JP4313477B2 - Starch molasses purification method and purification system - Google Patents
Starch molasses purification method and purification system Download PDFInfo
- Publication number
- JP4313477B2 JP4313477B2 JP24145899A JP24145899A JP4313477B2 JP 4313477 B2 JP4313477 B2 JP 4313477B2 JP 24145899 A JP24145899 A JP 24145899A JP 24145899 A JP24145899 A JP 24145899A JP 4313477 B2 JP4313477 B2 JP 4313477B2
- Authority
- JP
- Japan
- Prior art keywords
- sugar solution
- exchange resin
- starch sugar
- anion exchange
- starch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920002472 Starch Polymers 0.000 title claims description 69
- 235000019698 starch Nutrition 0.000 title claims description 69
- 239000008107 starch Substances 0.000 title claims description 69
- 238000000746 purification Methods 0.000 title claims description 20
- 238000000034 method Methods 0.000 title claims description 18
- 235000013379 molasses Nutrition 0.000 title 1
- 239000003957 anion exchange resin Substances 0.000 claims description 54
- 238000011033 desalting Methods 0.000 claims description 38
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 33
- 238000004042 decolorization Methods 0.000 claims description 28
- 239000003729 cation exchange resin Substances 0.000 claims description 23
- 230000002378 acidificating effect Effects 0.000 claims description 21
- 150000003839 salts Chemical group 0.000 claims description 11
- 238000007670 refining Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000000243 solution Substances 0.000 description 62
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 15
- 239000008103 glucose Substances 0.000 description 15
- 239000007788 liquid Substances 0.000 description 14
- 238000010612 desalination reaction Methods 0.000 description 12
- 238000006317 isomerization reaction Methods 0.000 description 12
- 239000003456 ion exchange resin Substances 0.000 description 11
- 229920003303 ion-exchange polymer Polymers 0.000 description 11
- 229920001429 chelating resin Polymers 0.000 description 10
- 238000010979 pH adjustment Methods 0.000 description 7
- 239000012492 regenerant Substances 0.000 description 7
- 238000005349 anion exchange Methods 0.000 description 6
- 238000005115 demineralization Methods 0.000 description 5
- 230000002328 demineralizing effect Effects 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical class C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、デンプン糖(デンプンを原料として製造された糖類の総称)の製造におけるデンプン糖液の精製法に関し、さらに詳述すると、イオン交換樹脂を用いたデンプン糖液の精製法に関する。
【0002】
【従来の技術】
デンプンを酸又は酵素で加水分解すると、その分解条件によって種々の糖類が得られる。デンプンの加水分解工程は、デンプンの分子をおおまかに切断して水溶性のデキストリンにする液化と、デキストリンを分解してグルコース等を生成させる糖化の2工程に分けられ、現在では、デンプンの液化及び糖化には酵素を用いることがほとんどである。上述したデンプンの糖化によってデンプン糖液が得られるが、このデンプン糖液中には様々な不純物が含まれている。そのため、これら不純物除去を目的として、デンプンの糖化工程の後にはデンプン糖液の精製が行われる。
【0003】
従来、前述したデンプン糖液の精製は、活性炭による脱色処理と、その後段でのイオン交換樹脂による脱塩処理との組み合わせで行われている。この場合、後段のイオン交換樹脂による精製システムは、一般に、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式の前脱塩システムと、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムとによって構成され、前脱塩システムで原液中の塩類、色素、その他の不純物の大部分を除去し、仕上げ脱塩システムで仕上げの脱塩、脱色、pH調整を行っている。
【0004】
なお、上述の前脱塩システムと仕上げ脱塩システムとからなる精製システムが開発される前は、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式システムのみでデンプン糖液の脱塩処理を行っていた。しかし、デンプンの糖化に酸に代わって酵素が用いられることがほとんどとなり、その結果イオン交換樹脂の被処理糖液中の塩濃度が高くなったため、混床式システムの前段に前脱塩システムを設ける前記システムが現在では主流になっている。
【0005】
【発明が解決しようとする課題】
イオン交換樹脂を用いたデンプン糖液精製システムに要求される性能は、脱塩性能、脱色性能及び処理糖液のpHの安定性に優れ、かつブドウ糖の異性化反応を生じさせにくい(ブドウ糖の異性化率が低い)ことである。また、環境を配慮する面から、イオン交換樹脂の再生剤の使用量を低減できるシステムのニーズが多くある。
【0006】
しかし、現在使用されている混床式システムの前段に前脱塩システムを設けた前記システムは、従前に単独でデンプン糖液の脱塩処理に使用されていた混床式システムをそのまま仕上げ脱塩システムとして流用し、その前段に前脱塩システムを設置したものであり、そのため前述したデンプン糖液精製システムへの要求性能やニーズを十分に満たしているか否かは特に検討されていなかった。
【0007】
本発明は、前述した事情に鑑みてなされたもので、脱塩性能、脱色性能及び処理糖液のpHの安定性に優れ、かつブドウ糖の異性化率が低く、したがって従来のシステムよりも安定した処理性能が得られるとともに、イオン交換樹脂の再生剤の使用量を低減できるデンプン糖液精製法及び精製システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意検討を行った結果、デンプン糖液の脱塩処理を行った後に、塩形のアニオン交換樹脂でデンプン糖液の脱色処理を行った場合、前述した目的が効果的に達成されることを見出した。
【0009】
すなわち、従来のイオン交換樹脂を用いたデンプン糖液精製システムでは、後段の強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式システムで仕上げの脱塩、脱色、pH調整を行なっていた。この場合、脱色を考慮した場合には、混床層のOH形アニオン交換樹脂としてI形強塩基性アニオン交換樹脂を用いることが最も良いが、I形強塩基性アニオン交換樹脂は再生剤が多く必要であることと、II形強塩基性アニオン交換樹脂に比べて塩基度が強く、ブドウ糖の果糖への異性化率がII形よりも高いとされていることから、デンプン糖液の精製には使用すべきでないとされてきた。また、再生剤の使用量とブドウ糖の異性化率を考慮した場合には、混床層のアニオン交換樹脂に弱塩基性アニオン交換樹脂を用いることが最も良いが、弱塩基性アニオン交換樹脂は脱色性能が不十分であるという問題があった。
【0010】
しかしながら、本発明者らが鋭意検討を行った結果、前脱塩処理を行った後、塩形のアニオン交換樹脂を用いて仕上げの脱色を行い、その後に仕上げの脱塩及びpH調整を行った場合、すなわち、仕上げ脱塩システムにおける脱塩、脱色及びpH調整という機能を、脱色の部分と、脱塩及びpH調整の部分とに分離した場合、下記▲1▼〜▲2▼の利点が得られ、その結果、脱塩性能、脱色性能及び処理糖液のpHの安定性に優れ、かつブドウ糖の異性化率が低いとともに、イオン交換樹脂の再生剤の使用量を低減できるデンプン糖液精製システムを構成できることが判明した。
【0011】
▲1▼脱色性能が良く、ブドウ糖の異性化をほとんど起こさない塩形のアニオン交換樹脂を脱塩処理システムの後段に設置し、この塩形のアニオン交換樹脂で仕上げの脱色を行うことにより、従来システムと同様の低色価の処理糖液を得つつ、ブドウ糖の異性化率を低くすることができる。
【0012】
▲2▼塩形のアニオン交換樹脂を用いて仕上げの脱色を行うことで、仕上げ脱塩システムでは脱色を行う必要がなくなる。そのため、仕上げ脱塩システムのOH形アニオン交換樹脂として弱塩基性アニオン交換樹脂を用いることができるようになり、その結果、ブドウ糖の異性化率を低くすることができるとともに、再生剤の使用量を低減させることができる。
【0013】
本発明は、上述した知見に基づいてなされたもので、デンプン糖液を強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂の複床又は混床に接触させて該デンプン糖液の前脱塩処理を行い、次いでデンプン糖液を塩形のアニオン交換樹脂に接触させて該デンプン糖液の脱色処理を行った後、デンプン糖液を強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂の複床又は混床に接触させて該デンプン糖液の仕上げ脱塩処理を行うことを特徴とするデンプン糖液精製法を提供する。
【0014】
また、本発明は、デンプン糖液を通液して該デンプン糖液の精製を行うシステムにおいて、上述した本発明のデンプン糖液精製法を使用したことを特徴とするデンプン糖液精製システムを提供する。
【0015】
以下、本発明につきさらに詳しく説明する。本発明において、デンプン糖液の脱色処理に用いる塩形のアニオン交換樹脂としては、Cl形のI形強塩基性アニオン交換樹脂を用いることが特に好ましい。Cl形のI形強塩基性アニオン交換樹脂は脱色性能が高く、また再生剤の食塩は他の薬品に比べ安価であるためである。Cl形のI形強塩基性アニオン交換樹脂としては、第四アンモニウム塩基を有する強塩基性アニオン交換樹脂、例えば、クロロメチル化したスチレン−ジビニルベンゼン共重合体(樹脂母体)をトリメチルアミン、トリブチルアミン、トリエチルアミン等の第三アミンで処理することにより得られるアニオン交換樹脂のCl形が挙げられる。より具体的には、Cl形のI形強塩基性アニオン交換樹脂として、アンバーライト(登録商標、以下同じ)XT5007、IRA400、IRA440B、IRA900、IRA904、ダイヤイオン(登録商標、以下同じ)SA10A、SA11A、PA306、PA308等を用いることができる。
【0016】
また、本発明において、脱色処理の前段におけるデンプン糖液の脱塩処理(前脱塩処理)は、従来と同様に強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式の脱塩システムにより行うことができるが、これらの樹脂を用いた混床式の脱塩システムで行ってもよい。
【0017】
本発明では、デンプン糖液の脱色処理後にさらにデンプン糖液の仕上げ脱塩処理を行う。すなわち、前脱塩処理後に塩形のアニオン交換樹脂による脱色処理を行ったデンプン糖液は、従来の強酸性カチオン交換樹脂及びII形強塩基性アニオン交換樹脂を用いた混床式システムで仕上げ処理を行ったものに比べて塩類が多く含まれ、かつpHが安定していない。そのため、脱色処理の後にさらに脱塩処理を行い、仕上げの塩類除去及びpH調整を行う。この仕上げ脱塩処理は、塩類の除去とpH調整が行えればよいので、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式又は混床式の脱塩システムにより行うことができる。すなわち、塩基性アニオン交換樹脂として、ブドウ糖の異性化率の低い弱塩基性アニオン交換樹脂を用いた複床式又は混床式の脱塩システムにより行うことが適当である。また、デンプン糖液のpH調整に重きを置く場合には、複床式の脱塩システムを用いるよりも強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた混床式の脱塩システムにより行うことが好適である。
【0018】
上記のように強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いて仕上げの脱塩処理を行う場合、これら樹脂の種類に特に限定はないが、具体的には、強酸性カチオン交換樹脂としてアンバーライト200CT、IR120B、IR124、IR118、ダイヤイオンSK1B、SK102、PK208、PK212等、弱塩基性アニオン交換樹脂としてアンバーライトXE583、IRA67、IRA96SB、ダイヤイオンWA10、WA20、WA30等を用いることができる。
【0020】
図1及び図2はそれぞれ本発明に係るデンプン糖液精製システムの一例の前脱塩システム及び仕上げ脱色システムを示すフロー図、図3及び図4はそれぞれ本発明に係るデンプン糖液精製システムの一例を示すフロー図である。図1のシステムにおいて、2はH形の強酸性カチオン交換樹脂を用いたカチオン交換装置、4はOH形の弱塩基性アニオン交換樹脂を用いたアニオン交換装置を示し、これらカチオン交換装置2及びアニオン交換装置4によって複床式の前脱塩システム6が構成されている。また、図中8は塩形のアニオン交換樹脂を用いたアニオン交換装置であり、このアニオン交換装置8によって仕上げ脱色システムが構成されている。
【0021】
図2のシステムは、図1のシステムにおいて、複床式の前脱塩システムに代えて、H形の強酸性カチオン交換樹脂とOH形の弱塩基性アニオン交換樹脂とを混合して用いた混床式イオン交換装置10を前脱塩システムとしたものである。
【0022】
図3のシステムは、図1のシステムにおいて、仕上げ脱色システム8の後段に、H形の強酸性カチオン交換樹脂を用いたカチオン交換装置12とOH形の弱塩基性アニオン交換樹脂を用いたアニオン交換装置14とからなる複床式の仕上げ脱塩システム16を設置したものである。
【0023】
図4のシステムは、図1のシステムにおいて、仕上げ脱色システム8の後段に、H形の強酸性カチオン交換樹脂とOH形の弱塩基性アニオン交換樹脂とを混合して用いた混床式イオン交換装置18を仕上げ脱塩システムとして設置したものである。
【0024】
上述した図3及び図4のデンプン糖液精製システムは、通常、活性炭による脱色処理工程を終了したデンプン糖液20を各イオン交換装置に順次通水してデンプン糖液20の精製を行うものである。
【0025】
【実施例】
以下に本発明を実施例に基づいて具体的に示す。なお、以下の実施例、比較例においてイオン交換樹脂はいずれも新品を用いた。
【0026】
(実験例)
デンプン糖工場にて、H形強酸性カチオン交換樹脂とOH形弱塩基性アニオン交換樹脂を用いた複床式の前脱塩システムでブドウ糖液を処理し、処理後のブドウ糖液を原糖液として実験を行った。原糖液の性状を表1に示す。
【0027】
上記原糖液を、Cl形のI形強塩基性アニオン交換樹脂(アンバーライトXT5007)100mlを充填したカラムを有するアニオン交換装置に通液して脱色処理を行った。通液条件は、通液温度35℃、通液量500ml/hとした。原糖液を2000ml通液した時の処理糖液の性状を表1に示す。
【0028】
(実施例1)
実験例で脱色処理を行ったデンプン糖液を、H形強酸性カチオン交換樹脂(アンバーライト200CT)50mlを充填したカラムを有するカチオン交換装置、及び、OH形弱塩基性アニオン交換樹脂(アンバーライトXE583)100mlを充填したカラムを有するアニオン交換装置に順次通液して脱塩処理を行った。通液条件は、通液温度35℃、通液量500ml/hとした。2000ml通液した時の処理糖液の性状を表1に示す。
【0029】
(実施例2)
実験例で脱色処理を行ったデンプン糖液を、H形強酸性カチオン交換樹脂(アンバーライト200CT)50mlとOH形弱塩基性アニオン交換樹脂(アンバーライトXE583)100mlとを混合して充填したカラムを有する混床式イオン交換装置に通液して脱塩処理を行った。通液条件は、通液温度35℃、通液量500ml/hとした。2000ml通液した時の処理糖液の性状を表1に示す。
【0030】
(比較例)
実験例で用いたのと同じ原糖液を、H形強酸性カチオン交換樹脂(アンバーライト200CT)50mlとOH形のII形強塩基性アニオン交換樹脂(アンバーライトIRA41lS)100mlとを混合して充填したカラムを有する混床式イオン交換装置に通液して脱塩処理を行った。通液条件は、通液温度35℃、通液量500ml/hとした。20倍量通液した時の処理糖液の性状を表1に示す。
【0031】
なお、表1におけるBxはブリックス糖濃度(%)を示す。また、色価は下記式により算出した値を示す。異性化糖量は、全糖量(=固形物量)中の異性化糖(=果糖)の量の百分率量である。
【0032】
【表1】
【0033】
【表1】
【0034】
表1の結果より、前脱塩処理の後段で塩形のアニオン交換樹脂を用いて脱色処理を行うことによって従来システムと同様の低色価の処理糖液が得られること、仕上げ脱塩システムのアニオン交換樹脂に弱塩基性アニオン交換樹脂を用いることによってブドウ糖の異性化率を低くできること、仕上げ脱塩システムに強酸性カチオン交換樹脂と塩基性アニオン交換樹脂との混床式システムを用いることによって処理糖液のpHが5.5〜6.0の間で安定することがわかる。
【0035】
【発明の効果】
以上のように、本発明を使用したシステムは、脱塩性能、脱色性能及び処理糖液のpHの安定性に優れ、かつブドウ糖の異性化率が低いため、従来のシステムよりも安定した処理性能が得られるとともに、イオン交換樹脂の再生剤の使用量を低減することができる。
【図面の簡単な説明】
【図1】 本発明に係るデンプン糖液精製システムの一例の前脱塩システム及び仕上げ脱色システムを示すフロー図である。
【図2】 本発明に係るデンプン糖液精製システムの一例の前脱塩システム及び仕上げ脱色システムを示すフロー図である。
【図3】本発明に係るデンプン糖液精製システムの一例を示すフロー図である。
【図4】本発明に係るデンプン糖液精製システムの一例を示すフロー図である。
【符号の説明】
2 カチオン交換装置
4 アニオン交換装置
6 前脱塩システム
8 仕上げ脱色システム
10 混床式イオン交換装置
12 カチオン交換装置
14 アニオン交換装置
16 仕上げ脱塩システム
18 混床式イオン交換装置
20 デンプン糖液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying starch sugar solution in the production of starch sugar (a general term for saccharides produced from starch as a raw material), and more particularly to a method for purifying starch sugar solution using an ion exchange resin.
[0002]
[Prior art]
When starch is hydrolyzed with an acid or an enzyme, various saccharides are obtained depending on the degradation conditions. The starch hydrolysis process is divided into two steps: liquefaction by roughly cleaving starch molecules to make water-soluble dextrin and saccharification by breaking down dextrin to produce glucose and the like. At present, starch liquefaction and Enzymes are most often used for saccharification. A starch sugar solution is obtained by the above-described saccharification of starch, and the starch sugar solution contains various impurities. Therefore, for the purpose of removing these impurities, the starch sugar solution is purified after the starch saccharification step.
[0003]
Conventionally, the purification of the starch sugar solution described above has been performed by a combination of a decolorization treatment with activated carbon and a desalting treatment with an ion exchange resin in the subsequent stage. In this case, the purification system using the ion exchange resin in the latter stage generally includes a double bed type pre-desalting system using a strong acid cation exchange resin and a weak base anion exchange resin, a strong acid cation exchange resin and a type II strong base. A mixed-bed final desalination system using anionic anion exchange resin. The pre-demineralization system removes most of the salts, pigments and other impurities in the stock solution, and the final desalination system removes the final desalting system. Salt, decolorization and pH adjustment are performed.
[0004]
Prior to the development of a purification system consisting of the above-mentioned pre-desalting system and finishing desalting system, starch sugar can be obtained only with a mixed bed system using a strongly acidic cation exchange resin and a type II strongly basic anion exchange resin. The liquid was desalted. However, enzymes are often used instead of acids for saccharification of starch, and as a result, the salt concentration in the sugar solution to be treated of the ion exchange resin has increased, so a pre-demineralization system was installed before the mixed bed system. The system provided is now mainstream.
[0005]
[Problems to be solved by the invention]
The performance required for the starch sugar solution purification system using ion-exchange resin is excellent in desalting performance, decolorization performance and pH stability of the treated sugar solution, and hardly causes glucose isomerization reaction (glucose isomerization). Conversion rate is low). In addition, there are many needs for systems that can reduce the amount of ion-exchange resin regenerant used in consideration of the environment.
[0006]
However, the system that has a pre-desalting system in front of the currently used mixed-bed system is the same as the mixed-bed system that was previously used alone for the desalination treatment of starch sugar solution. The system was used as a system, and a pre-demineralization system was installed in the previous stage. Therefore, whether or not the required performance and needs for the starch sugar solution refining system described above were sufficiently satisfied was not examined.
[0007]
The present invention has been made in view of the above-mentioned circumstances, and is excellent in desalting performance, decolorization performance and pH stability of the treated sugar solution, and has a low isomerization rate of glucose, and thus more stable than the conventional system. It is an object of the present invention to provide a starch sugar solution purification method and a purification system capable of obtaining treatment performance and reducing the amount of a regenerant used in an ion exchange resin.
[0008]
[Means for Solving the Problems]
As a result of diligent studies to achieve the above-mentioned object, the present inventors conducted a desalination treatment of starch sugar solution, and then performed a decolorization treatment of starch sugar solution with a salt-form anion exchange resin. It has been found that the above-mentioned purpose is effectively achieved.
[0009]
That is, in the conventional starch sugar solution purification system using ion exchange resin, the final desalting, decolorization, and pH adjustment are performed in a mixed bed system using a strongly acidic cation exchange resin and a type II strong basic anion exchange resin in the latter stage. I was doing. In this case, in consideration of decolorization, it is best to use type I strongly basic anion exchange resin as the OH type anion exchange resin of the mixed bed layer. However, type I strongly basic anion exchange resin has many regenerants. It is necessary for the purification of starch sugar solution because it is necessary and has higher basicity than type II strongly basic anion exchange resin, and the isomerization rate of glucose to fructose is higher than that of type II. It has been deprecated. In consideration of the amount of regenerant used and the isomerization rate of glucose, it is best to use a weakly basic anion exchange resin as the anion exchange resin in the mixed bed layer. There was a problem that the performance was insufficient.
[0010]
However, as a result of intensive studies by the present inventors, after the pre-desalting treatment, the finishing decolorization was performed using a salt-form anion exchange resin, and then the finishing desalting and pH adjustment were performed. In other words, when the functions of desalting, decoloring and pH adjustment in the finishing desalting system are separated into the decoloring part and the desalting and pH adjustment part, the following advantages (1) to (2) are obtained. As a result, the starch sugar solution purification system is excellent in desalting performance, decolorization performance and pH stability of the treated sugar solution, has a low isomerization rate of glucose, and can reduce the amount of regenerant used in the ion exchange resin. It was found that can be configured.
[0011]
(1) Conventionally, a salt-type anion exchange resin that has good decolorization performance and hardly causes glucose isomerization is installed at the rear stage of the desalination treatment system. While obtaining a processed sugar solution having a low color value similar to that of the system, the isomerization rate of glucose can be lowered.
[0012]
(2) By using a salt-type anion exchange resin for the final decolorization, it is not necessary to perform the decolorization in the final demineralization system. As a result, a weakly basic anion exchange resin can be used as the OH type anion exchange resin in the final desalting system. As a result, the isomerization rate of glucose can be lowered and the amount of regenerant used can be reduced. Can be reduced.
[0013]
The present invention has been made on the basis of the above-described findings, and the starch sugar solution is contacted with a double bed or a mixed bed of a strongly acidic cation exchange resin and a weakly basic anion exchange resin, and the starch sugar solution is subjected to a pre -desalting treatment. gastric row, then after Tsu line decolorization process of the starch sugar solution by contacting the starch sugar solution to an anion exchange resin in the form of a salt, a starch sugar solution strongly acidic cation exchange resin and weakly basic anion exchange resin double in contact with the floor or the mixed bed provides a starch sugar solution purification method, characterized in row Ukoto finishing desalting of the starch sugar solution.
[0014]
The present invention also provides a starch sugar solution refining system, wherein the starch sugar solution refining method of the present invention described above is used in a system for purifying the starch sugar solution by passing it through. To do.
[0015]
Hereinafter, the present invention will be described in more detail. In the present invention, as the salt-form anion exchange resin used for the decolorization treatment of the starch sugar solution, it is particularly preferable to use Cl-type I-type strongly basic anion exchange resin. This is because the Cl-type I-type strongly basic anion exchange resin has high decolorization performance and the regenerant salt is less expensive than other chemicals. Examples of the Cl type I strongly basic anion exchange resin include strongly basic anion exchange resins having a quaternary ammonium base, such as chloromethylated styrene-divinylbenzene copolymer (resin matrix), trimethylamine, tributylamine, Examples include the Cl form of an anion exchange resin obtained by treating with a tertiary amine such as triethylamine. More specifically, Cl-form I-type strongly basic anion exchange resins include Amberlite (registered trademark, hereinafter the same) XT5007, IRA400, IRA440B, IRA900, IRA904, Diaion (registered trademark, the same below) SA10A, SA11A. PA306, PA308, etc. can be used.
[0016]
In the present invention, the starch salt solution desalting treatment (pre-desalting treatment) in the previous stage of the decoloring treatment is performed in the same manner as in the past by using a multi-bed type dehydration method using a strongly acidic cation exchange resin and a weakly basic anion exchange resin. Although it can be carried out by a salt system, it may be carried out by a mixed bed type desalination system using these resins.
[0017]
In the present invention, further performs finishing desalting of starch sugar solution after decolorization treatment of the starch sugar solution. That is, before the starch sugar solution was subjected to decolorization treatment with an anion exchange resin salt form after desalting treatment, finishing treatment with mixed bed system using a conventional strongly acidic cation exchange resin and form II strongly basic anion exchange resin Compared to those subjected to the above, a lot of salts are contained and the pH is not stable. Therefore, after the decoloring process, a desalting process is further performed, and finishing salt removal and pH adjustment are performed. The finishing desalting process, since it Re performed removal and pH adjusting salts, be carried out by double bed or mixed bed deionization system using strongly acidic cation exchange resin and weakly basic anion exchange resin it can. That is, it is suitable to carry out by a double bed type or mixed bed type desalination system using a weak basic anion exchange resin having a low isomerization rate of glucose as the basic anion exchange resin. In addition, when emphasizing the pH adjustment of starch sugar solution, a mixed bed type desalination system using a strongly acidic cation exchange resin and a weakly basic anion exchange resin is used rather than a double bed type desalination system. It is preferred to do so.
[0018]
When the final desalting treatment is performed using a strongly acidic cation exchange resin and a weakly basic anion exchange resin as described above, the type of these resins is not particularly limited, but specifically, as a strongly acidic cation exchange resin, Amberlite 200E, IR120B, IR124, IR118, Diaion SK1B, SK102, PK208, PK212, etc., Amberlite XE583, IRA67, IRA96SB, Diaion WA10, WA20, WA30, etc. can be used as weakly basic anion exchange resins.
[0020]
FIGS. 1 and 2 are flow charts showing a pre-desalting system and a finishing decolorization system, respectively, of an example of a starch sugar solution purification system according to the present invention . FIGS. 3 and 4 are examples of a starch sugar solution purification system according to the present invention, respectively . FIG. In the system of FIG. 1, 2 is a cation exchange device using an H-type strongly acidic cation exchange resin, 4 is an anion exchange device using an OH-type weakly basic anion exchange resin, and these
[0021]
The system of FIG. 2 is a mixture in which the H-type strongly acidic cation exchange resin and the OH-type weakly basic anion exchange resin are mixed in the system of FIG. The floor
[0022]
The system of FIG. 3 is an anion exchange using a
[0023]
The system of FIG. 4 is a mixed bed type ion exchange in which the H-type strongly acidic cation exchange resin and the OH-type weakly basic anion exchange resin are mixed in the latter stage of the finishing
[0024]
The starch sugar solution purification system of FIG . 3 and FIG. 4 described above usually purifies the
[0025]
【Example】
The present invention will be specifically described below based on examples. In the following examples and comparative examples, new ion exchange resins were used.
[0026]
( Experimental example )
At the starch sugar factory, glucose solution is treated with a double-bed type pre-desalting system using H-type strongly acidic cation exchange resin and OH-type weakly basic anion exchange resin, and the treated glucose solution is used as the raw sugar solution. The experiment was conducted. Table 1 shows the properties of the raw sugar solution.
[0027]
The raw sugar solution was passed through an anion exchange device having a column packed with 100 ml of Cl-form I-type strongly basic anion exchange resin (Amberlite XT5007) for decolorization treatment. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 500 ml / h. Table 1 shows the properties of the processed sugar solution when 2000 ml of the raw sugar solution was passed.
[0028]
(Example 1 )
A cation exchange apparatus having a column filled with 50 ml of H-type strongly acidic cation exchange resin (Amberlite 200CT) and starch OH liquid subjected to decolorization treatment in the experimental example , and OH-type weakly basic anion exchange resin (Amberlite XE583) ) The solution was sequentially passed through an anion exchange apparatus having a column packed with 100 ml for desalting. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 500 ml / h. Table 1 shows the properties of the treated sugar solution when 2000 ml was passed.
[0029]
(Example 2 )
A column filled with 50 ml of H-type strongly acidic cation exchange resin (Amberlite 200CT) and 100 ml of OH-type weakly basic anion exchange resin (Amberlite XE583) packed with the starch sugar solution that had been decolorized in the experimental example. The mixture was passed through a mixed bed ion exchange apparatus to perform desalting treatment. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 500 ml / h. Table 1 shows the properties of the treated sugar solution when 2000 ml was passed.
[0030]
(Comparative example)
Filled with the same raw sugar solution used in the experimental example by mixing 50 ml of H-form strongly acidic cation exchange resin (Amberlite 200CT) and 100 ml of OH form II strongly basic anion exchange resin (Amberlite IRA41lS) The solution was passed through a mixed bed ion exchange apparatus having the above-mentioned column for desalting. The liquid flow conditions were a liquid flow temperature of 35 ° C. and a liquid flow rate of 500 ml / h. Table 1 shows the properties of the treated sugar solution when the 20-fold amount was passed.
[0031]
In Table 1, Bx represents the Brix sugar concentration (%). The color value is a value calculated by the following formula. The amount of isomerized sugar is a percentage amount of the amount of isomerized sugar (= fructose) in the total amount of sugar (= solid amount).
[0032]
[Table 1]
[0033]
[Table 1]
[0034]
From the results in Table 1, it is possible to obtain a processed sugar solution having a low color value similar to that of the conventional system by performing the decolorization treatment using the salt-form anion exchange resin in the subsequent stage of the pre-desalting treatment, Treatment by using a weakly basic anion exchange resin as the anion exchange resin and lowering the isomerization rate of glucose, and using a mixed-bed system of strongly acidic cation exchange resin and basic anion exchange resin in the final desalination system It can be seen that the pH of the sugar solution is stable between 5.5 and 6.0.
[0035]
【The invention's effect】
As described above, the system using the present invention is superior in desalting performance, decolorization performance and pH stability of the processed sugar solution, and has a lower isomerization rate of glucose, so that the processing performance is more stable than the conventional system. Can be obtained, and the amount of ion-exchange resin regenerant used can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a pre-desalting system and a finishing decolorization system as an example of a starch sugar solution purification system according to the present invention.
FIG. 2 is a flowchart showing a pre-demineralization system and a finish decolorization system as an example of a starch sugar solution purification system according to the present invention.
FIG. 3 is a flowchart showing an example of a starch sugar solution purification system according to the present invention.
FIG. 4 is a flowchart showing an example of a starch sugar solution purification system according to the present invention.
[Explanation of symbols]
2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24145899A JP4313477B2 (en) | 1999-08-27 | 1999-08-27 | Starch molasses purification method and purification system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24145899A JP4313477B2 (en) | 1999-08-27 | 1999-08-27 | Starch molasses purification method and purification system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001061500A JP2001061500A (en) | 2001-03-13 |
JP4313477B2 true JP4313477B2 (en) | 2009-08-12 |
Family
ID=17074624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24145899A Expired - Fee Related JP4313477B2 (en) | 1999-08-27 | 1999-08-27 | Starch molasses purification method and purification system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4313477B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015091909A (en) * | 2013-11-08 | 2015-05-14 | 日本錬水株式会社 | Method for purifying sugar lowered starch sugar solution |
-
1999
- 1999-08-27 JP JP24145899A patent/JP4313477B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001061500A (en) | 2001-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5279744A (en) | Method for purification of an amino acid using ion exchange resin | |
CA2294129A1 (en) | Water treatment process | |
JPH0585537B2 (en) | ||
KR100463268B1 (en) | Mixed-bed type sugar solution refining system and regeneration method for such apparatus | |
JP4313477B2 (en) | Starch molasses purification method and purification system | |
JP2001128700A (en) | Method for purifying starch sugar solution | |
JP4210396B2 (en) | Starch sugar solution desalting method and desalting system | |
JPS62197191A (en) | Liquid treatment method containing cation exchange and selective removal of nitrate ion from liquid and ion exchange resin mixture used therein | |
JP4522133B2 (en) | Purification method of sugar-containing solution | |
JP3605471B2 (en) | Method for producing inverted liquid sugar | |
JP3592495B2 (en) | Sucrose liquid purifying apparatus and method for regenerating sucrose liquid purifying apparatus | |
JP4216985B2 (en) | Starch molasses purification method | |
JP4245745B2 (en) | Mixed bed type sugar liquid purification equipment | |
JP2003245100A (en) | Purification of saccharide-including aqueous solution | |
JPH0617344B2 (en) | Valine separation and purification method | |
JP4210408B2 (en) | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment | |
JP2661698B2 (en) | Sugar solution purification method | |
JP3311875B2 (en) | Sugar liquid desalination and purification equipment | |
JP4294203B2 (en) | Regeneration method of sugar liquid purification equipment | |
JP2021029189A (en) | Purification method of saccharide | |
JP3566485B2 (en) | Purification method of sugar beet leachate | |
JPH10179200A (en) | Purification of sugar solution of beet and purification apparatus | |
JPS6371193A (en) | Purification method for glucose solution or thick malt syrup | |
JP2785834B2 (en) | Desalting purification method and apparatus for sugar liquid | |
JPS5924663B2 (en) | Solution processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060601 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090210 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090428 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090515 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120522 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130522 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140522 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |