[go: up one dir, main page]

JP4284668B2 - Insulation resistance measuring device - Google Patents

Insulation resistance measuring device Download PDF

Info

Publication number
JP4284668B2
JP4284668B2 JP32224998A JP32224998A JP4284668B2 JP 4284668 B2 JP4284668 B2 JP 4284668B2 JP 32224998 A JP32224998 A JP 32224998A JP 32224998 A JP32224998 A JP 32224998A JP 4284668 B2 JP4284668 B2 JP 4284668B2
Authority
JP
Japan
Prior art keywords
insulation resistance
low frequency
circuit
frequency voltage
accuracy test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32224998A
Other languages
Japanese (ja)
Other versions
JP2000035452A (en
Inventor
俊二 柏崎
Original Assignee
ネッツエスアイ東洋株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネッツエスアイ東洋株式会社 filed Critical ネッツエスアイ東洋株式会社
Priority to JP32224998A priority Critical patent/JP4284668B2/en
Publication of JP2000035452A publication Critical patent/JP2000035452A/en
Application granted granted Critical
Publication of JP4284668B2 publication Critical patent/JP4284668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被測定電路の絶縁抵抗を測定する絶縁抵抗測定装置に関し、更に詳しくは、絶縁抵抗装置において定期的に実施される精度試験を容易に実施可能とした絶縁抵抗測定装置に関する。
【0002】
【従来の技術】
従来から、絶縁抵抗測定装置においては、その測定精度を確認するために、定期的に精度試験、別の言い方では、校正処理が、安全規格上の問題や通産省からの通達により義務化されている。この精度試験は、使用頻度の少ない測定装置等では、1年に1度や半年に1度という場合もあるが、製造工場のように頻繁に使用される場所の測定装置では、1ヶ月に1度やそれより短い期間で精度試験が指導される場合もある。以下に図4を用いて、従来の絶縁抵抗測定装置における精度試験について説明する。図4では、従来の絶縁抵抗測定装置が被測定電路に接続されている。被測定電路にはトランス1とその2次側の両端を切断可能なブレーカ2が設置されている。被測定電路の2次側と接地間の絶縁抵抗値を絶縁抵抗(R1)3と(R2)4とする。図4の絶縁抵抗測定装置は、トランス1からの漏洩電流の変位を検出する変流器8と、検出された電流の変位を増幅する増幅器9と、検出された電流の変位から高周波数の成分を除去する低周波通過フィルタ10と、検出された電流の変位のアナログ量をデジタル量に変換するアナログ/デジタル変換器11と、後述する警報表示ランプ13及び低周波発振器5の制御を行うと共に入力したデジタル量を判定するCPU12と、絶縁抵抗測定用に商用交流よりも低い周波数の電圧を発生する低周波発振器5と、絶縁抵抗測定用の低周波電圧を増幅する増幅器6と、トランス1の2次側に絶縁抵抗測定用の低周波電圧を印加する低周波電圧印加トランス7とから構成される。また、低周波電圧印加トランス7の2次側の一方の出力が、被測定電路におけるトランス1の2次側の一方の出力に接続され、その接続線路の途中に変流器8が設置される。校正用の測定抵抗(Rt)14は、低周波電圧印加トランス7の接続されたトランス1の2次側の一方の出力と、変流器8との間に接続される。
【0003】
図4の絶縁抵抗測定装置において、まず、通常の絶縁抵抗測定操作においては、低周波電圧印加手段としての低周波発振器5で発生した低周波電圧信号が、増幅器6により増幅されて低周波電圧印加トランス7に印加され、さらに低周波電圧印加トランス7から低周波電圧信号が被測定電路と接地間に印加される。変流器8では、前記した被測定電路と接地間に印加された低周波電圧の電流の変位を検出して増幅器9で増幅し、低周波通過フィルタ10で商用交流成分を除去して、アナログ/デジタル変換器11でデジタル量に変換して、絶縁抵抗測定装置各部の制御を行うCPU12に出力する。CPU12では、変流検出手段の検出結果がデジタル量に変換された値を受けて、予め入力されている設定値を超えている場合には、測定された絶縁抵抗(R1)3と(R2)4の値が設定値を満たしていないと判定して、警報表示ランプ13に通電することにより点灯させて絶縁抵抗値が不十分であることを絶縁抵抗測定装置の操作者に通知する。この従来の絶縁抵抗測定装置に対して精度試験を行う場合には、まず、被測定電路の絶縁抵抗(R1)3と(R2)4の影響を避けるために、被測定電路のブレーカー2を切断して被測定電路の2次側に印加される低周波電圧信号が流れないようにする。その上で、被測定電路と絶縁抵抗測定装置とを接続する接続端と、接地との間に所定の絶縁抵抗値を示す測定抵抗(Rt)14を挿入し、低周波発振器5で発生した低周波電圧信号を低周波電圧印加トランス7を介して測定抵抗(Rt)14に印加し、前記した変流器8によりその変流器8を流れる変流を検出してCPU12に送出する。CPU12は、変流が予め入力されている設定値以上であるか否かを判定し、変流の判定結果が設定値以上であれば、警報表示ランプ13を点灯させることにより精度試験実施者に対して絶縁抵抗測定装置が正常に動作している(精度を維持している)ことを通知する。すなわち、精度試験実施者は、精度試験時に絶縁抵抗測定装置の警報表示ランプ13が点灯することにより、絶縁抵抗測定装置が正常に動作していることを確認することができる。又、上記した測定抵抗(Rt)14を可変抵抗とすることにより、警報表示ランプ13が点灯するときの測定抵抗の抵抗レベルがわかるので、その測定抵抗の抵抗レベルと絶縁抵抗測定装置の示す値により詳しい精度の確認を行うことができる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の絶縁抵抗測定装置の精度試験では、その実施の度に被測定電路の絶縁抵抗の影響を避けるために被測定電路をブレーカーで切断し、更に、被測定電路に絶縁抵抗測定装置を接続するための接続端部と接地間に測定抵抗を挿入する必要が有るので、作業が繁雑であり、また、前記接続端部は被測定電路の電位(一般的に人体に危険な高電位であることが多い)を有していることから、測定抵抗の挿入や撤去という作業は危険を伴う作業であった。本発明では、上記問題に鑑みて、測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施できる絶縁抵抗測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の本発明の絶縁抵抗測定装置では、被測定電路に低周波の電圧を印加する低周波電圧印加手段と、該低周波の電圧により電路を流れる電流の漏洩成分を抽出する変流器と、を備え、前記変流器にて抽出した値に基づき被測定電路の絶縁抵抗を測定する絶縁抵抗測定装置において、
前記絶縁抵抗測定装置の精度試験を行う際に測定抵抗を介して前記変流器に直接に前記低周波電圧を印加するための精度試験回路と、前記低周波電圧印加手段の出力先として前記精度試験回路または前記被測定電路の何れかを選択するための印加電圧切替手段とを更に備え、
前記印加電圧切替手段により、被測定電路の絶縁抵抗を測定する運用時においては前記低周波電圧印加手段の出力先が前記被測定電路側に設定され、精度試験を行う際には前記低周波電圧印加手段の出力先を前記精度試験回路側に切り替えることを特徴とし、印加電圧切替手段を切り替えるだけで精度試験が可能になるので、測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施できる。
【0006】
請求項2に記載の本発明の絶縁抵抗測定装置では、前記精度試験回路は、前記低周波電圧を直接前記変流器に印加するため前記変流器に設置された低周波電圧印加部と、前記測定抵抗を含む測定抵抗回路部と、を少なくとも備えており、
前記測定抵抗回路部は、前記低周波電圧印加部と前記印加電圧切替手段との間に位置し、コネクタを介して着脱自在に構成されていることを特徴とし、精度試験時のみ精度試験回路部を接続することができる。
【0007】
【発明の実施の形態】
以下に本発明の実施の形態を図を用いて説明する。図1は、本発明の第1の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。尚、図1において、図4に示した従来の装置と同じ機能の部分については同じ符号を付し、重複する説明を省略する。図1の実施形態の絶縁抵抗測定装置も、従来の絶縁抵抗測定装置と同様に被測定電路に接続されている。被測定電路にはトランス21を有している。尚、トランス21の2次側の両端を切断可能なブレーカは特に必要ない。図1の絶縁抵抗測定装置において、図4の従来の絶縁抵抗測定装置と異なる点は、低周波発振器の出力端に印加電圧切り替え手段としての切替リレー38を設け、切替リレー38の一つの出力端については増幅器26を介して低周波印加トランス27に接続する一方、他の出力端については増幅器34を介して抵抗Ro35を接続し、該抵抗Ro35の他端とアースとを結ぶ線路を変流器28に貫通させたところにある。図1の構成の絶縁抵抗測定装置において、まず、通常の絶縁抵抗測定操作を行う際には、低周波電圧印加手段としての低周波発振器25で発生した低周波電圧信号が、切替リレー制御線37により伝送されるCPU32からの指示を受けた切替リレー38により決定された切り替え先の増幅器26に入力される。増幅器26で増幅された低周波電圧信号は、低周波電圧印加トランス27により被測定電路と接地間に印加される。変流器28は、前記した被測定電路と接地間に印加された低周波電圧の電流の変位を検出して増幅器29で増幅し、低周波通過フィルタ30で商用交流成分を除去して、アナログ/デジタル変換器31でデジタル量に変換して、絶縁抵抗測定装置各部の制御を行うCPU32に出力する。CPU32では、上記した変流検出手段の検出結果がアナログ/デジタル変換器31によりデジタル量に変換された値を受けて、デジタル量が予め入力されていた設定値を超えている場合には、測定された絶縁抵抗(R1)23と(R2)24の値が設定値を満たしていないので、警報表示ランプ33に通電して点灯させて絶縁抵抗値が不十分であることを絶縁抵抗測定装置の操作者に通知する。
【0008】
第1の実施形態の絶縁抵抗測定装置において精度試験を行う場合には、まず、絶縁抵抗測定装置の精度試験実施者は、CPU32に設置された精度試験開始スイッチ36を押す。すると、CPU32では、切替リレー38を切り替えるための信号を生成して、切替リレー制御線37を介して、切替リレー38を精度試験側の回路に切り替える。すると、低周波発振器25で発生した低周波電圧信号は、増幅器34で増幅されて測定抵抗(Ro)35に印加され、その場合の電流の変位が変流器28で検出される。変流器28で検出された電流は、増幅器29で増幅されて、低周波フィルタ31で商用交流成分が除去され、アナログ/デジタル変換器31でデジタル量に変換されてCPU32に入力される。CPU32では、入力されたデジタル量が予め設定された設定値以上であれば、測定抵抗(Ro)は、所定の絶縁抵抗値よりも低い抵抗値であることから電流値Ioが設定値以上であることになり、警報表示ランプ13が点灯するので正常に動作する(精度を維持している)ことが確認できる。この場合の測定抵抗(Ro)は、変流器28で検出される電流値IoからCPU32により演算されて得られる抵抗値が、通産省の通達や安全規格等で定められた絶縁抵抗を満足する値よりもわずかに低い値等になるように予め設定しておく。例えば、本実施形態の絶縁抵抗測定装置が工場で量産される場合には、工場出荷時にその絶縁抵抗測定装置の変流器28で検出される電流値Ioが上記した値になるように調整して出荷する。上記のように本実施形態は、絶縁抵抗測定装置に設置された精度試験開始スイッチを押す等して印加電圧切替装置を切り替えるだけで精度試験が可能になるので、測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施可能な絶縁抵抗測定装置を提供することができる。
