JP4210408B2 - Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment - Google Patents
Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment Download PDFInfo
- Publication number
- JP4210408B2 JP4210408B2 JP2000031621A JP2000031621A JP4210408B2 JP 4210408 B2 JP4210408 B2 JP 4210408B2 JP 2000031621 A JP2000031621 A JP 2000031621A JP 2000031621 A JP2000031621 A JP 2000031621A JP 4210408 B2 JP4210408 B2 JP 4210408B2
- Authority
- JP
- Japan
- Prior art keywords
- exchange resin
- cation exchange
- strongly acidic
- acidic cation
- tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims description 126
- 239000003729 cation exchange resin Substances 0.000 title claims description 109
- 235000000346 sugar Nutrition 0.000 title claims description 84
- 230000002378 acidificating effect Effects 0.000 title claims description 81
- 238000011069 regeneration method Methods 0.000 title claims description 46
- 239000007788 liquid Substances 0.000 title claims description 35
- 238000000746 purification Methods 0.000 title claims description 23
- 230000008929 regeneration Effects 0.000 claims description 40
- 239000002253 acid Substances 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 229920002472 Starch Polymers 0.000 claims description 28
- 239000008107 starch Substances 0.000 claims description 28
- 235000019698 starch Nutrition 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 22
- 238000011001 backwashing Methods 0.000 claims description 21
- 239000003957 anion exchange resin Substances 0.000 claims description 20
- 230000001172 regenerating effect Effects 0.000 claims description 18
- 239000003456 ion exchange resin Substances 0.000 claims description 17
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 15
- 238000002156 mixing Methods 0.000 claims description 14
- 238000007670 refining Methods 0.000 claims description 4
- 239000011347 resin Substances 0.000 description 75
- 229920005989 resin Polymers 0.000 description 75
- 239000000243 solution Substances 0.000 description 71
- 238000011282 treatment Methods 0.000 description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 10
- 238000011033 desalting Methods 0.000 description 9
- 229920001429 chelating resin Polymers 0.000 description 7
- 238000005342 ion exchange Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 3
- 238000006317 isomerization reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
Images
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、デンプン糖液の脱塩、脱色を行う糖液精製装置における単床式強酸性カチオン交換樹脂塔の再生法に関する。
【0002】
【従来の技術】
デンプンを酸又は酵素で加水分解すると、その分解条件によって種々のデンプン糖(デンプンを原料として製造された糖類の総称)が得られる。デンプンの加水分解工程は液化と糖化の2工程に分けられ、デンプンの糖化によってデンプン糖液が得られるが、このデンプン糖液中には様々な不純物が含まれている。そのため、これら不純物除去を目的として、デンプンの糖化工程の後にはデンプン糖液の精製が行われる。
【0003】
デンプン糖液を精製する場合、炭酸飽充、粒状活性炭濾過、骨炭濾過等の精製工程の後処理として、イオン交換処理が行われている。イオン交換処理には、脱色を目的としたイオン交換処理と、脱塩を目的としたイオン交換処理がある。
【0004】
脱塩を目的としたイオン交換処理は、一般に、強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を用いた複床式の前脱塩システムと、強酸性カチオン交換樹脂とII形強塩基性アニオン交換樹脂を用いた混床式の仕上げ脱塩システムとによって構成され、前脱塩システムで原糖液中の塩類、色素、その他の不純物の大部分を除去し、仕上げ脱塩システムで仕上げの脱塩、脱色、pH調整を行っている。この脱塩処理は工業的に広く使用されており、高純度の糖液が得られる点で、糖液の精製処理法として優れた方法である。これは、混床層を用いた仕上げ脱塩がうまく働いているためである。
【0005】
【発明が解決しようとする課題】
前述した従来の脱塩処理では、仕上げ脱塩システムで強塩基性アニオン交換樹脂を使用しているため、ブドウ糖などの異性化が生じやすい。これに対し、本発明者は、従来の脱塩処理に比べて異性化が起こりにくいシステムとして、単床式強酸性カチオン交換樹脂塔(前段)と、弱塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔(後段)とを組み合わせた糖液精製装置を新たに開発した。
【0006】
上記糖液精製装置では、第1塔目のイオン交換樹脂塔として単床式強酸性カチオン交換樹脂塔を用いている。この単床式強酸性カチオン交換樹脂塔の再生は、処理糖液の純度を高めるために、下向流通液に対して上向流再生を行うことが良いとされている。すなわち、この再生方法を詳しく説明すると、デンプン糖液の下向流通液が終了した後、まず、水を用いて樹脂層中の糖液を押し出す。その後、再生薬液として塩酸水溶液(1〜2N)を上向流で通薬する。再生薬液の通薬終了後は、水を用いて樹脂層中の再生薬液を押し出し、さらに樹脂層を水で洗浄して再生工程を終了する。この場合、上述した上向流再生では、樹脂層の吸着帯を崩さないようにするため、できるだけ樹脂層を流動させずに再生を行う。また、この再生処理時には、樹脂層を流動させる逆洗は樹脂層の吸着帯を崩すためにほとんど行われず、行うとしても数サイクルに一回行うか、表面逆洗を行うだけである。
【0007】
しかしながら、本発明者は、新たに開発した糖液精製装置の単床式強酸性カチオン交換樹脂塔の再生を前述した上向流再生によって行うと、処理糖液の導電率及びpHが悪化する場合があることに気付いた。そこで、本発明者が単床式強酸性カチオン交換樹脂塔の樹脂層内及び処理糖液を分析したところ、原糖液中に混入していた濁質が強酸性カチオン交換樹脂層内に蓄積し、最終的には単床式強酸性カチオン交換樹脂塔の処理糖液中に混入することが判明した。また、強酸性カチオン交換樹脂層内に濁質が堆積するため、再生時には強酸性カチオン交換樹脂と再生薬液との接触が悪くなるとともに、通液時には強酸性カチオン交換樹脂と糖液との接触が悪くなり、その結果、強酸性カチオン交換樹脂塔の処理性能が悪化することが判った。
【0008】
本発明者は、さらに検討を行った結果、上記原糖液中の濁質は、本来はイオン交換の前処理工程で除去されるべきものであるが、前処理である活性炭処理や濾過処理では除去できないことがあり、また前処理工程後に発生することもあること、また、従来の再生方法では濁質を効率的に除去できないことが判ってきた。この濁質を除去するためには、単床式強酸性カチオン交換樹脂塔の前で再度濾過処理を行うことが望ましいが、現状ではコスト的に良い処理方法ではない。
【0009】
本発明は、前述した事情に鑑みてなされたもので、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層内に蓄積された濁質を効率的に除去することができる方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者は、前記目的を達成するために、まず、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層内に蓄積した濁質の性状を調べた。その結果、多くの濁質は強酸性カチオン交換樹脂層の上部で堆積して凝集し、一部の濁質は樹脂層内で樹脂に付着することが判明した。さらには、これらの濁質は通常の逆洗では樹脂層の外部に排出されないこと、すなわち樹脂層上部で凝集した濁質は、樹脂層を流動逆洗しても、樹脂層内を漂ったり、樹脂層の下部に移動するだけで、樹脂層の外部に排出することは困難であることが判った。
【0011】
本発明者は、上記知見に基づき、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層内に蓄積した濁質を樹脂層の外部に排出する方法について種々検討を行ったところ、強酸性カチオン交換樹脂層に空気混合を行うことによって樹脂層の上部で凝集した濁質が粒径0.4〜100μmの大きさになり、また、この大きさであれば、樹脂層を流動させる逆洗を行うことでこれらの濁質を樹脂層外へ排出できること、また、上記空気混合によって樹脂に付着した濁質が樹脂から剥がれやすくなり、樹脂層を流動させる逆洗を行うことでこれらの濁質を樹脂層外へ排出できることを見出した。つまり、樹脂層に蓄積した濁質を効率的に除去するには、再生時に第1塔である単床式強酸性カチオン交換樹脂塔の樹脂層に空気混合を行い、その後に樹脂層を流動させる逆洗を行えばよいことを知見した。
【0012】
本発明は、上記知見に基づいてなされたもので、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の強酸性カチオン交換樹脂を再生するに当たり、前記単床式強酸性カチオン交換樹脂塔の強酸性カチオン交換樹脂層に空気混合を行うことを特徴とする糖液精製装置の強酸性カチオン交換樹脂塔の再生法を提供する。
【0013】
本発明によれば、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層に空気混合を行うことにより、樹脂層内に蓄積した濁質を、樹脂層を流動させる逆洗によって樹脂層の外部に排出できる状態に変化させることができる。したがって、空気混合の後に上記逆洗を行うことによって、樹脂層内に蓄積した濁質を除去することができる。その結果、再生時には強酸性カチオン交換樹脂と再生薬液とが接触しやすくなって再生効率が向上し、通液時には強酸性カチオン交換樹脂と糖液とが接触しやすくなって処理糖液の品質が安定するものである。
【0014】
なお、濁質の主成分が何であるかは同定できなかったが、酸性にしてもアルカリ性にしても溶解するようなものでなかった。つまり、化学的に除去することは困難であり、物理的に排出する必要があるものであった。しかし、ショ糖の脱塩処理は高糖度、高温度で行われるために菌が増殖しにくいのに対し、デンプン糖液の脱塩処理は低糖度、低温度で行われるために菌が増殖しやすいことから、濁質の主成分は菌であると考えられる。したがって、本発明は、デンプン糖液を処理した強酸性カチオン交換樹脂の再生法として有効である。
【0015】
以下、本発明につきさらに詳しく説明する。本発明では、前記のようにデンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層に空気混合を行う。空気混合は、例えば、下向流の水を用いて樹脂層中の糖液を押し出した後、液面を下げて強酸性カチオン交換樹脂層に塔下部から空気を吹き込むことにより行うことができるが、これに限定されるものではない。
【0016】
本発明では、強酸性カチオン交換樹脂層に空気混合を行った後に、強酸性カチオン交換樹脂層を流動させる逆洗を行うことができる。この逆洗は、樹脂層が50〜150%膨張するように行うことが適当である。
【0017】
本発明では、強酸性カチオン交換樹脂の逆洗を行った後に、強酸性カチオン交換樹脂層に再生薬液を下向流で通薬することが好ましい。すなわち、強酸性カチオン交換樹脂塔の再生は、前述したように、処理糖液の純度を高めるために樹脂層の吸着帯を崩さないようにして上向流再生を行うことが良いとされている。しかし、本発明方法を使用すると空気混合及び逆洗により樹脂層が流動し、樹脂層の吸着帯が崩れてしまうので、従来の上向流再生を実施する利点がなくなってしまう。したがって、本発明ではコスト的に有利な下向流再生を行うことが好ましい。
【0018】
本発明方法は、単床式強酸性カチオン交換樹脂塔と、塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔とをこの順で設置した糖液精製装置における単床式強酸性カチオン交換樹脂塔の再生に好適に使用することができる。すなわち、上記糖液精製装置では、第1塔の単床式強酸性カチオン交換樹脂塔の処理糖液中に不純物カチオンが流出しても、その後の混床式イオン交換樹脂塔でこの不純物カチオンを除去できる。したがって、上記糖液精製装置の単床式強酸性カチオン交換樹脂塔の再生に本発明方法を使用し、単床式強酸性カチオン交換樹脂塔の樹脂層の吸着帯が崩れてその処理性能が従来の下向流通液、上向流再生の場合より劣化しても問題がないからである。また、上記糖液精製装置の塩基性アニオン交換樹脂としては、ブドウ糖などの異性化を抑制するために弱塩基性アニオン交換樹脂を用いることが適当である。
【0019】
なお、上記糖液精製装置における後段の塩基性アニオン交換樹脂及び強酸性カチオン交換樹脂を用いた混床式イオン交換樹脂塔のイオン交換樹脂の再生は、強酸性カチオン交換樹脂及び塩基性アニオン交換樹脂にアルカリ再生剤を接触させた後、強酸性カチオン交換樹脂に酸再生剤を接触させる方法によることが好ましい。この再生法を採用した場合、混合樹脂中の強酸性カチオン交換樹脂に捕捉されたアミノ酸等の両性有機物を該強酸性カチオン交換樹脂から効率的に脱着することができ、その結果、上記両性有機物が処理糖液中にリークすることを防止して、処理糖液の品質の安定化を図ることができる。
【0020】
本発明の再生法は、上記糖液精製装置の他に、例えば、強酸性カチオン交換樹脂を用いた単床式強酸性カチオン交換樹脂塔と、弱塩基性アニオン交換樹脂を用いた単床式弱塩基性アニオン交換樹脂塔と、強酸性カチオン交換樹脂及び塩基性アニオン交換樹脂を用いた混床式イオン交換樹脂塔糖とをこの順で設置した糖液精製装置における単床式強酸性カチオン交換樹脂塔の再生に使用することができる。この場合も、前記と同様に、コスト的に有利な下向流再生を行うことが好ましい。
【0021】
上述した各イオン交換装置の強酸性カチオン交換樹脂及び塩基性アニオン交換樹脂の種類に限定はなく、処理の目的等に応じて適宜選択すればよい。具体的には、アンバーライト(登録商標、以下同じ)200CT、IR120B、IR124、IR118、ダイヤイオン(登録商標、以下同じ)SK1B、SK102、PK208、PK212(以上、強酸性カチオン交換樹脂)、アンバーライトXE583、IRA67、IRA96SB、ダイヤイオンWA10、WA20、WA30(以上、弱塩基性アニオン交換樹脂)、アンバーライトIRA402BL、IRA401、IRA440B、XT5007、IRA400、IRA900、IRA904、ダイヤイオンSA10A、SA11A、PA306、PA308(以上、I形強塩基性アニオン交換樹脂)、アンバーライトIRA411S、IRA410、IRA910、ダイヤイオンSA20、PA418(以上、II形強塩基性アニオン交換樹脂)等を用いることができる。
【0022】
【発明の実施の形態】
図1は本発明を適用する強酸性カチオン交換樹脂塔の一例を示す概略構成図である。本例の強酸性カチオン交換樹脂塔2の下部には強酸性カチオン交換樹脂4を支持するための支持床6が敷設されている。また、塔内の上部には再生剤を供給するディストリビュータ8が設置されているとともに、下部には強酸性カチオン交換樹脂の再生廃液を排出するコレクタ10が設置されている。さらに、図中12は原糖液導入管、14は処理糖液排出管、16は逆洗水導入管、18は逆洗水排出管、20は空気導入管を示す。
【0023】
本例の強酸性カチオン交換樹脂塔の再生を本発明の再生法によって行う手順は例えば下記のとおりである。
(1)糖液処理を終了した後、原糖液導入管12から塔内に水を導入し、この水で強酸性カチオン交換樹脂層4中の糖液を押し出す。糖液及び水は処理糖液排出管14から排出する。
(2)押し出し終了後、水の液面を強酸性カチオン交換樹脂層4の直上まで下げて空気導入管20から塔内に空気を導入し、樹脂層4に空気混合を行う。
(3)空気混合終了後、逆洗水導入管16から塔内に水を導入し、樹脂層4を流動させる逆洗を行う。逆洗排出液は逆洗水排出管18から排出する。
(4)逆洗終了後に樹脂層4を沈整し、その後、ディストリビュータ8より樹脂層4に再生薬液(塩酸水溶液などの酸水溶液)を下向流で通薬する。再生廃液はコレクタ10から排出する。
(5)通薬終了後、原糖液導入管12から塔内に水を導入し、この水で樹脂層4中の再生薬液を押し出す。再生廃液はコレクタ10から排出する。
(6)原糖液導入管12から塔内に純水を導入し、樹脂層4を純水で洗浄する。純水は処理糖液排出管14から排出する。
【0024】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。
【0025】
(実施例)
強酸性カチオン交換樹脂(アンバーライト120B)0.6Lを充填した単床式強酸性カチオン交換樹脂塔と、強酸性カチオン交換樹脂(アンバーライト120B)0.4L及び弱塩基性アニオン交換樹脂(アンバーライトXE583)1.5Lを充填した混床式イオン交換樹脂塔とを用いて糖液精製装置を構成した。この場合、単床式強酸性カチオン交換樹脂塔を前段、混床式イオン交換樹脂塔を後段に設置した。
【0026】
上記糖液精製装置を用いて数サイクルのデンプン糖液精製処理を行った。各サイクルの通液終了時には単床式強酸性カチオン交換樹脂塔の樹脂層上部に白色の堆積物が確認できた。
【0027】
デンプン糖液精製処理が終了した後、各イオン交換樹脂塔のイオン交換樹脂の再生処理を行った。前段の単床式強酸性カチオン交換樹脂塔の再生は以下のように行った。まず、下向流の水を用いて樹脂層中の糖液を押し出した後、液面を下げて強酸性カチオン交換樹脂層に塔下部から空気を吹き込むことにより空気混合を行った。次いで、上向流の逆洗水を用いて強酸性カチオン交換樹脂層を流動させる逆洗を行った。逆洗は、樹脂層が100%膨張するように行った。その後、強酸性カチオン交換樹脂層に再生薬液として1Nの塩酸水溶液1.2Lを下向流で通薬した。通薬終了後、下向流の水を用いて樹脂層中の再生薬液を押し出し、さらに樹脂層を純水で洗浄して再生工程を終了した。再生工程終了時には単床式強酸性カチオン交換樹脂塔の樹脂層に白色の堆積物は確認できなかった。
【0028】
後段の混床式イオン交換樹脂塔の再生は以下のように行った。まず、上向流の逆洗水により樹脂層を100%膨張させ、強酸性カチオン交換樹脂を下層、弱塩基性アニオン交換樹脂を上層に分離した。次いで、塔上部より、両樹脂に1Nの水酸化ナトリウム水溶液2.4Lを下向流で一括通薬して、上層の弱塩基性アニオン交換樹脂を再生するとともに、下層の強酸性カチオン交換樹脂を回生した。水酸化ナトリウム水溶液を水で押し出した後、塔下部より、下層の強酸性カチオン交換樹脂に1Nの塩酸水溶液0.9Lを上向流で通薬するとともに、塔上部より上層の弱塩基性アニオン交換樹脂に水を下向流で通水し、樹脂再生廃液及び水を両樹脂の分離面に設置したコレクタより排出して、下層の強酸性カチオン交換樹脂を再生した。次に、塔上部及び下部より、上層の弱塩基性アニオン交換樹脂及び下層の強酸性カチオン交換樹脂に洗浄水をそれぞれ通水し、洗浄水をコレクタから排出して、再生処理を完了した。そして、再生した強酸性カチオン交換樹脂と弱塩基性アニオン交換樹脂を混合して混床を形成させた。
【0029】
上記のようにして単床式強酸性カチオン交換樹脂塔及び混床式イオン交換樹脂塔を再生した糖液精製装置を用いてデンプン糖液の精製処理を行った。精製処理においては、60Lを1サイクルとして通液を行い、計5サイクルの通液を実施した。原糖液の性状を表1に示す。また、再生後5サイクル目の通液時において30Lの原糖液を処理した時の処理糖液の性状を表1に示す。
【0030】
(比較例)
実施例と同様の糖液精製装置を構成した。また、この糖液精製装置を用いて数サイクルのデンプン糖液精製処理を行った。各サイクルの通液終了時には単床式強酸性カチオン交換樹脂塔の樹脂層上部に白色の堆積物が確認できた。
【0031】
デンプン糖液精製処理が終了した後、各イオン交換樹脂塔のイオン交換樹脂の再生処理を行った。前段の単床式強酸性カチオン交換樹脂塔の再生は以下のように行った。まず、下向流の水を用いて樹脂層中の糖液を押し出した。その後、空気混合を行うことなく、、逆洗のみを行い(樹脂層が100%膨張するように逆洗)、次いで強酸性カチオン交換樹脂層に再生薬液として1Nの塩酸水溶液1.2Lを下向流で通薬した。通薬終了後、下向流の水を用いて樹脂層中の再生薬液を押し出し、さらに樹脂層を純水で洗浄して再生工程を終了した。再生工程終了時には単床式強酸性カチオン交換樹脂塔の樹脂層下部及び樹脂層内に白色の堆積物が残留しているのが確認できた。後段の混床式糖液精製装置の再生は実施例と同様に行った。
【0032】
上記のようにして単床式強酸性カチオン交換樹脂塔及び混床式イオン交換樹脂塔を再生した糖液精製装置を用いて実施例と同じデンプン糖液の精製処理を行った。精製処理は実施例と同じ条件で行った。再生後5サイクル目の通液時において30Lの原糖液を処理した時の処理糖液の性状を表1に示す。
【0033】
【表1】
【0034】
表1の結果より、本発明の再生法で単床式強酸性カチオン交換樹脂塔の再生処理を行った実施例は、空気混合を行わずに再生処理を行った単床式強酸性カチオン交換樹脂塔の比較例に比べて、処理糖液の性状が安定していることが認められた。なお、表1において、720nmの吸光度は一般に濁度の測定に用いられるものである。
【0035】
(実験例)
前記実施例における単床式強酸性カチオン交換樹脂塔の逆洗排出液をサンプリングし、その排出液中の濁質成分の粒度分布を測定した。粒度分布の測定は、コールター社の光散乱回折タイプ粒度分布測定装置LS230形で測定した。結果を表2に示す。
【0036】
【表2】
【0037】
表2の結果より、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の強酸性カチオン交換樹脂層に空気混合を行うことにより、樹脂層で凝集した濁質を粒径0.4〜100μmの大きさに破砕することができ、樹脂層を流動させる逆洗を行うことでこれらの濁質を樹脂層外へ排出できることが確認された。
【0038】
【発明の効果】
以上のように、本発明によれば、デンプン糖液を処理した単床式強酸性カチオン交換樹脂塔の樹脂層内に蓄積された濁質を効率的に除去できるので、再生時には強酸性カチオン交換樹脂と再生薬液とが接触しやすくなって再生効率が向上し、通液時には強酸性カチオン交換樹脂と糖液とが接触しやすくなって処理糖液の品質が安定する。
【図面の簡単な説明】
【図1】本発明を適用する強酸性カチオン交換樹脂塔の一例を示す概略構成図である。
【符号の説明】
2 強酸性カチオン交換樹脂塔
4 強酸性カチオン交換樹脂
6 支持床
8 ディストリビュータ
10 コレクタ
12 原糖液導入管
14 処理糖液排出管
16 逆洗水導入管
18 逆洗水排出管
20 空気導入管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for regenerating a single-bed strongly acidic cation exchange resin tower in a sugar liquid refining apparatus for desalting and decolorizing starch sugar liquid.
[0002]
[Prior art]
When starch is hydrolyzed with an acid or an enzyme, various starch sugars (a general term for sugars produced using starch as a raw material) are obtained depending on the degradation conditions. The starch hydrolysis process is divided into two steps, liquefaction and saccharification, and starch saccharification is obtained by saccharification of starch, and this starch saccharification contains various impurities. Therefore, for the purpose of removing these impurities, the starch sugar solution is purified after the starch saccharification step.
[0003]
When the starch sugar solution is purified, an ion exchange treatment is performed as a post-treatment of purification steps such as carbonation saturation, granular activated carbon filtration, bone charcoal filtration and the like. The ion exchange treatment includes an ion exchange treatment for decolorization and an ion exchange treatment for desalting.
[0004]
In general, ion exchange treatment for desalination involves two types of pre-desalting systems using strong acid cation exchange resin and weakly basic anion exchange resin, strong acid cation exchange resin and type II strongly basic anion. It consists of a mixed-bed type finishing desalination system using an exchange resin, which removes most of the salts, pigments, and other impurities in the raw sugar solution with the pre-desalting system, and finishes with the finishing desalination system. Salt, decolorization and pH adjustment are performed. This desalting treatment is widely used industrially and is an excellent method for purifying a sugar solution in that a high-purity sugar solution can be obtained. This is because finishing desalination using a mixed bed layer works well.
[0005]
[Problems to be solved by the invention]
In the above-described conventional desalting treatment, isomerization of glucose or the like is likely to occur because a strong base anion exchange resin is used in the finishing desalting system. In contrast, the present inventor, as a system in which isomerization is less likely to occur compared to conventional desalting treatments, is a single-bed type strongly acidic cation exchange resin tower (front stage), a weakly basic anion exchange resin, and a strongly acidic cation exchange. A newly developed sugar liquid refining device combined with a mixed-bed ion exchange resin tower (second stage) using resin.
[0006]
In the sugar liquid purification apparatus, a single-bed strongly acidic cation exchange resin tower is used as the first ion exchange resin tower. In the regeneration of the single-bed strong acid cation exchange resin tower, it is said that the upward flow regeneration is preferably performed on the downward circulation liquid in order to increase the purity of the treated sugar liquid. That is, this regeneration method will be described in detail. After the downward circulation of the starch sugar solution is completed, first, the sugar solution in the resin layer is extruded using water. Thereafter, an aqueous hydrochloric acid solution (1-2N) is passed as a regenerative chemical solution in an upward flow. After completion of the regenerative chemical solution, the regenerative chemical solution in the resin layer is pushed out using water, and the resin layer is washed with water to complete the regeneration step. In this case, in the above-described upward flow regeneration, regeneration is performed without flowing the resin layer as much as possible in order not to break the adsorption band of the resin layer. Also, during this regeneration treatment, backwashing that causes the resin layer to flow is rarely performed in order to break the adsorption band of the resin layer, and even if it is performed, it is performed once every several cycles or only surface backwashing is performed.
[0007]
However, when the present inventor regenerates a single-bed strongly acidic cation exchange resin tower of a newly developed sugar liquid purification apparatus by the above-described upward flow regeneration, the conductivity and pH of the treated sugar liquid deteriorate. I noticed that there is. Therefore, when the present inventor analyzed the resin layer of the single-bed type strongly acidic cation exchange resin tower and the treated sugar solution, the suspended matter mixed in the raw sugar solution was accumulated in the strong acid cation exchange resin layer. Finally, it was found that it was mixed in the treated sugar solution of the single bed type strongly acidic cation exchange resin tower. In addition, since turbidity accumulates in the strongly acidic cation exchange resin layer, the contact between the strongly acidic cation exchange resin and the regenerated chemical solution is deteriorated during regeneration, and the contact between the strongly acidic cation exchange resin and the sugar solution is prevented during passage. As a result, it was found that the processing performance of the strongly acidic cation exchange resin tower deteriorated.
[0008]
As a result of further investigation, the present inventor has found that the turbidity in the raw sugar solution should originally be removed in the pretreatment step of ion exchange, but in the activated carbon treatment and filtration treatment which are pretreatments. It has been found that it cannot be removed and may occur after the pretreatment step, and that turbidity cannot be removed efficiently by conventional regeneration methods. In order to remove this suspended matter, it is desirable to perform filtration again in front of the single-bed type strongly acidic cation exchange resin tower, but at present, this is not a cost-effective treatment method.
[0009]
The present invention has been made in view of the above circumstances, and is a method capable of efficiently removing turbidity accumulated in a resin layer of a single-bed strongly acidic cation exchange resin tower treated with a starch sugar solution. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventor first examined the properties of turbidity accumulated in the resin layer of a single-bed strong acid cation exchange resin tower treated with starch sugar solution. As a result, it was found that a lot of turbidity was deposited and aggregated on the upper part of the strongly acidic cation exchange resin layer, and a part of the turbidity adhered to the resin in the resin layer. Furthermore, these turbidity is not discharged to the outside of the resin layer by normal backwashing, that is, the turbidity aggregated at the top of the resin layer drifts in the resin layer even if the resin layer is flow-backwashed, It turned out that it was difficult to discharge | emit it outside the resin layer only by moving to the lower part of the resin layer.
[0011]
Based on the above findings, the present inventor has conducted various studies on methods for discharging turbidity accumulated in the resin layer of the single-bed strongly acidic cation exchange resin tower treated with starch sugar solution to the outside of the resin layer. When the strongly acidic cation exchange resin layer is mixed with air, the turbidity aggregated at the upper part of the resin layer becomes a particle size of 0.4 to 100 μm. These turbidity can be discharged out of the resin layer by performing backwashing, and the turbidity adhering to the resin is easily peeled off from the resin by the air mixing, and by performing backwashing that causes the resin layer to flow, It was found that the turbidity of can be discharged out of the resin layer. In other words, in order to efficiently remove turbidity accumulated in the resin layer, air mixing is performed on the resin layer of the single-bed strong acidic cation exchange resin tower as the first tower at the time of regeneration, and then the resin layer is fluidized. It was found that backwashing should be performed.
[0012]
The present invention has been made on the basis of the above knowledge, and in regenerating the strong acid cation exchange resin of the single bed type strong acid cation exchange resin tower treated with starch sugar solution, the single bed type strong acid cation exchange resin tower is used. A method for regenerating a strongly acidic cation exchange resin tower of a sugar liquid refining apparatus, wherein the strongly acidic cation exchange resin layer is mixed with air.
[0013]
According to the present invention, the turbidity accumulated in the resin layer is mixed by air washing into the resin layer of the single-bed type strongly acidic cation exchange resin tower treated with the starch sugar solution, by backwashing the resin layer to flow. It can be changed to a state that can be discharged to the outside of the resin layer. Therefore, the turbidity accumulated in the resin layer can be removed by performing the backwashing after the air mixing. As a result, the strongly acidic cation exchange resin and the regenerated chemical solution can easily come into contact with each other at the time of regeneration, and the regeneration efficiency is improved. It is stable.
[0014]
In addition, although it was not possible to identify what the main component of the turbidity was, it did not dissolve even if it was acidic or alkaline. That is, it was difficult to remove chemically and it was necessary to physically discharge. However, the sucrose desalting process is carried out at a high sugar content and high temperature, so that the bacteria are difficult to grow. Since it is easy, the main component of turbidity is considered to be bacteria. Therefore, the present invention is effective as a method for regenerating a strongly acidic cation exchange resin obtained by treating starch sugar solution.
[0015]
Hereinafter, the present invention will be described in more detail. In the present invention, air mixing is performed on the resin layer of the single-bed strongly acidic cation exchange resin tower treated with the starch sugar solution as described above. The air mixing can be performed, for example, by extruding the sugar solution in the resin layer using downward water, and then lowering the liquid level and blowing air from the bottom of the tower into the strongly acidic cation exchange resin layer. However, the present invention is not limited to this.
[0016]
In this invention, after air-mixing a strong acidic cation exchange resin layer, the backwashing which makes a strong acidic cation exchange resin layer flow can be performed. This backwashing is suitably performed so that the resin layer expands by 50 to 150%.
[0017]
In the present invention, it is preferable that the regenerated chemical solution is passed through the strong acid cation exchange resin layer in a downward flow after the strong acid cation exchange resin is backwashed. That is, as described above, the regeneration of the strong acid cation exchange resin tower is preferably performed by upward flow regeneration without breaking the adsorption band of the resin layer in order to increase the purity of the treated sugar solution. . However, when the method of the present invention is used, the resin layer flows due to air mixing and backwashing, and the adsorption band of the resin layer is destroyed, so that the advantage of performing the conventional upward flow regeneration is lost. Therefore, in the present invention, it is preferable to perform downward flow regeneration that is advantageous in terms of cost.
[0018]
The method of the present invention comprises a single bed type strongly acidic cation exchange resin tower and a mixed bed type ion exchange resin tower using a basic anion exchange resin and a strong acid cation exchange resin in this order. It can be suitably used for regeneration of a bed type strongly acidic cation exchange resin tower. That is, in the sugar liquid purification apparatus, even if impurity cations flow out into the treated sugar liquid of the single-bed type strongly acidic cation exchange resin tower of the first tower, the impurity cations are removed in the subsequent mixed bed type ion exchange resin tower. Can be removed. Therefore, the method of the present invention is used for the regeneration of the single bed type strongly acidic cation exchange resin tower of the sugar liquid purification apparatus, and the adsorption band of the resin layer of the single bed type strong acid cation exchange resin tower collapses and its treatment performance has been improved. This is because there is no problem even if it is deteriorated as compared with the case of the downward circulation liquid and the upward flow regeneration. In addition, as the basic anion exchange resin of the sugar liquid purification apparatus, it is appropriate to use a weakly basic anion exchange resin in order to suppress isomerization of glucose and the like.
[0019]
In addition, regeneration of the ion exchange resin of the mixed bed type ion exchange resin tower using the basic anion exchange resin and the strong acid cation exchange resin in the latter stage in the sugar liquid purification apparatus is performed using the strong acid cation exchange resin and the basic anion exchange resin. It is preferable to use a method in which an alkali regenerator is contacted with an acid regenerator and then a strongly acidic cation exchange resin is contacted with the acid regenerator. When this regeneration method is adopted, amphoteric organic substances such as amino acids captured by the strongly acidic cation exchange resin in the mixed resin can be efficiently desorbed from the strongly acidic cation exchange resin. Leakage into the treated sugar solution can be prevented and the quality of the treated sugar solution can be stabilized.
[0020]
The regeneration method of the present invention includes, for example, a single bed type strongly acidic cation exchange resin tower using a strongly acidic cation exchange resin and a single bed type weakly using a weakly basic anion exchange resin in addition to the sugar liquid purification apparatus. Single-bed strongly acidic cation exchange resin in a sugar liquid purification apparatus in which a basic anion exchange resin tower and a mixed-bed ion exchange resin tower saccharide using a strong acid cation exchange resin and a basic anion exchange resin are installed in this order Can be used for tower regeneration. In this case as well, it is preferable to perform downward flow regeneration that is advantageous in terms of cost, as described above.
[0021]
There is no limitation in the kind of strong acid cation exchange resin and basic anion exchange resin of each ion exchange apparatus mentioned above, What is necessary is just to select suitably according to the objective etc. of a process. Specifically, Amberlite (registered trademark, hereinafter the same) 200CT, IR120B, IR124, IR118, Diaion (registered trademark, the same applies hereinafter) SK1B, SK102, PK208, PK212 (above, strongly acidic cation exchange resin), Amberlite XE583, IRA67, IRA96SB, Diaion WA10, WA20, WA30 (above, weakly basic anion exchange resin), Amberlite IRA402BL, IRA401, IRA440B, XT5007, IRA400, IRA900, IRA904, Diaion SA10A, SA11A, PA306, PA308 ( As mentioned above, I-type strong basic anion exchange resin), Amberlite IRA411S, IRA410, IRA910, Diaion SA20, PA418 (above, type II strong basic resin) Can be used on-exchange resin).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram showing an example of a strongly acidic cation exchange resin tower to which the present invention is applied. In the lower part of the strong acid cation
[0023]
The procedure for regenerating the strongly acidic cation exchange resin tower of this example by the regenerating method of the present invention is as follows, for example.
(1) After finishing the sugar solution treatment, water is introduced into the tower from the raw sugar
(2) After the completion of extrusion, the water level is lowered to just above the strongly acidic cation
(3) After the air mixing is completed, water is introduced from the backwash
(4) After the backwashing is completed, the
(5) After the medicine is passed, water is introduced into the tower from the raw sugar
(6) Pure water is introduced into the tower from the raw sugar
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example.
[0025]
(Example)
Single-bed strongly acidic cation exchange resin tower packed with 0.6 L of strongly acidic cation exchange resin (Amberlite 120B), 0.4 L of strongly acidic cation exchange resin (Amberlite 120B) and weakly basic anion exchange resin (Amberlite) XE583) A sugar solution purification apparatus was configured using a mixed bed ion exchange resin tower packed with 1.5 L. In this case, the single bed type strongly acidic cation exchange resin tower was installed in the front stage, and the mixed bed type ion exchange resin tower was installed in the rear stage.
[0026]
Several cycles of starch sugar solution purification treatment were performed using the sugar solution purification apparatus. At the end of each cycle, white deposits were confirmed on the upper part of the resin layer of the single-bed strongly acidic cation exchange resin tower.
[0027]
After the starch sugar solution purification treatment was completed, the regeneration treatment of the ion exchange resin of each ion exchange resin tower was performed. The regeneration of the single-stage strongly acidic cation exchange resin tower in the previous stage was performed as follows. First, after the sugar solution in the resin layer was extruded using water flowing downward, air mixing was performed by lowering the liquid level and blowing air into the strongly acidic cation exchange resin layer from the bottom of the tower. Next, backwashing was performed by flowing the strongly acidic cation exchange resin layer using upflow backwashing water. Back washing was performed so that the resin layer expanded 100%. Thereafter, 1.2 L of a 1N hydrochloric acid aqueous solution as a regenerative chemical solution was passed through the strongly acidic cation exchange resin layer in a downward flow. After the end of the drug delivery, the regenerative chemical solution in the resin layer was extruded using water flowing downward, and the resin layer was washed with pure water to complete the regeneration process. At the end of the regeneration process, no white deposits could be confirmed on the resin layer of the single-bed strongly acidic cation exchange resin tower.
[0028]
Regeneration of the latter mixed bed type ion exchange resin tower was performed as follows. First, the resin layer was swollen 100% with upward backwash water, and the strong acid cation exchange resin was separated into the lower layer and the weakly basic anion exchange resin was separated into the upper layer. Next, from the top of the tower, 2.4 L of 1N aqueous sodium hydroxide solution is passed through both resins in a downward flow to regenerate the weak base anion exchange resin in the upper layer and the strongly acidic cation exchange resin in the lower layer. Regenerated. After extruding the sodium hydroxide aqueous solution with water, 0.9 L of 1N hydrochloric acid aqueous solution is passed upward from the bottom of the tower to the strongly acidic cation exchange resin in the lower layer, and weak basic anion exchange is performed on the upper layer from the top of the tower. Water was passed through the resin in a downward flow, and the resin regeneration waste liquid and water were discharged from a collector installed on the separation surface of both resins to regenerate the strongly acidic cation exchange resin in the lower layer. Next, washing water was passed through the upper weak base anion exchange resin and lower strong acid cation exchange resin from the upper and lower parts of the tower, respectively, and the washing water was discharged from the collector to complete the regeneration treatment. The regenerated strong acid cation exchange resin and weakly basic anion exchange resin were mixed to form a mixed bed.
[0029]
The starch sugar solution was purified using the sugar solution purifying apparatus in which the single bed type strongly acidic cation exchange resin tower and the mixed bed type ion exchange resin tower were regenerated as described above. In the purification treatment, 60 L was passed as one cycle, and a total of 5 cycles were passed. Table 1 shows the properties of the raw sugar solution. Table 1 shows the properties of the processed sugar solution when 30 L of raw sugar solution was processed when the fifth cycle was passed after regeneration.
[0030]
(Comparative example)
A sugar solution purifying apparatus similar to that of the example was configured. In addition, several cycles of starch sugar solution purification treatment were performed using this sugar solution purifier. At the end of each cycle, white deposits were confirmed on the upper part of the resin layer of the single-bed strongly acidic cation exchange resin tower.
[0031]
After the starch sugar solution purification treatment was completed, the regeneration treatment of the ion exchange resin of each ion exchange resin tower was performed. The regeneration of the single-stage strongly acidic cation exchange resin tower in the previous stage was performed as follows. First, the sugar solution in the resin layer was extruded using downward water. Then, without air mixing, only backwashing is performed (backwashing so that the resin layer expands 100%), and then 1.2 L of 1N hydrochloric acid aqueous solution is downwardly applied to the strongly acidic cation exchange resin layer as a regenerative chemical solution. I passed the medicine in a flow. After the end of the drug delivery, the regenerative chemical solution in the resin layer was extruded using water flowing downward, and the resin layer was washed with pure water to complete the regeneration process. At the end of the regeneration process, it was confirmed that white deposits remained in the resin layer lower part and in the resin layer of the single-bed type strongly acidic cation exchange resin tower. Regeneration of the latter-stage mixed-bed sugar solution purifier was performed in the same manner as in the example.
[0032]
The same starch sugar liquid purification process as in the example was performed using the sugar liquid purification apparatus in which the single-bed strong acid cation exchange resin tower and the mixed bed ion exchange resin tower were regenerated as described above. The refinement | purification process was performed on the same conditions as an Example. Table 1 shows the properties of the processed sugar solution when 30 L of the raw sugar solution was processed when the fifth cycle was passed after regeneration.
[0033]
[Table 1]
[0034]
From the results shown in Table 1, the examples in which the regeneration treatment of the single bed type strongly acidic cation exchange resin tower was performed by the regeneration method of the present invention show that the single bed type strongly acidic cation exchange resin was subjected to the regeneration treatment without air mixing. Compared with the comparative example of the tower, it was recognized that the properties of the treated sugar solution were stable. In Table 1, the absorbance at 720 nm is generally used for measuring turbidity.
[0035]
(Experimental example)
The backwashing effluent of the single bed type strongly acidic cation exchange resin tower in the above example was sampled, and the particle size distribution of the turbid components in the effluent was measured. The particle size distribution was measured with a light scattering diffraction type particle size distribution measuring device LS230 manufactured by Coulter. The results are shown in Table 2.
[0036]
[Table 2]
[0037]
From the results of Table 2, air mixing was performed on the strongly acidic cation exchange resin layer of the single-bed type strongly acidic cation exchange resin tower treated with the starch sugar solution, so that the suspended particles aggregated in the resin layer had a particle size of 0.4 to 0.4. It could be crushed to a size of 100 μm, and it was confirmed that these suspended matters could be discharged out of the resin layer by backwashing the resin layer to flow.
[0038]
【The invention's effect】
As described above, according to the present invention, the turbidity accumulated in the resin layer of the single-bed type strongly acidic cation exchange resin tower treated with the starch sugar solution can be efficiently removed. The resin and the regenerative chemical solution are easily brought into contact with each other to improve the regeneration efficiency, and the liquid acid solution is easily brought into contact with the strongly acidic cation exchange resin and the quality of the treated sugar solution is stabilized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a strongly acidic cation exchange resin tower to which the present invention is applied.
[Explanation of symbols]
2 Strongly acidic cation
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031621A JP4210408B2 (en) | 2000-02-09 | 2000-02-09 | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000031621A JP4210408B2 (en) | 2000-02-09 | 2000-02-09 | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001218600A JP2001218600A (en) | 2001-08-14 |
JP4210408B2 true JP4210408B2 (en) | 2009-01-21 |
Family
ID=18556355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000031621A Expired - Lifetime JP4210408B2 (en) | 2000-02-09 | 2000-02-09 | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4210408B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117583038B (en) * | 2024-01-18 | 2024-04-12 | 欧尚元智能装备有限公司 | Sucrose decalcification method and system |
-
2000
- 2000-02-09 JP JP2000031621A patent/JP4210408B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001218600A (en) | 2001-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4210403B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JP6265750B2 (en) | Method and apparatus for purifying sucrose solution | |
JP3231228B2 (en) | Regeneration method of ion exchange resin tower | |
JP4210408B2 (en) | Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment | |
JP3765653B2 (en) | Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device | |
JP4294203B2 (en) | Regeneration method of sugar liquid purification equipment | |
JP4347491B2 (en) | Regeneration method of mixed-bed starch sugar liquid purification equipment | |
JP4192557B2 (en) | Purification method of sugar solution | |
JP4216998B2 (en) | Regeneration method of mixed-bed type sugar liquid purification equipment | |
JP3592452B2 (en) | Mixed-bed sugar liquid purification equipment | |
JP4245745B2 (en) | Mixed bed type sugar liquid purification equipment | |
JP3040115B2 (en) | Purification method and processing equipment for sucrose solution | |
JP3638624B2 (en) | Regeneration method of mixed bed type sucrose solution purification equipment | |
JP2845489B2 (en) | Regeneration method of mixed-bed sucrose liquid purification equipment | |
JPH0577400B2 (en) | ||
JP2020058296A (en) | Refiner and refining method of sugar solution | |
JPH0520075B2 (en) | ||
JP3352571B2 (en) | Method for regenerating strongly basic anion exchange resin in sucrose liquid purification equipment | |
JP2019097527A (en) | Refining method of carbohydrate solution and carbohydrate solution refining device | |
JP4313477B2 (en) | Starch molasses purification method and purification system | |
JP3311875B2 (en) | Sugar liquid desalination and purification equipment | |
JP4216985B2 (en) | Starch molasses purification method | |
JP3599306B2 (en) | Sucrose liquid purification method | |
JP2004041054A (en) | Method for purifying sugar solution | |
JPS6259630B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061205 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20061205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080903 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081007 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081027 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4210408 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111031 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121031 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131031 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |