[go: up one dir, main page]

JP4316161B2 - Power plant construction method - Google Patents

Power plant construction method Download PDF

Info

Publication number
JP4316161B2
JP4316161B2 JP2001200141A JP2001200141A JP4316161B2 JP 4316161 B2 JP4316161 B2 JP 4316161B2 JP 2001200141 A JP2001200141 A JP 2001200141A JP 2001200141 A JP2001200141 A JP 2001200141A JP 4316161 B2 JP4316161 B2 JP 4316161B2
Authority
JP
Japan
Prior art keywords
concrete
building
support member
steel
module structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001200141A
Other languages
Japanese (ja)
Other versions
JP2003013621A (en
Inventor
幸一 渡辺
正孝 村上
慎二 曽利
耕造 湯原
孝行 新名
武宏 阿津地
宏 村上
宣明 三浦
滋也 光井
聡 井上
雄一郎 鈴木
康智 眞喜志
信一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Shimizu Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp, Shimizu Corp filed Critical Toshiba Corp
Priority to JP2001200141A priority Critical patent/JP4316161B2/en
Publication of JP2003013621A publication Critical patent/JP2003013621A/en
Application granted granted Critical
Publication of JP4316161B2 publication Critical patent/JP4316161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Conveying And Assembling Of Building Elements In Situ (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄骨コンクリート構造を含む発電プラントの建屋を建設する工法に係り、特に鉄骨コンクリート構造部位に、鉄骨材および建屋内機器等を一体化したモジュール構造物を適用する発電プラント建設工法の改良に関する。
【0002】
【従来の技術】
従来、原子力発電プラントの建屋、例えば原子炉建屋あるいはタービン建屋については、鉄筋コンクリート構造、または本設もしくは仮設鉄骨を内蔵した鉄骨鉄筋コンクリート構造となっている。このような従来構造の建屋を建設する場合には、例えば本設または仮設の鉄骨を据付けた後に配筋および型枠工事を行ない、または直接配筋および型枠工事を行なった後にコンクリートを打設し、所定のコンクリート強度が得られた後に型枠撤去を行なう等の工程をもって、建屋の床、壁、天井の順序で最下階より順次上階へと建屋工事を進めている。
【0003】
また、建築工事の床、柱、壁等のコンクリート打設が終わり、コンクリートの必要強度が得られた段階で、一旦機電側にエリアが引き渡され、建屋内に設置される配管、機器、支持構造物等のプラントを構成する建屋内機器設備の工事が行なわれる。引き渡されたエリアにおいて、機電側が機器、配管操作架台等の部材またはプレハブ構造物等の先入れ搬入を行なった後は、再びエリアを建築側に天井工事を行なう為に引き渡す。建築側は天井部にデッキ受けビーム、デッキプレート等の設置を行ない天井コンクリートを打設する。そして、コンクリートの必要強度が得られた段階で再び機電側にエリアが引き渡され、機電側は機器、配管、操作架台、支持構造物等の据付を行なう。
【0004】
機電側工事の操作架台や支持構造物等の取付については、床、柱、梁、壁、天井等に予め埋設設置された埋め込み金物を使用して建築部材と接合される。図9は従来工法を例示したものである。この図9に示したように、建屋基礎1等の上に鉄骨柱2が搭載され、鉄骨柱2上に鉄骨梁3が連結されている。鉄骨柱2および鉄骨梁3の周囲に鉄筋4が配設され、コンクリート5が打設されている。このような鉄骨鉄筋コンクリート構造の建屋構造において、内側に複数本の杆状の支持部材6が縦横に配置され、この支持部材6によって配管等の建屋内機器7が支持されている。各支持部材6の端部は、埋込金物8を介してコンクリート5に埋設支持されている。
【0005】
このような構成について、従来では建屋のコンクリート打設が終了し、型枠撤去後の完成した建屋またはエリアにおいて、柱、梁(天井)、床コンクリート等に型枠内面と接し、表面がコンクリート面に現れるように埋設された埋込金物8に支持部材6を接続し、プラント構成用の建屋内機器7を据付けていた。機電側は完成した建屋またはエリアの引渡を受けた後、工事を開始していた。
【0006】
したがって、従来の原子力発電プラント建設工法においては、同一エリアの建設工事を建築工事、機電工事が交互に乗込んで行なっており、このことにより工事期間の冗長化を招いていた。
【0007】
このような従来の工法のもとで、工期短縮方法としては、大型仮設揚重機の採用等により、建築工事において鉄筋のプレハブ化、鉄骨のプレハブ化等、建築部材を大型化し、据付け場所での工事物量の削減によって対応してきた。同様に、機電工事においても配管の長尺化、配管と支持部材とを一体としたプレハブ化等の方法による据付部材の大型化を図り、据付け場所での工事物量の削減により対応してきた。
【0008】
最近の計画プラントにおいては、ますます工期短縮要求が強まり、新たな建設工法の開発が必要となってきた。このような要求を解決し、さらに工期を短縮する方法として、建築部材とプラント構成機器とを一体化するモジュール工法が知られている(特開平10−266602号公報等)。この工法によれば、プラント建屋の建設個所に設置される鉄骨柱、天井梁、建設個所に装備される建屋内機器および建設個所の側壁の壁面材とを一体化して、モジュール構造物として構成し、このモジュール構造物を工場組立てした後に現地に搬送して据付ける工法を採用することによって工期短縮を達成しようとしている。
【0009】
【発明が解決しようとする課題】
しかし、上述した従来のモジュール構造物を利用した工法においては、工期短縮を目指して発電プラントの大型モジュール工法を考えた場合、その大きさに比して壁面材による強度不足が考えられ、また壁面材の鉄板厚さが薄いため壁面で支えられる荷重が小さく、壁面を利用して大荷重の機器設備や支持構造物等を予めモジュール構造物として取り付けることが困難と考えられる。
【0010】
また、予め壁面をモジュール構成要素としているため、用途が制限され、柱配置等の変更に容易に対応することが困難である。
【0011】
さらに、天井部分のみにおいて建屋内機器を支持する構成であるため、配管、ケーブルトレイ、ダクト等の天井部分に設置される限られた範囲の機器設備しか据付けることができず、またモジュール構造物の大型化、多量の機器設備をモジュール構造物に一体化する場合の大重量化への対応が困難であり、大幅な工期短縮を妨げることとなる可能性がある。
【0012】
本発明はこのような事情に鑑みてなされたものであり、モジュール構造物の強度向上が図れるとともに、大型化および多量の機器設備を一体化する場合のモジュール大重量化への対応が容易となり、さらに壁の有無等の各種建屋構造に対応して種々の形態で実施できるうえ、各種上下配置の機器設備を多量にモジュール化できるとともに、建屋への組込みおよびコンクリート打設等の作業性も大幅に改善でき、完成した建屋強度の信頼性向上も図れる発電プラント建設工法を提供することを目的とする。
【0013】
【課題を解決するための手段】
前記の目的を達成するため、請求項1に係る発明では、発電プラントにおける建屋の少なくとも一部に鉄骨柱、鉄骨梁およびデッキプレートを用いた鉄骨コンクリート構造を有する発電プラント建設工法において、前記鉄骨柱と、前記鉄骨梁と、前記デッキプレートを支持するためのデッキ受けビームと、前記建屋内に設置される建屋内機器と、前記建屋内機器を支持する支持部材とを有するモジュール構造物を備え、前記モジュール構造物を前記建屋の基礎もしくは下階床上に搭載した後に、前記モジュール構造物の鉄骨柱の周囲にコンクリートを打設し、前記支持部材と前記鉄骨柱、あるいは前記支持部材と前記鉄骨梁または前記支持部材と他の支持部材と接合部を前記コンクリート内に埋設させ、前記モジュール構造物の支持部材のうち、前記鉄骨コンクリート柱その他の部位のコンクリート内に埋設される端部に、当該コンクリートと空隙なく結合し得るアンカー部材を予め連結しておき、このアンカー部材の全体もしくは一部分を前記コンクリート内に埋設させることを特徴とする発電プラント建設工法を提供する。
【0014】
請求項2に係る発明では、前記アンカー部材を前記支持部材の先端に設け、このアンカー部材の仕口を前記支持部材の側面に合致させるとともに、このアンカー部材の長さを前記コンクリートの外壁面よりも外面側に配置する長さとする請求項1記載の発電プラント建設工法を提供する。
【0015】
請求項3に係る発明では、前記アンカー部材は、鉄筋外のコンクリート内に収納される構成、コンクリート外表面まで突出する構成、またはコンクリート外方まで突出する構成のいずれかの取り付け形態を有する請求項2記載の発電プラント建設工法を提供する。
【0020】
【発明の実施の形態】
以下、本発明に係る発電プラント建設工法の実施形態について、図1〜図8を参照して説明する。まず、図1〜図5により基本構成例を説明する。図1は本実施形態で適用されるモジュール構造物を示す斜視図であり、図2は据付け状態を示す側面図である。図3は建屋の柱および壁部分のコンクリート打設の状態を説明するための断面図であり、図4および図5は建屋内機器の支持部材の連結構造等を示す断面図である。
【0021】
図1および図2に示したモジュール構造物11は、発電プラントにおける建屋、例えばタービン建屋の一部に適用されるものであり、図1および図2においては基本構成例として、平面視で長方形の各隅各部に4本の鉄骨柱12を配置した単層階のモジュール構造を示している(なお、以下の説明では便宜的に、図1を基準として左手前側の面を前面といい、これに対向する右奥側の面を背面といい、右手前側の面を右側面といい、これと対向する左奥側の面を左側面という。図2には前面視の状態が示されている)。
【0022】
これらの図1および図2に示すように、各鉄骨柱12は例えばH型鋼からなっており、これらの各鉄骨柱12は前後面の対向方向にウェブを向け、左右側面の対向方向にフランジを向けている。各鉄骨柱12の頂部間には例えばI型鋼からなる鉄骨梁13が溶接によりそれぞれ連結され、これらの鉄骨梁13によってモジュール構造物11が各側面視において門型とされている。
【0023】
左右側面に配置された鉄骨梁13(13c,13d)の内側面には、それぞれ平行にI型鋼からなる左右のデッキ受けビーム14が配置され、これら左右の各デッキ受けビーム14の端部がそれぞれ前後配置の鉄骨梁13(13a,13b)に溶接によって接合されている。また、左右のデッキ受けビーム14間には、これらと直交する複数の交差型デッキ受けビーム15が前後方向に間隔的に溶接によって連結されている。そして、これらの各デッキ受けビーム15の上面が平坦面に配置され、これらの上にデッキプレート16が配置されている。なお、モジュール構造物11は工場またはプラント建屋近傍の搬入用揚重機吊り込み能力範囲内等において組立てられるが、その際には図示しない定盤または仮設基礎上に鉄骨柱12および鉄骨梁13等に対し、プラント構成機器の吊り込み作業に支障の無い範囲においてデッキ受けビーム14,15が組立てられ、基本的な建屋部材を構成する。デッキプレート16は通常、工場製作時等およびモジュール構造物11の搬送段階等においては未設置であり、モジュール構造物11を所定の据付位置に定置した後に設置される。
【0024】
そして、本実施形態のモジュール構造物11は、鉄骨柱12、鉄骨梁13およびデッキ受けビーム14,15以外に、鉄骨柱12、鉄骨梁13およびデッキ受けビーム14,15の少なくともいずれかに連結されてこれらを補強し、かつプラント構成用建屋内機器の荷重を支持する複数の支持部材17,18,19,20,21,22を有している。すなわち、モジュール構造物11の各鉄骨柱12間に、各鉄骨梁13の一定距離下方位置にI型鋼からなる比較的大型の枠型の支持部材(第1支持部材)17が図1において前後、左右の位置で各鉄骨梁13と平行に配置され、各端部が鉄骨柱12にそれぞれ溶接により接合されている。
【0025】
これらの第1支持部材17は、その上方に配置する鉄骨梁13に所要本数の垂直な細いボックス断面形状の縦長な支持部材(第2支持部材)18を、それぞれ溶接によって連結している。また、例えば左右の第2支持部材18同士の間には水平な細いボックス断面形状の支持部材(第3支持部材)19が溶接により連結されている。
【0026】
なお、この第3支持部材19の端部と第1支持部材17とは、据付け後に打設される壁コンクリート等に埋設される部分となっている。そこで、この第3支持部材19の端部には、鉄骨コンクリート柱その他の部位のコンクリート内に埋設される端部に、当該コンクリートと空隙なく結合し得るI型鋼等からなるアンカー部材23が連結されている。このアンカー部材23については、後に図4および図5を参照して詳細に説明する。
【0027】
さらに、モジュール構造物11の前面中央位置に配置された縦長な第2支持部材18とその左方で対向する鉄骨柱12との間には水平な支持部材(第4支持部材)20が溶接により接合され、この第4支持部材20の中間部にはその上方に配置された鉄骨梁13との間に縦長な支持部材(第5支持部材)21が溶接により接合されている。また、モジュール構造物11の内部略中央に配置されている水平な第3支持部材19にはその上方に配置されたデッキ受けビーム15との間に縦長な支持部材(第6支持部材)22が溶接により接合され、この第6支持部材22には図示しないが例えばモジュール構造部物11の前面の第4支持部材20と同一高さで平行な支持部材が設けられている。
【0028】
このような支持部材17〜22により、モジュール構造物11が補強されて各方向の荷重に対して剛性向上が図られる。また、水平な第1支持部材17、第2支持部材18、第4支持部材19等には、プラント構成用の建屋内機器24、例えば各種配管24a、ケーブルトレイ24b等が支持されている。これにより、鉄骨柱12と、鉄骨梁13と、デッキプレート16を支持するためのデッキ受けビーム14,15と、鉄骨柱12や鉄骨梁13およびデッキ受けビーム14,15等の少なくともいずれかに連結されてこれらを補強し、かつ各種配管24a、ケーブルトレイ24b等の建屋内機器24の荷重を支持する支持部材17〜22と、これらの支持部材17〜22に支持された建屋内機器とを予め一体化したモジュール構造物11が構成されている。
【0029】
なお、モジュール構造物11の強度要求上または建屋内機器24の配置設計上の要求により、鉄骨梁13と第1支持部材17とを接続する第2支持部材18を設けた建屋構造として構成することにより、建屋内への搬入を考慮することなく建屋内機器の構造設計を行うことができるため、建屋内機器24の構造設計を容易にすることができるとともに、モジュール構造物11の全体の強度を高めることが可能となり、モジュール構造物の吊込み時の変形を防止する補強機能が得られる。
【0030】
なお、建屋内機器24の据付作業の大半が終了した後には、建屋内機器24の吊込み作業のために取付けていなかった残りのデッキ受けビーム14,15の取付等を行ない、さらにデッキ受けビーム14,15と支持部材等とを接続することにより、モジュール構造物11としての建屋内機器24の据付作業が完了する。そして、建屋内機器24の据付作業が完了した後、デッキプレート16を取り付け、モジュール構造物11が完成する。
【0031】
デッキプレート16または建屋内機器24の一部は、モジュール構造物11の重量を軽減し、揚重機能力範囲内に収めるためにモジュール構造物11より削減することも可能である。また、揚重機能力に余裕がある場合には、後述する補強鉄筋や図示しないコンクリート型枠等を鉄骨柱12または鉄骨梁13に取付けることも可能である。このようにして完成したモジュール構造物11は、仮設揚重機にてプラント建屋の建設個所に吊り込み、据付を行なう。
【0032】
図3および図4は、モジュール構造物11を建屋の基礎もしくは下階床25上に搭載後、モジュール構造物11の鉄骨柱12の周囲に鉄筋26を配置するとともに、コンクリート27を打設して、鉄骨鉄筋コンクリート柱28と、柱間に鉄筋を配置し、コンクリート27を打設して鉄筋コンクリート壁29を形成した状態を示す図である。
【0033】
ここで、図3は、前述した第3支持部材19にアンカー部材23を設けない場合の鉄筋コンクリート壁29を示している。この図3に示すように、第3支持部材19の鉄骨材料にボックス型鋼管等の中空管を適用して直接、I型鋼からなる第1支持部材に接合した場合には、コンクリート壁29に埋設される第3支持部材19の内部にコンクリートが入らないため空洞部30が生じ、コンクリート壁29の必要強度が得られなくなる可能性がある。
【0034】
これに対し、図4は例えばI型鋼等からなるアンカー部材23をボックス状断面の第3支持部材19の先端に設け、このアンカー部材23の仕口を第1支持部材17の側面に合致させるとともに、このアンカー部材23の長さをコンクリート29の外壁面よりも外面側に配置する長さとしたものである。このような構成とした場合には、コンクリート29と空隙なく結合し得るアンカー部材23を予め連結したことにより、第3支持部材19と第1支持部材17との接合部に空洞部が生じることを防止でき、コンクリート29の必要強度が得ることができるようになる。なお、アンカー部材23としては、I型鋼に限らず、H型鋼、U型鋼またはコンクリートの空洞部が生じないように形成したアンカー部材であればよい。
【0035】
図5(a),(b),(c)は、アンカー部材23の異なる取付形態を示す模式図である。コンクリート29の強度計算の範囲は一般的に、鉄筋26の内側寸法で規定されるため、アンカー部材23が図5(a)に示すように、鉄筋26外のふかしコンクリート29a内に収納される構成、あるいは図5(b)に示すように、ふかしコンクリート29a外表面まで突出する構成、さらに図5(c)に示すように、ふかしコンクリート29a外方まで突出する構成のいずれか取り付け形態を有する構造を採用することができる。これらの構成の採用により、空洞部によるコンクリートの強度の低下を防止することが可能である。
【0036】
次に、図6〜図8によって応用例について説明する。
【0037】
まず、図6は応用例として、図1に示した基本構成を上下方向には2層階として高階化するとともに、横方向には、図1に示した基本構成を3倍して3室連続した形状のモジュール構造としたものである。なお、この図6に示したモジュール構造物も、発電プラントにおける建屋、例えばタービン建屋の一部に適用されるものであり、図1の機能を拡大したものであるから、図6の図1に対応する同一部位に、図1と同一の符号を付して構成説明を省略する。この図6に示した構成によれば、大型建屋構成への適用において優れた効果が奏される。
【0038】
次に、図7および図8によって荷重分担の方法について説明する。本実施形態では、モジュール構造物11が複数の階層を有するものとして形成しておき、その各階層において建屋内機器24の荷重または打設コンクリート29の荷重を分散して負担させるものである。そして、この場合、複数の階層において荷重を分散して負担する支持手段として、各階層の鉄骨梁、デッキ受けビームもしくは支持部材を上下いずれかの方向から支持する押上部材または吊下部材を適用するものである。
【0039】
すなわち、図7(a)および図7(b)は、3層構造を有するモジュール構造物の建屋内機器24の荷重を分散させる概念図である。図7(a)に示した構成は、各階層の建屋内機器24,24,24の各荷重31,31,31を各階層の天井部分の鉄骨梁13またはデッキ受けビーム15,15,15に受け持たせる構成としたものである。この場合には、上向き矢印31で示すように、吊下部材を適用した構成となり、特定の階層への荷重の集中を防止することが可能である。
【0040】
また、図7(b)は、モジュール構造物11をプラント建屋の建設個所に据付けた後でなされるコンクリート29の打設時の荷重に対し、鉄骨梁13またはデッキ受けビーム15が耐えられない場合を想定したものである。この場合には、建屋内機器24の荷重31を鉄骨梁またはデッキ受けビーム15に受け持たせることにより、上向き矢印31で示すように、吊下部材を適用した構成となり、特定の階層への荷重の集中を防止することが可能である。
【0041】
さらに、図8は、図7(a),(b)における荷重分散によっても特定の階層への荷重の集中が避けられない場合に、上向きの太線矢印で示した如く、押上部材32を適用する構成として、建屋内機器24の荷重を分散させる概念図である。例えば鉄骨梁13またはデッキ受けビーム15に対して建屋内機器24の荷重31とコンクリート11の打設荷重とが加わる場合、押上部材32等を設置することにより鉄骨梁13またはデッキ受けビーム15に対する荷重を各階層のデッキ受けビーム15あるいは図示しない建屋マット等への荷重の分散を行なうことが可能である。
【0042】
以上のように、本実施形態は、プラント建屋の建設個所に設置される鉄骨柱12と鉄骨柱12に接合されて床面を構成する鉄骨梁13と鉄骨柱12の相互間を任意の高さで接合する支持部材17〜22と鉄骨梁13に接続されるデッキ受けビーム14,15とからなる建屋を構成する建屋部材と建設個所に設置される配管、機器、支持構造物等プラントを構成する建屋内機器24とを一体としたモジュール構造物11を構成し、建屋マット部25またはモジュール構造物11の下層建屋が完成した後にモジュール構造物11を建設個所に吊り込み、建屋マット部25またはモジュール構造物11の下層建屋と接合し、しかる後に鉄筋工事、コンクリート型枠工事、コンクリート打設工事を行うものである。また、支持部材17〜22相互、または鉄骨柱12または鉄骨梁13に接合された支持部材17〜22をモジュール構造物11の補強部材とするものである。このような方法によれば、モジュール構造物11の支持構造物17〜22が変形防止の補強材として活用でき、このモジュール構造物の大型化および大重量化が可能となり、モジュール構造物の搬入回数が削減され工期短縮上有利となる。
【0043】
また、鉄骨柱12または鉄骨梁13に接合された支持部材17〜22の接合部分の全部または一部がモジュール構造物11を建設個所に吊り込んだ後に打設されるコンクリート29内に埋設されるようにしたものである。また、鉄骨柱12または鉄骨梁13に接合されたアンカー部材23を介して支持部材の接合を行ない、アンカー部材23の全部または一部がモジュール構造物11を建設個所に吊り込んだ後に打設されるコンクリート29内に埋設されるようにするものである。このような方法によれば、モジュール構造物11の設計において支持構造物17〜22の取付位置の制約が大幅に解消され、適切な位置に支持構造物を配置したモジュール構造物の強度を大きくすることができるため、モジュール構造物11の大型化、大重量化が可能となり、工期短縮上有利となる。また、コンクリート建屋に予め埋設される埋込金物の設置数量を削減することができ、工事上有利となる。
【0044】
また、本実施形態では、モジュール構造物11を構成する鉄骨柱12、鉄骨梁13にコンクリート補強鉄筋26、またはコンクリート補強鉄筋26と型枠とを取付ける。このような方法によれば、モジュール構造物11搬入後の鉄筋、型枠作業期間が不要となり、工期短縮上有利となる。
【0045】
さらに本実施形態は、モジュール構造物11が複数階層を有することによりモジュール構造物の大型化、大重量化が可能となり、工期短縮上有利となる。さらにプラントを構成する建屋内機器24の荷重を複数の階層に分散して負担させることにより、モジュール構造物に予め設置する建屋内機器設備を多くすることができ、工期短縮上有利となる。さらに、モジュール構造物11が複数階層を有し、プラントを構成する建屋内機器24の荷重を押上または吊下部材によって複数の階層に分散して負担させることにより、建屋部材寸法の増大を防止し、工事上有利となる。
【0046】
【発明の効果】
以上のように、本発明によれば、モジュール構造物の強度向上が図れるとともに、大型化および多量の機器設備を一体化する場合のモジュール大重量化への対応が容易となり、発電プラントの建設工期短縮を図ることができる発電プラント建設工法を提供することができる。
【図面の簡単な説明】
【図1】前記実施形態による図1に対応する前面からの側面図。
【図2】前記実施形態による建築部材と支持構造物の接合構造例を示す断面図。
【図3】前記実施形態による建築部材と支持構造物の接合構造例を示す断面図。
【図4】前記実施形態によるアンカー部材を用いた建築部材と支持構造物の接合構造例を示す断面図。
【図5】(a),(b),(c)はそれぞれ前記実施形態によるアンカー部材の接合構造例を示す断面図。
【図6】本発明による多層構造を有するモジュール構造物の応用例を示す斜視図。
【図7】(a),(b)は多層構造を有するモジュール構造物の機器設備の荷重を分散させる場合の説明図。
【図8】本発明による多層構造を有するモジュール構造物の機器設備の荷重を分散させる場合の説明図。
【図9】従来工法による埋め込み金物と支持構造物との接合構造例を示す断面図。
【符号の説明】
11 モジュール構造物
12 鉄骨柱
13,13a,13b,13c,13d 鉄骨梁
14,15 デッキ受けビーム
16 デッキプレート
17 第1支持部材
18 第2支持部材
19 第3支持部材
20 第4支持部材
21 第5支持部材
22 第6支持部材
23 アンカー部材
24 建屋内機器
24a 配管
24b ケーブルトレイ
25 下階床
26 鉄筋
27 コンクリート
28 鉄骨鉄筋コンクリート柱
29 鉄筋コンクリート壁
30 空洞部
31 荷重
32 押上部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a power plant building including a steel concrete structure, and in particular, an improvement of a power plant construction method in which a module structure in which steel frame materials and indoor equipment are integrated is applied to a steel concrete structure part. About.
[0002]
[Prior art]
Conventionally, a building of a nuclear power plant, for example, a reactor building or a turbine building has a reinforced concrete structure or a steel reinforced concrete structure with a built-in or temporary steel frame. When building a building with such a conventional structure, for example, after installing a permanent or temporary steel frame, perform reinforcement and formwork, or place concrete after direct reinforcement and formwork. Then, building work is proceeding from the lowest floor to the upper floor in the order of the floor, wall, and ceiling of the building in a process such as removing the formwork after the predetermined concrete strength is obtained.
[0003]
In addition, once the concrete has been placed on the floors, pillars, walls, etc. of the construction work, once the required concrete strength has been obtained, the area is once handed over to the machine electrical side, and the piping, equipment, and support structure installed in the building Construction of equipment in the building that constitutes a plant for things, etc. will be carried out. In the handed over area, after the mechanical and electrical side performs first-in carry-in of components such as equipment, piping operation racks or prefabricated structures, the area is handed over again to the building side for ceiling work. The construction side installs a deck receiving beam and deck plate on the ceiling and places ceiling concrete. Then, when the required strength of concrete is obtained, the area is handed over again to the machine electric side, and the machine electric side performs installation of equipment, piping, operation stand, support structure and the like.
[0004]
For the installation of the operation stand and the support structure for the mechanical / electric work, the building is joined to the building member by using the embedded hardware previously embedded in the floor, pillar, beam, wall, ceiling, or the like. FIG. 9 illustrates a conventional construction method. As shown in FIG. 9, the steel column 2 is mounted on the building foundation 1 or the like, and the steel beam 3 is connected to the steel column 2. Reinforcing bars 4 are disposed around the steel column 2 and the steel beam 3, and concrete 5 is placed therein. In such a steel-framed reinforced concrete building structure, a plurality of bowl-shaped support members 6 are arranged inside and outside, and the building members 7 such as pipes are supported by the support members 6. The end portions of the support members 6 are embedded and supported in the concrete 5 via the embedded metal 8.
[0005]
For such a configuration, conventionally, the concrete placement of the building has been completed, and in the completed building or area after the formwork removal, the inner surface of the formwork is in contact with the pillar, beams (ceiling), floor concrete, etc., and the surface is the concrete surface The supporting member 6 was connected to the embedded metal fixture 8 so as to appear in Fig. 1, and the building equipment 7 for plant configuration was installed. The machine electric side started construction after receiving the completed building or area delivery.
[0006]
Therefore, in the conventional nuclear power plant construction method, the construction work in the same area is carried out alternately by the construction work and the mechanical work, which leads to the construction period becoming redundant.
[0007]
Under these conventional methods, the construction period can be shortened by adopting a large-scale temporary lifting machine, etc. to increase the size of building components such as prefabricated reinforcing bars and prefabricated steel frames in construction work. This has been dealt with by reducing the amount of construction work. Similarly, in electromechanical construction, the installation members have been increased in size by increasing the length of the piping and prefabricating the piping and the support member as one body, thereby reducing the amount of construction work at the installation location.
[0008]
In recent planning plants, the demand for shortening the construction period has been increasing, and the development of new construction methods has become necessary. As a method for solving such a requirement and further shortening the construction period, a module method for integrating a building member and a plant component device is known (Japanese Patent Laid-Open No. 10-266602). According to this method, steel pillars, ceiling beams installed in the construction site of the plant building, indoor equipment installed in the construction site, and wall materials on the side walls of the construction site are integrated into a modular structure. The construction time is shortened by adopting a method of transporting and installing this module structure to the site after assembly at the factory.
[0009]
[Problems to be solved by the invention]
However, in the construction method using the conventional module structure described above, when considering a large-scale module construction method for a power plant with the aim of shortening the construction period, there is a lack of strength due to the wall material compared to the size, and the wall surface Since the steel plate thickness of the material is thin, the load supported by the wall surface is small, and it is considered difficult to attach a heavy load equipment or support structure as a module structure in advance using the wall surface.
[0010]
Moreover, since the wall surface is used as a module component in advance, the application is limited, and it is difficult to easily cope with changes in column arrangement and the like.
[0011]
Furthermore, because it is a configuration that supports equipment in the building only in the ceiling, only a limited range of equipment installed on the ceiling, such as pipes, cable trays, and ducts, can be installed. It is difficult to cope with the increase in the size and the large weight when a large amount of equipment is integrated into the module structure, which may hinder a significant shortening of the construction period.
[0012]
The present invention has been made in view of such circumstances, it is possible to improve the strength of the module structure, and it becomes easy to cope with the increase in size and weight of the module when integrating a large amount of equipment, In addition, it can be implemented in various forms corresponding to various building structures such as the presence or absence of walls, etc. In addition to being able to modularize a large amount of equipment in various vertical arrangements, it also greatly improves workability such as incorporation into buildings and concrete placement. The purpose is to provide a power plant construction method that can be improved and can improve the reliability of the completed building strength.
[0013]
[Means for Solving the Problems]
To achieve the above object, in the invention according to claim 1, in the power plant construction method having a steel concrete structure using a steel column, a steel beam and a deck plate in at least a part of the building in the power plant, the steel column A module structure having the steel beam, a deck receiving beam for supporting the deck plate, a building device installed in the building, and a support member for supporting the building device, After the module structure is mounted on the foundation or lower floor of the building, concrete is placed around the steel column of the module structure, and the support member and the steel column, or the support member and the steel beam or wherein the joint between the support member and the other support member is embedded in said concrete, the support member of the module structure Among them, an anchor member that can be connected to the concrete without gap is connected in advance to the end portion embedded in the concrete of the steel concrete column or other part, and the whole or a part of the anchor member is embedded in the concrete. A power plant construction method is provided.
[0014]
In the invention which concerns on Claim 2, the said anchor member is provided in the front-end | tip of the said support member, While making the joint of this anchor member match the side surface of the said support member, the length of this anchor member is made from the outer wall surface of the said concrete. The power plant construction method according to claim 1, wherein the power plant is constructed to have a length arranged on the outer surface side .
[0015]
In the invention which concerns on Claim 3, the said anchor member has the attachment form in any one of the structure accommodated in the concrete outside a reinforcing bar, the structure which protrudes to the concrete outer surface, or the structure which protrudes to the concrete outer side. A power plant construction method described in 2 is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a power plant construction method according to the present invention will be described with reference to FIGS. First, a basic configuration example will be described with reference to FIGS. FIG. 1 is a perspective view showing a module structure applied in this embodiment, and FIG. 2 is a side view showing an installed state. FIG. 3 is a cross-sectional view for explaining the concrete placement state of the pillars and wall portions of the building, and FIGS. 4 and 5 are cross-sectional views showing the connecting structure of the support members of the building equipment.
[0021]
The module structure 11 shown in FIG. 1 and FIG. 2 is applied to a part of a building in a power plant, for example, a turbine building. In FIG. 1 and FIG. A module structure of a single-layer floor in which four steel pillars 12 are arranged at each corner is shown (in the following description, for convenience, the surface on the left front side is referred to as the front surface with reference to FIG. The opposite right back side surface is called the back side, the right front side surface is called the right side surface, and the left back side surface facing this is called the left side surface, as shown in FIG. .
[0022]
As shown in FIGS. 1 and 2, each steel column 12 is made of, for example, H-shaped steel. Each steel column 12 has a web facing in the opposing direction of the front and rear surfaces and a flange in the opposing direction of the left and right side surfaces. It is aimed. A steel beam 13 made of, for example, I-type steel is connected between the tops of the steel columns 12 by welding, and the module structure 11 is formed in a gate shape in each side view by these steel beams 13.
[0023]
The left and right deck receiving beams 14 made of I-shaped steel are arranged in parallel on the inner surface of the steel beam 13 (13c, 13d) disposed on the left and right side surfaces, and the end portions of the left and right deck receiving beams 14 are respectively It is joined to the steel beam 13 (13a, 13b) arranged in the front-rear direction by welding. Further, between the left and right deck receiving beams 14, a plurality of intersecting deck receiving beams 15 orthogonal to these are connected by welding in the front-rear direction at intervals. And the upper surface of each deck receiving beam 15 is arrange | positioned at a flat surface, and the deck plate 16 is arrange | positioned on these. The module structure 11 is assembled within the range of the lifting capacity of the lifting equipment in the vicinity of the factory or the plant building. In this case, the steel column 12 and the steel beam 13 are mounted on the surface plate or temporary foundation (not shown). On the other hand, the deck receiving beams 14 and 15 are assembled within a range where there is no hindrance to the suspension work of the plant component equipment, and constitute a basic building member. The deck plate 16 is usually not installed at the time of factory production or the like, at the stage of transporting the module structure 11, and the like, and is installed after the module structure 11 is placed at a predetermined installation position.
[0024]
The module structure 11 according to the present embodiment is connected to at least one of the steel column 12, the steel beam 13, and the deck receiving beams 14, 15 in addition to the steel column 12, the steel beam 13, and the deck receiving beams 14, 15. And a plurality of support members 17, 18, 19, 20, 21, and 22 that support the load of the plant building equipment. That is, between each steel column 12 of the module structure 11, a relatively large frame-shaped support member (first support member) 17 made of I-type steel is located at a certain distance below each steel beam 13 in FIG. It arrange | positions in parallel with each steel beam 13 in the left-right position, and each edge part is joined to the steel column 12 by welding, respectively.
[0025]
These first support members 17 are connected to a steel beam 13 disposed thereabove a required number of vertical support members (second support members) 18 each having a vertical thin box cross-sectional shape by welding. For example, a horizontal thin box cross-sectional support member (third support member) 19 is connected between the left and right second support members 18 by welding.
[0026]
The end portion of the third support member 19 and the first support member 17 are portions embedded in wall concrete or the like to be placed after installation. Therefore, an anchor member 23 made of I-type steel or the like that can be bonded to the concrete without a gap is connected to the end of the third support member 19 at the end embedded in the concrete of the steel concrete column or other parts. ing. The anchor member 23 will be described in detail later with reference to FIGS. 4 and 5.
[0027]
Further, a horizontal support member (fourth support member) 20 is welded between the vertically long second support member 18 disposed at the front center position of the module structure 11 and the steel column 12 facing the left side thereof. A vertically long support member (fifth support member) 21 is joined to the intermediate portion of the fourth support member 20 with the steel beam 13 disposed above the fourth support member 20 by welding. Further, a vertical third support member (sixth support member) 22 is provided between the horizontal third support member 19 disposed substantially in the center of the module structure 11 and the deck receiving beam 15 disposed above the third support member 19. The sixth support member 22 is joined by welding, and although not shown, for example, a support member parallel to the fourth support member 20 on the front surface of the module structure 11 is provided.
[0028]
By such support members 17-22, the module structure 11 is reinforced and rigidity is improved with respect to loads in each direction. In addition, on the horizontal first support member 17, second support member 18, fourth support member 19, etc., building equipment 24 for plant configuration, for example, various pipes 24 a, cable trays 24 b, and the like are supported. As a result, the steel column 12, the steel beam 13, the deck receiving beams 14 and 15 for supporting the deck plate 16, and the steel column 12, the steel beam 13, the deck receiving beams 14, 15 and the like are connected. The supporting members 17 to 22 that reinforce them and support the load of the building equipment 24 such as the various pipes 24a and the cable tray 24b, and the building equipment supported by the supporting members 17 to 22 in advance. An integrated module structure 11 is configured.
[0029]
It should be noted that the building structure is provided with the second support member 18 for connecting the steel beam 13 and the first support member 17 according to the strength requirement of the module structure 11 or the layout design requirement of the building equipment 24. Thus, the structural design of the building equipment can be performed without considering the entry into the building, so that the structural design of the building equipment 24 can be facilitated and the overall strength of the module structure 11 can be increased. It is possible to increase the height and obtain a reinforcing function for preventing deformation when the module structure is suspended.
[0030]
After most of the installation work of the building equipment 24 is completed, the remaining deck receiving beams 14 and 15 that are not installed for the hanging work of the building equipment 24 are attached, and the deck receiving beam is further installed. By connecting 14, 15 and the support member or the like, the installation work of the building equipment 24 as the module structure 11 is completed. And after the installation operation | work of the building equipment 24 is completed, the deck plate 16 is attached and the module structure 11 is completed.
[0031]
A part of the deck plate 16 or the building equipment 24 can be reduced from the module structure 11 in order to reduce the weight of the module structure 11 and be within the lifting function force range. In addition, when there is a margin in the lifting function force, it is possible to attach a reinforcing bar, which will be described later, a concrete mold (not shown), or the like to the steel column 12 or the steel beam 13. The module structure 11 thus completed is suspended and installed in a construction site of the plant building by a temporary lifting machine.
[0032]
3 and 4, after the module structure 11 is mounted on the foundation or lower floor 25 of the building, the reinforcing bars 26 are arranged around the steel column 12 of the module structure 11 and the concrete 27 is placed. It is a figure which shows the state which arrange | positioned the steel frame reinforced concrete pillar 28, the reinforcing bar between pillars, and laid concrete 27, and formed the reinforced concrete wall 29. FIG.
[0033]
Here, FIG. 3 shows a reinforced concrete wall 29 when the anchor member 23 is not provided on the third support member 19 described above. As shown in FIG. 3, when a hollow tube such as a box-type steel pipe is applied to the steel material of the third support member 19 and directly joined to the first support member made of I-type steel, Since the concrete does not enter the embedded third support member 19, the hollow portion 30 is generated, and the required strength of the concrete wall 29 may not be obtained.
[0034]
On the other hand, in FIG. 4, an anchor member 23 made of, for example, I-shaped steel is provided at the tip of the third support member 19 having a box-shaped cross section, and the joint of the anchor member 23 is matched with the side surface of the first support member 17. The length of the anchor member 23 is set to be longer than the outer wall surface of the concrete 29. In the case of such a configuration, the anchor member 23 that can be coupled to the concrete 29 without a gap is connected in advance, so that a cavity is generated at the joint between the third support member 19 and the first support member 17. The required strength of the concrete 29 can be obtained. The anchor member 23 is not limited to the I-shaped steel, but may be any anchor member formed so as not to generate a hollow portion of H-shaped steel, U-shaped steel, or concrete.
[0035]
FIGS. 5A, 5 </ b> B, and 5 </ b> C are schematic views showing different attachment modes of the anchor member 23. Since the range of the strength calculation of the concrete 29 is generally defined by the inner dimension of the reinforcing bar 26, the anchor member 23 is accommodated in the soft concrete 29a outside the reinforcing bar 26 as shown in FIG. Alternatively, as shown in FIG. 5 (b), a structure that protrudes to the outer surface of the soft concrete 29a, and a structure that has any mounting form that protrudes outward from the soft concrete 29a as shown in FIG. 5 (c). Can be adopted. By adopting these configurations, it is possible to prevent a decrease in the strength of the concrete due to the hollow portion.
[0036]
Next, application examples will be described with reference to FIGS.
[0037]
First, as an application example, FIG. 6 shows the application of the basic configuration shown in FIG. 1 as a two-story floor in the vertical direction, and in the horizontal direction, the basic configuration shown in FIG. The module structure has the shape described above. The module structure shown in FIG. 6 is also applied to a part of a building in a power plant, for example, a turbine building, and is an expanded version of the function shown in FIG. Corresponding identical parts are denoted by the same reference numerals as those in FIG. According to the configuration shown in FIG. 6, an excellent effect is exerted in application to a large building configuration.
[0038]
Next, the load sharing method will be described with reference to FIGS. In the present embodiment, the module structure 11 is formed as having a plurality of levels, and the load of the building equipment 24 or the load of the placing concrete 29 is distributed and borne in each level. In this case, a push-up member or a suspension member that supports the steel beam, the deck receiving beam, or the support member of each layer from any one of the upper and lower directions is applied as a support unit that distributes and loads the load in a plurality of layers. Is.
[0039]
That is, FIG. 7A and FIG. 7B are conceptual diagrams for distributing the load of the building equipment 24 of a module structure having a three-layer structure. In the configuration shown in FIG. 7A, loads 31, 31, 31 of building equipment 24, 24, 24 of each level are applied to the steel beam 13 or the deck receiving beams 15, 15, 15 of the ceiling part of each level. It is a structure that can be handled. In this case, as shown by the upward arrow 31, the suspension member is applied, and it is possible to prevent the concentration of loads on a specific level.
[0040]
FIG. 7B shows the case where the steel beam 13 or the deck receiving beam 15 cannot withstand the load when the concrete 29 is placed after the module structure 11 is installed at the construction site of the plant building. Is assumed. In this case, the load 31 of the building equipment 24 is supported by the steel beam or the deck receiving beam 15, so that the suspension member is applied as indicated by the upward arrow 31, and the load to a specific level is set. Can be prevented.
[0041]
Furthermore, FIG. 8 applies the push-up member 32 as shown by the upward bold arrow when the load distribution in FIGS. 7A and 7B cannot avoid the concentration of the load on a specific level. It is a conceptual diagram which distributes the load of building equipment 24 as composition. For example, when the load 31 of the building equipment 24 and the casting load of the concrete 11 are applied to the steel beam 13 or the deck receiving beam 15, the load on the steel beam 13 or the deck receiving beam 15 is provided by installing the push-up member 32 or the like. It is possible to distribute the load to the deck receiving beam 15 of each level or a building mat (not shown).
[0042]
As described above, in the present embodiment, the steel column 12 installed at the construction site of the plant building and the steel beam 12 joined to the steel column 12 and constituting the floor surface have an arbitrary height between each other. The building members constituting the building composed of the supporting members 17 to 22 and the deck receiving beams 14 and 15 connected to the steel beam 13 and the pipes, equipment and supporting structures installed at the construction site are constructed. The module structure 11 that is integrated with the building interior equipment 24 is configured, and after the building mat portion 25 or the lower layer building of the module structure 11 is completed, the module structure 11 is suspended at the construction site, and the building mat portion 25 or the module It joins with the lower layer building of the structure 11, and after that, rebar construction, concrete formwork, and concrete placement work are performed. Further, the support members 17 to 22 joined to each other or the steel column 12 or the steel beam 13 are used as the reinforcing members of the module structure 11. According to such a method, the support structures 17 to 22 of the module structure 11 can be used as a reinforcing material for preventing deformation, the module structure can be increased in size and weight, and the number of times the module structure is carried in. This is advantageous for shortening the construction period.
[0043]
Further, all or a part of the joined portions of the support members 17 to 22 joined to the steel column 12 or the steel beam 13 is embedded in the concrete 29 that is cast after the module structure 11 is suspended at the construction site. It is what I did. Further, the support member is joined through the anchor member 23 joined to the steel column 12 or the steel beam 13, and all or a part of the anchor member 23 is placed after the module structure 11 is suspended at the construction site. Embedded in the concrete 29. According to such a method, in the design of the module structure 11, the restriction on the mounting position of the support structures 17 to 22 is greatly eliminated, and the strength of the module structure in which the support structure is arranged at an appropriate position is increased. Therefore, the module structure 11 can be increased in size and weight, which is advantageous for shortening the construction period. Moreover, the installation quantity of the embedding | buying metal object previously embed | buried in a concrete building can be reduced, and it becomes advantageous on construction.
[0044]
In this embodiment, the concrete reinforcing bar 26 or the concrete reinforcing bar 26 and the formwork are attached to the steel column 12 and the steel beam 13 constituting the module structure 11. According to such a method, the reinforcing bar and the formwork work period after the module structure 11 is carried in become unnecessary, which is advantageous in shortening the work period.
[0045]
Furthermore, in this embodiment, since the module structure 11 has a plurality of layers, the module structure can be increased in size and weight, which is advantageous in shortening the work period. Furthermore, by distributing the load of the building equipment 24 that constitutes the plant to a plurality of hierarchies, it is possible to increase the number of building equipment installed in advance in the module structure, which is advantageous in shortening the construction period. Further, the module structure 11 has a plurality of layers, and the load of the building equipment 24 constituting the plant is distributed and burdened to the plurality of layers by a push-up or suspension member, thereby preventing an increase in building member dimensions. This is advantageous for construction.
[0046]
【The invention's effect】
As described above, according to the present invention, the strength of the module structure can be improved, and it is easy to cope with the increase in size and weight of the module when a large amount of equipment is integrated. A power plant construction method that can be shortened can be provided.
[Brief description of the drawings]
FIG. 1 is a side view from the front corresponding to FIG. 1 according to the embodiment.
FIG. 2 is a cross-sectional view showing an example of a joint structure between a building member and a support structure according to the embodiment.
FIG. 3 is a cross-sectional view showing an example of a joint structure between a building member and a support structure according to the embodiment.
FIG. 4 is a cross-sectional view showing an example of a joint structure between a building member and a support structure using the anchor member according to the embodiment.
FIGS. 5A, 5B, and 5C are cross-sectional views showing examples of the joining structure of anchor members according to the embodiment, respectively.
FIG. 6 is a perspective view showing an application example of a module structure having a multilayer structure according to the present invention.
FIGS. 7A and 7B are explanatory diagrams in the case where the load of the equipment of a module structure having a multilayer structure is dispersed.
FIG. 8 is an explanatory diagram in the case of distributing the load of the equipment of a module structure having a multilayer structure according to the present invention.
FIG. 9 is a cross-sectional view showing an example of a joint structure between an embedded metal and a support structure by a conventional method.
[Explanation of symbols]
11 Module structure 12 Steel columns 13, 13a, 13b, 13c, 13d Steel beams 14, 15 Deck receiving beam 16 Deck plate 17 First support member 18 Second support member 19 Third support member 20 Fourth support member 21 5th Support member 22 Sixth support member 23 Anchor member 24 Indoor equipment 24a Piping 24b Cable tray 25 Lower floor 26 Reinforcement 27 Concrete 28 Steel reinforced concrete pillar 29 Reinforced concrete wall 30 Cavity 31 Load 32 Push-up member

Claims (3)

発電プラントにおける建屋の少なくとも一部に鉄骨柱、鉄骨梁およびデッキプレートを用いた鉄骨コンクリート構造を有する発電プラント建設工法において、前記鉄骨柱と、前記鉄骨梁と、前記デッキプレートを支持するためのデッキ受けビームと、前記建屋内に設置される建屋内機器と、前記建屋内機器を支持する支持部材とを有するモジュール構造物を備え、前記モジュール構造物を前記建屋の基礎もしくは下階床上に搭載した後に、前記モジュール構造物の鉄骨柱の周囲にコンクリートを打設し、前記支持部材と前記鉄骨柱、あるいは前記支持部材と前記鉄骨梁または前記支持部材と他の支持部材と接合部を前記コンクリート内に埋設させ、前記モジュール構造物の支持部材のうち、前記鉄骨コンクリート柱その他の部位のコンクリート内に埋設される端部に、当該コンクリートと空隙なく結合し得るアンカー部材を予め連結しておき、このアンカー部材の全体もしくは一部分を前記コンクリート内に埋設させることを特徴とする発電プラント建設工法。In a power plant construction method having a steel concrete structure using a steel column, a steel beam, and a deck plate in at least a part of a building in the power plant, the deck for supporting the steel column, the steel beam, and the deck plate A module structure having a receiving beam, building equipment installed in the building, and a support member that supports the building equipment, and mounting the module structure on a foundation or a lower floor of the building Later, concrete is placed around the steel column of the module structure, and the joint between the support member and the steel column, or the support member and the steel beam , or the support member and another support member is formed as described above. The concrete structure is embedded in the concrete, and the concrete structure pillars and other parts of the support member of the module structure A power plant construction characterized in that an anchor member that can be coupled to the concrete without a gap is connected in advance to an end portion embedded in a ground and the entirety or a part of the anchor member is embedded in the concrete. Construction method. 前記アンカー部材を前記支持部材の先端に設け、このアンカー部材の仕口を前記支持部材の側面に合致させるとともに、このアンカー部材の長さを前記コンクリートの外壁面よりも外面側に配置する長さとする請求項1記載の発電プラント建設工法。  The anchor member is provided at the front end of the support member, the joint of the anchor member is matched with the side surface of the support member, and the length of the anchor member is arranged on the outer surface side of the outer wall surface of the concrete. The power plant construction method according to claim 1. 前記アンカー部材は、鉄筋外のコンクリート内に収納される構成、コンクリート外表面まで突出する構成、またはコンクリート外方まで突出する構成のいずれかの取り付け形態を有する請求項2記載の発電プラント建設工法。  3. The power plant construction method according to claim 2, wherein the anchor member has an attachment form of any one of a configuration housed in concrete outside a reinforcing bar, a configuration protruding to the concrete outer surface, or a configuration protruding to the outside of the concrete.
JP2001200141A 2001-06-29 2001-06-29 Power plant construction method Expired - Lifetime JP4316161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001200141A JP4316161B2 (en) 2001-06-29 2001-06-29 Power plant construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001200141A JP4316161B2 (en) 2001-06-29 2001-06-29 Power plant construction method

Publications (2)

Publication Number Publication Date
JP2003013621A JP2003013621A (en) 2003-01-15
JP4316161B2 true JP4316161B2 (en) 2009-08-19

Family

ID=19037314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001200141A Expired - Lifetime JP4316161B2 (en) 2001-06-29 2001-06-29 Power plant construction method

Country Status (1)

Country Link
JP (1) JP4316161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184763A (en) * 2011-12-29 2013-07-03 苏州中材建设有限公司 Method for installing kiln tail steel structure framework on large-sized cement clinker production line

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320100B4 (en) 2003-05-05 2005-06-16 Framatome Anp Gmbh Technical installation with a number of system components each supported by a number of carriers and with a number of pressure-carrying lines, in particular for use in a nuclear power plant
JP5134219B2 (en) 2006-07-27 2013-01-30 株式会社日立製作所 Building construction method
JP4058098B1 (en) * 2007-05-14 2008-03-05 有限会社三橋製作所 Heavy lifting structure
JP5237008B2 (en) * 2007-07-31 2013-07-17 株式会社日立製作所 Module structure
JP5391836B2 (en) * 2009-05-29 2014-01-15 株式会社日立製作所 Module structure and plant construction method
JP5761595B2 (en) 2011-03-29 2015-08-12 株式会社日立製作所 Module structure, module construction method
CN103835511B (en) * 2014-02-28 2016-01-20 中天建设集团有限公司 A kind of overlength frivolous Huge Steel Open tubular truss integral lifting method
CN103835512B (en) * 2014-02-28 2016-03-02 中天建设集团有限公司 Regularization assemble type protection canopy mounting method
CN104234436A (en) * 2014-08-28 2014-12-24 中广核工程有限公司 Modular building method of nuclear power plant stainless steel cladding surface
JP6450663B2 (en) * 2015-09-03 2019-01-09 三菱日立パワーシステムズ株式会社 Steam turbine equipment and method for carrying in feed water heater in steam turbine equipment
KR102074098B1 (en) * 2019-05-13 2020-02-05 이성권 Factory Frame Module Construction Structure and Method
JP7016452B2 (en) * 2019-08-14 2022-02-04 日揮グローバル株式会社 Manufacturing method of plant equipment
CN111441621A (en) * 2020-05-11 2020-07-24 上海森松制药设备工程有限公司 Modular workshop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103184763A (en) * 2011-12-29 2013-07-03 苏州中材建设有限公司 Method for installing kiln tail steel structure framework on large-sized cement clinker production line
CN103184763B (en) * 2011-12-29 2014-10-29 苏州中材建设有限公司 Method for installing kiln tail steel structure framework on large-sized cement clinker production line

Also Published As

Publication number Publication date
JP2003013621A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP5523179B2 (en) Building construction method and room module
JP4316161B2 (en) Power plant construction method
EP2313568A1 (en) Method for forming connecting structure between pillar and beam, and connecting structure between pillar and beam
KR19980080404A (en) Method of construction of plant buildings and modular structures used in the construction thereof
CN104234436A (en) Modular building method of nuclear power plant stainless steel cladding surface
JP4163329B2 (en) Building units and unit buildings
JP2928002B2 (en) Column formwork structure
JP4700178B2 (en) Unit building
JPH0699959B2 (en) Nuclear power plant building construction method
JP3207276B2 (en) How to build a unit building
JP2004061443A (en) Building of nuclear power plant and method for constructing it
JP2003213953A (en) Plant building constructing method
JP2003041661A (en) Building construction method and building
JP3045836B2 (en) Unit building and its construction method
JP3045841B2 (en) Beam formwork structure for unit building
JP2000110245A (en) Column-omitted building unit, unit building, and its building method
JP2005097929A (en) Building floor structure of nuclear power plant
JP3045839B2 (en) Method and apparatus for installing floor slab in unit building
JP3045840B2 (en) Column formwork for unit buildings
JP2972956B2 (en) Column and beam joining method and its structure
JP3045835B2 (en) Unit building and its construction method
JP2002097716A (en) Short support slab supporting structure
JP3045838B2 (en) Unit building and its construction method
JPH0481012B2 (en)
JP2023016370A (en) Construction method of structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4316161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term