【0009】
図2は、本発明の第2の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。尚、図2において、図1に示した第1の実施形態の絶縁抵抗測定装置と同じ機能の部分については同じ符号を付し、重複する説明を省略する。図2では、増幅器26の出力部に低周波電圧出力用のコネクタ43が設置され、低周波電圧印加トランス27の入力部にはコネクタ43と接続可能なコネクタ44が設置される。変流器28には低周波電圧を印加するための低周波電圧印加部49が設置されると共にその低周波電圧印加部49の端部にはコネクタ47、48が設けられる。測定抵抗回路部40には、前記コネクタ43、47、48の各々と接続するためのコネクタ42、45、46が設けられると共に内部に、測定抵抗(Ro)35及びトランス41を有している。尚、本実施形態においては、コネクタ42〜コネクタ44を第1のコネクタ手段とし、コネクタ45〜コネクタ48を第2のコネクタ手段とする。
【0010】
第2の実施形態において、絶縁抵抗を測定する際には、コネクタ43とコネクタ44が接続され、測定抵抗回路部40は接続されない。精度試験を行う際には、低周波電圧印加部49の端部に設けられたコネクタ47、48と、測定抵抗回路部40に設置されたコネクタ45、46が各々接続され、さらに低周波電圧出力用のコネクタ43と測定抵抗回路部40に設置されたコネクタ42が接続される。第2の実施形態において精度試験を行う場合には、精度試験時に試験を行う精度試験実施者は、まず、コネクタ44と接続されているコネクタ43をはずし、測定抵抗回路部40上に設けられたコネクタ42と接続する。次いで、測定抵抗回路部40上に設けられたコネクタ45、46と、低周波電圧印加部49の端部に設けられたコネクタ47、48とをそれぞれ接続する。その後、CPU32と接続された精度試験開始スイッチ36を押す。第2の実施形態における基本的な動作は、第1の実施形態に示したものと同様であるが、本実施形態の如く測定抵抗回路部40を別個に設け、コネクタ42、43、45〜48により測定抵抗回路部40を絶縁抵抗測定装置に接続することにより、第1の実施形態とは異なる以下の如き格別の作用及び効果が得られる。
【0011】
第1の実施形態の如く精度試験回路を絶縁抵抗測定装置に内蔵させる場合には、精度試験時に試験を行う操作者はスイッチを切り替えるだけで容易に試験を行うことができるという効果を有するものの、測定抵抗回路部40は、一旦精度試験が行われると次の精度試験が行われるまでは通電されないまま絶縁抵抗測定装置内で待機を続けることになり、言い換えれば、測定抵抗回路部40は、設置場所において次の精度試験まで放置されることになる。電子装置においては、その装置内部の部品に経年変化(劣化)が起こることは避けられないことから、第1の実施形態を用いて半年又は1年に1度等の精度試験を行う際には、アンプ34の劣化や測定抵抗35等の劣化により精度試験結果に狂いが生じる可能性がある。第2の実施形態の場合には、測定抵抗回路部40が別個であることから、測定抵抗回路部40単体において測定抵抗35の設定値に劣化がないことを確認してから、絶縁抵抗測定装置にコネクタ42、43、45〜48により測定抵抗回路部40を接続して精度試験をおこなうことができる。従って、第2の実施形態の場合は、数ヶ月に1度や年に1度等の正確な定期校正に適していると考えられる。また、上記のように第2の実施形態においては、コネクタ42〜48の接続変更処理を実施して電圧の印加先を変更するだけで精度試験が可能になるので、第1の実施形態と同様に測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施可能な絶縁抵抗測定装置を提供することができる。
【0012】
図3は、本発明の第3の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。尚、図3においても、図2に示した第2の実施形態の絶縁抵抗測定装置と同じ機能の部分については同じ符号を付し、重複する説明を省略する。図3では、絶縁抵抗測定装置における低周波発振器25の出力端(アンプ26の出力側端)に印加電圧切替手段としての切替リレー50を設け、切替リレー50における精度試験回路用の出力にはコネクタ51が設置され、切替リレー50における絶縁抵抗測定用の出力は低周波印加トランス27に接続される。尚、本実施形態においては、コネクタ51及びコネクタ42を第1のコネクタ手段とし、コネクタ45〜コネクタ48を第2のコネクタ手段とする。第3の実施形態における基本的な動作は、第2の実施形態に示したものと同様であるが、本実施形態の如く切替リレー50を設けることにより、第2の実施形態とは異なる以下の如き格別の作用及び効果が得られる。第3の実施形態において精度試験を行う場合には、精度試験時に試験を行う精度試験実施者は、まず、コネクタ51と測定抵抗回路部40上に設けられたコネクタ42と接続する。次いで、測定抵抗回路部40上に設けられたコネクタ45、46と、低周波電圧印加部49の端部に設けられたコネクタ47、48とをそれぞれ接続する。その後、CPU32と接続された精度試験開始スイッチ36を押す。すると、CPU32では、切替リレー50を切り替えるための信号を生成して、不図示の切替リレー制御線を介して、切替リレー50を精度試験側の回路に切り替える。従って、絶縁抵抗測定時の接続状態から精度試験の接続状態に変更する場合や、逆に、精度試験の接続状態から絶縁抵抗測定時の接続状態に変更する場合に、第2の実施形態の如く低周波発振器25の出力端のコネクタを接続し直すことを必要とせず、切替リレー50を切替ることにより接続状態の変更ができるので、精度試験を容易に実施できる。また、上記のように第3の実施形態においても、コネクタ42〜48の接続変更処理等して電圧の印加先を変更するだけで精度試験が可能になるので、第1の実施形態と同様に測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施可能な絶縁抵抗測定装置を提供することができる。尚、上記各実施形態(第1〜第3の実施形態)では、精度試験開始スイッチ36をCPU32に接続するように設置したが、必ずしもCPUを介する必要はなく、例えば、切替リレー38または50を直接に操作できるようにしても良いし、また、警報表示ランプ33は、他の通知装置を用いるようにしても良い。
【0013】
【発明の効果】
上記のように請求項1の本発明では、印加電圧切替装置を切り替えるだけで精度試験が可能になるので、測定抵抗の挿入や撤去等の危険を伴う作業の必要が無く、簡単な作業で精度試験が実施可能な絶縁抵抗測定装置を提供することができる。請求項2の本発明では、精度試験部を別体としてコネクタ接続を行うことにより、経年劣化の影響を受けずに精度試験を行うことができる絶縁抵抗測定装置を提供することができる。請求項3の本発明では、請求項2の絶縁抵抗測定装置における精度試験をさらに容易に実施することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。
【図2】本発明の第2の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。
【図3】本発明の第3の実施形態の絶縁抵抗測定装置の構成を示すブロック図である。
【図4】従来の絶縁抵抗測定装置の構成を示すブロック図である。
【符号の説明】
1、21、41・・・トランス、2・・・ブレーカ、3、4、23、24・・・絶縁抵抗、5、25・・・低周波発振器、6、9、26、29、34・・・増幅器、7、27・・・低周波電圧印加トランス、8、28・・・変流器、10、30・・・低周波通過フィルタ、11、31・・・アナログ/デジタル変換器、12、32・・・CPU、13、33・・・警報表示ランプ、14、35・・・測定抵抗、36・・・精度試験開始スイッチ、37・・・切替リレー制御線、38、50・・・切替リレー、40・・・測定抵抗回路部、42〜48、51・・・コネク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulation resistance measuring device that measures the insulation resistance of an electric circuit to be measured, and more particularly to an insulation resistance measuring device that can easily perform an accuracy test that is periodically performed in the insulation resistance device.
[0002]
[Prior art]
Conventionally, in order to check the measurement accuracy of insulation resistance measuring devices, regular accuracy tests, in other words, calibration processing has been obliged due to safety standards issues and notifications from the Ministry of International Trade and Industry. . This accuracy test may be performed once a year or once every six months for a measuring device that is not frequently used, but once a month for a measuring device that is frequently used like a manufacturing plant. In some cases, the accuracy test is taught in degrees or less. Hereinafter, an accuracy test in the conventional insulation resistance measuring apparatus will be described with reference to FIG. In FIG. 4, a conventional insulation resistance measuring device is connected to the circuit to be measured. A breaker 2 that can cut both ends of the transformer 1 and its secondary side is installed in the circuit to be measured. The insulation resistance values between the secondary side of the circuit to be measured and the ground are defined as insulation resistances (R1) 3 and (R2) 4. 4 includes a current transformer 8 that detects the displacement of the leakage current from the transformer 1, an amplifier 9 that amplifies the detected displacement of the current, and a high-frequency component from the detected displacement of the current. The low-frequency pass filter 10 for removing the noise, the analog / digital converter 11 for converting the detected analog amount of the displacement of the current into a digital amount, the alarm display lamp 13 and the low-frequency oscillator 5 which will be described later are controlled and input. CPU 12 for determining the digital amount, a low frequency oscillator 5 for generating a voltage having a frequency lower than that of commercial AC for measuring insulation resistance, an amplifier 6 for amplifying the low frequency voltage for measuring insulation resistance, and a transformer 1 It comprises a low frequency voltage application transformer 7 for applying a low frequency voltage for measuring insulation resistance to the next side. One output on the secondary side of the low frequency voltage applying transformer 7 is connected to one output on the secondary side of the transformer 1 in the circuit to be measured, and a current transformer 8 is installed in the middle of the connection line. . The calibration measurement resistor (Rt) 14 is connected between one output on the secondary side of the transformer 1 to which the low frequency voltage application transformer 7 is connected and the current transformer 8.
[0003]
In the insulation resistance measuring apparatus of FIG. 4, first, in a normal insulation resistance measurement operation, a low frequency voltage signal generated by a low frequency oscillator 5 as a low frequency voltage application means is amplified by an amplifier 6 and applied with a low frequency voltage. Further, a low frequency voltage signal is applied from the low frequency voltage application transformer 7 between the measured circuit and the ground. The current transformer 8 detects the displacement of the current of the low frequency voltage applied between the circuit to be measured and the ground, amplifies it by the amplifier 9, removes the commercial AC component by the low frequency pass filter 10, and analog / Digital converter 11 converts it into a digital quantity and outputs it to CPU 12 that controls each part of the insulation resistance measuring device. In the CPU 12, when the detection result of the current transformation detecting means receives a value converted into a digital quantity and exceeds a preset input value, the measured insulation resistances (R1) 3 and (R2) It is determined that the value of 4 does not satisfy the set value, and the alarm display lamp 13 is turned on by energizing to notify the operator of the insulation resistance measuring device that the insulation resistance value is insufficient. When performing an accuracy test on this conventional insulation resistance measuring device, first, the breaker 2 of the circuit to be measured is cut to avoid the influence of the insulation resistances (R1) 3 and (R2) 4 of the circuit to be measured. Thus, the low frequency voltage signal applied to the secondary side of the circuit to be measured is prevented from flowing. Then, a measurement resistor (Rt) 14 having a predetermined insulation resistance value is inserted between the connection end connecting the circuit to be measured and the insulation resistance measuring device and the ground, and the low frequency generated by the low frequency oscillator 5 is inserted. A frequency voltage signal is applied to the measurement resistor (Rt) 14 via the low frequency voltage application transformer 7, and the current transformer 8 detects the current flowing through the current transformer 8 and sends it to the CPU 12. The CPU 12 determines whether or not the current transformation is greater than or equal to a preset value that is input in advance. If the current transformation determination result is greater than or equal to the preset value, the CPU 12 prompts the accuracy tester by lighting the alarm display lamp 13. The insulation resistance measuring device is notified that it is operating normally (maintaining accuracy). That is, the accuracy tester can confirm that the insulation resistance measuring device is operating normally by turning on the alarm display lamp 13 of the insulation resistance measuring device during the accuracy test. In addition, by making the measurement resistance (Rt) 14 a variable resistance, the resistance level of the measurement resistance when the alarm display lamp 13 is lit can be known. Therefore, the resistance level of the measurement resistance and the value indicated by the insulation resistance measuring device. It is possible to confirm the accuracy in detail.
[0004]
[Problems to be solved by the invention]
However, in the accuracy test of the conventional insulation resistance measuring device, in order to avoid the influence of the insulation resistance of the circuit to be measured, the circuit to be measured is cut with a breaker and the insulation resistance measuring device is further connected to the circuit to be measured. Since it is necessary to insert a measuring resistor between the connecting end for connection and the ground, the work is complicated, and the connecting end is connected to the potential of the circuit to be measured (generally a high potential that is dangerous to the human body). In many cases, the work of inserting and removing the measuring resistor is a dangerous work. In view of the above problems, an object of the present invention is to provide an insulation resistance measuring apparatus that can perform an accuracy test with a simple operation without the need for an operation involving a risk of insertion or removal of a measurement resistor.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, in the insulation resistance measuring apparatus according to the first aspect of the present invention, low-frequency voltage applying means for applying a low-frequency voltage to the circuit to be measured, and the low-frequency voltage flow through the circuit. A current transformer for extracting a current leakage component, and an insulation resistance measuring device for measuring an insulation resistance of a circuit under measurement based on a value extracted by the current transformer,
An accuracy test circuit for applying the low frequency voltage directly to the current transformer through a measurement resistor when performing an accuracy test of the insulation resistance measuring device, and the accuracy as an output destination of the low frequency voltage application means An applied voltage switching means for selecting either a test circuit or the measured circuit;
The output destination of the low frequency voltage application means is set on the measured circuit side during operation of measuring the insulation resistance of the measured circuit by the applied voltage switching unit, and the low frequency voltage is used when performing an accuracy test. It is characterized by switching the output destination of the application means to the accuracy test circuit side, and it becomes possible to perform an accuracy test just by switching the applied voltage switching means, so there is no need for work involving the danger of insertion or removal of measurement resistance, etc. The accuracy test can be carried out with simple work.
[0006]
In the insulation resistance measuring device of the present invention according to claim 2, the accuracy test circuit includes a low frequency voltage application unit installed in the current transformer to directly apply the low frequency voltage to the current transformer, A measurement resistance circuit unit including the measurement resistance, at least,
The measurement resistance circuit unit is located between the low-frequency voltage application unit and the application voltage switching unit, and is configured to be detachable via a connector, and the accuracy test circuit unit is used only during an accuracy test. Can be connected.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the insulation resistance measuring apparatus according to the first embodiment of the present invention. In FIG. 1, parts having the same functions as those in the conventional apparatus shown in FIG. The insulation resistance measuring device of the embodiment of FIG. 1 is also connected to the circuit to be measured in the same manner as the conventional insulation resistance measuring device. The electric circuit to be measured has a transformer 21. Note that a breaker capable of cutting both ends on the secondary side of the transformer 21 is not particularly required. 1 differs from the conventional insulation resistance measuring apparatus of FIG. 4 in that a switching relay 38 as an applied voltage switching means is provided at the output terminal of the low frequency oscillator, and one output terminal of the switching relay 38 is provided. Is connected to the low-frequency applying transformer 27 via the amplifier 26, while the other output end is connected to the resistor Ro35 via the amplifier 34, and a line connecting the other end of the resistor Ro35 and the ground is a current transformer. It is in the place penetrated by 28. In the insulation resistance measuring apparatus having the configuration shown in FIG. 1, first, when performing a normal insulation resistance measurement operation, the low frequency voltage signal generated by the low frequency oscillator 25 as the low frequency voltage application means is changed over to the switching relay control line 37. Is input to the switching destination amplifier 26 determined by the switching relay 38 that has received the instruction from the CPU 32 transmitted by. The low frequency voltage signal amplified by the amplifier 26 is applied between the measured circuit and the ground by the low frequency voltage application transformer 27. The current transformer 28 detects the displacement of the current of the low frequency voltage applied between the circuit to be measured and the ground, amplifies it by the amplifier 29, removes the commercial AC component by the low frequency pass filter 30, and analog / A digital value is converted by the digital converter 31 and output to the CPU 32 that controls each part of the insulation resistance measuring device. In the CPU 32, when the detection result of the above-described current transformation detecting means receives a value converted into a digital quantity by the analog / digital converter 31, and the digital quantity exceeds a preset value inputted in advance, measurement is performed. Since the values of the insulation resistances (R1) 23 and (R2) 24 that have been set do not satisfy the set values, it is confirmed that the insulation resistance value is insufficient by energizing and lighting the alarm display lamp 33. Notify the operator.
[0008]
When performing an accuracy test in the insulation resistance measurement device according to the first embodiment, first, an accuracy test performer of the insulation resistance measurement device presses an accuracy test start switch 36 installed in the CPU 32. Then, the CPU 32 generates a signal for switching the switching relay 38 and switches the switching relay 38 to the circuit on the accuracy test side via the switching relay control line 37. Then, the low frequency voltage signal generated by the low frequency oscillator 25 is amplified by the amplifier 34 and applied to the measuring resistor (Ro) 35, and the current displacement in that case is detected by the current transformer 28. The current detected by the current transformer 28 is amplified by the amplifier 29, the commercial AC component is removed by the low frequency filter 31, converted into a digital quantity by the analog / digital converter 31, and input to the CPU 32. In the CPU 32, if the input digital quantity is equal to or greater than a preset set value, the measured resistance (Ro) is a resistance value lower than a predetermined insulation resistance value, so that the current value Io is equal to or greater than the set value. In other words, since the alarm display lamp 13 is lit, it can be confirmed that the alarm display lamp 13 operates normally (maintaining accuracy). The measured resistance (Ro) in this case is a value at which the resistance value calculated by the CPU 32 from the current value Io detected by the current transformer 28 satisfies the insulation resistance defined by the Ministry of International Trade and Industry notification and safety standards. It is set in advance so that the value becomes slightly lower than the above. For example, when the insulation resistance measuring device of the present embodiment is mass-produced in a factory, the current value Io detected by the current transformer 28 of the insulation resistance measuring device at the time of factory shipment is adjusted to the above-described value. To ship. As described above, this embodiment enables an accuracy test only by switching the applied voltage switching device by pressing an accuracy test start switch installed in the insulation resistance measuring device, so that the measurement resistor can be inserted or removed. It is possible to provide an insulation resistance measuring apparatus that can perform an accuracy test with a simple operation without requiring a dangerous operation.
[0009]
FIG. 2 is a block diagram showing a configuration of an insulation resistance measuring apparatus according to the second embodiment of the present invention. In FIG. 2, parts having the same functions as those of the insulation resistance measuring apparatus according to the first embodiment shown in FIG. In FIG. 2, a low frequency voltage output connector 43 is installed at the output of the amplifier 26, and a connector 44 that can be connected to the connector 43 is installed at the input of the low frequency voltage application transformer 27. The current transformer 28 is provided with a low frequency voltage application unit 49 for applying a low frequency voltage, and connectors 47 and 48 are provided at the end of the low frequency voltage application unit 49. The measurement resistance circuit section 40 is provided with connectors 42, 45, 46 for connecting to the connectors 43, 47, 48, and has a measurement resistance (Ro) 35 and a transformer 41 inside . In the present embodiment, the connectors 42 to 44 are the first connector means, and the connectors 45 to 48 are the second connector means.
[0010]
In the second embodiment, when measuring the insulation resistance, the connector 43 and the connector 44 are connected, and the measurement resistance circuit unit 40 is not connected. When performing an accuracy test, the connectors 47 and 48 provided at the end of the low frequency voltage application unit 49 and the connectors 45 and 46 provided in the measurement resistance circuit unit 40 are connected to each other, and further, a low frequency voltage output is performed. Connector 43 and connector 42 installed in measurement resistance circuit section 40 are connected. When performing an accuracy test in the second embodiment, the accuracy tester who performs the test during the accuracy test first removes the connector 43 connected to the connector 44 and is provided on the measurement resistance circuit unit 40. Connect with the connector 42. Next, the connectors 45 and 46 provided on the measurement resistance circuit unit 40 and the connectors 47 and 48 provided at the end of the low frequency voltage application unit 49 are connected to each other. Thereafter, the accuracy test start switch 36 connected to the CPU 32 is pressed. The basic operation in the second embodiment is the same as that shown in the first embodiment, but the measurement resistance circuit unit 40 is provided separately as in this embodiment, and the connectors 42, 43, 45 to 48 are provided. By connecting the measurement resistance circuit unit 40 to the insulation resistance measurement device, the following special actions and effects different from those of the first embodiment can be obtained.
[0011]
When the accuracy test circuit is built in the insulation resistance measuring apparatus as in the first embodiment, the operator who performs the test at the time of the accuracy test has an effect that the test can be easily performed only by switching the switch. Once the accuracy test is performed, the measurement resistance circuit unit 40 is kept on standby in the insulation resistance measurement device without being energized until the next accuracy test is performed. It will be left in place until the next accuracy test. In an electronic device, it is inevitable that aging (deterioration) will occur in the components inside the device. Therefore, when performing an accuracy test such as once every six months or once using the first embodiment, There is a possibility that the accuracy test result will be distorted due to the deterioration of the amplifier 34 or the measurement resistor 35 or the like . In the case of the second embodiment, since the measurement resistance circuit unit 40 is separate, it is confirmed that there is no deterioration in the set value of the measurement resistance 35 in the measurement resistance circuit unit 40 alone. The measurement resistance circuit unit 40 can be connected to the connectors 42, 43, 45 to 48 to perform an accuracy test. Therefore, in the case of the second embodiment, it is considered suitable for accurate periodic calibration such as once every several months or once a year. Further, as described above, in the second embodiment, the accuracy test can be performed only by changing the application destination of the voltage by executing the connection changing process of the connectors 42 to 48, and thus the same as in the first embodiment. In addition, it is possible to provide an insulation resistance measuring apparatus that can perform an accuracy test with a simple operation without the need for an operation involving the risk of insertion or removal of the measurement resistor.
[0012]
FIG. 3 is a block diagram showing the configuration of the insulation resistance measuring apparatus according to the third embodiment of the present invention. In FIG. 3 as well, parts having the same functions as those of the insulation resistance measuring apparatus of the second embodiment shown in FIG. In FIG. 3, a switching relay 50 as an applied voltage switching means is provided at the output end of the low frequency oscillator 25 in the insulation resistance measuring device (the output side end of the amplifier 26). 51 is installed, and the output for measuring the insulation resistance in the switching relay 50 is connected to the low-frequency applying transformer 27. In the present embodiment, the connector 51 and the connector 42 are first connector means, and the connectors 45 to 48 are second connector means. The basic operation in the third embodiment is the same as that shown in the second embodiment. However, by providing the switching relay 50 as in this embodiment, the following differences from the second embodiment are provided. Such special actions and effects can be obtained. When performing an accuracy test in the third embodiment, an accuracy tester who performs the test during the accuracy test first connects the connector 51 and the connector 42 provided on the measurement resistance circuit unit 40. Next, the connectors 45 and 46 provided on the measurement resistance circuit unit 40 and the connectors 47 and 48 provided at the end of the low frequency voltage application unit 49 are connected to each other. Thereafter, the accuracy test start switch 36 connected to the CPU 32 is pressed. Then, the CPU 32 generates a signal for switching the switching relay 50 and switches the switching relay 50 to a circuit on the accuracy test side via a switching relay control line (not shown). Therefore, when changing from the connection state at the time of insulation resistance measurement to the connection state at the time of the accuracy test, or conversely, when changing from the connection state of the accuracy test to the connection state at the time of measurement of the insulation resistance, as in the second embodiment. Since it is not necessary to reconnect the connector at the output end of the low-frequency oscillator 25 and the connection state can be changed by switching the switching relay 50, an accuracy test can be easily performed. As described above, also in the third embodiment, the accuracy test can be performed only by changing the application destination of the voltage by the connection changing process of the connectors 42 to 48, and thus, similarly to the first embodiment. It is possible to provide an insulation resistance measuring apparatus that can perform an accuracy test by a simple operation without requiring a work that involves a risk of insertion or removal of a measurement resistor. In each of the above-described embodiments (first to third embodiments), the accuracy test start switch 36 is installed so as to be connected to the CPU 32. However, the switch does not necessarily have to be connected to the CPU. The alarm display lamp 33 may be operated directly, or another notification device may be used.
[0013]
【The invention's effect】
As described above, according to the present invention of claim 1, since the accuracy test can be performed only by switching the applied voltage switching device, there is no need for a risky operation such as insertion or removal of the measuring resistor, and the accuracy can be achieved with a simple operation. It is possible to provide an insulation resistance measuring device capable of performing a test. According to the second aspect of the present invention, it is possible to provide an insulation resistance measuring apparatus capable of performing an accuracy test without being affected by aging deterioration by performing connector connection with the accuracy test section as a separate body. According to the third aspect of the present invention, the accuracy test in the insulation resistance measuring apparatus according to the second aspect can be more easily performed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an insulation resistance measuring apparatus according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing a configuration of an insulation resistance measuring apparatus according to a second embodiment of the present invention.
FIG. 3 is a block diagram showing a configuration of an insulation resistance measuring apparatus according to a third embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a conventional insulation resistance measuring apparatus.
[Explanation of symbols]
1, 2, 41, ... Transformer, 2 ... Breaker, 3, 4, 23, 24 ... Insulation resistance, 5, 25 ... Low frequency oscillator, 6, 9, 26, 29, 34 ...・ Amplifiers 7 and 27... Low frequency voltage application transformers 8 and 28... Current transformers 10 and 30... Low frequency pass filters 11 and 31. 32 ... CPU, 13, 33 ... alarm indicator lamp, 14,35 ... measurement resistance, 36 ... accuracy test start switch, 37 ... switching relay control line, 38,50 ... switching relay, 40 ... measurement resistance circuit part, 42~48,51 ... connector

Claims (2)

被測定電路に低周波の電圧を印加する低周波電圧印加手段と、該低周波の電圧により電路を流れる電流の漏洩成分を抽出する変流器と、を備え、前記変流器にて抽出した値に基づき被測定電路の絶縁抵抗を測定する絶縁抵抗測定装置において、
前記絶縁抵抗測定装置の精度試験を行う際に測定抵抗を介して前記変流器に直接に前記低周波電圧を印加するための精度試験回路と、前記低周波電圧印加手段の出力先として前記精度試験回路または前記被測定電路の何れかを選択するための印加電圧切替手段と、を更に備え、
前記印加電圧切替手段により、被測定電路の絶縁抵抗を測定する運用時においては前記低周波電圧印加手段の出力先が前記被測定電路側に設定され、精度試験を行う際には前記低周波電圧印加手段の出力先を前記精度試験回路側に切り替えることを特徴とする絶縁抵抗測定装置。
Comprising a low-frequency voltage applying means for applying a voltage of low frequency to the measured circuit, and a current transformer to extract the leakage component of the current flowing through the electric path by the voltage of the low frequency, was extracted by the current transformer In an insulation resistance measuring device that measures the insulation resistance of the circuit under test based on the value,
An accuracy test circuit for applying the low frequency voltage directly to the current transformer through a measurement resistor when performing an accuracy test of the insulation resistance measuring device, and the accuracy as an output destination of the low frequency voltage application means An applied voltage switching means for selecting either a test circuit or the measured circuit ; and
The output destination of the low frequency voltage application means is set on the measured circuit side during operation of measuring the insulation resistance of the measured circuit by the applied voltage switching unit, and the low frequency voltage is used when performing an accuracy test. An insulation resistance measuring apparatus , wherein the output destination of the applying means is switched to the accuracy test circuit side .
前記精度試験回路は、前記低周波電圧を直接前記変流器に印加するため前記変流器に設置された低周波電圧印加部と、前記測定抵抗を含む測定抵抗回路部と、を少なくとも備えており、
前記測定抵抗回路部は、前記低周波電圧印加部と前記印加電圧切替手段との間に位置し、コネクタを介して着脱自在に構成されていることを特徴とする請求項1に記載の絶縁抵抗測定装置。
The accuracy test circuit includes at least a low frequency voltage application unit installed in the current transformer to directly apply the low frequency voltage to the current transformer, and a measurement resistance circuit unit including the measurement resistance. And
2. The insulation resistance according to claim 1, wherein the measurement resistance circuit unit is positioned between the low-frequency voltage application unit and the application voltage switching unit and is configured to be detachable via a connector. measuring device.
JP32224998A 1998-05-11 1998-11-12 Insulation resistance measuring device Expired - Lifetime JP4284668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32224998A JP4284668B2 (en) 1998-05-11 1998-11-12 Insulation resistance measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14504698 1998-05-11
JP10-145046 1998-05-11
JP32224998A JP4284668B2 (en) 1998-05-11 1998-11-12 Insulation resistance measuring device

Publications (2)

Publication Number Publication Date
JP2000035452A JP2000035452A (en) 2000-02-02
JP4284668B2 true JP4284668B2 (en) 2009-06-24

Family

ID=26476299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32224998A Expired - Lifetime JP4284668B2 (en) 1998-05-11 1998-11-12 Insulation resistance measuring device

Country Status (1)

Country Link
JP (1) JP4284668B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330256B2 (en) * 2000-08-09 2009-09-16 大阪瓦斯株式会社 Non-contact voltage measuring method and apparatus
KR100481435B1 (en) * 2000-08-28 2005-04-07 주식회사 케이디파워 Method of measuring insulation resistance and apparatus thereof
JP4796429B2 (en) * 2006-04-14 2011-10-19 財団法人 関西電気保安協会 Test device for test current generator and insulation monitoring device
JP2007312445A (en) * 2006-05-15 2007-11-29 Gs Yuasa Corporation:Kk Management system for insulation monitoring device
TW201103943A (en) 2009-04-27 2011-02-01 Shionogi & Co Urea derivative having pi3k inhibitory activity
JP5455430B2 (en) * 2009-05-12 2014-03-26 一般財団法人関東電気保安協会 Leakage prevention monitoring system
JP6749535B2 (en) * 2015-10-29 2020-09-02 Necマグナスコミュニケーションズ株式会社 Insulation monitoring device and test current generator and test device used therefor
CN105487033B (en) * 2016-01-11 2018-09-21 无锡市计量测试院 The calibrating installation of wire test instrument
CN106501611B (en) * 2016-10-28 2019-11-29 深圳市航盛电子股份有限公司 Insulation resistance detection method and device
CN109581216B (en) * 2019-01-18 2024-01-12 阳江核电有限公司 VD4 medium voltage switch comprehensive test platform and related structure thereof
CN111044786A (en) * 2019-03-29 2020-04-21 浙江开度智能设备有限公司 Insulation monitor

Also Published As

Publication number Publication date
JP2000035452A (en) 2000-02-02

Similar Documents

Publication Publication Date Title
JP4284668B2 (en) Insulation resistance measuring device
US6313640B1 (en) System and method for diagnosing and measuring partial discharge
JP2006343267A (en) Insulation resistance measuring instrument of dc circuit, electrostatic capacitance measuring instrument, insulation resistance measuring method and electrostatic capacitance measuring method
KR101064454B1 (en) Apparatus and method for detecting data validity
JP2001215247A (en) Leakage current measuring instrument
KR101787885B1 (en) Voltage Measurement Error Compensation Device
EP0200312A1 (en) Phase difference fault detector
AU2003229345A1 (en) Residual current circuit breaker
WO1996041022A3 (en) Probe system for monitoring a condition in a metallurgical process
CN209446673U (en) A kind of detection system and insulation tester of insulation resistance
JPS60216695A (en) Speaker testing device
CA2322125A1 (en) Measuring instrument
KR960007156B1 (en) Lightning arrestor test device and test method
KR200240856Y1 (en) Apparatus for judging faults of contact point in relay
JP3191567B2 (en) Digital protection and control equipment for power systems
KR200432292Y1 (en) OSR Self Test Device of Crane
JPH0568321A (en) Automatic monitor for digital protective relay
FR3069928B1 (en) ELECTRIC ARC PROTECTION TEST METHOD AND DEVICE AND ELECTRIC APPARATUS COMPRISING SUCH A DEVICE
JP2001083183A (en) Current detection circuit and its inspection method
US5629647A (en) Audio amplifier switching noise measuring method and device
JPH081589Y2 (en) Direct current heating device
KR20050114483A (en) Current/voltage measuring apparatus
JP3313200B2 (en) Zero-phase current transformer primary current measuring device
JP4149635B2 (en) Protection relay monitoring device
WO2000020877A1 (en) Improved safety high voltage test method and equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050719

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term