[go: up one dir, main page]

JP4256701B2 - Inclusion finely dispersed steel with excellent fatigue life - Google Patents

Inclusion finely dispersed steel with excellent fatigue life Download PDF

Info

Publication number
JP4256701B2
JP4256701B2 JP2003068541A JP2003068541A JP4256701B2 JP 4256701 B2 JP4256701 B2 JP 4256701B2 JP 2003068541 A JP2003068541 A JP 2003068541A JP 2003068541 A JP2003068541 A JP 2003068541A JP 4256701 B2 JP4256701 B2 JP 4256701B2
Authority
JP
Japan
Prior art keywords
rem
steel
inclusions
inclusion
fatigue life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003068541A
Other languages
Japanese (ja)
Other versions
JP2004277777A (en
Inventor
浩 平田
浩一 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003068541A priority Critical patent/JP4256701B2/en
Priority to CNB2004800063077A priority patent/CN100427628C/en
Priority to PCT/JP2004/003251 priority patent/WO2004081250A2/en
Priority to KR1020057016679A priority patent/KR100675709B1/en
Priority to US10/547,303 priority patent/US20060157162A1/en
Publication of JP2004277777A publication Critical patent/JP2004277777A/en
Application granted granted Critical
Publication of JP4256701B2 publication Critical patent/JP4256701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化物およびオキシサルファイド系介在物を微細分散させた鋼に関するものであり、特に、酸化物系介在物の悪影響を解消し、良好な耐疲労寿命特性を有する鋼、ならびに音響特性に優れた鋼に関するものである。
【0002】
【従来の技術】
最近、鋼材に要求される品質は次第に厳格化し、かつ多様化してきており、より清浄度が高く、介在物を無害化した鋼の開発が強く望まれている。
【0003】
転炉や真空処理容器で精練された溶鋼中には、多量の溶存酸素が含まれており、この過剰酸素は酸素と親和力の強いAlにより脱酸されることが一般的であり、脱酸によりアルミナ系介在物を生成する。また、取鍋などはアルミナ系耐火物で構築されている場合が多く、Al脱酸でなく、SiやMnで脱酸した場合においても、溶鋼と耐火物との反応により、耐火物であるアルミナが解離し、溶鋼中にAlとして溶出し、このAlが再酸化されることで溶鋼中にアルミナが生成する。
【0004】
これらアルミナ系介在物は、硬質であると共に凝集・合体して粗大なアルミナクラスターとなるため、タイヤコード等の線材の断線の原因、軸受鋼等の棒鋼では転動疲労特性の悪化の原因、更にはDI缶などの薄鋼板では製缶時の割れの原因になることが知られている。特に、軸受鋼の場合には疲労寿命向上の目的から介在物サイズをできるだけ小さくすることが望まれている。
【0005】
また、VTR、CDプレーヤ等の家電製品や計器、医療機器などの一般機器、或いはOA機器やハードディスクドライブ等の電子機器などにおける軸受として用いられるミニチュアベアリングにおいては、小型で比較的軽荷重で使用されるが、装置の作動時に軸受自体から発生する振動や音響が可能な限り低いことが要求される。特に、ハードディスクドライブ用のミニチュアベアリングの場合には、雑音発生を嫌うことから、とりわけ騒音や振動低減に対する要求が厳しい。音響発生および振動発生の主たる原因は、ベアリング表面に露出したTi炭窒化物やアルミナ系介在物のような硬質の非金属介在物であるとされている。
【0006】
このように、高度に要求された鋼材品質に対応するためには、特に硬質の非金属介在物であるアルミナ系介在物を低減し、清浄度を上げると共に、アルミナ系介在物を改質し、かつ微細化し、無害化することは大きな課題となっている。
【0007】
アルミナ系介在物の低減・除去については、RH真空脱ガス装置や粉体吹き込み装置などの二次精練装置の適用による脱酸生成物の低減を中心として、断気、スラグ改質などによる再酸化防止、スラグカットによる混入酸化物系介在物の低減を組合わせ、介在物を低減し、高清浄化を図ってきた。
【0008】
一方、アルミナ系介在物を改質し微細化、無害化する技術としては、溶鋼中にMg合金を添加することにより、アルミナをスピネル(MgO・Al23 )、或いはMgOに改質することでアルミナの凝集による粗大化を防止し、鋼材品質に対するアルミナの悪影響を回避する方法が知られている(例えば、特許文献1、特許文献2参照)。また、酸可溶Al:0.005質量%以上を含有するAlキルド鋼を製造するにあたり、溶鋼中にCa,MgおよびREMの2種以上とAlとからなる合金を投入し、生成する介在物中のAl23 を30〜85質量%の範囲内に調整するクラスターのないAlキルド鋼の製造方法が知られている(例えば、特許文献3参照)。
【0009】
しかしながら、上述したアルミナ系介在物を除去する方法では、益々厳格さを増す要求レベルを達成することは困難である。また、MgやREMを添加して介在物を微細化する方法においても以下のような問題点がある。先ず、Mgの場合は次のとおりである。Mgを添加する溶鋼温度は、金属Mgの沸点(1070℃)以上であるため、Mgは容易に蒸発する。例え、Si,Al,Fe−Si等と混合して添加したとしても、単なる混合物でありMg活量は1のままであるため、その蒸発挙動は金属Mg単独で添加した場合と何ら変わりはない。Al−MgやSi−Mg等のように合金化した場合、添加時の蒸発ロスはある程度低減できるが、溶鋼中に溶解した後は、金属Mgで添加した場合と同様に蒸発を抑えることはできないため、歩留りは低い。
【0010】
Mgは真空中で添加した場合、常圧時に比べ、急激に蒸発してしまうため、添加時期としては真空精錬後に別に常圧で添加する工程を設ける必要がある。
【0011】
更に、表1に示すように、改質によって生成したスピネルは、アルミナほどではないが硬質であるため、ミニチュアベアリングのように振動や音響特性が要求される場合には、未だ十分には対応できないという問題点もある。
【0012】
次にREMの場合の従来技術の問題点を述べる。特許文献3に開示されたようなREM添加の場合、アルミナクラスター生成防止のため、REM,Mg,Caから選択された2種以上を添加することにより低融点の複合介在物とするため、スリバー疵防止には有効かもしれないが、介在物を軸受鋼で要求されるレベルのサイズまで低減することはできない。これは、低融点介在物にすると、これら介在物が凝集・合体してより粗大化してしまうからである。
【0013】
更に、REM添加の場合、REMが介在物を球状化し疲労寿命を向上させる作用を有するため、介在物の形態制御のため必要に応じて添加できるが、0.010質量%を超える添加は介在物を増加させ、却って疲労寿命が低下するため、REM添加量を0.010質量%以下にする必要があることも知られている(例えば、特許文献4)。しかし、そのメカニズムおよび介在物組成の存在状態については何ら解明されていないし、示唆もされていない。
【0014】
また、REMは酸素と結合してREM酸化物をつくると共に、硫黄と結合して硫化物をも形成し易い元素である。従って、酸素と結合する以上の量の過剰なREMが存在すると硫化物を生成し、寧ろ介在物サイズを増大させ、疲労寿命特性に悪影響を与えると考えられる。そこで、介在物サイズを制御するには、REM添加量を制御し、介在物組成を厳密に制御する必要がある。換言すれば、REM添加量を酸素含有量とバランスさせ、過剰なREMをなくすことで粗大な硫化物形成を防止する必要がある。また、硫化物も疲労寿命特性に影響を与えるため微細にする必要がある。上述したように、REMは硫化物を形成し易いので介在物サイズを更に小さくするためには、硫黄含有量を低くすることが必要となる。これらの技術思想は特許文献3には何ら開示されていない。
【0015】
特許文献4には、VTR、CDプレイヤー等の家電製品や計器、医療機器等の一般機器、或いはOA機器やハードディスクドライブ等の電子機器における軸受として用いられるミニチュアベアリングの音響特性向上のために、Ti:7ppm 以下、O:7ppm 以下として、Ti系介在物量とその大きさの低減を図った軸受鋼が開示されている。また、特許文献5には、軸受鋼により形成し、焼入れまたは浸炭窒化処理後、350℃以上の高温焼戻しをし、浸炭窒化層の残留オーステナイト量を完全に0%とし、かつ表面硬さをHRC57以上とした転がり軸受鋼が開示されている。しかし、酸化物系介在物はAl23 がベースであるために硬質で、T.O(トータル酸素)を下げることでその絶対量を減らしたとしても、音響特性を更に改善することはできない。また、Mg添加によってアルミナを微細なスピネルに改質したとしても、表1に示すようにアルミナほどではないが硬質であるために、十分には対応できない。一方、REM系介在物は表1に示すように軟質であるため、REM添加によって硬質のAl23 系介在物を軟質のREM系介在物に改質することが音響特性向上には有益である。
【0016】
【特許文献1】
特開平05−311225号公報
【特許文献2】
特開平09−263820号公報
【特許文献3】
特開平11−279695号公報
【特許文献4】
特開2000−45048号公報
【特許文献5】
特開平08−312651号公報
【0017】
【発明が解決しようとする課題】
本発明は、上述したような従来法における諸問題を有利に解決し、酸化物およびオキシサルファイド系介在物を微細分散させ、良好な耐疲労寿命特性を有する鋼、ならびに音響特性に優れた鋼を提供することを目的とする。
【0018】
ここで、REM含有オキシサルファイドとは次に規定するものを指す。REMは上述したように酸化物を形成するとともに、硫化物をも形成し易い元素であるので、Sが存在した場合、REMとOおよびSが結合した化合物を形成する。これをREMオキシサルファイドと呼び、化学量論組成はREMをREで表すとRE22 Sで表される。
【0019】
【課題を解決するための手段】
本発明は、前記従来技術の問題点を解決するために実験・検討を重ねた結果、介在物を微細化するためのREM添加量および介在物組成の最適制御形態および鋼材成分条件について新規に知見したものであり、その要旨は次の通りである。
【0020】
(1)質量%で、C:0.005〜1.2%Si:0.01〜0.4%Mn:0.1〜0.5%、Al:0.05%以下(0%を含む)を含み、Ti:0.001%以下、T.O:0.005%以下に制限し、かつ下記(1)式の関係を満足する範囲量のREMを含有し、残部がFeと不可避的不純物からなり、かつ円相当径で粒径1μm以上の全ての介在物の内のREM含有介在物の個数割合が、下記(2)式を満足すると共に、前記REM含有介在物中に含まれるAl濃度が30%以下(0%を含む)であることを特徴とする疲労寿命に優れた介在物微細分散鋼。
【0021】
−30<REM(ppm)−T.O(ppm)×280/48<50 …(1)式
REM含有介在物個数/全介在物個数>0.8 …(2)式
(2)REMがCe,La,Nd,Prのいずれも含有するものであることを特徴とする(1)記載の疲労寿命に優れた介在物微細分散鋼。
【0022】
(3)不純物としてのSを、0.003質量%以下に制限したことを特徴とする(1)または(2)記載の疲労寿命に優れた介在物微細分散鋼。
【0023】
(4)さらに、Cr:0.01〜1.5質量%を含むことを特徴とする(1)〜(3)の何れかの項に記載の疲労寿命に優れた介在物微細分散鋼。
【0024】
(5)前記鋼が軸受鋼であることを特徴とする(1)〜(4)の何れかの項に記載の疲労寿命に優れた介在物微細分散鋼。
【0025】
(6)前記鋼がハードディスクやAV機器等に用いられるミニチュアベアリングに使用されることを特徴とする(1)〜(4)の何れかの項に記載の疲労寿命に優れた介在物微細分散鋼。
【0026】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0027】
先ず、本発明で規定する鋼の成分組成とその限定理由について説明する。なお、成分組成は何れも質量%である。
【0028】
まず、Al含有量の限定理由について説明する。本発明による鋼は、上述したように、REMを添加することにより酸化物組成をAl23 からREM酸化物、あるいはREMオキシサルファイドに変換するものである。Alは全ての鋼種にとって必須ではないが、T.O低減のための脱酸元素として、また鋼の結晶粒度調整に必要な成分である。しかし、Al量が0.05%を超えて添加しても結晶粒度調整効果が飽和するばかりか、Al23 からREM酸化物、或いはREMオキシサルファイドへの変換ができず、本発明の目的が達成されないので、上限を0.05%とした。これは高Alの場合、REM酸化物、或いはREMオキシサルファイドよりもAl23 が安定状態にありREM酸化物、或いはREMオキシサルファイドに変換できないものと考えている。
【0029】
次に、T.O(トータル酸素)含有量について説明する。本発明におけるT.O含有量とは、鋼中の溶存酸素含有量と酸化物(主としてAl23 )を形成している酸素含有量にほぼ一致する。従って、T.O含有量が高いほど改質すべき鋼中Al23 が多量になることになる。そこで、本発明の効果が期待できる限界T.O含有量について検討を加えた結果、T.O含有量が0.0050%を超えると、Al23 量が多くなり過ぎ、REMを添加しても鋼中のAl23 全量をREM酸化物、或いはREMオキシサルファイドへ変換することができず、鋼材中にAl23 が残存することが判明した。従って、本発明においては、T.O含有量を0.0050%以下とする必要がある。
【0030】
REMは強力な脱酸元素であり、鋼中のAl23 と反応し、Al23 のOを奪いREM酸化物を生成させるために添加される。そのためには、Al23 量、すなわち、T.O含有量に応じて一定量以上のREMを添加しなければ未反応のAl23 が残存して好ましくない。この点に関して更に実験を重ねた結果、REM含有量とT.O含有量との間に下記(1)式の関係があることを見いだした。
【0031】
−30<REM(ppm)−T.O(ppm)×280/48<50…(1)式
ここで、上記(1)式について図1に基づいて説明する。図1は介在物に及ぼすREM−T.O×280/48の影響をS=0.005%,S=0.002%の場合のdmax,3000(μ)の値を示したものである。
【0032】
縦軸のdmax,30000(μ)は、極値統計法で評価した30000mm2 に存在する最大介在物サイズ極値統計法による評価手順は下記の通りである。
【0033】
i)10×10mm(100mm2 )の検鋭サンプルを16ヶ準備。
【0034】
ii)各サンプルでの最大の介在物を特定し、そのサイズを測定。
【0035】
iii)16ヶの最大介在物サイズから極値統計処理にて、30000mm2 に存在すると考えられる介在物サイズを推定。
【0036】
先ず、〔S〕=0.005%と〔S〕=0.002%の軸受鋼(T.O=8ppm)を溶製し、REMをミッシュメタルで添加し、介在物の微細化挙動を調査した。添加するREM量を変化させ、その際の介在物サイズに与える影響を評価した。鋼塊から顕微鏡サンプルを採取し、極値統計法により最大介在物サイズを評価し、添加したREM量との関係を調査した。実線は、S=0.005%の場合を、一点鎖線は、〔S〕=0.002%の場合を示す。
【0037】
T.REM−T.O×280/48が−30以上、50以下の範囲で、安定的に介在物が微細化していることが分かる。
【0038】
また、Sを0.002の場合には、さらに介在物が微細化していることが分かる。(なお、これらの介在物組成は後述する(2)式を満足し、Al23 含有量も30%以下であることも分った。)
すなわち、REM含有量とT.O含有量の関係、〔REM(ppm)−T.O(ppm)×280/48〕を(1)式に規定するように、−30以上、50以下にすることで、未反応のAl23 の残存を回避し、酸化物を目的とする組成のREM酸化物に制御できることが判明した。しかし、上記(1)式で規定するREM含有量とT.O含有量の関係において、〔REM(ppm)−T.O(ppm)×280/48〕を50以上を超えて添加すると、硫化物形成が激しく粗大な硫化物が生成し、疲労寿命が低下するなど、材質上好ましくない結果となった。また、上記(1)式で〔REM(ppm)−T.O(ppm)×280/48〕が−30以下では逆にREM酸化物、或いはREMオキシサルファイド生成能力が弱く本発明の目的を達成できない。
【0039】
次に、粒径1μm以上の酸化物系およびオキシサルファイド系介在物の個数割合を規定する理由について説明する。鋼の精錬工程では一部不可避的な混入によるREM酸化物系およびREMオキシサルファイド系介在物以外の介在物が存在する。例えば、脱炭精錬炉からの酸化度の高い流出スラグ量が多く、二次精錬工程でのその酸化度の低減が不十分な場合には、スラグにより溶鋼が再酸化し、Al23 系介在物が増加する。REM源を添加した後、大気とのシールが不十分な場合、REM分はすでにAl23 系介在物の改質に使われ、溶存しているREM分が存在しないため、大気からの再酸化によりAl23 系介在物が増加することになる。さらには、二次精錬でのスラグ塩基度が高い場合には、スラグ/溶鋼間の平衡反応によりスラグからCa Inputが生じ、これが原因でREMにより改質不可能なCaOリッチな介在物も生成する。これらの介在物が存在した場合、REM添加による介在物微細化効果を享受できないため、上記の再酸化要因等を徹底的に除外することが必要である。このようにすることにより、REM含有介在物以外の介在物(硫化物、窒化物も含む)個数を全体の20%未満、すなわち、下記(2)式で規定する関係を満足させることにより、介在物の微細分散が高位安定化され、更なる疲労寿命向上が認められた。
【0040】
介在物個数の特定方法を下記に示す。
【0041】
本測定には、X線マイクロアナライザとコンピュータを結合させた分析・解析機器を用い、下記の要領で評価した。
【0042】
i)鋼材の測定面積の指定:1視野面積を0.5mm×0.5mmとし、5視野/サンプルとした。
【0043】
ii)電子ビーム照射:電子ビーム径は0.5μmとし、1視野毎にX方向に1000回、Y方向に1000回照射し、元素分析した。
【0044】
iii)介在物の特定:電子ビーム照射による元素分析情報をコンピュータ処理し、介在物を特定した。
【0045】
iv)REM含有介在物の特定:電子ビーム照射による元素分析情報をコンピュータ処理し、REM成分を含有している介在物をREM含有介在物と特定した。またその組成を定量評価した。
【0046】
v)個数の特定:さらに上記iii),iv)の介在物粒子の円相当径を算出し、介在物の大きさを特定するとともに、0.5mm×0.5mm×5視野に存在する上記iii),iv)の個数を測定した。
【0047】
REM含有(介在物)個数/全介在物個数>0.8 …(2)式
介在物中のAl23 濃度を30%以下と規定した理由は、Al23 が30%以上含有されると、Al23 含有量が30%以下のREM酸化物およびREMオキシサルファイドに比べて硬質となり、疲労寿命の悪化と共に、音響特性に影響することが分かった。そのため、介在物中のAl23 濃度の上限を30%とした。
【0048】
次にREM源として、ミッシュメタルを用いることに関して説明する。
【0049】
REMとは希土類金属(希土類元素)のことであり、周期表3族に属するSc(原子番号21)、Y(39)、およびランタノイド(57〜71)のLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luの17元素の総称であり、各々、酸化物、オキシサルファイド、硫化物の形成力が異なる。従来文献では、各元素を特定せず、同一の性質をもつものとして取り扱っていた。しかし、例えば図2に示すようにLaとCeでは、同じ酸素あるいはSレベルでも安定して存在する化合物が異なるのである。
【0050】
本発明では、種々の元素を検討し、単独で用いるよりCe,La,Nd,Prを主成分(>98%)とするミッシュメタルで添加することで、安定的に介在物を微細化できることを見出した(図3)。
【0051】
S含有量が高いとREM硫化物を形成し易くなる。REM硫化物を形成しないまでもREMオキシサルファイドの化学量論組成よりもSリッチとなり粗大化する。そのため、図4に示すように、S含有量は低いことが望ましく、0.003%以下にすることで粗大な硫化物を形成することなく、更に良好な材質特性が得られる。
なお、Tiが0.001質量%超の場合、硬質のTiNの生成量が顕著に多くなるため、疲労寿命の悪化や音響特性、耐振動特性の悪化が生じるため、Ti含有量を0.001質量%以下とする必要がある。
【0052】
発明においては、本発明の目的とする鋼材、特に軸受鋼、或いはミニチュアベアリング用鋼を考慮して、他の鋼強化成分として、Si:0.01〜0.4%、Mn:0.1〜0.5%、Cr:0.01〜1.5%を添加することもできる。本発明では、好ましいC濃度の範囲は0.005%以上1.2%以下である。これは、Cが1.2%超では、添加したREMがCと炭化物を形成しAl2 O3 の改質効率が低下する、また0.005%未満の場合、初期に存在するAlの量が多く、改質効率が低下するためである。
【0053】
なお、本発明鋼の製造方法は特に限定するものではない。即ち、母溶鋼の溶製は高炉−転炉法あるいは電気炉法のいずれでもよい。また母溶鋼への成分添加も限定するものではなく、各鋼材の特性に必要な成分元素は任意に母溶鋼に添加してよい。また、その添加方法も限定するものではなく、自由落下による添加方法、不活性ガスにて吹込む方法等を自由に採用できる。さらに母溶鋼から鋼塊を製造し、これを圧延する方法も限定するものではない。
【0054】
REM源の添加に関しては、RHなどの真空精錬後に添加する。例えば、RHにより精錬を行った場合、RH処理末期に、真空槽上部に設置したホッパーより、真空槽の溶鋼に上部よりミッシュメタル(塊状)として添加すると良い。
【0055】
以下に本発明の実施例並びに比較例を述べ、本発明の効果について記載する。
【0056】
【実施例】
(実施例1)
高炉から排出された溶銑に脱P、脱S処理を施し、続いて当該溶銑270tを転炉に装入し酸素吹錬を実施し、所定のC,P,S含有量の軸受鋼用の母溶鋼を得た。この母溶鋼を取鍋に排出する間およびLF,RH脱ガス処理中にAl,Si,Mn,Crを添加した。LFでは、転炉から出流した酸化度の高いスラグを還元し、酸化鉄、MnOの含有率を低下するとともに、CaO添加によりCaO/SiO2 比を高め、再酸化の原因となる成分を減少させる。またAl23 濃度を調整し、介在物吸収能の高いスラグ組成にした。またRH処理では脱水素、介在物除去を行った。さらにRH処理末期にRH真空槽上部に設けた添加ホッパーより所定量のREMを添加した。REMとしては、表2に示す成分のミッシュメタルを用いた。そのサイズは35〜45mmであった。
【0057】
このようにして得た溶鋼から連続鋳造法により鋳片を製造し、当該鋳片を棒鋼圧延し、表3に示す化学成分の軸受用棒鋼(直径65mmφ)を製造した。この鋼材中に含まれる介在物はREM含有介在物の割合が多く、微細なものであった。極値統計法(基準面積:100mm2 、n=16、評価面積:30000mm2 )により30000mm2 での最大介在物サイズを評価した結果、表3に示す良好なサイズが得られた。また、当該鋼材の転動疲労試験を行った結果、表3に示す良好な成績が得られた。なお、表3に示すREM成分の内訳を表4に示した。
(比較例1)
実施例1と同様の方法で表3に示す軸受鋼を製造した。但し、この場合にはRH処理末期のREM添加を行わないケース、REM添加量(添加方法は実施例1と同様)を本発明の適正REM量の上限以上、下限以下にしたケースおよびRH以降でシール性をわざと悪化させ、REM含有介在物個数割合が本発明を外れるケースも行った。得られた軸受鋼の介在物サイズ、転動疲労成績を表3に示すが、実施例1に比べ好ましくない結果となった。
【0058】
【表1】

Figure 0004256701
【0059】
【表2】
Figure 0004256701
【0060】
【表3】
Figure 0004256701
【0061】
【表4】
Figure 0004256701
【0062】
(実施例2)
実施例1と同様の方法により、表5に示す軸受鋼を製造した。この鋼材中に含まれる介在物はREM含有介在物の割合が多く、微細なものであった。65mmφに圧延した棒鋼にて極値統計法(基準面積:100mm2 、n=16、評価面積:30000mm2 )により30000mm2 での最大介在物サイズを評価した結果、表に示す良好なサイズが得られた。また、当該鋼材を10mmφの線材に圧延した後、ミニチュアベアリングに加工し、音響特性および振動特性を評価した結果、表5に示す良好な成績が得られた。なお、表5に示すREM成分の内訳を表6に示した。
(比較例2)
実施例2と同様の方法で表に示す軸受鋼を製造した。但し、この場合にはRH処理末期のREM添加を行わないケース、REM添加量(添加方法は実施例1と同様)を本発明の適正REM量の上限以上、下限以下にしたケースおよびRH以降でシール性をわざと悪化させ、REM含有介在物個数割合が本発明を外れるケースも行った。またTiがはずれるケースも行った。得られた軸受鋼の介在物サイズ、および音響・振動特性の結果を表に示すが、実施例2に比べ好ましくない結果となった。
【0063】
【表5】
Figure 0004256701
【0064】
【表6】
Figure 0004256701
【0065】
【発明の効果】
以上説明したように、本発明は、鋼中にREM系酸化物およびREMオキシサルファイド系介在物を微細分散させた鋼に関するものであり、特に、酸化物系介在物の悪影響を解消し、良好な耐疲労寿命特性を有する鋼、ならびに音響特性に優れた鋼を提供することが可能となる。
【図面の簡単な説明】
【図1】介在物サイズに及ぼすREM−T.O×280/48の関係を示す図。
【図2】(a)はCeの酸化物、オキシサルファイド、硫化物の安定領域を示す図、(b)はLaの酸化物、オキシサルファイド、硫化物の安定領域を示す図。
【図3】介在物サイズに及ぼすREM源の影響を示す図。
【図4】介在物サイズに及ぼす〔S〕の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel in which oxides and oxysulfide inclusions are finely dispersed. In particular, the present invention eliminates the adverse effects of oxide inclusions and has excellent fatigue life characteristics, and acoustic characteristics. It relates to excellent steel.
[0002]
[Prior art]
Recently, the quality required for steel materials has become increasingly strict and diversified, and there is a strong demand for the development of steel with higher cleanliness and harmless inclusions.
[0003]
The molten steel smelted in a converter or vacuum processing vessel contains a large amount of dissolved oxygen, and this excess oxygen is generally deoxidized by Al having a strong affinity for oxygen. Alumina inclusions are produced. In addition, ladles are often constructed of alumina refractories, and even when deoxidized with Si or Mn instead of Al deoxidation, alumina is a refractory due to the reaction between molten steel and refractory. Dissociates and elutes as Al in the molten steel, and when this Al is reoxidized, alumina is generated in the molten steel.
[0004]
These alumina-based inclusions are hard and agglomerate and coalesce into coarse alumina clusters, causing wire breakage such as tire cords, causing deterioration of rolling fatigue characteristics in steel bars such as bearing steel, It is known that thin steel sheets such as DI can cause cracking during can making. In particular, in the case of bearing steel, it is desired to make the inclusion size as small as possible for the purpose of improving the fatigue life.
[0005]
Miniature bearings used as bearings in home appliances such as VTRs and CD players, general equipment such as instruments and medical equipment, or electronic equipment such as OA equipment and hard disk drives are small and used with relatively light loads. However, it is required that vibration and sound generated from the bearing itself during operation of the device be as low as possible. In particular, in the case of miniature bearings for hard disk drives, noise generation is disliked, so that the demand for noise and vibration reduction is particularly severe. The main cause of generation of sound and vibration is considered to be hard non-metallic inclusions such as Ti carbonitride and alumina inclusions exposed on the bearing surface.
[0006]
Thus, in order to meet the highly required steel quality, the alumina inclusions, which are particularly hard non-metallic inclusions, are reduced, the cleanliness is increased, and the alumina inclusions are modified, And miniaturization and detoxification are major issues.
[0007]
Regarding the reduction and removal of alumina inclusions, reoxidation by degassing, slag reforming, etc., focusing on the reduction of deoxidation products by applying secondary scouring equipment such as RH vacuum degassing equipment and powder blowing equipment Combining prevention and reduction of mixed oxide inclusions by slag cut, the inclusions have been reduced to achieve high cleaning.
[0008]
On the other hand, as a technology for reforming alumina inclusions to make them finer and harmless, it is possible to modify alumina to spinel (MgO.Al 2 O 3 ) or MgO by adding an Mg alloy to the molten steel. There is known a method for preventing coarsening due to agglomeration of alumina and avoiding the adverse effect of alumina on the quality of steel materials (for example, see Patent Document 1 and Patent Document 2). In addition, in producing Al killed steel containing acid-soluble Al: 0.005% by mass or more, inclusions produced by introducing an alloy of two or more of Ca, Mg and REM and Al into the molten steel There is known a method for producing an Al killed steel without a cluster that adjusts the content of Al 2 O 3 in the range of 30 to 85% by mass (see, for example, Patent Document 3).
[0009]
However, it is difficult to achieve the required level of increasing severity with the above-described method of removing alumina inclusions. Moreover, the following problems also exist in the method of adding inclusions such as Mg and REM to refine inclusions. First, the case of Mg is as follows. Since the molten steel temperature to which Mg is added is equal to or higher than the boiling point of metal Mg (1070 ° C.), Mg easily evaporates. For example, even if mixed with Si, Al, Fe-Si, etc., it is just a mixture and the Mg activity remains at 1, so its evaporation behavior is no different from when it is added with metallic Mg alone. . When alloyed like Al-Mg, Si-Mg, etc., the evaporation loss at the time of addition can be reduced to some extent, but after being dissolved in the molten steel, evaporation cannot be suppressed in the same manner as when added with metal Mg. Therefore, the yield is low.
[0010]
When Mg is added in a vacuum, it will evaporate more rapidly than at normal pressure. Therefore, it is necessary to provide a process for adding it at normal pressure after vacuum refining.
[0011]
Furthermore, as shown in Table 1, the spinel generated by the modification is not as hard as alumina, but is hard, so when vibration and acoustic characteristics are required like a miniature bearing, it is still not enough. There is also a problem.
[0012]
Next, problems of the prior art in the case of REM will be described. In the case of REM addition as disclosed in Patent Document 3, in order to prevent formation of alumina clusters, a composite inclusion having a low melting point is obtained by adding two or more selected from REM, Mg, and Ca. Although it may be effective for prevention, inclusions cannot be reduced to the size required by bearing steel. This is because if inclusions with a low melting point are used, these inclusions aggregate and coalesce and become coarser.
[0013]
Furthermore, in the case of REM addition, since REM has the effect of improving the fatigue life by spheroidizing inclusions, it can be added as necessary for the form control of inclusions, but addition exceeding 0.010% by mass is inclusion It is also known that the amount of REM added must be 0.010% by mass or less because the fatigue life is decreased on the contrary (for example, Patent Document 4). However, there is no elucidation or suggestion of the mechanism and the state of inclusion composition.
[0014]
REM is an element that combines with oxygen to form a REM oxide and also easily forms a sulfide by combining with sulfur. Therefore, it is believed that the presence of excess REM beyond the amount that binds to oxygen produces sulfides, rather increases the inclusion size and adversely affects fatigue life characteristics. Therefore, in order to control the inclusion size, it is necessary to control the amount of REM added and strictly control the inclusion composition. In other words, it is necessary to prevent the formation of coarse sulfides by balancing the REM addition amount with the oxygen content and eliminating excessive REM. Also, sulfides need to be fine because they affect fatigue life characteristics. As described above, since REM easily forms sulfides, it is necessary to reduce the sulfur content in order to further reduce the inclusion size. These technical ideas are not disclosed in Patent Document 3.
[0015]
Patent Document 4 discloses a technique for improving the acoustic characteristics of miniature bearings used as bearings in home appliances such as VTRs and CD players, general equipment such as instruments and medical equipment, or electronic equipment such as OA equipment and hard disk drives. : 7 ppm or less and O: 7 ppm or less, the bearing steel which aims at reduction of the amount of Ti inclusions and the size thereof is disclosed. Patent Document 5 discloses that bearing steel is used, and after quenching or carbonitriding, high temperature tempering at 350 ° C. or higher is performed, the amount of retained austenite in the carbonitrided layer is completely 0%, and the surface hardness is HRC57. The above-described rolling bearing steel is disclosed. However, oxide inclusions are hard because they are based on Al 2 O 3, and T.I. Even if the absolute amount is reduced by lowering O (total oxygen), the acoustic characteristics cannot be further improved. Moreover, even if alumina is modified to fine spinel by adding Mg, it is not as strong as alumina as shown in Table 1, but it is hard, so it cannot be adequately dealt with. On the other hand, since the REM inclusions are soft as shown in Table 1, it is beneficial to improve the acoustic characteristics by modifying the hard Al 2 O 3 inclusions to soft REM inclusions by adding REM. is there.
[0016]
[Patent Document 1]
Japanese Patent Laid-Open No. 05-311225 [Patent Document 2]
Japanese Patent Laid-Open No. 09-263820 [Patent Document 3]
JP 11-279695 A [Patent Document 4]
JP 2000-45048 A [Patent Document 5]
Japanese Patent Application Laid-Open No. 08-312651
[Problems to be solved by the invention]
The present invention advantageously solves the problems in the conventional method as described above, finely disperses oxides and oxysulfide inclusions, and has a steel with good fatigue life characteristics and a steel with excellent acoustic characteristics. The purpose is to provide.
[0018]
Here, the REM-containing oxysulfide indicates the following. Since REM forms an oxide as described above and also easily forms sulfides, when S is present, a compound in which REM, O, and S are combined is formed. This is called REM oxysulfide, and the stoichiometric composition is represented by RE 2 O 2 S when REM is represented by RE.
[0019]
[Means for Solving the Problems]
As a result of repeated experiments and examinations in order to solve the problems of the prior art, the present invention has newly found out the amount of REM added to make inclusions finer, the optimum control mode of inclusion composition, and the steel material condition. The summary is as follows.
[0020]
(1) By mass%, C: 0.005 to 1.2% , Si: 0.01 to 0.4 % , Mn: 0.1 to 0.5% , Al: 0.05% or less (0% Ti: 0.001% or less, T. O: Limiting to 0.005% or less and containing REM in an amount satisfying the relationship of the following formula (1), the balance being Fe and inevitable impurities, and having an equivalent circle diameter of 1 μm or more The ratio of the number of REM-containing inclusions among all the inclusions satisfies the following formula (2), and the concentration of Al 2 O 3 contained in the REM-containing inclusions is 30% or less (including 0%). An inclusion finely dispersed steel with excellent fatigue life, characterized by
[0021]
-30 <REM (ppm) -T. O (ppm) × 280/48 <50 (1) Formula REM-containing inclusion number / total inclusion number> 0.8 (2) Formula (2) REM contains any of Ce, La, Nd, and Pr The inclusion finely dispersed steel having excellent fatigue life according to (1), characterized in that:
[0022]
(3) The inclusion finely dispersed steel having excellent fatigue life according to (1) or (2) , wherein S as an impurity is limited to 0.003% by mass or less.
[0023]
(4) The inclusion finely dispersed steel excellent in fatigue life according to any one of (1) to (3), further comprising Cr: 0.01 to 1.5% by mass .
[0024]
(5) The inclusion finely dispersed steel having excellent fatigue life according to any one of (1) to (4), wherein the steel is bearing steel.
[0025]
(6) The inclusion finely dispersed steel having excellent fatigue life according to any one of (1) to (4), wherein the steel is used for a miniature bearing used in a hard disk, an AV device, or the like. .
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0027]
First, the component composition of steel specified in the present invention and the reason for limitation will be described. In addition, all component composition is the mass%.
[0028]
First, the reason for limiting the Al content will be described. As described above, the steel according to the present invention converts the oxide composition from Al 2 O 3 to REM oxide or REM oxysulfide by adding REM. Al is not essential for all steel grades. It is a component necessary as a deoxidizing element for reducing O and for adjusting the grain size of steel. However, even if the Al content exceeds 0.05%, the effect of adjusting the crystal grain size is saturated, and conversion from Al 2 O 3 to REM oxide or REM oxysulfide cannot be achieved. Is not achieved, so the upper limit was made 0.05%. In the case of high Al, it is considered that Al 2 O 3 is in a more stable state than REM oxide or REM oxysulfide and cannot be converted to REM oxide or REM oxysulfide.
[0029]
Next, T.W. The O (total oxygen) content will be described. T. in the present invention. The O content substantially coincides with the dissolved oxygen content in the steel and the oxygen content forming the oxide (mainly Al 2 O 3 ). Therefore, T.W. The higher the O content, the greater the amount of Al 2 O 3 in the steel to be modified. Therefore, the limit T.I. As a result of examining the O content, T.W. If the O content exceeds 0.0050%, the amount of Al 2 O 3 increases too much, and even if REM is added, the total amount of Al 2 O 3 in the steel can be converted to REM oxide or REM oxysulfide. It was not possible, and it was found that Al 2 O 3 remained in the steel material. Therefore, in the present invention, T.W. The O content needs to be 0.0050% or less.
[0030]
REM is a strong deoxidizing element, and is added to react with Al 2 O 3 in the steel and take O of Al 2 O 3 to form REM oxide. For that purpose, the amount of Al 2 O 3 , ie, T.I. Unless a certain amount or more of REM is added according to the O content, unreacted Al 2 O 3 remains, which is not preferable. As a result of further experiments on this point, the REM content and T.I. It has been found that there is a relationship of the following formula (1) with the O content.
[0031]
-30 <REM (ppm) -T. O (ppm) × 280/48 <50 (1) Formula Here, the above formula (1) will be described with reference to FIG. FIG. 1 shows the effect of REM-T. This shows the value of dmax, 3000 (μ) when the influence of O × 280/48 is S = 0.005% and S = 0.002%.
[0032]
The evaluation procedure by the maximum inclusion size extreme value statistical method existing at 30000 mm 2 evaluated by the extreme value statistical method is as follows for dmax, 30000 (μ) on the vertical axis.
[0033]
i) Sixteen 10 × 10 mm (100 mm 2 ) sharpening samples were prepared.
[0034]
ii) Identify the largest inclusion in each sample and measure its size.
[0035]
iii) Estimate the inclusion size which is considered to exist at 30000 mm 2 by the extreme value statistical processing from the 16 maximum inclusion sizes.
[0036]
First, [S] = 0.005% and [S] = 0.002% bearing steel (TO = 8ppm) is melted, REM is added with misch metal, and the refinement behavior of inclusions is investigated. did. The amount of REM to be added was changed, and the influence on the inclusion size at that time was evaluated. Microscope samples were collected from the steel ingot, the maximum inclusion size was evaluated by the extreme value statistical method, and the relationship with the amount of REM added was investigated. The solid line indicates the case where S = 0.005%, and the alternate long and short dash line indicates the case where [S] = 0.002%.
[0037]
T.A. REM-T. It can be seen that the inclusions are stably miniaturized when O × 280/48 is in the range of −30 to 50.
[0038]
Moreover, when S is 0.002, it can be seen that the inclusions are further refined. (It was also found that these inclusion compositions satisfied the formula (2) described later, and the Al 2 O 3 content was 30% or less.)
That is, the REM content and T.I. Relationship of O content, [REM (ppm) -T. O (ppm) × 280/48] is defined to be −30 or more and 50 or less as defined in the formula (1), thereby avoiding remaining unreacted Al 2 O 3 and aiming at an oxide. It was found that the REM oxide of the composition can be controlled. However, the REM content defined by the above formula (1) and T.I. In relation to the O content, [REM (ppm) -T. If O (ppm) × 280/48] was added in excess of 50 or more, the formation of sulfides was severe and coarse sulfides were formed, resulting in a poor fatigue life. Further, in the above formula (1), [REM (ppm) -T. If O (ppm) × 280/48] is −30 or less, the ability to produce REM oxide or REM oxysulfide is weak and the object of the present invention cannot be achieved.
[0039]
Next, the reason for defining the number ratio of oxide-based and oxysulfide-based inclusions having a particle diameter of 1 μm or more will be described. In the steel refining process, there are inclusions other than REM oxide-based and REM oxysulfide-based inclusions due to inevitable mixing in part. For example, when there is a large amount of slag with a high degree of oxidation from the decarburization refining furnace, and the reduction of the degree of oxidation in the secondary refining process is insufficient, the molten steel is reoxidized by the slag, and the Al 2 O 3 system Inclusions increase. If the seal with the atmosphere is insufficient after the REM source is added, the REM content is already used to reform the Al 2 O 3 inclusions, and there is no dissolved REM content. Oxidation increases Al 2 O 3 inclusions. Furthermore, when the slag basicity in the secondary refining is high, Ca Input is generated from the slag due to the equilibrium reaction between the slag and the molten steel, and this also generates CaO-rich inclusions that cannot be modified by REM. . When these inclusions are present, it is not possible to enjoy the effect of refinement of inclusions due to the addition of REM. Therefore, it is necessary to thoroughly exclude the above-mentioned reoxidation factors. By doing so, the number of inclusions (including sulfides and nitrides) other than REM-containing inclusions is less than 20% of the total, that is, by satisfying the relationship defined by the following formula (2), The fine dispersion of the material was highly stabilized, and further improvement in fatigue life was observed.
[0040]
The method for specifying the number of inclusions is shown below.
[0041]
For this measurement, an analysis / analysis device in which an X-ray microanalyzer and a computer are combined was used and evaluated in the following manner.
[0042]
i) Designation of measurement area of steel material: 1 visual field area was 0.5 mm × 0.5 mm, and 5 visual fields / sample.
[0043]
ii) Electron beam irradiation: The electron beam diameter was 0.5 μm, and each field of view was irradiated 1000 times in the X direction and 1000 times in the Y direction for elemental analysis.
[0044]
iii) Identification of inclusions: Elemental analysis information by electron beam irradiation was computer processed to identify inclusions.
[0045]
iv) Identification of REM-containing inclusions: Elemental analysis information by electron beam irradiation was computer-processed, and inclusions containing REM components were identified as REM-containing inclusions. The composition was quantitatively evaluated.
[0046]
v) Identification of the number: Further, the equivalent circle diameter of the inclusion particles in the above iii) and iv) is calculated, the size of the inclusion is specified, and the above iii existing in the 0.5 mm × 0.5 mm × 5 field of view. ) And iv) were measured.
[0047]
REM content (inclusions) / total number of inclusions> 0.8 (2) The reason that the concentration of Al 2 O 3 in the inclusions is defined as 30% or less is that 30% or more of Al 2 O 3 is contained. As a result, it was found that the Al 2 O 3 content was harder than REM oxide and REM oxysulfide having a content of 30% or less, and the fatigue characteristics were deteriorated and the acoustic characteristics were affected. Therefore, the upper limit of the Al 2 O 3 concentration in inclusions is set to 30%.
[0048]
Next, the use of misch metal as the REM source will be described.
[0049]
REM is a rare earth metal (rare earth element), Sc (atomic number 21) belonging to Group 3 of the periodic table, Y (39), and La, Ce, Pr, Nd, Pm, lanthanoids (57 to 71), It is a generic name for 17 elements of Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and has different formation powers for oxides, oxysulfides, and sulfides. In the conventional literature, each element is not specified and handled as having the same property. However, for example, as shown in FIG. 2, La and Ce have different compounds that exist stably even at the same oxygen or S level.
[0050]
In the present invention, various elements are studied, and inclusions can be stably refined by adding them with misch metal containing Ce, La, Nd, and Pr as main components (> 98%) rather than using them alone. (FIG. 3).
[0051]
When the S content is high, REM sulfide is easily formed. Even if REM sulfide is not formed, it becomes richer and coarser than the stoichiometric composition of REM oxysulfide. Therefore, as shown in FIG. 4, it is desirable that the S content is low, and by making it 0.003% or less, better material properties can be obtained without forming coarse sulfides.
When Ti exceeds 0.001% by mass, the amount of hard TiN produced is remarkably increased, resulting in deterioration of fatigue life, acoustic characteristics, and vibration resistance. Therefore, the Ti content is set to 0.001. It is necessary to make the mass% or less.
[0052]
In the present invention, the steel material which is an object of the present invention, in particular bearing steel, or taking into account the steel miniature bearing, as another steel reinforcing component, Si: 0.01~0.4%, Mn: 0.1 -0.5%, Cr: 0.01-1.5 % can also be added. In the present invention, the range of good Masui C concentration is 1.2% or less than 0.005%. This is because when C is over 1.2%, the added REM forms carbides with C and the reforming efficiency of Al2O3 decreases, and when it is less than 0.005%, the Al 2 O 3 present in the initial stage is reduced. This is because the amount is large and the reforming efficiency decreases.
[0053]
In addition, the manufacturing method of this invention steel is not specifically limited. That is, the melting of the mother molten steel may be either the blast furnace-converter method or the electric furnace method. Further, addition of components to the mother molten steel is not limited, and component elements necessary for the characteristics of each steel material may be arbitrarily added to the mother molten steel. Further, the addition method is not limited, and an addition method by free fall, a method of blowing with an inert gas, and the like can be freely adopted. Furthermore, the method of manufacturing a steel ingot from mother molten steel and rolling it is not limited.
[0054]
Regarding the addition of the REM source, it is added after vacuum refining such as RH. For example, when refining is performed by RH, it is preferable to add as misch metal (bulk) from the top to the molten steel in the vacuum tank from the hopper installed at the top of the vacuum tank at the end of the RH treatment.
[0055]
Examples of the present invention and comparative examples will be described below, and the effects of the present invention will be described.
[0056]
【Example】
Example 1
The molten iron discharged from the blast furnace is subjected to de-P and de-S treatments, and then the molten iron 270t is charged into the converter and subjected to oxygen blowing to produce a base for bearing steel having a predetermined C, P and S content. Molten steel was obtained. Al, Si, Mn, and Cr were added while the mother molten steel was discharged into the ladle and during LF and RH degassing. In LF, the highly oxidized slag discharged from the converter is reduced, the content of iron oxide and MnO is reduced, and the CaO / SiO 2 ratio is increased by adding CaO to reduce the components that cause reoxidation. Let Further, the Al 2 O 3 concentration was adjusted to obtain a slag composition having a high inclusion absorption capacity. In the RH treatment, dehydrogenation and inclusion removal were performed. Further, a predetermined amount of REM was added from an addition hopper provided in the upper part of the RH vacuum chamber at the end of the RH treatment. As the REM, misch metal having the components shown in Table 2 was used. Its size was 35-45 mm.
[0057]
A cast slab was produced from the molten steel thus obtained by a continuous casting method, and the slab was rolled with a steel bar to produce a steel bar for a bearing having a chemical composition shown in Table 3 (diameter 65 mmφ). Inclusions contained in this steel material were fine with a large proportion of REM-containing inclusions. Extremum statistical method (reference area: 100mm 2, n = 16, evaluation area: 30,000 mm 2) The results of the evaluation of the maximum inclusion size in 30,000 mm 2, good size shown in Table 3 were obtained. Moreover, as a result of performing the rolling fatigue test of the steel material, good results shown in Table 3 were obtained. The breakdown of the REM components shown in Table 3 is shown in Table 4.
(Comparative Example 1)
Bearing steels shown in Table 3 were produced in the same manner as in Example 1. However, in this case, the case where REM addition at the end of the RH treatment is not performed, the case where the REM addition amount (the addition method is the same as that of Example 1) is set to the upper limit or more and the lower limit or less of the appropriate REM amount of the present invention, and after RH In some cases, the sealability was intentionally deteriorated, and the ratio of the number of inclusions containing REM deviated from the present invention. The inclusion size and rolling fatigue performance of the obtained bearing steel are shown in Table 3, but were unfavorable compared to Example 1.
[0058]
[Table 1]
Figure 0004256701
[0059]
[Table 2]
Figure 0004256701
[0060]
[Table 3]
Figure 0004256701
[0061]
[Table 4]
Figure 0004256701
[0062]
(Example 2)
Bearing steels shown in Table 5 were manufactured by the same method as in Example 1. Inclusions contained in this steel material were fine with a large proportion of REM-containing inclusions. As a result of evaluating the maximum inclusion size at 30000 mm 2 by the extreme value statistical method (standard area: 100 mm 2, n = 16, evaluation area: 30000 mm 2) with a steel bar rolled to 65 mmφ, the favorable size shown in Table 5 was obtained. . Moreover, after rolling the said steel material to a 10 mm diameter wire, it processed into the miniature bearing, and as a result of evaluating an acoustic characteristic and a vibration characteristic, the favorable result shown in Table 5 was obtained. The breakdown of the REM components shown in Table 5 is shown in Table 6.
(Comparative Example 2)
Bearing steels shown in Table 5 were produced in the same manner as in Example 2. However, in this case, the case where REM addition at the end of the RH treatment is not performed, the case where the REM addition amount (the addition method is the same as that of Example 1) is set to the upper limit or more and the lower limit or less of the appropriate REM amount of the present invention, and after RH In some cases, the sealability was intentionally deteriorated, and the ratio of the number of inclusions containing REM deviated from the present invention. In some cases, Ti was removed. The results of inclusion size and acoustic / vibration characteristics of the obtained bearing steel are shown in Table 5, which is not preferable as compared with Example 2.
[0063]
[Table 5]
Figure 0004256701
[0064]
[Table 6]
Figure 0004256701
[0065]
【The invention's effect】
As described above, the present invention relates to a steel in which REM oxides and REM oxysulfide inclusions are finely dispersed in steel. In particular, the present invention eliminates the adverse effects of oxide inclusions and is excellent. It is possible to provide steel having fatigue life resistance and steel having excellent acoustic characteristics.
[Brief description of the drawings]
FIG. 1 shows REM-T. The figure which shows the relationship of Ox280 / 48.
2A is a diagram showing stable regions of Ce oxide, oxysulfide, and sulfide, and FIG. 2B is a diagram showing stable regions of La oxide, oxysulfide, and sulfide.
FIG. 3 is a diagram showing the influence of a REM source on inclusion size.
FIG. 4 is a diagram showing the influence of [S] on inclusion size.

Claims (6)

質量%で、
C:0.005〜1.2%
Si:0.01〜0.4%
Mn:0.1〜0.5%
Al:0.05%以下(0%を含む)
を含み、
Ti:0.001%以下、
T.O:0.005%以下
に制限し、
かつ下記(1)式の関係を満足する範囲量のREMを含有し、残部がFeと不可避的不純物からなり、かつ円相当径で粒径1μm以上の全ての介在物の内のREM含有介在物の個数割合が、下記(2)式を満足すると共に、前記REM含有介在物中に含まれるAl濃度が30%以下(0%を含む)であることを特徴とする疲労寿命に優れた介在物微細分散鋼。
−30<REM(ppm)−T.O(ppm)×280/48<50 …(1)式
REM含有介在物個数/全介在物個数>0.8 …(2)式
% By mass
C: 0.005 to 1.2%
Si: 0.01 to 0.4%
Mn: 0.1 to 0.5%
Al: 0.05% or less (including 0%)
Including
Ti: 0.001% or less,
T.A. O: 0.005% or less
Limited to
And the amount of REM that satisfies the relationship of the following formula (1) is contained, the balance is Fe and inevitable impurities, and the inclusion containing REM among all the inclusions having an equivalent circle diameter and a particle diameter of 1 μm or more . the number ratio of, along with satisfying the following expression (2), excellent fatigue life concentration of Al 2 O 3 contained in the REM-containing inclusions is characterized in that 30% or less (including 0%) Inclusion fine dispersion steel.
-30 <REM (ppm) -T. O (ppm) × 280/48 <50 (1) formula Number of inclusions containing REM / total number of inclusions> 0.8 (2) formula
REMがCe,La,Nd,Prのいずれも含有するものであることを特徴とする請求項1記載の疲労寿命に優れた介在物微細分散鋼。  2. The inclusion finely dispersed steel with excellent fatigue life according to claim 1, wherein REM contains any of Ce, La, Nd, and Pr. 不純物としてのSを、0.003質量%以下に制限したことを特徴とする請求項1または2記載の疲労寿命に優れた介在物微細分散鋼。 The inclusion fine dispersion steel excellent in fatigue life according to claim 1 or 2 , wherein S as an impurity is limited to 0.003% by mass or less. さらに、Cr:0.01〜1.5質量%を含むことを特徴とする請求項1〜3の何れかの項に記載の疲労寿命に優れた介在物微細分散鋼。 Furthermore, Cr: 0.01-1.5 mass% is included , The inclusion fine dispersion steel excellent in the fatigue life of any one of Claims 1-3 characterized by the above-mentioned. 前記鋼が軸受鋼であることを特徴とする請求項1〜4のいずれかの項に記載の疲労寿命に優れた介在物微細分散鋼。  The inclusion finely dispersed steel having excellent fatigue life according to any one of claims 1 to 4, wherein the steel is a bearing steel. 前記鋼がハードディスクやAV機器等に用いられるミニチュアベアリングに使用されることを特徴とする請求項1〜4の何れかの項に記載の疲労寿命に優れた介在物微細分散鋼。  The inclusion fine dispersion steel having excellent fatigue life according to any one of claims 1 to 4, wherein the steel is used for a miniature bearing used in a hard disk, an AV device, or the like.
JP2003068541A 2003-03-13 2003-03-13 Inclusion finely dispersed steel with excellent fatigue life Expired - Fee Related JP4256701B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003068541A JP4256701B2 (en) 2003-03-13 2003-03-13 Inclusion finely dispersed steel with excellent fatigue life
CNB2004800063077A CN100427628C (en) 2003-03-13 2004-03-11 steel containing finely divided inclusions
PCT/JP2004/003251 WO2004081250A2 (en) 2003-03-13 2004-03-11 Steel having finely dispersed inclusions
KR1020057016679A KR100675709B1 (en) 2003-03-13 2004-03-11 Steel with finely dispersed inclusions
US10/547,303 US20060157162A1 (en) 2003-03-13 2004-03-11 Steel having finely dispersed inclusions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003068541A JP4256701B2 (en) 2003-03-13 2003-03-13 Inclusion finely dispersed steel with excellent fatigue life

Publications (2)

Publication Number Publication Date
JP2004277777A JP2004277777A (en) 2004-10-07
JP4256701B2 true JP4256701B2 (en) 2009-04-22

Family

ID=32984592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003068541A Expired - Fee Related JP4256701B2 (en) 2003-03-13 2003-03-13 Inclusion finely dispersed steel with excellent fatigue life

Country Status (5)

Country Link
US (1) US20060157162A1 (en)
JP (1) JP4256701B2 (en)
KR (1) KR100675709B1 (en)
CN (1) CN100427628C (en)
WO (1) WO2004081250A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708853B (en) * 2018-06-26 2020-11-01 日商日本製鐵股份有限公司 Steel manufacturing method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130140598A (en) * 2010-07-02 2013-12-24 아크티에볼라게트 에스케이에프 Flash-butt welded bearing component
KR101271899B1 (en) * 2010-08-06 2013-06-05 주식회사 포스코 High carbon and chromium bearing steel and method for manufacturing the same
KR101616656B1 (en) 2011-10-20 2016-04-28 신닛테츠스미킨 카부시키카이샤 Bearing steel and method for producing same
ES2609033T3 (en) * 2011-10-25 2017-04-18 Nippon Steel & Sumitomo Metal Corporation Sheet steel
JP5712945B2 (en) * 2012-02-03 2015-05-07 新日鐵住金株式会社 Method for melting low-sulfur steel
CN102732685A (en) * 2012-06-20 2012-10-17 内蒙古包钢钢联股份有限公司 Method for adding rare earth into RH refining furnace
JP5833984B2 (en) * 2012-07-24 2015-12-16 株式会社神戸製鋼所 Bearing steel and bearing parts with excellent rolling fatigue characteristics
WO2014061782A1 (en) 2012-10-19 2014-04-24 新日鐵住金株式会社 Induction-hardening steel having excellent fatigue characteristics
IN2015DN00655A (en) 2012-10-19 2015-06-26 Nippon Steel & Sumitomo Metal Corp
JP6036997B2 (en) 2013-04-23 2016-11-30 新日鐵住金株式会社 Spring steel with excellent fatigue resistance and method for producing the same
CN110079728B (en) * 2019-04-09 2020-07-10 东北大学 High-strength twisted steel with good weldability and manufacturing method thereof
DE112019007510T5 (en) * 2019-06-28 2022-03-10 Sumitomo Electric Industries, Ltd. Copper coated steel wire, stranded wire, insulated electrical wire and cable
CN110592319B (en) * 2019-09-10 2020-12-01 中国科学院金属研究所 Rare earth microalloyed steel and control method
CN110484811B (en) * 2019-09-10 2020-07-28 中国科学院金属研究所 A kind of ultra-clean rare earth steel and inclusion modification control method
CN110438389B (en) * 2019-09-16 2021-03-16 内蒙古工业大学 Production method of high-purity rare earth steel
CN112322988A (en) * 2020-11-23 2021-02-05 浙江宝武钢铁有限公司 High-wear-resistance bearing steel electroslag ingot and processing technology thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3666570A (en) * 1969-07-16 1972-05-30 Jones & Laughlin Steel Corp High-strength low-alloy steels having improved formability
US3933480A (en) * 1972-09-18 1976-01-20 Republic Steel Corporation Method of making stainless steel having improved machinability
DE69127580T2 (en) * 1990-05-23 1998-04-16 Aichi Steel Works Ltd Bearing steel
JP3626278B2 (en) * 1996-03-25 2005-03-02 Jfeスチール株式会社 Method for producing Al-killed steel without clusters
TW408184B (en) * 1997-09-29 2000-10-11 Kawasaki Steel Co Manufacturing method for producing Titanium killed steel with smooth surface texture
JP3661421B2 (en) * 1998-06-19 2005-06-15 Jfeスチール株式会社 Hot-rolled steel sheet for rerolling and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708853B (en) * 2018-06-26 2020-11-01 日商日本製鐵股份有限公司 Steel manufacturing method

Also Published As

Publication number Publication date
WO2004081250A3 (en) 2005-03-03
JP2004277777A (en) 2004-10-07
KR100675709B1 (en) 2007-02-02
CN1759199A (en) 2006-04-12
KR20050103978A (en) 2005-11-01
US20060157162A1 (en) 2006-07-20
CN100427628C (en) 2008-10-22
WO2004081250A2 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
JP4256701B2 (en) Inclusion finely dispersed steel with excellent fatigue life
CN105164294B (en) Hypoxic pure steel and hypoxic pure steel products
JP5794396B2 (en) Induction hardening steel with excellent fatigue properties
JP5794397B2 (en) Case-hardened steel with excellent fatigue properties
US20090038439A1 (en) Process for producing steel for high-carbon steel wire material with excellent drawability and fatique characteristics
KR20090090254A (en) Steel with excellent toughness of weld heat affected zone and manufacturing method
JP3294245B2 (en) High carbon steel wire with excellent drawability and fatigue resistance after drawing
JP5541310B2 (en) Manufacturing method of highly clean steel
JP3896709B2 (en) Method of melting high cleanliness steel
JP2004176176A (en) Steel with excellent machinability
KR20040007754A (en) Low carbon steel sheet, low carbon steel cast piece and method for production thereof
JP2003027188A (en) Invar alloy for shadow mask and method of manufacturing the same
JP3533196B2 (en) High fatigue strength spring steel wire and its manufacturing method.
JP2021123773A (en) Ni-Cr-Al-Fe ALLOY HAVING EXCELLENT SURFACE PROPERTIES AND METHOD FOR PRODUCING THE SAME
JP6825399B2 (en) How to melt clean steel
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
JP3632922B2 (en) Steel making and refining method for spring steel and spring steel wire obtained by using the steel making and refining method
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP2002194497A (en) Si deoxidized steel and manufacturing method thereof
JPH09227989A (en) Ca-treated steel and method for treating molten steel with Ca
JP2002105527A (en) Method for producing high cleanliness steel
JP2004346402A (en) Steel refining method for spring steel
JP2003105501A (en) Fe-Ni BASED ALLOY FOR LOW THERMAL EXPANSION HIGH RIGIDITY SHADOW MASK HAVING EXCELLENT SURFACE PROPERTY AND ETCHING WORKABILITY, AND PRODUCTION METHOD THEREFOR
JP3501004B2 (en) Fe-Ni alloy plate and shadow mask excellent in etching piercing property

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4256701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees