を検出することにより,測定対象物63の表面形状f(x,y)を求めることが可能である。
以上のように,本装置A2では,測定光と参照光との間に光周波数差Fを持たせ,上記測定光と参照光の干渉光強度の上記周波数差F成分の位相に基づいて測定対象物表面の形状を測定するため,測定対象物を物理的に移動させることなく測定対象物表面の3次元形状を高精度に測定することが可能である。更に,参照面(下面62b)に,S偏光成分を反射しP偏光成分を透過するコーティングが施されているため,参照面と測定対象物との間の多重反射を防止でき,測定精度を高く維持できる。
【0024】
ところで,CCDカメラは1画面毎の採取によってそれぞれ電荷が蓄積され,一般にその蓄積時間(Ts)は1/30秒程度である。一方,上記ビート周波数の周期(Tb)は1/Fであり,Fを100(MHz)とするとTbは上記Tsに比べて小さい。従って,上記CCDカメラの出力信号では上記ビート波の時間変化成分が平滑化されてしまうため,上記出力信号から干渉光強度I(u,v)の位相を検出することはできない。勿論,CCDカメラの電荷蓄積時間を短くするか,或いは周波数差Fを小さくすることによって上記干渉光強度I(u,v)の位相の検出は可能となる。しかしながら,CCDカメラの電荷蓄積時間を短縮すれば光検出の感度低下という別の問題を生じ,周波数差Fを小さくするためには音響光学変調器の駆動に周波数の確度と精度の高い信号が必要となってコスト高となるため,いずれも現実的な方法ではない。
そこで,本装置A2では次のようにして上記のような問題点を解決している。
まず,CCDカメラ66にて露光される干渉光を,上記光スイッチ58(例えば音響光学変調器を用いることができる)を用いて,図示しない撮像制御手段により次のように制御する。即ち,図9に示すように,干渉光強度I(u,v)の周波数Fに同期し,且つ各同期において時刻t1からΔtの時間のみ光を透過させるように上記光スイッチ58を制御する。これにより,図9に示す干渉光強度I(u,v)の斜線部がCCDカメラ66により受光されるから,上記CCDカメラ66の出力信号P(u,v)は次式のようになる。
【数12】
Δtを一定としたとき,上記(12)式はS,T,Qを定数として次のように表される。
【数13】
ここで,t1は任意に設定可能であり,このt1とP(u,v)との関係は図10に示すようになる。上記S,Tは未知数であるが,t1の変化に対するP(u,v)を測定することにより,P(u,v)の位相を算出できる。P(u,v)の位相は即ち干渉光強度I(u,v)の位相であるから,上記P(u,v)の位相に基づいてコンピュータ68において測定対象物63の表面形状f(x,y)が算出できる。
以上のような方法により,CCDカメラの電荷蓄積時間を短縮したり,或いは周波数差Fを小さくすることなく,一般的なCCDカメラを用いて測定対象物の表面形状の測定が可能である。
【0025】
尚,本装置A2では斜入射干渉法を用いたが,他の光干渉法を用いた装置とすることも可能である。
図11に,マイケルソン型干渉法を用いた表面形状測定装置A3の概略構成を示す。これは,互いに直交し,光周波数の異なる2つのビーム71,72をPBS73で分岐させ,ビーム71を参照ミラー74に,ビーム72を測定対象物75にそれぞれ照射させ,これらの反射光を偏光板76で干渉させてCCDカメラ77で撮像するものである。
尚,CCDカメラによる露光の制御は,上記のような光スイッチを用いたものに限るものではない。例えば,CCDカメラにおける電子シャッターなどによっても実現可能である。
【0026】
【発明の効果】
以上説明したように,第1の発明は,所定の投光手段から測定対象物に対して,上記測定対象物と平行に設置された透明平行板を通して光を照射し,上記透明平行板からの反射光と上記測定対象物からの反射光とをそれらの位相差を変化させつつ干渉させることによって観測される複数の干渉縞に基づいて上記測定対象物表面の形状を測定する表面形状測定装置において,上記投光手段から出射された光を,上記測定対象物の入射面に平行な偏光成分と垂直な偏光成分とを共に有する光に変化させる偏光手段と,上記偏光手段を経た光の2つの偏光成分の位相差を変化させる位相差変更手段と,上記透明平行板を含み,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるように構成された光反射透過手段とを具備してなることを特徴とする表面形状測定装置として構成されているため,測定対象物を物理的に移動させることなく,位相シフト法に必要な物体光と参照光との位相差を変更することができる。また,測定対象物と同程度のサイズをもつ位相板は必要ないため,大サイズの測定対象物にも問題なく対応できる。
ここで,上記光反射透過手段としては,上記透明平行板の上面若しくは下面に,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるコーティングを施すことにより実現できる。これにより,参照面(透明平行板)と測定対象物との間の多重反射を防止でき,測定精度を高く維持できる。
また,上記位相差変更手段を電気光学素子により構成すれば,機械的な駆動機構などが必要ないため,より高速での測定が可能となる。
【0027】
ここで,上記光反射透過手段を完全なものとすることは難しく,実際には僅かながら反射されるべき偏光成分の一部が透過し,透過されるべき偏光成分の一部が反射してしまう。この場合,上記光反射透過手段において透過してしまった偏光成分,或いは反射してしまった偏光成分は,位相シフト法で求められる物体光と参照光との光路差による位相差の誤差要因となり,測定精度を低下させてしまう。
そこで,上記光反射透過手段において,少なくとも反射されるべき偏光成分の一部が透過するか,或いは少なくとも透過されるべき偏光成分の一部が反射する場合には,上記光反射透過手段を用いて得られた上記複数の干渉縞の画像に所定の補正処理を施すことによって上記光反射透過手段の影響による誤差を除去するように構成すれば,更に測定精度を向上させることが可能となる。
【0028】
ここで,上記所定の補正処理は,例えば,上記複数の干渉縞画像について,それぞれ所定の統計値を算出してそれらの変動分を求め,上記各干渉縞画像から上記変動分を差し引くものとすることが考えられる。またその所定の統計値としては,例えば平均輝度,最高輝度,最低輝度,最頻値輝度等を用いることができる。
或いは,上記透明平行板の面内において,入射光の強度,上記光反射透過手段による反射率及び透過率が一定と見做せる場合には,上記所定の補正処理は,
【数14】
によって得られる画像の最高輝度IKYODO1と最低輝度IKYODO2とを求め,上記各干渉縞画像I(φ)から(IKYODO1−IKYODO2)/2×cos(φ)(但し,φは透明平行板と測定対象物からのそれぞれの反射光の位相差)を差し引くものとしてもよい。
或いは,上記光反射透過手段において,反射されるべき偏光成分が全て反射されると見做せる場合には,上記所定の補正処理は,上記測定対象物からの反射光を受光しない条件の下で上記複数の干渉縞画像に対応する補正用画像をそれぞれ取得し,上記各干渉縞画像からそれぞれに対応する上記補正用画像を差し引くものとしてもよい。
【図面の簡単な説明】
【図1】 本発明の実施の形態(第1の発明)に係る表面形状測定装置A1の概略構成図。
【図2】 透明平行板9においてS偏光成分の一部S2が透過し,P偏光成分の一部P1が反射する状態を示す説明図。
【図3】 複数の位相板の回転により位相差を変更する場合の位相板の設置例。
【図4】 図3に示す位相板による位相差変更方法の説明図。
【図5】 位相差変更手段のその他の構成例。
【図6】 位相差変更手段のその他の構成例。
【図7】 位相差変更手段のその他の構成例。
【図8】 本発明の実施例(第2の発明)に係る表面形状測定装置A2の概略構成図。
【図9】 干渉光強度I(x,y)に対するCCDカメラの露光タイミングの設定方法の説明図。
【図10】 図9におけるタイミングt1を変化させたときのCCDカメラの出力P(u,v)の変化状態を示す図。
【図11】 第2の発明の他の実施例に係る表面形状測定装置A3の概略構成図。
【図12】 従来技術に係る表面形状測定装置A0の概略構成図。
【図13】 従来技術に係る表面形状測定装置A0′の概略構成図。
【符号の説明】
1…レーザ光源(投光手段の一例)
2…偏光子(偏光手段の一例)
3…位相板(位相差変更手段の一例)
9…透明平行板
10…測定対象物
12…偏光子
51…レーザ光源(投光手段の一例)
54,55…音響光学変調器(周波数差設定手段の一例)
62…透明平行板
63…測定対象物
65…偏光子
66…CCDカメラ(CCD撮像素子)
Claims (11)
- 所定の投光手段から測定対象物に対して,上記測定対象物と平行に設置された透明平行板を通して光を照射し,上記透明平行板からの反射光と上記測定対象物からの反射光とをそれらの位相差を変化させつつ干渉させることによって観測される複数の干渉縞に基づいて上記測定対象物表面の形状を測定する表面形状測定装置において,
上記投光手段から出射された光を,上記測定対象物の入射面に平行な偏光成分と垂直な偏光成分とを共に有する光に変化させる偏光手段と,
上記偏光手段を経た光の2つの偏光成分の位相差を変化させる位相差変更手段と,
上記透明平行板を含み,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるように構成された光反射透過手段とを具備してなることを特徴とする表面形状測定装置。 - 上記光反射透過手段を構成する上記透明平行板の上面若しくは下面に,上記偏光手段を経た光の一方の偏光成分を反射,他方を透過させるコーティングが施されてなる請求項1記載の表面形状測定装置。
- 上記光反射透過手段が,
上記偏光手段を経た光を上記透明平行板にブリュースタ角で入射させる入射角設定手段と,
上記透明平行板と上記測定対象物との間に設置され,上記測定対象物の入射面に垂直な偏光成分を透過し,平行な偏光成分を透過しない偏光子とで構成されてなる請求項1記載の表面形状測定装置。 - 上記位相差変更手段が,位相遅れ量の異なる複数の位相板を切り替えるように構成されてなる請求項1〜3のいずれかに記載の表面形状測定装置。
- 上記位相差変更手段が,光軸上に並べられた位相遅れ量の異なる複数の位相板を光軸周りに所定量回転させるように構成されてなる請求項1〜3のいずれかに記載の表面形状測定装置。
- 上記位相差変更手段が,電気光学素子により構成されてなる請求項1〜3のいずれかに記載の表面形状測定装置。
- 上記光反射透過手段において,少なくとも反射されるべき偏光成分の一部が透過するか,或いは少なくとも透過されるべき偏光成分の一部が反射する場合に,上記光反射透過手段を用いて得られた上記複数の干渉縞の画像に所定の補正処理を施すことによって上記光反射透過手段の影響による誤差を除去するように構成されてなる請求項1〜6のいずれかに記載の表面形状測定装置。
- 上記所定の補正処理が,上記複数の干渉縞画像について,それぞれ所定の統計値を算出してそれらの変動分を求め,上記各干渉縞画像から上記変動分を差し引くものである請求項7記載の表面形状測定装置。
- 上記所定の統計値が,平均輝度,最高輝度,最低輝度,及び最頻値輝度のいずれかである請求項8記載の表面形状測定装置。
- 上記光反射透過手段において,反射されるべき偏光成分が全て反射されると見做せる場合に,
上記所定の補正処理が,
上記測定対象物からの反射光を受光しない条件の下で上記複数の干渉縞画像に対応する補正用画像をそれぞれ取得し,上記各干渉縞画像からそれぞれに対応する上記補正用画像を差し引くものである請求項7記載の表面形状測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000155064A JP4386543B2 (ja) | 1999-05-26 | 2000-05-25 | 表面形状測定装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-146166 | 1999-05-26 | ||
JP14616699 | 1999-05-26 | ||
JP2000155064A JP4386543B2 (ja) | 1999-05-26 | 2000-05-25 | 表面形状測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001041724A JP2001041724A (ja) | 2001-02-16 |
JP4386543B2 true JP4386543B2 (ja) | 2009-12-16 |
Family
ID=26477061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000155064A Expired - Lifetime JP4386543B2 (ja) | 1999-05-26 | 2000-05-25 | 表面形状測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4386543B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4782958B2 (ja) | 2001-09-21 | 2011-09-28 | 株式会社リコー | 表面形状測定装置及びその方法、プログラム並びに記憶媒体 |
JP3578214B2 (ja) | 2002-12-09 | 2004-10-20 | オムロン株式会社 | 回帰反射型光電センサ |
JP4897572B2 (ja) * | 2006-06-30 | 2012-03-14 | 株式会社ミツトヨ | 斜入射干渉計 |
US7486403B2 (en) | 2006-07-20 | 2009-02-03 | Canon Kabushiki Kaisha | Droplet shape measuring method and apparatus |
-
2000
- 2000-05-25 JP JP2000155064A patent/JP4386543B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001041724A (ja) | 2001-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7564568B2 (en) | Phase shifting interferometry with multiple accumulation | |
Brock et al. | Dynamic interferometry | |
US7777895B2 (en) | Linear-carrier phase-mask interferometer | |
CN102261985B (zh) | 光学系统波像差标定装置及该装置测试误差的标定方法 | |
US7230717B2 (en) | Pixelated phase-mask interferometer | |
JP3517903B2 (ja) | 干渉計 | |
EP1717546B1 (en) | Interferometer and method of calibrating the interferometer | |
US20150002852A1 (en) | Coherence scanning interferometry using phase shifted interferometrty signals | |
JP5349739B2 (ja) | 干渉計及び干渉計の校正方法 | |
EP2541192A1 (en) | Interferometry-based stress analysis | |
CN101776488B (zh) | 利用同步移相干涉方法测量光学相位的方法及实现装置 | |
US6717680B1 (en) | Apparatus and method for phase-shifting interferometry | |
Millerd et al. | Modern approaches in phase measuring metrology | |
CN105300273B (zh) | 条纹对比度可调的动态点衍射干涉仪 | |
WO2014102792A1 (en) | Optical method and system for critical dimensions and thickness characterization | |
CN108957910A (zh) | 使用多相投影仪进行三维成像 | |
CN111947592A (zh) | 一种动态双波长移相干涉测量装置和测量方法 | |
Ibrahim | Fast phase-shifting technique for 3-D surface micro-topography measurement | |
JP4386543B2 (ja) | 表面形状測定装置 | |
JP2002013907A (ja) | 位相シフト干渉縞同時撮像装置における平面形状計測方法 | |
JP3891872B2 (ja) | 微小周期構造評価装置及び微小周期構造評価方法 | |
US20100059657A1 (en) | System and Method Producing Data For Correcting Autofocus Error in An Imaging Optical System | |
US12216051B2 (en) | Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift | |
JP4766989B2 (ja) | 位相シフトデジタルホログラフィ法を用いた歪計測方法および歪計測装置 | |
JP2823707B2 (ja) | 位相シフト斜入射干渉計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070403 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090929 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090929 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4386543 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131009 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |