[go: up one dir, main page]

JP3231228B2 - Regeneration method of ion exchange resin tower - Google Patents

Regeneration method of ion exchange resin tower

Info

Publication number
JP3231228B2
JP3231228B2 JP27530495A JP27530495A JP3231228B2 JP 3231228 B2 JP3231228 B2 JP 3231228B2 JP 27530495 A JP27530495 A JP 27530495A JP 27530495 A JP27530495 A JP 27530495A JP 3231228 B2 JP3231228 B2 JP 3231228B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin tower
ion
regenerant
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27530495A
Other languages
Japanese (ja)
Other versions
JPH09117679A (en
Inventor
友二 浅川
伸 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17553578&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3231228(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP27530495A priority Critical patent/JP3231228B2/en
Publication of JPH09117679A publication Critical patent/JPH09117679A/en
Application granted granted Critical
Publication of JP3231228B2 publication Critical patent/JP3231228B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ショ糖、ブドウ
糖、マルトース等の糖液の脱塩精製装置、純水製造装
置、あるいは各種排水から不純物イオンを除去するイオ
ン交換装置のアニオン交換樹脂塔、カチオン交換樹脂塔
等のイオン交換樹脂塔の再生方法に関する。
TECHNICAL FIELD The present invention relates to an anion exchange resin tower for an apparatus for desalting and purifying sugar solutions such as sucrose, glucose, maltose, etc., a pure water production apparatus, or an ion exchange apparatus for removing impurity ions from various wastewaters. The present invention relates to a method for regenerating an ion exchange resin tower such as a cation exchange resin tower.

【0002】[0002]

【従来の技術】従来、例えばショ糖液の脱塩精製方法と
して、ショ糖液原料を順次強塩基性アニオン交換樹脂塔
及び弱酸性カチオン交換樹脂塔に通液処理するリバース
法や、ショ糖液原料を強塩基性アニオン交換樹脂塔に通
液処理した後、強塩基性アニオン交換樹脂と弱酸性カチ
オン交換樹脂とを充填した混床塔で処理する脱塩精製方
法(特開平2ー295499号)等がある。
2. Description of the Related Art Conventionally, for example, as a method for desalting and purifying a sucrose solution, a reverse method in which raw materials of a sucrose solution are successively passed through a strongly basic anion exchange resin tower and a weakly acidic cation exchange resin tower, or a sucrose solution. A desalination purification method in which the raw material is passed through a strongly basic anion exchange resin tower and then treated in a mixed bed tower filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin (Japanese Patent Laid-Open No. 2-295499). Etc.

【0003】上記イオン交換樹脂塔の再生は、再生剤を
イオン交換樹脂塔に通薬することによって行なわれる。
強塩基性アニオン交換樹脂塔は、0.2〜4規定の水酸
化ナトリウム溶液等のアルカリ剤を再生剤として用いて
再生する。また、弱酸性カチオン交換樹脂塔は、0.2
〜4規定の塩酸溶液等の酸剤を用いて再生する。通薬量
は充填されたイオン交換樹脂の有するイオン交換容量に
よって決定される。
The regeneration of the ion-exchange resin tower is performed by passing a regenerant through the ion-exchange resin tower.
The strong basic anion exchange resin tower is regenerated using an alkali agent such as a 0.2 to 4N sodium hydroxide solution as a regenerating agent. In addition, the weakly acidic cation exchange resin tower has 0.2
It is regenerated using an acid agent such as a ~ 4N hydrochloric acid solution. The flow rate is determined by the ion exchange capacity of the charged ion exchange resin.

【0004】ショ糖液は変性し易いため、脱塩精製され
たショ糖液中にアルカリや酸を含有していると、その後
の工程で着色、変質等を起こす。従って、イオン交換樹
脂塔に充填されたイオン交換樹脂の残存交換容量を正確
に予測し、その範囲内で脱塩処理をし、絶対にアルカリ
や酸を含有したショ糖液をイオン交換樹脂塔から流出さ
せないようにする必要がある。
Since the sucrose solution is easily denatured, if an alkali or an acid is contained in the desalted and purified sucrose solution, coloring, alteration, etc. will occur in the subsequent steps. Therefore, the remaining exchange capacity of the ion exchange resin packed in the ion exchange resin tower is accurately predicted, desalting is performed within the range, and a sucrose solution containing an alkali or acid is absolutely removed from the ion exchange resin tower. It is necessary to prevent spills.

【0005】しかし、脱塩精製するショ糖液中のイオン
濃度は原料によって変動すること、及び上記脱塩精製は
比較的高温で行なわれるので、脱塩精製を繰り返すと、
イオン交換樹脂のイオン交換容量が低下してくる等の問
題があるため、上記残存交換容量の正確な予測は極めて
困難である。
[0005] However, the ion concentration in the sucrose solution to be desalinated and purified varies depending on the raw material, and the desalination and purification are performed at a relatively high temperature.
Since there are problems such as a decrease in the ion exchange capacity of the ion exchange resin, it is extremely difficult to accurately predict the remaining exchange capacity.

【0006】この問題を避けるために上記脱塩処理にお
いては、使用する各イオン交換樹脂の交換容量全部を使
い切らずに、ある程度交換基を残存させた状態でショ糖
液の脱塩処理を中止し、イオン交換樹脂の再生処理を行
なうことが一般になされている。
In order to avoid this problem, in the desalting treatment described above, the desalting treatment of the sucrose solution is stopped with the exchange groups remaining to some extent without using up the entire exchange capacity of each ion exchange resin used. In general, a regeneration treatment of an ion exchange resin is performed.

【0007】実際には、ショ糖液原料中の塩濃度に関係
なく確実に交換基を残存できる範囲内の一定のショ糖液
原料の処理量を予め設定し、その処理量に達すると交換
基の残存量に関係なく全交換容量を再生することのでき
る量の再生剤を用いて再生処理を行なうものである。
[0007] In practice, a fixed amount of sucrose solution raw material is set in advance within a range in which the exchange group can reliably remain irrespective of the salt concentration in the sucrose solution raw material. The regeneration process is performed using an amount of the regenerating agent capable of regenerating the entire exchange capacity irrespective of the remaining amount.

【0008】従ってこの方法によれば、交換基が常に比
較的多量に残存しているので、その分だけ再生剤が余分
に必要になり、不経済である。
[0008] Therefore, according to this method, since a relatively large amount of the exchange group always remains, an extra regenerant is required correspondingly, which is uneconomical.

【0009】この問題を解決するために、余分に使用さ
れている再生剤を回収し、次の再生時に再生剤として再
利用する方法がある。しかし、この再生剤の一定量をイ
オン交換樹脂塔に通液した後、再生廃液の一部を回収す
る方法は、イオン交換基の残存交換容量に相当する再生
剤を用いるものではないので、回収される再生廃液の性
状、即ち含有される不純物イオン濃度が不安定になる。
特に不純物イオン濃度が高い場合には、この回収した再
生廃液を再生剤として用いると、これらがイオン交換樹
脂に再吸着されてしまう問題がある。
In order to solve this problem, there is a method of recovering an excessively used regenerating agent and reusing it as a regenerating agent at the next regeneration. However, after a certain amount of the regenerant is passed through the ion-exchange resin tower, a method of recovering a part of the regenerated waste liquid does not use a regenerant corresponding to the remaining exchange capacity of the ion-exchange group. The properties of the recycled waste liquid, that is, the concentration of impurity ions contained therein become unstable.
In particular, when the impurity ion concentration is high, there is a problem that when the recovered regenerated waste liquid is used as a regenerating agent, these are re-adsorbed to the ion exchange resin.

【0010】[0010]

【発明が解決しようとする課題】本発明者は、上記問題
を解決するために鋭意研究を重ねた結果、再生廃液のp
HをpH計を用いて測定し、この測定値に基づいて再生
剤の通薬量の制御を行なうことにより、上記問題が解決
できることを見出して本発明を完成するに至ったもので
ある。従って、その目的とするところは、イオン交換樹
脂塔の再生においてイオン交換樹脂の残存イオン交換容
量に応じた再生剤量の使用と、不純物含有量の少ない再
生廃液を再生剤として安定して回収することのできるイ
オン交換樹脂塔の再生方法を提供することにある。
The inventor of the present invention has conducted intensive studies in order to solve the above-mentioned problems, and as a result, has found that p
The inventors have found that the above problem can be solved by measuring H using a pH meter and controlling the amount of the regenerant passed based on the measured value, and completed the present invention. Therefore, the purpose thereof is to use a regenerant in accordance with the remaining ion exchange capacity of the ion exchange resin in the regeneration of the ion exchange resin tower, and to stably recover the regeneration waste liquid having a small impurity content as the regenerant. It is an object of the present invention to provide a method of regenerating an ion-exchange resin tower that can perform the above-mentioned steps.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明はイオン交換樹脂塔入口に酸再生剤又はアル
カリ再生剤を供給すると共にイオン交換樹脂塔出口から
再生廃液を取り出すことによりイオン交換樹脂塔の再生
を行なうイオン交換樹脂塔の再生方法において、再生剤
をイオン交換樹脂塔入口に供給すると共にその出口から
再生廃液を取り出しながら再生廃液のpHを測定し、再
生剤のpHを基準としてその所定範囲に再生廃液のpH
が到達したら再生剤の供給を停止することを特徴とする
イオン交換樹脂塔の再生方法、及びイオン交換樹脂塔入
口に酸再生剤又はアルカリ再生剤を供給すると共にイオ
ン交換樹脂塔出口から再生廃液を取り出すことによりイ
オン交換樹脂塔の再生をおこなうイオン交換樹脂塔の再
生方法において、再生剤をイオン交換樹脂塔入口に供給
すると共にその出口から再生廃液を取り出しながら再生
廃液のpHを測定し、再生剤のpHを基準としてその所
定範囲に再生廃液のpHが到達したら再生剤の供給を停
止し、次いでイオン交換樹脂塔に押し出し水を供給する
ことにより再生剤をイオン交換樹脂塔から回収すること
を特徴とするイオン交換樹脂塔の再生方法を提案するも
ので、イオン交換樹脂塔が糖液の脱塩精製に用いられる
ものであることを含む。
In order to achieve the above object, the present invention provides an ion-exchange resin tower by supplying an acid regenerant or an alkali regenerant to the inlet thereof and removing the regenerated waste liquid from the outlet of the ion-exchange resin tower. In the method of regenerating an ion exchange resin tower for regenerating an exchange resin tower, the regenerant is supplied to the inlet of the ion exchange resin tower, and the pH of the recycle waste liquid is measured while taking out the recycle waste liquid from the outlet, based on the pH of the regenerant. The pH of the reclaimed waste liquid falls within the predetermined range as
The method for regenerating an ion-exchange resin tower, characterized in that the supply of the regenerant is stopped when reaches, and the regeneration waste liquid is supplied from the outlet of the ion-exchange resin tower while supplying an acid regenerant or an alkali regenerant to the ion-exchange resin tower inlet. In a method for regenerating an ion-exchange resin tower in which the ion-exchange resin tower is regenerated by taking out the regenerant, the regenerant is supplied to the inlet of the ion-exchange resin tower, and the pH of the regenerant is measured while taking out the regenerate waste from the outlet. The supply of the regenerant is stopped when the pH of the regenerated waste liquid reaches a predetermined range based on the pH of the regenerated waste liquid, and then the regenerant is recovered from the ion-exchange resin tower by supplying water to the ion-exchange resin tower. The present invention proposes a method for regenerating an ion exchange resin tower, wherein the ion exchange resin tower is used for desalting and purification of a sugar solution. No.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明を詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0013】本発明の再生方法は、例えば、ショ糖液
を強塩基性アニオン交換樹脂塔、次いで弱酸性カチオン
交換樹脂塔によって脱塩精製するリバース法における強
塩基性アニオン交換樹脂塔または弱酸性カチオン交換樹
脂塔の再生、及び/又は再生廃液の回収、ショ糖液を
強塩基性アニオン交換樹脂塔、次いで強塩基性アニオン
交換樹脂と弱酸性カチオン交換樹脂とを充填した混床塔
によって脱塩精製する方法における強塩基性アニオン交
換樹脂塔の再生、及び/又は再生廃液の回収、ブドウ
糖を強酸性カチオン交換樹脂塔及び強塩基性アニオン交
換樹脂塔の順に通液して処理した後、強酸性カチオン交
換樹脂と強塩基性アニオン交換樹脂との混床塔に通液し
て脱塩精製する方法における強酸性カチオン交換樹脂塔
及び強塩基性アニオン交換樹脂塔の再生、及び/又は再
生廃液の回収、市水、工業用水等の原水を強酸性カチ
オン交換樹脂塔、次いで強塩基性アニオン交換樹脂塔に
よって処理して純水を得る純水製造装置における強酸性
カチオン交換樹脂塔及び強塩基性アニオン交換樹脂塔の
再生、及び/又は再生廃液の回収、各種排水から不純
物イオンを除去して回収水を得る装置のカチオン交換樹
脂塔あるいはアニオン交換樹脂塔の再生、及び/又は再
生廃液の回収に利用できるが、それ程厳密な再生を必要
としないという点で、特に糖液の脱塩精製装置のイオン
交換樹脂塔の再生、及び/又は再生廃液の回収に好適で
ある。
[0013] The regeneration method of the present invention is, for example, a strong basic anion exchange resin tower or a weak acid cation in a reverse method in which a sucrose solution is desalted and purified by a strongly basic anion exchange resin tower and then a weakly acidic cation exchange resin tower. Regeneration of the exchange resin tower and / or recovery of the waste liquid, desalting and purification of the sucrose solution by using a strongly basic anion exchange resin tower and then a mixed bed tower filled with a strongly basic anion exchange resin and a weakly acidic cation exchange resin Of the strongly basic anion exchange resin tower and / or recovery of the regenerated waste liquid in the above method, glucose is passed through the strongly acidic cation exchange resin tower and the strongly basic anion exchange resin tower in this order, and then treated. Acid cation exchange resin column and strong basic anion exchange in the method of desalting and purifying by passing through a mixed bed column of cation exchange resin and strong basic anion exchange resin In a pure water production apparatus for regenerating a resin tower and / or recovering a waste liquid for recycle, treating raw water such as city water and industrial water with a strongly acidic cation exchange resin tower and then a strongly basic anion exchange resin tower to obtain pure water. Regeneration of a strongly acidic cation exchange resin tower and a strongly basic anion exchange resin tower, and / or collection of regenerated waste liquid, removal of impurity ions from various wastewater to obtain recovered water, a cation exchange resin tower or an anion exchange resin tower It can be used for regeneration and / or recovery of regenerated waste liquid, but it is not so strictly required for regeneration, especially for regeneration of ion exchange resin tower of desalting and purification equipment for sugar liquid and / or recovery of regenerated waste liquid. It is suitable.

【0014】本発明は被処理液をイオン交換樹脂塔に通
液して脱塩精製した後のイオン交換樹脂塔の再生に際
し、イオン交換樹脂塔の入口に酸再生剤、又はアルカリ
再生剤を供給してイオン交換樹脂を再生すると共に、イ
オン交換樹脂塔出口から流出する再生廃液のpHを測定
し、その測定値に基づいて再生剤の回収、及び通薬量を
制御することで、再生に用いる再生剤量を適切なものと
し、また未使用の再生剤に近い組成の、即ち不純物含有
量の少ない再生廃液を回収し、再利用するものである。
In the present invention, an acid regenerating agent or an alkali regenerating agent is supplied to the inlet of the ion exchange resin tower at the time of regeneration of the ion exchange resin tower after the liquid to be treated is passed through the ion exchange resin tower and subjected to desalination purification. While regenerating the ion-exchange resin and measuring the pH of the reclaimed waste liquid flowing out of the ion-exchange resin tower outlet, recovering the regenerant based on the measured value, and controlling the amount of the drug passed through, it is used for regeneration. The amount of the regenerating agent is made appropriate, and a regenerating waste liquid having a composition close to that of an unused regenerating agent, that is, having a low impurity content, is collected and reused.

【0015】図1は、本再生方法が好適に実施される糖
液脱塩精製装置のイオン交換樹脂塔の構成例を示すもの
である。
FIG. 1 shows an example of the configuration of an ion-exchange resin column of a sugar liquid desalination and purification apparatus in which the present regeneration method is suitably carried out.

【0016】糖液の脱塩精製工程においては、糖液2が
イオン交換樹脂塔4の入口6からイオン交換樹脂塔4に
送られ、この中に充填されたイオン交換樹脂によって脱
塩精製された後、イオン交換樹脂塔出口8、パイプ10
を通って取り出される。
In the step of desalting and purifying the sugar solution, the sugar solution 2 is sent from the inlet 6 of the ion-exchange resin tower 4 to the ion-exchange resin tower 4, and is desalted and purified by the ion-exchange resin filled therein. Thereafter, the outlet 8 of the ion exchange resin tower, the pipe 10
Taken out through.

【0017】糖液の所定量が脱塩精製されると、糖液の
供給は停止され、再生工程に入る。
When a predetermined amount of the sugar solution has been desalted and purified, the supply of the sugar solution is stopped, and the process proceeds to a regeneration step.

【0018】まず、再生剤14が入口6を通ってイオン
交換樹脂塔4に供給される。
First, a regenerant 14 is supplied to the ion-exchange resin tower 4 through the inlet 6.

【0019】イオン交換樹脂塔4に充填されているイオ
ン交換樹脂が強塩基性アニオン交換樹脂や弱塩基性アニ
オン交換樹脂の場合は、再生剤は0.2〜4規定の水酸
化ナトリウム等のアルカリ剤が使用される。出口8を通
って取り出された再生廃液はpH計12に送られ、ここ
でそのpHが測定された後、後述する所定のpHになる
まで排出パイプ16を通って外部に放出される。
When the ion exchange resin packed in the ion exchange resin tower 4 is a strongly basic anion exchange resin or a weakly basic anion exchange resin, the regenerant is an alkali such as sodium hydroxide of 0.2 to 4N. Agent is used. The recycled waste liquid taken out through the outlet 8 is sent to a pH meter 12, where its pH is measured, and then discharged to the outside through a discharge pipe 16 until a predetermined pH described later is reached.

【0020】再生廃液のpHは以下のように変化する。
即ち、再生剤の通薬初期には、イオン交換樹脂に吸着さ
れた塩化物イオンや硫酸イオン等の陰イオンが脱着され
るため、再生廃液のpHは再生剤のpHと比べて小さい
(低い)値を示す。しかし、再生が進むにつれて脱着さ
れる陰イオン量が少なくなるので、徐々に再生剤のpH
に近づく。再生廃液のpHが再生剤のpHと同じになる
ということは、その時の再生廃液には前記陰イオンがほ
とんど、或いは全く存在しないことを意味するから、そ
れ以降に取り出される再生廃液は次の再生工程に再生剤
として再利用することができる。
[0020] The pH of the regeneration waste liquid changes as follows.
That is, in the early stage of the passage of the regenerant, anions such as chloride ions and sulfate ions adsorbed on the ion-exchange resin are desorbed, so that the pH of the recycle waste liquid is smaller (lower) than the pH of the regenerant. Indicates a value. However, as the amount of anions desorbed decreases as the regeneration proceeds, the pH of the regenerant gradually decreases.
Approach. The fact that the pH of the regenerating waste liquid is equal to the pH of the regenerating agent means that the anion is scarce or not present in the regenerating waste liquid at that time. It can be reused as a regenerant in the process.

【0021】本発明においては、この再生廃液のpHが
再生剤のpHを基準としてその所定範囲に到達したら、
つまり再生廃液のpHが再生剤のpHとほぼ同じになっ
たら、再生剤14の通薬を停止し、押し出し工程に入
る。上記所定範囲は再生剤のpHの値を基準としてその
値の±0.2とすることが好ましい。
In the present invention, when the pH of the regenerated waste liquid reaches a predetermined range based on the pH of the regenerant,
That is, when the pH of the regenerating waste liquid becomes almost the same as the pH of the regenerating agent, the passage of the regenerating agent 14 is stopped, and the extrusion process is started. The above-mentioned predetermined range is preferably ± 0.2 of the value of the pH of the regenerant.

【0022】押し出し工程に入ると、押し出し水18が
イオン交換樹脂塔4の入口6に供給される。これにより
イオン交換樹脂塔4内に残留する再生剤が出口8から押
し出され、pH計12、回収パイプ20を通って回収槽
22に回収される。これらの操作は制御装置24の指示
で自動的に制御される。なお、26はバルブである。
In the extrusion step, extrusion water 18 is supplied to the inlet 6 of the ion exchange resin tower 4. As a result, the regenerant remaining in the ion exchange resin tower 4 is extruded from the outlet 8 and is collected in the collection tank 22 through the pH meter 12 and the collection pipe 20. These operations are automatically controlled by an instruction from the control device 24. In addition, 26 is a valve.

【0023】具体的に数字を例示して説明すると、再生
廃液のpHが再生剤のpHとほぼ同一(例えば再生剤の
pH−0.2)になった時点で通薬を終了して押し出し
工程に入り、イオン交換樹脂塔に押し出し水を供給して
再生剤を回収する。回収の際にも押し出し水のpHを測
定し、再生剤の濃度の高い部分、つまり再生剤のpHー
0.5以上のpHの部分のみを回収する等の方法が好ま
しい。
Explaining concretely by exemplifying the figures, when the pH of the regenerating waste liquid becomes substantially the same as the pH of the regenerating agent (for example, the pH of the regenerating agent-0.2), the drug delivery is terminated and the extrusion step is performed. And the extruded water is supplied to the ion exchange resin tower to recover the regenerant. It is also preferable to measure the pH of the extruded water at the time of recovery, and recover only the portion having a high concentration of the regenerant, that is, the portion of the regenerant having a pH of 0.5 or more.

【0024】上記のようにして回収した再生廃液は、次
の再生工程の初期の再生剤として用い、その後未使用の
新しい再生剤でそれ以後のイオン交換樹脂の再生をする
と良い。
The regenerated waste liquid recovered as described above may be used as an initial regenerant in the next regenerating step, and thereafter, the ion-exchange resin may be regenerated with an unused new regenerant.

【0025】なお、上述の説明では再生剤のpHとほぼ
同じになった時点以降に流出する再生廃液を回収して再
利用するように説明したが、本発明はこれに限定され
ず、再生廃液を回収せずに廃棄する場合も含む。
In the above description, the reclaimed waste liquid flowing out after the pH of the regenerant has become substantially the same has been described as being collected and reused. However, the present invention is not limited to this. Includes cases in which waste is discarded without being collected.

【0026】イオン交換樹脂塔4に充填されているイオ
ン交換樹脂が強酸性カチオン交換樹脂や弱酸性カチオン
交換樹脂の場合は、再生剤は0.2〜4規定の塩酸等の
酸剤が使用される。出口8を通って取り出される再生廃
液のpH変化は以下のものである。即ち、再生剤の通薬
初期には、イオン交換樹脂に吸着されているナトリウム
イオン、カルシウムイオン等が脱着されている状態が続
くため、再生廃液のpHは再生剤のpHよりも大きい値
を示す。その後、弱酸性カチオン交換樹脂の再生が進む
と脱着されるイオン量が少なくなるため、再生廃液のp
Hは急激に再生剤のpHに近づく。前述のように、再生
剤のpHとほぼ同じpHの再生廃液中にはほとんどナト
リウム、カルシウム等の不純物イオンを含んでいないの
で、このものは再生剤として再利用できるものである。
When the ion exchange resin packed in the ion exchange resin tower 4 is a strongly acidic cation exchange resin or a weakly acidic cation exchange resin, an acid agent such as 0.2 to 4 N hydrochloric acid is used as a regenerant. You. The pH change of the regenerated waste liquid taken out through the outlet 8 is as follows. That is, in the initial stage of the passage of the regenerating agent, the state in which sodium ions, calcium ions, and the like adsorbed on the ion exchange resin are desorbed continues, so that the pH of the regenerating waste liquid shows a value larger than the pH of the regenerating agent. . Thereafter, as the regeneration of the weakly acidic cation exchange resin proceeds, the amount of ions to be desorbed becomes smaller.
H rapidly approaches the pH of the regenerant. As described above, since the regenerated waste liquid having the same pH as that of the regenerant contains almost no impurity ions such as sodium and calcium, it can be reused as the regenerant.

【0027】具体的に数字を例示して説明すると、再生
廃液のpHが再生剤のpHとほぼ同一(例えば再生剤の
pH+0.2)になった時点で通薬を終了して押し出し
工程に入り、イオン交換樹脂塔に押し出し水を供給して
再生剤を回収する。回収の際にも押し出し水のpHを測
定し、再生剤の濃度の高い部分、つまり再生剤のpH+
0.5以下のpHの部分のみを回収する等の方法が好ま
しい。
Explaining concretely by exemplifying the numbers, when the pH of the regenerating waste liquid becomes substantially the same as the pH of the regenerating agent (for example, the pH of the regenerating agent + 0.2), the drug delivery is terminated and the extrusion process is started. Then, extruded water is supplied to the ion exchange resin tower to recover the regenerant. At the time of recovery, the pH of the extruded water is measured, and the pH of the regenerant is high, that is, the pH of the regenerant is +
A method of recovering only a portion having a pH of 0.5 or less is preferable.

【0028】上記のようにして回収した再生廃液は、次
の再生工程の初期の再生剤として用い、その後未使用の
新しい再生剤でそれ以後のイオン交換樹脂の再生をする
ことが好ましい。
It is preferable that the recycled waste liquid recovered as described above is used as an initial regenerating agent in the next regenerating step, and thereafter, the ion-exchange resin is regenerated with a new unused regenerating agent.

【0029】強塩基性アニオン交換樹脂としては、アン
バーライト(登録商標)IRA−900,IRA−41
1S,XT−5007,ダイヤイオン(登録商標)PA
−312等が例示でき、また弱塩基性アニオン交換樹脂
としてはアンバーライトIRA−68,IRA−93,
IRA−94等が例示できる。弱酸性カチオン交換樹脂
としては、アンバーライトIRC−50,ダイヤイオン
WK−11等が例示でき、また強酸性カチオン交換樹脂
としてはアンバーライトIR−120B,IR−124
等が例示できる。
Examples of the strong basic anion exchange resin include Amberlite (registered trademark) IRA-900, IRA-41
1S, XT-5007, Diaion (registered trademark) PA
-312 and the like, and examples of the weakly basic anion exchange resin include Amberlite IRA-68, IRA-93,
Examples include IRA-94. Examples of the weakly acidic cation exchange resin include Amberlite IRC-50 and Diaion WK-11. Examples of the strongly acidic cation exchange resin include Amberlite IR-120B and IR-124.
Etc. can be exemplified.

【0030】なお、本発明においては、再生剤の通薬量
だけを制御する場合、あるいは再生剤の回収工程だけを
制御する場合も含む。
The present invention includes a case in which only the amount of the regenerant passed is controlled, or a case in which only the recovery step of the regenerant is controlled.

【0031】[0031]

【実施例】【Example】

(参考例 1、2)図1に示すフローの脱塩精製装置の
イオン交換樹脂塔を用いて、以下に示す脱塩試験を行な
った。
(Reference Examples 1 and 2) The following desalination tests were performed using the ion exchange resin tower of the desalination and purification apparatus shown in FIG.

【0032】イオン交換樹脂塔4にはOH型強塩基性ア
ニオン交換樹脂(アンバーライトIRA−402BL)
を50ml充填した。
The ion-exchange resin tower 4 has an OH-type strongly basic anion-exchange resin (Amberlite IRA-402BL).
Was filled with 50 ml.

【0033】ショ糖液原料(原液:Bx50)の通液条
件は、50℃、200ml/hrの流量で2000ml
を脱塩する操作とした。
The conditions for passing the sucrose solution raw material (stock solution: Bx50) were as follows: 50 ° C., 2000 ml / 200 ml / hr flow rate.
Was desalted.

【0034】ショ糖液原料中の全アニオン量は、参考例
1が100mg−CaCO3/lで、参考例2が500
mg−CaCO3/lであった。
The total anion content in the raw material of the sucrose solution was 100 mg-CaCO 3 / l in Reference Example 1 and 500 in Reference Example 2.
mg-CaCO 3 / l.

【0035】上記脱塩工程の終了後、再生工程を以下の
ようにして行なった。即ち、1NのNaOH(pH=1
4)125ml(2.5 l/l−R)を下降流で強塩
基性アニオン交換樹脂を充填したイオン交換樹脂塔4に
通液しながら、再生廃液のpHをpH計12で測定し
た。この時の再生剤、及びそれに続く押し出し水の通薬
量と再生廃液のpHとの関係を図2に示した。なお、押
し出し水は純水を用いた。
After completion of the desalting step, a regeneration step was performed as follows. That is, 1N NaOH (pH = 1
4) The pH of the regenerated waste liquid was measured by the pH meter 12 while 125 ml (2.5 l / l-R) was passed down through the ion-exchange resin tower 4 filled with a strongly basic anion exchange resin. FIG. 2 shows the relationship between the amount of the regenerant and the subsequent flow of the extruded water and the pH of the regenerated waste liquid. In addition, pure water was used for the extrusion water.

【0036】参考例1と2ではショ糖液中の全アニオン
量が異なるため、強塩基性アニオン交換樹脂の残存交換
容量が異なる。このため、図2に示すように再生廃液の
pHの変化の様子が異なるものとなった。
In Reference Examples 1 and 2, since the total amount of anions in the sucrose solution is different, the remaining exchange capacity of the strongly basic anion exchange resin is different. For this reason, as shown in FIG. 2, the state of the change in the pH of the regeneration waste liquid is different.

【0037】図2から、参考例1の場合は通薬量1 l
/l−Rの時に、また参考例2の場合は通薬量1.5
l/l−Rの時にそれぞれ再生廃液のpHが約13.8
に達し、この時点でアニオン交換樹脂の再生はほぼ終了
し、最初の状態に復帰したと判断することができる。
As shown in FIG. 2, in the case of Reference Example 1, the amount of drug passed through was 1 liter.
/ L-R, and in the case of Reference Example 2, the drug delivery amount is 1.5
At 1 / l-R, the pH of the regenerated waste liquid was about 13.8, respectively.
At this point, it can be determined that the regeneration of the anion exchange resin has almost ended and has returned to the initial state.

【0038】従来は再生剤の通薬量2.5 l/l−R
で再生工程を行なっていたが、図2の結果からみて、上
記のように再生剤の通薬量を参考例1では1 l/l−
R、参考例2では1.5 l/l−Rに削減することが
可能であることがわかる。更にpHが13.8に達した
時点以降の再生廃液を回収してこれを再生剤として再使
用することにより、新品の再生剤の使用量を大幅に減少
させることができる。
Conventionally, the flow rate of the regenerant is 2.5 l / l-R.
The regenerating step was carried out at a rate of 1 l / l- in Reference Example 1 as described above, based on the results shown in FIG.
R, in Reference Example 2, it can be seen that it is possible to reduce to 1.5 l / l-R. Further, by recovering the waste liquid after the pH reached 13.8 and reusing it as a regenerant, the amount of new regenerant used can be greatly reduced.

【0039】(参考例3、4)予め、OH型強塩基性ア
ニオン交換樹脂(アンバーライトIRA−402BL)
で処理したショ糖液(原液:Bx50)を、H型弱酸性
カチオン交換樹脂(アンバーライトIRC−76)50
mlを充填した50℃の弱酸性カチオン交換樹脂塔で処
理した。脱塩処理は、流量400ml/hrで、400
0mlの処理量とした。イオン交換樹脂塔の装置構成は
図1に示したものであった。
(Reference Examples 3 and 4) OH type strong basic anion exchange resin (Amberlite IRA-402BL)
Sucrose solution (stock solution: Bx50) treated with H-type weakly acidic cation exchange resin (Amberlite IRC-76) 50
The mixture was treated in a weakly acidic cation exchange resin tower at 50 ° C. packed with 50 ml. The desalination treatment is performed at a flow rate of 400 ml / hr and a flow rate of 400 ml / hr.
The processing volume was 0 ml. The apparatus configuration of the ion exchange resin tower was as shown in FIG.

【0040】ショ糖液の全カチオン量は、参考例3の場
合が500mg−CaCO3/lで、参考例4の場合が
1000mg−CaCO3/lであった。
The total cation amount of the sucrose solution was 500 mg-CaCO 3 / l in Reference Example 3 and 1000 mg-CaCO 3 / l in Reference Example 4.

【0041】上記弱酸性カチオン交換樹脂塔に下降流で
再生剤として1NーHCl(pH=0)を200ml
(4 l/l−R)通薬し、弱酸性カチオン交換樹脂塔
の再生を行ない、再生廃液のpHをpH計12で測定し
た。この時の再生剤及びそれに続く押し出し水の通薬量
と再生廃液のpHとの関係を図3に示した。
200 ml of 1N HCl (pH = 0) as a regenerating agent was flowed downward into the weakly acidic cation exchange resin tower.
(4 l / l-R) was passed, the weak acid cation exchange resin tower was regenerated, and the pH of the regenerated waste liquid was measured with a pH meter 12. FIG. 3 shows the relationship between the amount of the regenerant and the subsequent pumping water and the pH of the regenerated waste liquid.

【0042】図3から再生剤の通薬量1.6(参考例
3)、及び2.7(参考例4)の時に再生廃液のpHが
約0.2に達し、この時点でカチオン交換樹脂の再生は
ほぼ終了し、最初の状態に復帰したと判断することがで
きる。押し出し水は純水を用いた。
FIG. 3 shows that the pH of the regenerated waste liquid reached about 0.2 when the flow rate of the regenerant was 1.6 (Reference Example 3) and 2.7 (Reference Example 4). It can be determined that the reproduction of is almost completed and has returned to the initial state. Extrusion water used was pure water.

【0043】従来は、再生剤の通薬量4 l/l−Rで
再生工程を行なっていたが、図3の結果からみて再生剤
の通薬量を参考例3では1.6 l/l−Rに、また参
考例4では2.7 l/l−Rにそれぞれ低減すること
が可能であることがわかる。更に、pHが0.2に達し
た時点以降の再生廃液の回収を行なうことにより、これ
を再生剤として再使用できるので、新品の再生剤の使用
量を大幅に削減できる。
Conventionally, the regeneration step was carried out with a regenerating agent flow rate of 4 l / l-R. However, from the results shown in FIG. 3, the regenerating agent flow rate was 1.6 l / l in Reference Example 3. −R, and in Reference Example 4, it can be reduced to 2.7 l / l−R. Further, by collecting the regenerated waste liquid after the pH reaches 0.2, it can be reused as a regenerating agent, so that the amount of new regenerating agent used can be greatly reduced.

【0044】(実施例1)図1に示したものと同様の構
成のアニオン交換樹脂塔とカチオン交換樹脂塔とを用意
し、以下に示すように本発明を実施した。即ち、OH型
強塩基性アニオン交換樹脂(アンバーライトIRA−4
02BL)50mlを充填したアニオン交換樹脂塔と、
H型弱酸性カチオン交換樹脂(アンバーライトIRC−
76)25mlを充填したカチオン交換樹脂塔とに、シ
ョ糖液(原液:Bx50)をこの順に通液し、脱塩処理
した。1サイクルの処理は、流量200ml/hrで、
処理量2000mlとした。
Example 1 An anion exchange resin tower and a cation exchange resin tower having the same structure as that shown in FIG. 1 were prepared, and the present invention was carried out as described below. That is, an OH type strongly basic anion exchange resin (Amberlite IRA-4)
02BL) an anion exchange resin tower filled with 50 ml;
H-type weakly acidic cation exchange resin (Amberlite IRC-
76) A sucrose solution (stock solution: Bx50) was passed through a cation exchange resin tower filled with 25 ml in this order, and desalted. One cycle of processing is performed at a flow rate of 200 ml / hr.
The processing volume was 2000 ml.

【0045】ショ糖液の全アニオン量、及び全カチオン
量は、それぞれ500mg−CaCO3/lであった。
The total anion amount and total cation amount of the sucrose solution were 500 mg-CaCO 3 / l, respectively.

【0046】上記の通液処理後、強塩基性アニオン交換
樹脂塔に再生剤として1N−NaOH(pH=14)を
通液し、また弱酸性カチオン交換樹脂塔に再生剤として
1NーHCl(pH=0)を通薬し、強塩基性アニオン
交換樹脂塔、及び弱酸性カチオン交換樹脂塔の再生を行
なった。アニオン交換樹脂塔の場合は、再生剤を80m
l(1.6 l/l−R)通薬した時点で再生廃液のp
Hが13.8に達したので再生剤の通薬を停止し、押し
出し工程を開始した。
After the above liquid-passing treatment, 1N-NaOH (pH = 14) was passed as a regenerating agent through the strongly basic anion exchange resin tower, and 1N-HCl (pH = pH) was passed through the weakly acidic cation exchange resin tower. = 0), and the strong basic anion exchange resin tower and the weakly acidic cation exchange resin tower were regenerated. In the case of an anion exchange resin tower, the regenerant is 80 m
l (1.6 l / l-R) at the time of passing the drug,
Since H reached 13.8, the passage of the regenerant was stopped, and the extrusion process was started.

【0047】また、カチオン交換樹脂塔の場合は、再生
剤を70ml(2.8 l/l−R)通薬した時点で再
生廃液のpHが0.2に達したので再生剤の通薬を停止
し、押し出し工程を開始した。
In the case of the cation exchange resin tower, the pH of the regenerated waste liquid reached 0.2 at the time when 70 ml (2.8 l / l-R) of the regenerant was passed, so that the regenerant was not passed. Stopped and started the extrusion process.

【0048】上記の押し出し工程終了後、アニオン交換
樹脂塔及びカチオン交換樹脂塔に純水を通水して常法に
より洗浄を行なった。
After completion of the above extrusion step, pure water was passed through the anion exchange resin tower and the cation exchange resin tower to perform washing by a conventional method.

【0049】洗浄終了後、上述したショ糖液2000m
lを再び通液して脱塩処理を行なったところ、電気伝導
率3.0μS/cm以下の処理糖液を安定して得ること
ができた。
After the washing is completed, the above-mentioned sucrose solution 2000 m
1 was passed again to perform desalting treatment. As a result, a treated sugar solution having an electric conductivity of 3.0 μS / cm or less could be obtained stably.

【0050】上記の再生剤使用量は、前記した従来の再
生剤使用量(即ち、アニオン交換樹脂塔の場合は2.5
l/l−R、カチオン交換樹脂塔の場合は4.0 l
/l−R)に比べて著しく少ないものであり、従って本
発明により再生剤の使用量を従来より大幅に削減できる
ことがわかる。
The amount of the regenerant used is the above-mentioned amount of the conventional regenerant (that is, 2.5 in the case of the anion exchange resin tower).
l / l-R, 4.0 l for cation exchange resin tower
/ L-R), which indicates that the present invention can significantly reduce the amount of the regenerating agent used in the prior art.

【0051】なお、上記実施例において、押し出し工程
開始後の再生廃液を回収することにより、不純物含有量
の少ない再生廃液を得ることができ、これを次回の再生
工程において再生剤として再利用することにより、その
分新しい再生剤の使用量を削減できることは言うまでも
ないことである。
In the above embodiment, by collecting the recycled waste liquid after the start of the extrusion step, it is possible to obtain a recycled waste liquid having a low impurity content, which can be reused as a regenerating agent in the next regeneration step. It is needless to say that the amount of new regenerant can be reduced correspondingly.

【0052】[0052]

【発明の効果】本発明方法においては、イオン交換樹脂
塔の再生工程で排出される再生廃液のpHを測定し、使
用する再生剤量を適切な量に制御することで、再生に用
いる再生剤量を削減することができる。更に、品質的に
ほとんど未使用の再生剤に等しい再生廃液を回収し、再
利用することができる。これにより、1サイクル当たり
の再生剤使用量を大幅に低減させることができる。
According to the method of the present invention, the pH of the regeneration waste liquid discharged in the regeneration step of the ion-exchange resin tower is measured, and the amount of the regenerant used is controlled by controlling the amount of the regenerant used to an appropriate amount. The amount can be reduced. Further, it is possible to collect and reuse a recycled waste liquid having a quality equivalent to an almost unused regenerant. As a result, the amount of the regenerant used per cycle can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に用いる脱塩精製装置のイオン交
換樹脂塔の一例を示すフロー図である。
FIG. 1 is a flow chart showing an example of an ion-exchange resin tower of a desalination and purification device used for carrying out the present invention.

【図2】再生工程における強塩基性アニオン交換樹脂塔
出口のpHと再生剤及びそれに続く押し出し水の通薬量
との関係の一例を示すグラフである。
FIG. 2 is a graph showing an example of the relationship between the pH at the outlet of a strongly basic anion exchange resin tower in the regeneration step and the flow rate of the regenerant and the subsequent pumping water.

【図3】再生工程における弱酸性カチオン交換樹脂塔出
口のpHと再生剤及びそれに続く押し出し水の通薬量と
の関係の他の例を示すグラフである。
FIG. 3 is a graph showing another example of the relationship between the pH at the outlet of the weakly acidic cation exchange resin tower in the regeneration step and the flow rate of the regenerant and the subsequent pumping water.

【符号の説明】[Explanation of symbols]

2 糖液 4 イオン交換樹脂塔 6 入口 8 出口 10 パイプ 12 pH計 14 再生剤 16 排出パイプ 18 押し出し水 20 回収パイプ 22 回収槽 24 制御装置 26 バルブ 2 sugar liquid 4 ion exchange resin tower 6 inlet 8 outlet 10 pipe 12 pH meter 14 regenerant 16 discharge pipe 18 extrusion water 20 recovery pipe 22 recovery tank 24 control device 26 valve

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B01J 49/00 B01J 47/14 C02F 1/42 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) B01J 49/00 B01J 47/14 C02F 1/42

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオン交換樹脂塔入口に酸再生剤又はア
ルカリ再生剤を供給すると共にイオン交換樹脂塔出口か
ら再生廃液を取り出すことによりイオン交換樹脂塔の再
生を行なうイオン交換樹脂塔の再生方法において、再生
剤をイオン交換樹脂塔入口に供給すると共にその出口か
ら再生廃液を取り出しながら再生廃液のpHを測定し、
再生剤のpHを基準としてその所定範囲に再生廃液のp
Hが到達したら再生剤の供給を停止することを特徴とす
るイオン交換樹脂塔の再生方法。
1. A method for regenerating an ion-exchange resin tower in which an acid regenerant or an alkali regenerant is supplied to an inlet of the ion-exchange resin tower and a regenerated waste liquid is taken out from the outlet of the ion-exchange resin tower to regenerate the ion-exchange resin tower. Supplying the regenerant to the inlet of the ion exchange resin tower and measuring the pH of the regenerated waste liquid while taking out the regenerated waste liquid from the outlet,
The pH of the regenerated waste liquid falls within a predetermined range based on the pH of the regenerant.
A method for regenerating an ion-exchange resin tower, wherein the supply of the regenerant is stopped when H reaches.
【請求項2】 イオン交換樹脂塔入口に酸再生剤又はア
ルカリ再生剤を供給すると共にイオン交換樹脂塔出口か
ら再生廃液を取り出すことによりイオン交換樹脂塔の再
生をおこなうイオン交換樹脂塔の再生方法において、再
生剤をイオン交換樹脂塔入口に供給すると共にその出口
から再生廃液を取り出しながら再生廃液のpHを測定
し、再生剤のpHを基準としてその所定範囲に再生廃液
のpHが到達したら再生剤の供給を停止し、次いでイオ
ン交換樹脂塔に押し出し水を供給することにより再生剤
をイオン交換樹脂塔から回収することを特徴とするイオ
ン交換樹脂塔の再生方法。
2. A method for regenerating an ion exchange resin tower in which an acid regenerant or an alkali regenerant is supplied to an inlet of the ion exchange resin tower and a regenerated waste liquid is taken out from an outlet of the ion exchange resin tower to regenerate the ion exchange resin tower. The regenerant is supplied to the inlet of the ion exchange resin tower and the pH of the recycle waste is measured while taking out the recycle waste from the outlet. When the pH of the recycle waste reaches a predetermined range based on the pH of the regenerant, the pH of the regenerant is reduced. A method for regenerating an ion-exchange resin tower, wherein the supply is stopped, and then extruded water is supplied to the ion-exchange resin tower to recover the regenerant from the ion-exchange resin tower.
【請求項3】 イオン交換樹脂塔が糖液の脱塩精製に用
いられるものである請求項1又は2に記載のイオン交換
樹脂塔の再生方法。
3. The method for regenerating an ion-exchange resin tower according to claim 1, wherein the ion-exchange resin tower is used for desalting and purifying a sugar solution.
JP27530495A 1995-10-24 1995-10-24 Regeneration method of ion exchange resin tower Expired - Fee Related JP3231228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27530495A JP3231228B2 (en) 1995-10-24 1995-10-24 Regeneration method of ion exchange resin tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27530495A JP3231228B2 (en) 1995-10-24 1995-10-24 Regeneration method of ion exchange resin tower

Publications (2)

Publication Number Publication Date
JPH09117679A JPH09117679A (en) 1997-05-06
JP3231228B2 true JP3231228B2 (en) 2001-11-19

Family

ID=17553578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27530495A Expired - Fee Related JP3231228B2 (en) 1995-10-24 1995-10-24 Regeneration method of ion exchange resin tower

Country Status (1)

Country Link
JP (1) JP3231228B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615871B2 (en) 2009-12-21 2013-12-31 Funai Electric Co., Ltd. Chip mounted wiring substrate

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008327B2 (en) * 2006-03-29 2012-08-22 中国電力株式会社 Ion exchange resin regeneration device, water treatment system equipped with the regeneration device, and control method for the water treatment system
JP5235091B2 (en) * 2008-04-07 2013-07-10 オルガノ株式会社 Method and apparatus for removing aldehyde compound from alcohol-containing liquid
JP6535532B2 (en) * 2015-07-22 2019-06-26 前澤工業株式会社 Method of regenerating ion exchange resin
JP6402754B2 (en) * 2016-08-23 2018-10-10 栗田工業株式会社 Regenerative ion exchange apparatus and operation method thereof
JP6337933B2 (en) * 2016-09-16 2018-06-06 栗田工業株式会社 Water quality management system and operation method of water quality management system
JP6993859B2 (en) * 2017-12-07 2022-01-14 オルガノ株式会社 Sugar solution purification method and sugar solution purification device
JP6601642B2 (en) * 2018-03-06 2019-11-06 栗田工業株式会社 Method and apparatus for regenerating multilayer anion exchange resin tower
CN110526335A (en) * 2018-05-24 2019-12-03 上海轻工业研究所有限公司 Regeneration of ion-exchange resin method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615871B2 (en) 2009-12-21 2013-12-31 Funai Electric Co., Ltd. Chip mounted wiring substrate

Also Published As

Publication number Publication date
JPH09117679A (en) 1997-05-06

Similar Documents

Publication Publication Date Title
JP3231228B2 (en) Regeneration method of ion exchange resin tower
US3730770A (en) Sugar recovery method
JP4210403B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JPH0592187A (en) Fluorine-containing water treatment method
JP3203745B2 (en) Fluorine-containing water treatment method
JP3851491B2 (en) Apparatus and method for purifying boron eluent
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment device
JP3765653B2 (en) Separation method of mixed resin in mixed bed type ion exchange resin tower and regeneration method of mixed bed type sucrose purification device
JP3845758B2 (en) Dephosphorization method of waste water
JP2891790B2 (en) Regeneration method of anion exchange resin
JP2001104807A (en) Boron recovery method
JP3348446B2 (en) Method and apparatus for removing nitrate ions and / or nitrite ions
JP4347491B2 (en) Regeneration method of mixed-bed starch sugar liquid purification equipment
JP3252521B2 (en) Rinse wastewater treatment method
JP4294203B2 (en) Regeneration method of sugar liquid purification equipment
JP3592452B2 (en) Mixed-bed sugar liquid purification equipment
JP2004136231A (en) Method for washing ion-exchange resin after regeneration
JP2845489B2 (en) Regeneration method of mixed-bed sucrose liquid purification equipment
JP4733807B2 (en) Method for purifying boron eluent and method for producing boron raw material
JP3883781B2 (en) Apparatus and method for purifying boron eluent
JP4210408B2 (en) Regeneration method of strongly acidic cation exchange resin tower of sugar liquid purification equipment
JP4245745B2 (en) Mixed bed type sugar liquid purification equipment
JP4216998B2 (en) Regeneration method of mixed-bed type sugar liquid purification equipment
JP2002029731A (en) Method for recovering high purity boron-containing water and apparatus therefor
JP2019097527A (en) Refining method of carbohydrate solution and carbohydrate solution refining device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees