[go: up one dir, main page]

JP5712945B2 - Method for melting low-sulfur steel - Google Patents

Method for melting low-sulfur steel Download PDF

Info

Publication number
JP5712945B2
JP5712945B2 JP2012021994A JP2012021994A JP5712945B2 JP 5712945 B2 JP5712945 B2 JP 5712945B2 JP 2012021994 A JP2012021994 A JP 2012021994A JP 2012021994 A JP2012021994 A JP 2012021994A JP 5712945 B2 JP5712945 B2 JP 5712945B2
Authority
JP
Japan
Prior art keywords
molten steel
rem
cao
addition
ton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021994A
Other languages
Japanese (ja)
Other versions
JP2013159810A (en
Inventor
章伍 高嶋
章伍 高嶋
光裕 沼田
光裕 沼田
徹 神林
徹 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012021994A priority Critical patent/JP5712945B2/en
Publication of JP2013159810A publication Critical patent/JP2013159810A/en
Application granted granted Critical
Publication of JP5712945B2 publication Critical patent/JP5712945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、鋼管あるいは厚鋼板に用いられる低硫鋼の溶製方法に関し、特にRH式真空脱ガス処理装置を用いた処理において少量の媒溶材で鋼中硫黄濃度を簡便に低減することができ、かつ、連続鋳造時のノズル詰まりを問題にならないレベルに抑えることができる低硫鋼の溶製方法に関する。   The present invention relates to a method for melting low-sulfur steel used for steel pipes or thick steel plates, and in particular, in processing using an RH vacuum degassing apparatus, the sulfur concentration in steel can be easily reduced with a small amount of solvent. Further, the present invention relates to a method for melting low-sulfur steel that can suppress nozzle clogging during continuous casting to a level that does not cause a problem.

鋼中の硫黄は鋼材の溶接性、靭性、耐食性などの低下を招くため、従来から鋼中硫黄濃度の低減技術が多数開発されてきた。ただし、[S]<0.002質量%などの要求は高級鋼や高性能鋼などと呼ばれる一部の製品に限られていたため、脱硫に伴う処理の複雑化や製造コストの上昇はある程度許容されてきた。一方、より低コストでより高効率精錬が行える技術も開発されてきている。   Since sulfur in steel causes a decrease in weldability, toughness, corrosion resistance, etc. of steel materials, many techniques for reducing the sulfur concentration in steel have been developed. However, since the requirements such as [S] <0.002% by mass have been limited to some products called high-grade steel and high-performance steel, complicated processing due to desulfurization and an increase in manufacturing cost are allowed to some extent. I came. On the other hand, a technology capable of highly efficient refining at a lower cost has been developed.

RH式真空脱ガス処理装置を用いた脱硫技術として、例えば特許文献1や特許文献2により開示された方法がある。本出願人は、先に特許文献3により、脱硫のみならず酸素や窒素などの元素も硫黄と同時に低減する方法として、CaOを主体としたフラックスの脱硫能力と、La、Ce、Nd、Y等の希土類元素(以下、「REM」という。)の能力とを適正に組み合わせることによって、低O低S低N化を同時に図る方法を提示した。   As a desulfurization technique using an RH type vacuum degassing apparatus, there are methods disclosed in Patent Document 1 and Patent Document 2, for example. As a method of reducing not only desulfurization but also elements such as oxygen and nitrogen as well as sulfur according to Patent Document 3, the present applicant previously described a desulfurization ability of a flux mainly composed of CaO, La, Ce, Nd, Y, and the like. A method of simultaneously achieving low O, low S, and low N by combining the ability of rare earth elements (hereinafter referred to as “REM”) appropriately.

特許文献3により提示した方法によって、簡便に低O低S低N化を図ることにより高機能高性能製品の製造が可能となった。なお、この方法において「CaOを主体としたフラックス」とは、フラックス中の酸化カルシウム(CaO)の純分が75質量%以上であるフラックスを意味し、本明細書においても「CaO系フラックス」と記す場合がある。   By the method presented in Patent Document 3, it is possible to manufacture high-performance, high-performance products by simply reducing O, S and N. In this method, “flux mainly composed of CaO” means a flux in which the pure content of calcium oxide (CaO) in the flux is 75% by mass or more, and also in this specification “CaO-based flux”. It may be noted.

他方で一般的な鋼で単に低N化が必要な場合、または一般的なN規格成分を満足させるためにN濃度を若干低減する必要がある場合も存在するため、本出願人は、特許文献4により、より簡便かつ安価に溶鋼の脱窒を図り、低窒素鋼の量産を可能とする方法を提示した。   On the other hand, since there is a case where it is necessary to simply reduce N in general steel or there is a case where the N concentration needs to be slightly reduced in order to satisfy a general N standard component, 4 presented a method for denitrifying molten steel more easily and cheaply and enabling mass production of low nitrogen steel.

以上の技術開発の経緯は、高性能が要求される鋼材を対象とした高度な脱硫技術、そして高度な同時脱S脱O脱N技術の追求にあり、現在もより高性能化を実現すべく開発が進められている。   The background of the above technological development is the pursuit of advanced desulfurization technology for steel materials that require high performance, and advanced simultaneous desulfurization S deoxygenation, and to achieve higher performance even now. Development is underway.

一方、近年では一部の高性能鋼のみではなく、比較的汎用性の広い鋼材においても低い硫黄濃度が求められる場合が生じつつある。汎用性の広い鋼材においても高性能鋼と同一の処理を施せば脱硫は勿論可能であるが、これらの鋼種は大量かつより安価に製造する必要がある一方で、高性能鋼よりも要求脱硫水準がやや低い場合が多いという側面もあるため、必ずしも高性能鋼と同一の処理を施すことが最適とは限らない。   On the other hand, in recent years, not only some high-performance steels but also relatively versatile steel materials are demanding a low sulfur concentration. Of course, desulfurization is possible even with versatile steels if the same treatment as high-performance steel is applied, but these steel types need to be manufactured in large quantities and at a lower cost, while the required desulfurization level is higher than that of high-performance steel. However, since it is often low, it is not always optimal to perform the same treatment as that of high-performance steel.

また、脱硫剤としてREMを用いる場合、REMとOおよびSとが反応して生じる介在物の存在によって、連続鋳造時にノズル詰まりを起こすことがあると知られており、特許文献3にも特許文献4においてもそのことが開示されているが、特許文献3、4のいずれにも具体的な対策は開示されていない。   In addition, when REM is used as a desulfurizing agent, it is known that nozzle clogging may occur during continuous casting due to the presence of inclusions produced by the reaction of REM with O and S. This is also disclosed in Japanese Patent No. 4, but no specific countermeasure is disclosed in any of Patent Documents 3 and 4.

さらに、特許文献5には、操業性の低下やコストの増加を抑えた、浸漬ノズルの詰まり抑制方法が開示されている。この方法は、二次精錬装置で溶製中、1又は2以上のチャージおきに希土類元素を添加するものである。しかし、この方法を大量に用いるとコスト上昇は避けられない。   Furthermore, Patent Document 5 discloses a method for suppressing clogging of an immersion nozzle that suppresses a decrease in operability and an increase in cost. In this method, a rare earth element is added every one or two or more charges during melting in a secondary refining apparatus. However, if this method is used in large quantities, an increase in cost is inevitable.

特開平5−171253号公報JP-A-5-171253 特開2000−297318号公報JP 2000-297318 A 特開2009−144221号公報JP 2009-144221 A 特開2010−132982号公報JP 2010-132982 A 特開2009−274079号公報JP 2009-274079 A

本発明の目的は、上記課題に鑑み、RH式真空脱ガス処理装置を用いた脱ガス処理において、より広い成分系の鋼材を対象に硫黄濃度を簡便かつ安価に低減する鋼の溶製方法であって、しかも連続鋳造時にノズル詰まりを起こすことを防止できる低硫鋼の溶製方法を提供することにある。   The object of the present invention is a steel melting method that reduces the sulfur concentration easily and inexpensively for a wider range of steel components in degassing using an RH vacuum degassing apparatus in view of the above problems. In addition, an object of the present invention is to provide a method for melting low-sulfur steel that can prevent nozzle clogging during continuous casting.

広い成分系の鋼材に対して、脱O力が強くかつSとの親和性の強いREM(La、Ce、Nd、Y等の希土類元素)とCaOを、RH式真空脱ガス処理装置における処理での脱硫材として用いて硫黄濃度を簡便かつ安価に脱硫する技術を基本とし、さらに、溶鋼成分とREM添加量を適切な範囲に制御するとともに、REM添加後の上吹き酸素供給量とその酸素供給後の溶鋼環流量を適切に制御することによって鋳込み時のノズル詰まりを防止することを方針とする。   REM (rare earth elements such as La, Ce, Nd, Y) and CaO, which have a strong de-O force and a strong affinity for S, and CaO are processed in a RH-type vacuum degassing system for a wide range of steel materials. As a basic desulfurization technology, it is based on the technology to desulfurize the sulfur concentration easily and inexpensively. Furthermore, the molten steel components and REM addition amount are controlled within an appropriate range. The policy is to prevent nozzle clogging during casting by appropriately controlling the flow rate of the molten steel afterwards.

この方針に基づき、検討を行うにあたって、まず、本発明の処理対象となる鉄以外の鋼成分を以下の理由により特定した。なお、本明細書において、鋼組成およびREM濃度(詳細は後述する)における「%」は、特にことわりがない場合は「質量%」を意味する。   Based on this policy, first of all, steel components other than iron to be treated according to the present invention were identified for the following reasons. In this specification, “%” in the steel composition and REM concentration (details will be described later) means “% by mass” unless otherwise specified.

Mn:Mnは脱酸元素であり、各種鋼材特性を改善することから、必須元素である。したがって、Mn濃度が0.1%未満では脱酸が不安定になり、2%を超えて高くなるとSの活量を低下させ、脱硫を困難とする。したがって、Mn濃度は0.1%以上2%以下とする。   Mn: Mn is a deoxidizing element and is an essential element because it improves various steel properties. Therefore, if the Mn concentration is less than 0.1%, deoxidation becomes unstable, and if it exceeds 2%, the activity of S is reduced, making desulfurization difficult. Therefore, the Mn concentration is 0.1% or more and 2% or less.

Si:SiもMn同様に脱酸安定に欠くことのできない元素である。Si濃度が0.001%未満では脱酸が不安定となり、1%を超えて高くなるとN活量を増加させ脱窒を促進する。本発明では、そのような低N化が容易な成分系でない成分系を対象とするので、Si濃度は1%以下とする。   Si: Si is an element indispensable for deoxidation stability like Mn. When the Si concentration is less than 0.001%, deoxidation is unstable, and when it exceeds 1%, the N activity is increased to promote denitrification. In the present invention, since the component system that is not easy to reduce N is used, the Si concentration is set to 1% or less.

Al:Alは最も強い脱酸力を有する元素であるため脱酸に重要な役割を果たす元素である。そして、この脱酸効果を得るにはAl濃度は0.005%以上必要である。一方、Al濃度が1%を超えて高くなると再び溶解酸素濃度が高くなって低Oを実現することが困難となるため、1%以下である必要がある。このため、Al濃度は0.005%以上1%以下とする。   Al: Al is an element that plays an important role in deoxidation because it is the element having the strongest deoxidizing power. In order to obtain this deoxidation effect, the Al concentration needs to be 0.005% or more. On the other hand, if the Al concentration exceeds 1%, the dissolved oxygen concentration becomes high again and it becomes difficult to realize low O, so it is necessary to be 1% or less. For this reason, Al concentration shall be 0.005% or more and 1% or less.

S:Sは不純物であって除去対象元素であるが、0.0035%を超えて高くなると、物質収支的に脱硫剤使用量が大幅に増加するため、コストのみならずスラグ排出量も増加する。そこで、S濃度が0.0035%以下の溶鋼を処理対象とする。   S: S is an impurity and is an element to be removed, but if it exceeds 0.0035%, the amount of desulfurization agent used increases significantly in terms of material balance, so not only costs but also slag emissions increase. . Therefore, molten steel having an S concentration of 0.0035% or less is treated.

上記の必須の成分のほか、脱硫、脱酸、および/または脱窒に影響を及ぼさない範囲で他の元素、例えばC、Ti、Ca、B、Nb、W、Mo、V、Mg、Cr、Niなどが含まれていてもよい。   In addition to the above essential components, other elements such as C, Ti, Ca, B, Nb, W, Mo, V, Mg, Cr, as long as they do not affect desulfurization, deoxidation, and / or denitrification Ni etc. may be contained.

既に特許文献4で明らかにしているように、低Sを図るには低Oであることが有利である。すると、低O化を図ることが最も優先されることであり、さらにSと親和力の強い元素を併用すれば効果が向上する可能性がある。すなわち、脱酸力を有し低O化を実現することができ、同時にSと親和力のある元素を用いることが望ましい。また、本発明は真空処理を前提にしていることから、蒸気圧の低い元素であることが望ましい。   As already clarified in Patent Document 4, in order to achieve low S, low O is advantageous. Then, it is the highest priority to achieve low O, and there is a possibility that the effect may be improved if elements having strong affinity with S are used together. That is, it is desirable to use an element that has deoxidizing power and can achieve low O, and at the same time has an affinity for S. Since the present invention is premised on vacuum processing, it is desirable that the element has a low vapor pressure.

以上のように考えると、このような条件を満足する元素として、REM(La、Ce、Nd、Y等の希土類元素)が知られている。つまり、これらREMを用いれば簡便な方法で低S低O低N鋼が得られると期待される。特許文献3により開示される技術ではこの考えに基づいてREMが添加されている。   Considering the above, REM (rare earth elements such as La, Ce, Nd, and Y) is known as an element that satisfies such conditions. That is, if these REMs are used, it is expected that low S, low O, low N steel can be obtained by a simple method. In the technique disclosed in Patent Document 3, REM is added based on this idea.

ただし、本発明の目的は、脱硫のみで脱窒は目的としないため、適当なREM濃度範囲は特許文献3により開示される技術におけるREM濃度範囲とは異なっていると考えられる。さらに、より広い成分系での鋼材に本発明に係る脱硫方法を適用するには、鋼中REM濃度を高める必要がない、または処理後のREM濃度が十分低いことが必要である。その上、ノズル詰まり問題を抑制するためには、その問題の原因となるREM介在物生成量を減らすべく、REM使用量を少なくすることが必要であるし、生成したREM介在物の溶鋼中懸濁量を可及的に少なくする必要もある。   However, since the object of the present invention is only desulfurization and not denitrification, the appropriate REM concentration range is considered to be different from the REM concentration range in the technique disclosed in Patent Document 3. Furthermore, in order to apply the desulfurization method according to the present invention to a steel material having a wider component system, it is not necessary to increase the REM concentration in the steel, or it is necessary that the REM concentration after treatment is sufficiently low. In addition, in order to suppress the nozzle clogging problem, it is necessary to reduce the amount of REM used in order to reduce the amount of REM inclusions that causes the problem, and the generated REM inclusions are suspended in the molten steel. It is also necessary to reduce the amount of turbidity as much as possible.

また、特許文献4に開示される技術では、脱窒を目的としたためにCaOを主体としたフラックスが不要であるが、脱硫を目的とする本発明では不要か必要かを改めて判断する必要がある。   Further, in the technique disclosed in Patent Document 4, a flux mainly composed of CaO is unnecessary because it aims at denitrification, but it is necessary to determine again whether it is unnecessary or necessary in the present invention intended for desulfurization. .

つまり、脱硫を促進させると同時に溶鋼成分に変化を与えず、しかもノズル詰まりを発生させないような適正なREM濃度範囲と、要否を含めたCaOを主体としたフラックスの適正量を明らかにする必要がある。加えて、RH処理でのREM添加後の酸素供給量、その酸素供給後の溶鋼環流量に関して条件を明らかにする必要がある。   In other words, it is necessary to clarify an appropriate REM concentration range that promotes desulfurization and at the same time does not change the molten steel components and does not cause nozzle clogging, and an appropriate amount of flux mainly composed of CaO including necessity. There is. In addition, it is necessary to clarify conditions regarding the oxygen supply amount after REM addition in the RH treatment and the molten steel ring flow rate after the oxygen supply.

そこで、これらを実験的に明確化することに取り組んだ。この実験の条件に関し、次のように定めた。
まず、REMとCaOとの添加順序は、REM添加を先に行い、その後CaOを添加する順序とした。この添加順序とは逆に、CaO添加後にREMを添加した場合には、先行して添加されたCaOによる脱硫反応の進行程度によって溶鋼中硫黄濃度が変化する。このため、REMの硫黄との反応量が変化し、その結果REMと溶鋼中酸素との反応量も変化する。それゆえ、CaO添加後にREMを添加すると効果が不安定になることが懸念される。すなわち、REM添加後CaOを添加することにより、REM添加の効果が安定的に得られる。
Therefore, we tried to clarify these experimentally. The conditions for this experiment were determined as follows.
First, the addition order of REM and CaO was the order in which REM addition was performed first and then CaO was added. Contrary to this addition order, when REM is added after CaO addition, the sulfur concentration in the molten steel changes depending on the progress of the desulfurization reaction by CaO added in advance. For this reason, the reaction amount of REM with sulfur changes, and as a result, the reaction amount of REM with oxygen in molten steel also changes. Therefore, there is a concern that the effect becomes unstable when REM is added after CaO is added. That is, the effect of REM addition is stably acquired by adding CaO after REM addition.

また、CaOの添加方法は、上吹きランスなどを介さずにCaOを一括添加で添加する方法を用いることとした。特許文献3により開示される方法では、上吹きランスを介してCaO系フラックスを溶鋼表面に3〜10分間をかけて吹き付けるというCaO系フラックス添加方法を用いているが、これは脱窒速度が遅いために脱窒反応時間を確保することを目的とする。これに対し、本発明は、脱窒よりも反応速度が速い脱硫のみを対象とし、しかも従来の脱硫方法よりも簡便な処理方法を提供することを目的としている。処理の簡便さという観点からCaOの供給は一括で行われることが当然に好ましく、後述するように、効率的に脱硫を行う(短時間で高い脱硫率を実現する)観点からもCaOは短時間で供給されることが好ましい。そこで、本発明では、単位時間当たりのCaO供給量が制限され、しかも供給にキャリアーガスを必要とする上吹きランスを介した供給ではなく、CaOを一括添加で供給することとした。ここで、本発明における「一括添加」とは、添加ホッパーなどから添加量のCaOの全量を数秒間から1分間以内程度の短時間で添加完了する方法であり、RH処理などで合金を添加する一般的な方法を指す。   Moreover, the addition method of CaO decided to use the method of adding CaO by lump addition, without going through a top blowing lance etc. The method disclosed in Patent Document 3 uses a CaO-based flux addition method in which a CaO-based flux is sprayed over the molten steel over 3 to 10 minutes via an upper blowing lance, but this has a slow denitrification rate. Therefore, it aims at ensuring the denitrification reaction time. On the other hand, the present invention is intended only for desulfurization, which has a higher reaction rate than denitrification, and aims to provide a treatment method that is simpler than conventional desulfurization methods. Naturally, it is preferable that the supply of CaO is performed collectively from the viewpoint of easy processing, and as will be described later, CaO is also a short time from the viewpoint of efficient desulfurization (to achieve a high desulfurization rate in a short time). Are preferably supplied. Therefore, in the present invention, the supply amount of CaO per unit time is limited, and CaO is supplied by batch addition rather than supply through an upper blowing lance that requires carrier gas for supply. Here, “collective addition” in the present invention is a method in which the addition of the entire amount of CaO added from an addition hopper or the like is completed in a short time of about several seconds to within one minute, and the alloy is added by RH treatment or the like. Refers to the general method.

さらに、REMおよびCaOを添加するときの雰囲気圧力に関し、本発明は脱窒を目的としないため、複雑な排気操作および高価な排気コストを要する高真空は必要とされない。そのため、RH処理では安価かつ容易に得られる雰囲気圧力である1.5kPa以上で実施できる。このような雰囲気圧力で脱硫を実施することにより、処理コストが抑制されることに加えて、環流速度が低下することからCaO系フラックスによる真空槽内介在物吸着除去の効果も生じる。   Further, regarding the atmospheric pressure when adding REM and CaO, the present invention does not aim at denitrification, so that a high vacuum requiring complicated exhaust operation and expensive exhaust cost is not required. For this reason, the RH treatment can be performed at an atmospheric pressure of 1.5 kPa or more which is inexpensive and easily obtained. By performing desulfurization at such an atmospheric pressure, in addition to the reduction of the processing cost, the reflux speed is lowered, so that the effect of adsorption removal of inclusions in the vacuum chamber by the CaO-based flux also occurs.

以上のように設定された条件で行った実験方法について詳しく説明する。鋼15kgをMgO坩堝内で溶解し、温度を1873Kに調整した。溶解雰囲気はAr雰囲気で雰囲気圧力は1.5〜6kPaとした。温度安定後、溶鋼中Mn濃度を0.5〜0.6%に、溶鋼中Si濃度を0.5〜0.6%に、溶鋼中Al濃度を0.01〜0.03%に、溶鋼中S濃度を0.0025〜0.0035%に、それぞれ調整した。   The experiment method performed under the conditions set as described above will be described in detail. 15 kg of steel was melted in an MgO crucible and the temperature was adjusted to 1873K. The melting atmosphere was an Ar atmosphere and the atmospheric pressure was 1.5 to 6 kPa. After temperature stabilization, the Mn concentration in the molten steel is 0.5-0.6%, the Si concentration in the molten steel is 0.5-0.6%, the Al concentration in the molten steel is 0.01-0.03%, The medium S concentration was adjusted to 0.0025 to 0.0035%.

その後、REMとして金属Ceまたは金属Laを所定量添加し、REM添加から1分30秒間経過後にCaO試薬を所定量一括で添加した。CaO試薬を添加してから2分間経過後と20分間経過後に溶鋼からサンプルを採取し、溶鋼中S濃度、REM濃度を化学分析により定量した。なお、CaOを添加しない実験ではREMを添加してから2分間経過後と20分間経過後に溶鋼からサンプルを採取した。   Thereafter, a predetermined amount of metal Ce or metal La was added as REM, and a predetermined amount of CaO reagent was added all at once after 1 minute and 30 seconds had elapsed since the addition of REM. Samples were taken from the molten steel after 2 minutes and after 20 minutes from the addition of the CaO reagent, and the S concentration and REM concentration in the molten steel were quantified by chemical analysis. In the experiment in which CaO was not added, samples were taken from the molten steel after 2 minutes and 20 minutes had passed since REM was added.

REM添加量を0.1kg/tonとして測定したCaO添加量と脱硫率との関係を図1にグラフで示す。脱硫率は、脱硫率(%)={(REM添加前溶鋼中硫黄濃度−CaO添加後溶鋼中硫黄濃度)/(REM添加前溶鋼中硫黄濃度)}×100で定義し、CaO添加2分間経過後の溶鋼中S濃度から算出された脱硫率を○で、CaO添加20分間経過後の溶鋼中S濃度から算出された脱硫率を▲で、それぞれ示す。   The relationship between the CaO addition amount and the desulfurization rate measured with the REM addition amount of 0.1 kg / ton is shown in a graph in FIG. Desulfurization rate is defined by desulfurization rate (%) = {(sulfur concentration in molten steel before REM addition−sulfur concentration in molten steel after CaO addition) / (sulfur concentration in molten steel before REM addition)} × 100, and CaO addition for 2 minutes The desulfurization rate calculated from the S concentration in the molten steel after is indicated by ◯, and the desulfurization rate calculated from the S concentration in the molten steel after 20 minutes of CaO addition is indicated by ▲.

CaO添加量0kg/tonの結果(図1のグラフのy切片)に着目すると、CaOを添加しなくてもREM添加2分間経過後(○)では31%の脱硫率が得られた。これは、REMと溶鋼中Sとが反応し、REMの硫化物もしくは酸硫化物が生成したことによる脱硫と考えられる。しかし、REM添加20分間経過後(▲)では復硫が進行し、脱硫率が0%になった。これは、溶鋼中REMが耐火物等と反応し、溶鋼中REM濃度が低下したためと考えられる。   Focusing on the result of CaO addition amount 0 kg / ton (y-intercept in the graph of FIG. 1), a desulfurization rate of 31% was obtained after 2 minutes of REM addition (◯) even without adding CaO. This is considered to be desulfurization due to the reaction between REM and S in molten steel to produce sulfide or oxysulfide of REM. However, after 20 minutes from the addition of REM (▲), the sulfurization progressed and the desulfurization rate became 0%. This is considered because REM in molten steel reacted with refractories and the like, and the REM concentration in molten steel decreased.

以上の結果から、脱窒を目的とする場合はCaOを要しないが、脱硫を目的とする場合はCaOを併用したほうが、効果が安定することが解る。また、CaO添加量1kg/tonでのCaO添加20分間経過後の実験結果に着目すると、REMとCaOを併用することで飛躍的に向上することが解る。   From the above results, it is understood that when denitrification is intended, CaO is not required, but when desulfurization is intended, the effect is more stable when CaO is used in combination. Further, when attention is paid to the experimental results after 20 minutes of CaO addition at a CaO addition amount of 1 kg / ton, it can be seen that the use of REM and CaO in combination dramatically improves.

また、CaO添加量が多いほど脱硫率は高くなるが、5kg/ton未満では添加量に対する脱硫率の変化が大きく、操業がやや不安定となる。5kg/ton以上では脱硫率が安定することから、CaO添加量を5kg/ton以上とすることで、脱硫率を高位で安定化させることができる。   Moreover, the desulfurization rate increases as the CaO addition amount increases, but if it is less than 5 kg / ton, the change in the desulfurization rate relative to the addition amount is large, and the operation becomes somewhat unstable. Since the desulfurization rate is stable at 5 kg / ton or more, the desulfurization rate can be stabilized at a high level by setting the CaO addition amount to 5 kg / ton or more.

一方、CaO添加量が15kg/tonを超えて多いと、CaO添加2分間経過後の脱硫率は非常に高いが、CaO添加20分間経過後にはやや低下し、5〜15kg/tonと同等の脱硫率に変化した。   On the other hand, if the amount of CaO added exceeds 15 kg / ton, the desulfurization rate after 2 minutes of CaO addition is very high, but after 20 minutes of CaO addition, the desulfurization rate decreases slightly and is equivalent to 5-15 kg / ton. The rate has changed.

これは、CaO添加量が15kg/tonを超えて多いと、CaO添加直後に硫黄濃度は1〜2ppmまで低下するが、硫黄濃度が低いため復硫し易いためと考えられる。したがって、CaO添加量は20kg/tonとしてもCaO使用量が増えること以外に問題はないのであるが、それは15kg/ton以下でも十分な脱硫効果を得ることができると言える。   This is presumably because if the amount of CaO added exceeds 15 kg / ton, the sulfur concentration decreases to 1 to 2 ppm immediately after the addition of CaO, but because the sulfur concentration is low, resulfurization is easy. Therefore, even if the CaO addition amount is 20 kg / ton, there is no problem other than the increase in the amount of CaO used, but it can be said that a sufficient desulfurization effect can be obtained even at 15 kg / ton or less.

次に、REM添加量の影響を測定した。測定はCaO添加量を6kg/ton一定として、REM添加量を変化させて行った。また、CaO添加20分間経過後の溶鋼中硫黄濃度を用いて脱硫率を算出した。   Next, the influence of the REM addition amount was measured. The measurement was performed by changing the REM addition amount while keeping the CaO addition amount constant at 6 kg / ton. Moreover, the desulfurization rate was calculated using the sulfur concentration in the molten steel after 20 minutes of CaO addition.

図2にREM添加量と脱硫率との関係をグラフで示す。REM添加量が0でもCaOのみによる脱硫により、脱硫率は58%となった。REM添加量を増加させると脱硫率も増加するが、0.05kg/ton以上で80%以上の脱硫率が得られた。さらに、この脱硫率はREM添加量0.30kg/ton程度までは向上することが認められた。   FIG. 2 is a graph showing the relationship between the REM addition amount and the desulfurization rate. Even when the amount of REM added was 0, the desulfurization rate was 58% due to desulfurization using only CaO. When the amount of REM added was increased, the desulfurization rate also increased, but a desulfurization rate of 80% or more was obtained at 0.05 kg / ton or more. Further, it was confirmed that the desulfurization rate was improved up to the REM addition amount of about 0.30 kg / ton.

ところで、本発明は簡便に脱硫するという目的の他、より広い成分系の鋼材に適用できることも目的としている。そのためには、鋼中にREMが残留しないことが必要であるし、REM添加に伴う介在物生成によって鋳込み時にノズル詰まりが発生し易くなるので、その生成量を減らすためにREM添加量を少なくすることが必要である。   By the way, the object of the present invention is not only to simply desulfurize but also to be applicable to a wider range of steel materials. For that purpose, it is necessary that REM does not remain in the steel, and nozzle clogging is likely to occur during casting due to inclusion generation accompanying the addition of REM, so the amount of REM added is reduced in order to reduce the amount of generation. It is necessary.

そこで、CaO添加20分間経過後の溶鋼中REM濃度を残留率という指標で評価した。残留率は残留率(%)={(CaO添加20分後の溶鋼中REM濃度)/(添加したREM量を溶鋼濃度に換算したREM濃度)}×100と定義した。分母は歩留まり100%として計算した溶鋼中REM濃度である。   Therefore, the REM concentration in the molten steel after 20 minutes of CaO addition was evaluated by an index called residual rate. Residual rate was defined as residual rate (%) = {(REM concentration in molten steel 20 minutes after addition of CaO) / (REM concentration in which added REM amount was converted to molten steel concentration)} × 100. The denominator is the REM concentration in molten steel calculated as a yield of 100%.

REM添加量と残留率との関係を図3にグラフで示す。ただし、添加したREMは溶鋼中OやSと反応し、その濃度が変化するため、O濃度とS濃度に留意する必要がある。本発明では既に述べた理由によりS濃度は0.0035%以下と管理されているところ、O濃度にも留意する必要がある。そこで、O濃度を30ppmとした溶鋼を対象として検討する。O濃度が30ppmを超えて高くなると介在物中REM濃度が低くなり、REMによる脱酸効果が不安定となる場合がある。そこで、本発明の効果を安定的に得るためにREM添加前のO濃度を30ppm以下とすることが好ましいのである。   The relationship between the REM addition amount and the residual rate is shown in a graph in FIG. However, since the added REM reacts with O or S in the molten steel and its concentration changes, it is necessary to pay attention to the O concentration and the S concentration. In the present invention, since the S concentration is controlled to be 0.0035% or less for the reasons already described, it is necessary to pay attention to the O concentration. Therefore, examination is made on molten steel with an O concentration of 30 ppm. When the O concentration exceeds 30 ppm, the REM concentration in the inclusions decreases, and the deoxidation effect by REM may become unstable. Therefore, in order to stably obtain the effects of the present invention, it is preferable to set the O concentration before REM addition to 30 ppm or less.

図3のグラフから、REM添加量が0.2kg/tonを超えて増加すると残留率が急激に上昇することが解る。一方、REM添加量が0.1kg/ton以下の場合、添加されたREMは溶鋼中OあるいはCaOとの反応より消費されるために溶鋼中にほとんど残留していない。ただし、図1および図2に示したように、REM添加量が0.05〜0.1kg/tの範囲でも十分に高い脱硫率を達成することができている。   From the graph of FIG. 3, it can be seen that when the amount of REM added exceeds 0.2 kg / ton, the residual rate rapidly increases. On the other hand, when the amount of REM added is 0.1 kg / ton or less, the added REM is consumed by the reaction with O or CaO in the molten steel, and therefore hardly remains in the molten steel. However, as shown in FIGS. 1 and 2, a sufficiently high desulfurization rate can be achieved even when the REM addition amount is in the range of 0.05 to 0.1 kg / t.

添加量が多くなるとOとの反応消費量を上回るためREMが溶質として溶鋼中に残留するようになるので、REMの含有が許されない鋼材に対して本発明を適用することができない。したがって、残留REMを除去するために酸素上吹き量を多く必要とし、それがノズル詰まり問題発生の要因となると懸念される。そこで、REM添加必要量は、鋼中O濃度の迅速分析方法により、または操業上の経験値により鋼中O濃度が30ppm以下と分かっている場合には0.05〜0.1kg/tの範囲とすることが好ましい。   Since the amount of addition exceeds the amount of reaction consumption with O, the REM remains in the molten steel as a solute, so the present invention cannot be applied to steel materials that do not allow the inclusion of REM. Therefore, it is feared that a large amount of oxygen blowing is required to remove residual REM, which causes a nozzle clogging problem. Therefore, the required amount of REM addition is in the range of 0.05 to 0.1 kg / t when the O concentration in the steel is known to be 30 ppm or less by the rapid analysis method of the O concentration in the steel or the operational experience value. It is preferable that

しかし、鋼中O濃度が30ppm以下であるかどうか定かでない場合には、図2に示した脱硫率向上効果も考慮して、REM添加量に余裕を持たせて0.05〜0.3kg/tonとし、必要に応じてREM添加後の酸素上吹き量を増やして残留酸素を除去することで、本発明に係るREM添加脱硫処理を適用可能な鋼材の種類を拡げることが可能となる。REMを0.3kg/ton添加して、その残留率が30%であったとしても溶鋼中REM濃度は0.010%程度なので、上吹き酸素による除去とその後の溶鋼環流による介在物除去操作により、溶鋼連続鋳造時のノズル詰まりを防止することができると考えられるからである。   However, if it is not certain whether the O concentration in the steel is 30 ppm or less, considering the effect of improving the desulfurization rate shown in FIG. It is possible to expand the types of steel materials to which the REM addition desulfurization process according to the present invention can be applied by increasing the amount of oxygen blown after REM addition and removing residual oxygen as necessary. Even if 0.3 kg / ton of REM is added and the residual rate is 30%, the REM concentration in the molten steel is about 0.010%, so the removal by the top blowing oxygen and the inclusion removal operation by the molten steel recirculation thereafter This is because it is considered that nozzle clogging during continuous casting of molten steel can be prevented.

この残留REMを除去するための酸素上吹きは、以下のようにして行う。CaOフラックス添加後には、S,Oの低減が終了しており、REMの精錬上の目的は達成されていてREMの存在は不要となる。また、SはCaOフラックスとともに、介在物は単独で溶鋼環流に伴って溶鋼から取鍋スラグ中に離脱する。したがって、溶鋼中REMを除去しても、再びS、O濃度が急激に増加することはない。   The oxygen top blowing for removing the residual REM is performed as follows. After addition of the CaO flux, the reduction of S and O is completed, the purpose of REM refining is achieved, and the presence of REM becomes unnecessary. Moreover, S is separated from the molten steel into the ladle slag together with the CaO flux, and the inclusion alone with the molten steel reflux. Therefore, even if REM in molten steel is removed, the S and O concentrations do not increase rapidly again.

溶鋼からのREM除去は、その高い脱酸力を利用して、溶鋼に少量の酸素を添加すればよい。具体的には真空槽内溶鋼表面に酸素ガスを吹き付ける方法が最も簡便であり、吹き付ける酸素ガス量は溶鋼1ton当たり0.1〜0.6Nmで十分である。REMの平衡酸素活量は0.0001〜0.0003と非常に低く、また本発明で用いるREM濃度も低いため、極少量の酸素付与でREMを完全に除去できる。 To remove REM from molten steel, a small amount of oxygen may be added to the molten steel using its high deoxidizing power. Specifically, the method of spraying oxygen gas on the surface of the molten steel in the vacuum chamber is the simplest, and the amount of oxygen gas sprayed is 0.1 to 0.6 Nm 3 per ton of molten steel. Since the equilibrium oxygen activity of REM is as very low as 0.0001 to 0.0003 and the REM concentration used in the present invention is also low, REM can be completely removed by applying a very small amount of oxygen.

前述した実験の後、異なる量の酸素ガス(0.05、0.1、0.3、0.4および0.6Nm)を溶鋼に吹き付けてこの点について確認した。その結果、0.05NmではREM濃度は0.0001%となり一部残留することがあった。しかし、0.1Nm以上ではREM濃度は分析限界以下となった。酸素ガスを吹き付け過ぎると鋼中酸素濃度が高くなる恐れが多分にあるため、この酸素ガス吹付け量は0.6Nm/t以下で実際十分である。ただし、本発明ではREMを添加し、CaOを添加した後に合金鉄を添加して成分調整したり、sol.Al存在下で酸素を上吹きして温度調整したりすることを妨げない。したがって、成分調整や温度調整のために酸素を上吹きする場合には、そのための酸素ガス吹付け量を上記したREM除去用の酸素ガスと合算して必要酸素量を上吹きすることになる。 After this experiment, different amounts of oxygen gas (0.05, 0.1, 0.3, 0.4 and 0.6 Nm 3 ) were sprayed onto the molten steel to confirm this point. As a result, at 0.05 Nm 3 , the REM concentration was 0.0001%, and a part remained. However, at 0.1 Nm 3 or more, the REM concentration was below the analysis limit. If oxygen gas is blown too much, there is a possibility that the oxygen concentration in the steel is likely to increase. Therefore, the oxygen gas blowing amount is 0.6 Nm 3 / t or less, which is actually sufficient. However, in the present invention, REM is added, CaO is added, and then alloy iron is added to adjust the components. It does not prevent the temperature adjustment by blowing up oxygen in the presence of Al. Therefore, when oxygen is blown up for component adjustment or temperature adjustment, the required amount of oxygen is blown up by adding the oxygen gas blowing amount for that purpose together with the above-described oxygen gas for REM removal.

また、添加前の鋼中S濃度が35ppm以下、かつ、鋼中O濃度が30ppm以下とした下でREM添加量を0.05〜0.1kg/tに抑えた場合には、溶鋼中残留REM濃度が低いために上吹きする酸素ガス量は0.1Nm/t以上0.3Nm/t以下で十分である。ただし、この場合にも、成分調整や温度調整のために酸素を上吹きする場合には、そのための酸素ガス吹付け量を上記したREM除去用の酸素ガスと合算して必要酸素量を上吹きすることになる。 Moreover, when the S concentration in steel before addition is 35 ppm or less and the O concentration in steel is 30 ppm or less and the amount of REM added is suppressed to 0.05 to 0.1 kg / t, residual REM in molten steel Since the concentration is low, it is sufficient that the amount of oxygen gas blown up is 0.1 Nm 3 / t or more and 0.3 Nm 3 / t or less. However, in this case as well, when oxygen is blown up for component adjustment or temperature adjustment, the oxygen gas blowing amount for that purpose is combined with the oxygen gas for removing REM described above to blow up the required oxygen amount. Will do.

さらに、本発明では前述した理由によりCaO添加方法を一括添加に限定したが、この有効性を検討した。CaOの総添加量を6kg/ton、La添加量を0.1kg/tonとし、CaOを6kg/tonを一回で添加する実験(一括添加)、3kg/tonずつを1分間隔で2回添加する実験、2kg/tonずつを1分間隔で3回添加する実験、1.5kg/tonずつを1分間隔で4回添加する実験、を行い、一回目添加を0分として一回目添加から5分間経過後、10分間経過後、20分間経過後、40分間経過後の脱硫率を測定した。結果を図4にグラフで示す。なお、一回の添加に要した時間は20〜30秒間程度である。   Further, in the present invention, the CaO addition method is limited to batch addition for the above-mentioned reasons, but this effectiveness was examined. An experiment in which the total amount of CaO added is 6 kg / ton, the amount of La added is 0.1 kg / ton, and 6 kg / ton of CaO is added at a time (collective addition). 3 kg / ton is added twice at 1 minute intervals. Experiment, adding 2 kg / ton 3 times at 1 minute intervals, and adding 1.5 kg / ton 4 times at 1 minute intervals, with the first addition being 0 minutes and 5 After 10 minutes, 10 minutes, 20 minutes, and 40 minutes of desulfurization rate were measured. The results are shown graphically in FIG. The time required for one addition is about 20 to 30 seconds.

図4に示されるように、ほぼ平衡に到達した状態である40分間経過後の脱硫率は添加回数によらず等しくなっている。しかし、平衡に達する前の5分間経過後あるいは10分間経過後といった短時間においては、添加回数が少ないほど脱硫率が高くなる傾向が見られる。   As shown in FIG. 4, the desulfurization rate after 40 minutes, which is in a state of almost reaching equilibrium, is equal regardless of the number of additions. However, the desulfurization rate tends to increase as the number of additions decreases in a short time such as 5 minutes or 10 minutes before reaching the equilibrium.

これは、添加回数が増加すると全量を添加するのに要する時間が長くなることに加え、分割で添加した場合には先に添加されているCaOと新たに添加されたCaOとの混合に時間を要するため反応時間が長くなることが一因であると考えられる。工業的には処理時間はより短いことが重要であるため、単なる脱硫処理の場合は一括で添加することが有効であることが解る。   This is because, in addition to increasing the number of times of addition, the time required to add the whole amount becomes longer, and when added in divided portions, it takes time to mix CaO added previously and CaO newly added. Therefore, it is considered that one of the reasons is that the reaction time is long. Industrially, it is important that the treatment time is shorter, so that it is effective to add all at once in the case of simple desulfurization treatment.

以上から、REM添加を行った後にCaOを一括で添加することで、溶鋼の脱硫効率が高まることが解る。
さらに、CaOを一括で添加することの残留率に対する有効性も検討した。実験条件は図4に示される実験の条件と同じであり、実験結果は図5にグラフで示した。図5に示されるように、40分間と長時間保持した場合には残留率は0%となるが、保持時間が短い場合には添加回数が増加するほど残留率が高くなる。これは、添加回数が多くなると一回当たりの添加量が少なくなるため、CaOと反応する溶鋼中REMの量が低下することに起因すると考えられる。以上の結果から、本発明のようにREMを用いる技術では脱硫効率を高める観点のみならずREM濃度制御の観点からも一括添加が有効であることが解る。
From the above, it can be seen that the desulfurization efficiency of molten steel is increased by adding CaO all at once after REM addition.
Furthermore, the effectiveness with respect to the residual rate of adding CaO all at once was examined. The experimental conditions are the same as the experimental conditions shown in FIG. 4, and the experimental results are shown graphically in FIG. As shown in FIG. 5, the residual rate becomes 0% when held for a long time of 40 minutes, but when the holding time is short, the residual rate increases as the number of times of addition increases. This is considered to be caused by a decrease in the amount of REM in molten steel that reacts with CaO because the amount of addition per one decreases as the number of additions increases. From the above results, it is understood that batch addition is effective not only from the viewpoint of increasing the desulfurization efficiency but also from the viewpoint of REM concentration control in the technique using REM as in the present invention.

図4,5に示される実験では、一回の添加に要した時間は20〜30秒間であるが、一回の添加つまり一括添加である本発明での添加時間は1分間以内であることが必要である。一回の添加が1分間を超えて長くなると真空槽内の溶鋼滞留時間を規定する処理の環流速度に対する添加速度が相対的に遅くなる。この結果、ラボ実験での分割添加に近い状態となってしまうことが予測される。したがって、添加に要する時間は1分間以内が必要である。   In the experiments shown in FIGS. 4 and 5, the time required for one addition is 20 to 30 seconds, but the addition time in the present invention, which is one addition, that is, batch addition, is within 1 minute. is necessary. When one addition becomes longer than 1 minute, the addition speed with respect to the recirculation speed of the process which prescribes | regulates the molten steel residence time in a vacuum tank will become relatively slow. As a result, it is predicted that the state will be close to the divided addition in the laboratory experiment. Therefore, the time required for the addition needs to be within 1 minute.

なお、本実験での脱窒率は0〜5.3%と非常に小さく上吹きランスを介してCaO系フラックスを上吹きする処理のような脱窒促進効果は得られなかった。ただし、本発明は処理時間が短時間であること、上吹きランスや上吹きに用いるキャリヤーガスを要しないこと、高真空を要さないこと、など脱窒は困難であるが、脱硫のみを目的とする場合は工業的な利点が多い。   In addition, the denitrification rate in this experiment was as very small as 0-5.3%, and the denitrification promotion effect like the process which blows up a CaO type | system | group flux through an upper blowing lance was not acquired. However, the present invention is difficult to denitrify, such as short processing time, no need for top blowing lance and carrier gas used for top blowing, high vacuum, etc. There are many industrial advantages.

次に、本発明に係る所定の組成範囲にある溶鋼に対して所定量のREM添加とCaO添加を行い、さらに上吹き酸素0.1Nm/t以上を溶鋼に吹き付けた後に、溶鋼の環流操作を10分間以上行う。この溶鋼の環流操作は、少量といえどもREM添加によってREM含有介在物が溶鋼中に生成されるので、その介在物をRH真空脱ガス処理装置の真空槽内から取鍋内溶鋼中へと排出し、さらに取鍋内溶鋼上に存在する取鍋スラグへと吸収させるための処置である。この目的での溶鋼環流時間は、REM含有介在物の性質上、溶鋼中からスラグへの浮上分離が進行し難いために、後述するように10分間以上を必要とする。ただし、REM添加に伴って生成したREM含有介在物を取鍋スラグ中へ吸収させるための溶鋼環流操作であるから、この環流操作中に成分調整や温度調整を行ってもよい。 Next, after adding a predetermined amount of REM and CaO to the molten steel in the predetermined composition range according to the present invention, and further spraying 0.1 Nm 3 / t or more of the blown oxygen to the molten steel, the circulating operation of the molten steel For at least 10 minutes. In this molten steel recirculation operation, REM-containing inclusions are generated in the molten steel by addition of REM, even in a small amount, and the inclusions are discharged from the vacuum tank of the RH vacuum degassing apparatus into the molten steel in the ladle. Furthermore, it is a treatment for absorbing the ladle slag present on the molten steel in the ladle. The molten steel reflux time for this purpose requires 10 minutes or more, as will be described later, because the floating separation from the molten steel to the slag is difficult to proceed due to the nature of the REM-containing inclusions. However, since this is a molten steel recirculation operation for absorbing the REM-containing inclusions generated with the addition of REM into the ladle slag, component adjustment and temperature adjustment may be performed during this recirculation operation.

本発明者らは、溶鋼量250トンに対するRH式真空脱ガス処理において、Nd添加、CaO添加の後、酸素を上吹きしてから溶鋼環流を行い、連続鋳造する試験を行った。実験方法について詳しく説明する。   In the RH type vacuum degassing process for a molten steel amount of 250 tons, the present inventors conducted a test of continuous casting by performing molten steel recirculation after oxygen was blown up after Nd addition and CaO addition. The experimental method will be described in detail.

予め、必要に応じて溶銑脱硫および溶銑脱燐処理を行った溶銑を、230トン(t)規模の上底吹き転炉に装入して脱炭し、取鍋に出鋼した。
出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼成分を、C:0.04〜0.07%、Si:0.1〜0.3%、Mn:0.5〜0.6%、S:20〜25ppm、sol.Al:0.05〜0.07%とした。
The hot metal that had been subjected to hot metal desulfurization and hot metal dephosphorization treatment in advance as needed was placed in a 230 ton (t) scale upper bottom blowing converter and decarburized, and the steel was discharged into a ladle.
Various deoxidizers and alloys are added at the time of steel removal, and the molten steel components in the ladle are changed to C: 0.04 to 0.07%, Si: 0.1 to 0.3%, Mn: 0.5 to 0.00. 6%, S: 20-25 ppm, sol. Al: 0.05 to 0.07%.

さらに、出鋼時にCaOを添加し、スラグ中CaO/Al重量比を1.9〜2.1、スラグ中FeOとMnOとの合計濃度を5%以下に調整した。
REMとしてNdを用い、Ndの添加量は0.08kg/ton〜0.30kg/tonをホッパーから添加し,CaOを10〜15kg/ton添加した後に、残留REM除去と溶鋼温度調整とを兼ねて、上吹きランスから0.3〜1.4Nm/tonの酸素を吹付けて、溶鋼温度を1580〜1590℃に調整した後、溶鋼環硫処理を5〜15分間行った。その後、鋳型サイズφ191〜φ360mm、6ストランドの連続鋳造機を用いて、鋳造速度0.5〜3.6m/minで連続鋳造し、浸漬ノズルの詰まり状況を評価した。
Furthermore, CaO was added at the time of steel output, and the CaO / Al 2 O 3 weight ratio in the slag was adjusted to 1.9 to 2.1, and the total concentration of FeO and MnO in the slag was adjusted to 5% or less.
Nd is used as the REM, and the amount of Nd added is 0.08 kg / ton to 0.30 kg / ton from the hopper, CaO is added 10 to 15 kg / ton, and then the residual REM is removed and the molten steel temperature is adjusted. Then, 0.3 to 1.4 Nm 3 / ton of oxygen was sprayed from the top blowing lance to adjust the molten steel temperature to 1580 to 1590 ° C., and then the molten steel was subjected to 5 to 15 minutes. Thereafter, continuous casting was performed at a casting speed of 0.5 to 3.6 m / min using a continuous casting machine having a mold size of φ191 to φ360 mm and 6 strands, and the clogging state of the immersion nozzle was evaluated.

表1に、Nd添加量、上吹き酸素吹付け量、および酸素吹付け後の環流時間と連続鋳造時の連続鋳造チャージ数(ノズル開度が、基準開度+20%となると鋳込み中止と判断)の関係の調査結果をまとめて示す。   Table 1 shows the amount of Nd added, the amount of top blowing oxygen, the recirculation time after oxygen blowing, and the number of continuous casting charges during continuous casting (determination of casting when the nozzle opening reaches the standard opening + 20%) The survey results of the relationship are summarized.

Figure 0005712945
Figure 0005712945

試験番号1〜8は、上吹き酸素0.3〜1.1Nm/tを吹き付けた後、溶鋼環流を5〜7分間行ったが、連続して鋳造することができたチャージ数は3〜5チャージに留まった。 Test Nos. 1 to 8 were performed by blowing molten steel 0.3 to 1.1 Nm 3 / t and then performing molten steel reflux for 5 to 7 minutes, but the number of charges that could be continuously cast was 3 to 3. Stayed at 5 charges.

一方、試験番号9〜16は、上吹き酸素0.5〜1.4Nm/tを吹き付けた後、溶鋼環流を10〜15分間行った結果、連続して鋳造することができたチャージ数は計画通りの7チャージを安定して達成することができた。 On the other hand, as for test numbers 9-16, after spraying top blowing oxygen 0.5-1.4Nm < 3 > / t, as a result of performing molten steel recirculation for 10-15 minutes, the number of charge which could be cast continuously is We were able to achieve 7 charges as planned.

表1に示したように、酸素上吹き後の溶鋼環流時間が10分間未満だと、溶鋼上に形成されているスラグへのREM等の酸化物の浮上吸収が不十分であるため、浸漬ノズル詰まりが発生する。そこで、酸素上吹き後に溶鋼環流時間を10分間以上確保する。   As shown in Table 1, when the molten steel reflux time after blowing up oxygen is less than 10 minutes, the levitation absorption of oxides such as REM to the slag formed on the molten steel is insufficient. Clogging occurs. Therefore, the molten steel reflux time is secured for 10 minutes or more after the oxygen top blowing.

以上の知見に基づき完成された本発明は、次の通りである。
(1)Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.0035%以下、Al:0.005%以上1%以下、その他合金成分を含む溶鋼をRH式真空脱ガス処理装置にて精錬処理を行うに際し、溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上をそれらの合計量で0.05kg/溶鋼ton以上0.30kg/溶鋼ton以下添加した後、CaOを主体とするフラックスをCaO純分で5kg/ton以上20kg/溶鋼ton以下の量で、真空槽内から上吹きランスを介さずに一括で1分間以内に添加し、さらに、前記CaOを主体とするフラックスの添加後に、該真空槽内の上吹きランスから前記溶鋼へ酸素を0.1Nm/ton以上吹き付けてから、該溶鋼の還流処理を10分間以上行うことを特徴とする、溶綱の脱硫方法。
The present invention completed based on the above knowledge is as follows.
(1) Mn: 0.1% or more and 2% or less, Si: 0.001% or more and 1% or less, S: 0.0035% or less, Al: 0.005% or more and 1% or less, molten steel containing other alloy components When the refining treatment is carried out in the RH type vacuum degassing apparatus, the molten steel is one or more selected from the group consisting of La, Ce and Nd at a total amount of 0.05 kg / molten steel ton or more 0.30 kg / After adding molten steel ton or less, add CaO-based flux in a quantity of 5kg / ton or more and 20kg or less of molten steel ton as pure CaO within 1 minute from the inside of the vacuum chamber without going through the top blowing lance. and, further, after the addition of the flux mainly composed of the CaO, oxygen to the molten steel after blowing 0.1 Nm 3 / ton or more from the lance onto the vacuum chamber, the refluxing of the solution steel 10 minutes And carrying out on desulfurization method 溶綱.

(2)Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.0035%以下、Al:0.005%以上1%以下、O:0.003%以下、その他合金成分を含む溶鋼をRH式真空脱ガス処理装置にて精錬処理を行うに際し、溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上をそれらの合計量で0.05kg/溶鋼ton以上0.10kg/溶鋼ton以下添加した後、CaOを主体とするフラックスをCaO純分で5kg/ton以上15kg/溶鋼ton以下の量で、真空槽内から上吹きランスを介さずに一括で1分間以内に添加し、さらに、前記CaOを主体とするフラックスの添加後、該真空槽内の上吹きランスから前記溶鋼へ酸素を0.1Nm/ton以上吹き付けてから、該溶鋼の還流処理を10分間以上行うことを特徴とする、溶綱の脱硫方法。 (2) Mn: 0.1% to 2%, Si: 0.001% to 1%, S: 0.0035% or less, Al: 0.005% to 1%, O: 0.003% Hereinafter, when refining the molten steel containing other alloy components with an RH vacuum degassing apparatus, one or more selected from the group consisting of La, Ce and Nd is added to the molten steel in a total amount of 0.00. After adding 05 kg / molten steel ton or more and 0.10 kg / molten steel ton or less, the CaO-based flux in the amount of 5 kg / ton or more and 15 kg / molten steel ton or less is contained in the pure CaO, without going through the top blow lance was added within 1 minute in a batch, and further, after the addition of the flux mainly composed of the CaO, oxygen to the molten steel after blowing 0.1 Nm 3 / ton or more from the lance onto the vacuum chamber, solution steel And performing refluxed for 10 minutes or more, the desulfurization method of 溶綱.

本発明により、RH式真空脱ガス処理装置を用いた脱ガス処理において、より広い成分系の鋼材を対象に硫黄濃度を簡便かつ安価に低減でき、しかも、連続鋳造時にノズル詰まりを起こすことを防止できる。   According to the present invention, in degassing using an RH type vacuum degassing apparatus, the sulfur concentration can be reduced easily and inexpensively for a wider range of steel components, and nozzle clogging is prevented during continuous casting. it can.

CaO添加量とCaO添加2分間経過後、CaO添加20分間経過後の脱硫率との関係を示すグラフである。It is a graph which shows the relationship between the amount of CaO addition and the desulfurization rate after CaO addition 20 minutes progress after CaO addition 2 minutes progress. REM添加量と脱硫率との関係を示すグラフである。It is a graph which shows the relationship between REM addition amount and a desulfurization rate. REM添加量と残留率との関係を示すグラフである。It is a graph which shows the relationship between REM addition amount and a residual rate. CaO添加回数と脱硫率との関係の脱硫処理時間による変化を示すグラフである。It is a graph which shows the change by the desulfurization process time of the relationship between the frequency | count of CaO addition and a desulfurization rate. CaO添加回数と残留率との関係の脱硫処理時間による変化を示すグラフである。It is a graph which shows the change by the desulfurization process time of the relationship between the frequency | count of CaO addition, and a residual rate.

RH式真空脱ガス処理では、脱ガス、成分調整、温度調整などの処理が任意に選択され、任意の順序で行われているが、本発明に係る、所定の組成範囲にある溶鋼に対して所定量のREM添加とCaO添加を行い、さらに上吹き酸素0.1Nm/t以上を溶鋼に吹き付けた後に、溶鋼の環流操作を10分間以上行う脱硫方法(以下、「本方法」という。)もこれらの技術と同様に任意の順序で行ってよい。ただし、本方法は、RH式真空脱ガス処理の最初に行うことが望ましい。これは、本方法を実施する前に実施した処理の影響が残留した状態で本発明を実施すると、本発明の効果が不安定となる場合があるためである。例えば、不純物として硫黄を含む副原料を溶鋼に添加した直後に本方法を実施すると、副原料から溶鋼への硫黄供給と本発明による溶鋼からの脱硫が同時に進行することになり、効果が不安定となる場合がある。RH処理での溶鋼環流を開始して2分間が経過した後に、最初の工程として(すなわち、脱ガス、成分調整に先んじて)本方法を実施することが望ましい。 In the RH-type vacuum degassing process, processes such as degassing, component adjustment, and temperature adjustment are arbitrarily selected and performed in an arbitrary order. However, according to the present invention, the molten steel having a predetermined composition range is used. A desulfurization method (hereinafter referred to as “the present method”) in which a predetermined amount of REM and CaO are added, and the top blown oxygen of 0.1 Nm 3 / t or more is sprayed on the molten steel, and then the molten steel is refluxed for 10 minutes or more. May be performed in any order as in these techniques. However, it is desirable to perform this method at the beginning of the RH vacuum degassing process. This is because the effect of the present invention may become unstable if the present invention is carried out in a state where the influence of the treatment carried out before the method is carried out. For example, if this method is carried out immediately after adding an auxiliary material containing sulfur as an impurity to the molten steel, the supply of sulfur from the auxiliary material to the molten steel and the desulfurization from the molten steel according to the present invention proceed simultaneously, and the effect is unstable. It may become. It is desirable to carry out the present method as the first step (that is, prior to degassing and component adjustment) after 2 minutes have passed since the molten steel reflux was started in the RH treatment.

本発明では強脱酸元素であるREMを用いるため、REM添加前の溶鋼中Al濃度を0.05%以上0.15%以下としておくことでさらに効果を高めることができる。Al濃度が0.05%未満では数ppmの溶解酸素が溶鋼に存在するため、添加したREMの一部がこれらと反応してしまう。一方、Al濃度が0.15%を超えて高いと効果が飽和してしまう。   Since REM which is a strong deoxidizing element is used in the present invention, the effect can be further enhanced by setting the Al concentration in the molten steel before addition of REM to 0.05% or more and 0.15% or less. When the Al concentration is less than 0.05%, several ppm of dissolved oxygen is present in the molten steel, so that part of the added REM reacts with these. On the other hand, if the Al concentration exceeds 0.15%, the effect is saturated.

また、取鍋スラグはCaO−Al−SiO系であることが望ましく、さらにはCaO/Al質量濃度比が1.2以上、CaO/SiO質量濃度比が5以上であることが望ましい。上記スラグは硫黄吸収能力に優れており、さらに各質量濃度比を制御することで本発明の効果をいっそう安定化させることが可能となる。なお、質量濃度比を調整する方法としては転炉出鋼時にアルミナ、シリカなどの媒溶剤を添加する方法などがある。さらにスラグ中FeOとMnOとの合計濃度を5%以下とすることにより、さらに効果を高めることができる。 In addition, the ladle slag is preferably CaO—Al 2 O 3 —SiO 2 based, and the CaO / Al 2 O 3 mass concentration ratio is 1.2 or more, and the CaO / SiO 2 mass concentration ratio is 5 or more. It is desirable to be. The slag is excellent in sulfur absorption capacity, and further, the effects of the present invention can be further stabilized by controlling each mass concentration ratio. In addition, as a method for adjusting the mass concentration ratio, there is a method of adding a medium solvent such as alumina or silica at the time of steel leaving the converter. Furthermore, the effect can be further enhanced by setting the total concentration of FeO and MnO in the slag to 5% or less.

さらに、溶鋼中sol.Al濃度を0.005%以上、好ましくは0.05%以上に調整した後、REM添加前にRH処理の環流時間を3〜10分間行うと溶鋼中O濃度を30ppm以下まで低減することができるので、一層好ましい。この間に、合金添加などによる成分調整を行ってもよい。また、RH処理前に大気圧下不活性ガス撹拌精錬を実施することによってもO濃度を30ppm以下とすることができる。なお、REM添加前のO濃度は30ppm以下であることが望ましいが、20ppm以下とすることで本発明による処理後の清浄度を高めることができる。これは、本発明では一括でCaO系フラックスを添加するため、RH式真空脱ガス処理装置の真空槽内に大量のCaOが一時的に存在するが、この間に溶鋼中介在物を吸着するためと考えられる。   Furthermore, sol. After adjusting the Al concentration to 0.005% or more, preferably 0.05% or more, and performing the reflux time of RH treatment for 3 to 10 minutes before adding REM, the O concentration in the molten steel can be reduced to 30 ppm or less. Therefore, it is more preferable. During this time, the components may be adjusted by adding an alloy or the like. Further, the O concentration can be reduced to 30 ppm or less by carrying out inert gas stirring / smelting under atmospheric pressure before the RH treatment. In addition, although it is desirable that the O concentration before REM addition is 30 ppm or less, the cleanliness after the treatment according to the present invention can be increased by setting it to 20 ppm or less. This is because, in the present invention, since CaO-based flux is added all at once, a large amount of CaO is temporarily present in the vacuum chamber of the RH vacuum degassing apparatus, and during this time, inclusions in the molten steel are adsorbed. Conceivable.

REMは、REMの大気による酸化を避けるために真空槽内溶鋼に添加することが望ましい。用いるREMはLa,Ce,Ndなどのランタノイド金属あるいはこれらのうち2種以上からなる混合物や合金、ミッシュメタルなどがある。また、Al、Ca,Mgといった不純物は合計で5%までは許容できる。不純物の含有量が5%を超えて高くなるとAl、Caといった元素による脱酸反応が進行してしまい、効果が不安定となる場合がある。   REM is preferably added to the molten steel in the vacuum chamber in order to avoid oxidation of REM by the atmosphere. The REM used includes lanthanoid metals such as La, Ce, and Nd, or a mixture, alloy, or misch metal composed of two or more of these. Further, impurities such as Al, Ca and Mg can be allowed up to 5% in total. When the content of impurities exceeds 5%, the deoxidation reaction with elements such as Al and Ca proceeds, and the effect may become unstable.

REM添加時のRH処理の条件は特に規定されないが、特許文献4に開示される技術のように脱ガスを行う目的ではないので、真空槽内圧力は4kPa以上でもよく、6.5kPa以上でも所定の効果を得ることができる。ただし、溶鋼環流を維持する必要があるので10kPa以下でなければならない。   Although the conditions for the RH treatment at the time of REM addition are not particularly specified, the pressure in the vacuum chamber may be 4 kPa or more, or a predetermined value of 6.5 kPa or more because it is not the purpose of degassing as in the technique disclosed in Patent Document 4. The effect of can be obtained. However, since it is necessary to maintain a molten steel reflux, it must be 10 kPa or less.

REM添加後に引き続いてCaOを主体としたフラックス(CaO系フラックス)を上吹きランスを介した粉体上吹き法ではなくホッパー等から一括で添加する。添加所要時間は1分間以内が必要であり、さらに望ましくは30秒間以内である。REM添加からCaO系フラックス添加までの時間は2分間以上5分間以内であることが望ましい。2分間未満では添加したREMが溶鋼中で均一濃度になっておらず、効果が不安定となる場合がある。5分間を超えて長いと溶鋼中REM濃度が低下し、十分な効果が得られない場合がある。   Subsequently to the addition of REM, a flux mainly composed of CaO (CaO-based flux) is added all at once from a hopper or the like instead of the powder top blowing method via the top blowing lance. The time required for addition is required to be within 1 minute, and more preferably within 30 seconds. The time from the addition of REM to the addition of CaO-based flux is preferably 2 minutes or more and 5 minutes or less. If it is less than 2 minutes, the added REM does not have a uniform concentration in the molten steel, and the effect may become unstable. If the time is longer than 5 minutes, the REM concentration in the molten steel decreases, and a sufficient effect may not be obtained.

添加するCaO系フラックスの組成は、CaOが80質量%以上の純度であることが望ましい。これ以下の純度の場合、添加するフラックス総量が増大し、スラグ厚さが増加するため、RH式真空脱ガス処理装置の浸漬管が溶鋼に届かずRH式真空脱ガス処理が困難になる場合がある。CaO系フラックスに最大20質量%まで許容される物質としてはMgやAl、Siなどの酸化物、不可避的に存在する金属成分があるが、当然ながら、硫黄または硫黄化合物は低いほど望ましい。   The composition of the CaO-based flux to be added is preferably such that CaO has a purity of 80% by mass or more. When the purity is lower than this, the total amount of flux to be added increases and the slag thickness increases, so that the dip tube of the RH vacuum degassing apparatus may not reach the molten steel, and the RH vacuum degassing process may be difficult. is there. Substances allowed up to 20% by mass in the CaO flux include oxides such as Mg, Al, and Si, and unavoidable metal components, but of course, the lower the sulfur or sulfur compound, the better.

CaO系フラックスの形状は粉体のほか、数ミリメートルから数センチメートルの大きさの塊状などいかなる形態でもよいが、排気系への散逸を抑えるために塊状であることが望ましい。   The shape of the CaO-based flux may be any form such as a powder or a lump of several millimeters to a few centimeters, but is preferably a lump in order to suppress dissipation to the exhaust system.

CaO系フラックス添加時のRH式真空脱ガス処理の条件は特に規定されないが、特許文献4に開示される技術のように脱ガスを行う目的ではないので、真空槽内圧力は4kPa以上でもよく、6.5kPa以上でも所定の効果を得ることができる。ただし、溶鋼環流を維持する必要があるので10kPa以下でなければならない。   The conditions of the RH-type vacuum degassing treatment at the time of adding CaO-based flux are not particularly defined, but since the purpose is not to degas as in the technique disclosed in Patent Document 4, the pressure in the vacuum chamber may be 4 kPa or more, A predetermined effect can be obtained even at 6.5 kPa or more. However, since it is necessary to maintain a molten steel reflux, it must be 10 kPa or less.

CaO系フラックスは真空槽に設置した合金切り出し装置(ホッパー)から添加すればよいが、ホッパーの容量に制限がある場合はCaO系フラックスの添加量が8kg/tonを超えて多い場合に限り2回に分けて添加してもよい。CaO系フラックスが8kg/tonを超えて多い場合は、1回当りの添加量が4kg/tonと多くなるため、図4,5で示した1回添加と2回添加の差が小さくなるためである。ただし、1回目の添加開始までの時間はREM添加後2分間以上5分間以内であることが望ましく、1回目添加と2回目添加の間隔は1分間以内が望ましく、さらに望ましくは30秒間以内である。   The CaO-based flux may be added from an alloy cutting device (hopper) installed in the vacuum chamber, but if the capacity of the hopper is limited, it is only twice when the amount of CaO-based flux added exceeds 8 kg / ton. It may be added separately. When the amount of CaO-based flux exceeds 8 kg / ton, the amount added per time increases to 4 kg / ton, and the difference between the one time addition and the second time addition shown in FIGS. is there. However, the time until the first addition is preferably within 2 minutes to within 5 minutes after the addition of REM, and the interval between the first addition and the second addition is preferably within 1 minute, and more preferably within 30 seconds. .

CaO系フラックスを添加した後に、RH式真空脱ガス処理装置の真空槽内の溶鋼上に設置した酸素上吹きランスから、酸素ガスを0.1Nm/t以上を溶鋼へ吹き付ける。吹き付ける酸素ガス量は、REM除去用には溶鋼1ton当たり0.1〜0.6Nmで十分である。ただし、本発明ではREMを添加し、CaOを添加した後に合金鉄を添加して成分調整したり、sol.Al存在下で酸素を上吹きして温度調整したりすることを妨げないので、成分調整や温度調整のために酸素を上吹きする場合には、そのための酸素ガス吹付け量を上記したREM除去用の酸素ガスと合算して必要酸素量を上吹きすることになる。 After adding the CaO-based flux, 0.1 Nm 3 / t or more of oxygen gas is blown onto the molten steel from an oxygen blowing lance installed on the molten steel in the vacuum chamber of the RH vacuum degassing apparatus. The amount of oxygen gas to be blown is 0.1 to 0.6 Nm 3 per ton of molten steel for REM removal. However, in the present invention, REM is added, CaO is added, and then alloy iron is added to adjust the components. Since it does not prevent the temperature adjustment by blowing up oxygen in the presence of Al, when oxygen is blown up for component adjustment or temperature adjustment, the amount of oxygen gas sprayed for that purpose is the above-mentioned REM removal. The necessary oxygen amount is blown up in combination with the oxygen gas for use.

また、添加前の鋼中S濃度が35ppm以下、かつ、鋼中O濃度が30ppm以下とした下でREM添加量を0.05〜0.1kg/tに抑えた場合には、溶鋼中残留REM濃度が低いために、REM除去用に上吹きする酸素ガス量は0.1Nm/t以上0.3Nm/t以下で十分である。ただし、この場合にも、成分調整や温度調整のために酸素を上吹きする場合には、そのための酸素ガス吹付け量を上記したREM除去用の酸素ガスと合算して必要酸素量を上吹きすることになる。 Moreover, when the S concentration in steel before addition is 35 ppm or less and the O concentration in steel is 30 ppm or less and the amount of REM added is suppressed to 0.05 to 0.1 kg / t, residual REM in molten steel Since the concentration is low, it is sufficient that the amount of oxygen gas blown up for REM removal is 0.1 Nm 3 / t or more and 0.3 Nm 3 / t or less. However, in this case as well, when oxygen is blown up for component adjustment or temperature adjustment, the oxygen gas blowing amount for that purpose is combined with the oxygen gas for removing REM described above to blow up the required oxygen amount. Will do.

RH処理では、脱ガス、成分調整、温度調整などの処理が任意に選択され、任意の順序で行われているが、本発明に係る所定の組成範囲にある溶鋼に対して所定量のREM添加とCaO添加を行い、さらに上吹き酸素0.1Nm/t以上を溶鋼に吹き付けた後に、溶鋼の環流操作を10分間以上行う。この所定の組成範囲への溶鋼成分調整、REM添加、CaO添加、上吹き酸素吹付け、溶鋼環流操作の順序は、一体として管理することを要するが、その他の脱ガス、成分調整、温度調整などの処理は、この所定の組成範囲への溶鋼成分調整の前に行ってもよいし、このCaO添加の後に行ってもよい。また、この本発明に係る上吹き酸素吹付けや溶鋼環流操作は、その他の脱ガス、成分調整、温度調整などの処理と共通させて行ってもよい。 In the RH process, processes such as degassing, component adjustment, and temperature adjustment are arbitrarily selected and performed in an arbitrary order. However, a predetermined amount of REM is added to molten steel in the predetermined composition range according to the present invention. And the addition of CaO, and after spraying 0.1 Nm 3 / t or more of top blowing oxygen to the molten steel, the molten steel is refluxed for 10 minutes or more. The order of molten steel component adjustment, REM addition, CaO addition, top blowing oxygen spraying, molten steel reflux operation to this predetermined composition range needs to be managed as a unit, but other degassing, component adjustment, temperature adjustment, etc. This process may be performed before the molten steel component adjustment to the predetermined composition range, or after the CaO addition. Further, the top blowing oxygen spraying and the molten steel reflux operation according to the present invention may be performed in common with other processes such as degassing, component adjustment, and temperature adjustment.

したがって、本発明に係る所定の組成範囲への溶鋼成分調整、REM添加、CaO添加は、RH処理の最初に行うと、その他の脱ガス、成分調整、温度調整などの処理と共通させて行うことができるので、RH処理の操業効率の面から好都合になると言える。   Therefore, the molten steel component adjustment, REM addition, and CaO addition to the predetermined composition range according to the present invention should be performed in common with other processes such as degassing, component adjustment, and temperature adjustment at the beginning of the RH treatment. Therefore, it can be said that it is advantageous in terms of the operation efficiency of the RH treatment.

1)溶鋼脱硫処理
予め、必要に応じて溶銑脱硫および溶銑脱燐処理を行った溶銑を、230トン(t)規模の上底吹き転炉に装入して脱炭し、取鍋に出鋼した。出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼成分を、C:0.04〜0.07%、Si:0.1〜0.3%、Mn:0.5〜0.6%、S:20〜25ppm、sol.Al:0.05〜0.07%とした。さらに、出鋼時にCaOを添加し、スラグ中CaO/Al重量比を1.9〜2.1、スラグ中FeOとMnOとの合計濃度を5%以下に調整した。
1) Molten steel desulfurization treatment Hot metal that has been subjected to hot metal desulfurization and hot metal dephosphorization treatment in advance is placed in a 230-ton (t) scale bottom-bottom converter, decarburized, and steel is discharged into a ladle. did. Various deoxidizers and alloys are added at the time of steel removal, and the molten steel components in the ladle are changed to C: 0.04 to 0.07%, Si: 0.1 to 0.3%, Mn: 0.5 to 0.00. 6%, S: 20-25 ppm, sol. Al: 0.05 to 0.07%. Furthermore, CaO was added at the time of steel output, and the CaO / Al 2 O 3 weight ratio in the slag was adjusted to 1.9 to 2.1, and the total concentration of FeO and MnO in the slag was adjusted to 5% or less.

その後、取鍋をRH式真空脱ガス処理装置へ移送し、直ちに真空槽内を4kPaに減圧し、環流処理を開始した。処理開始後3分間経過後に、表2に示される量で真空槽内溶鋼にREMを添加した。添加したREMはCeとLaの合金で組成はCeが65質量%、Laが35質量%である。REM添加から3分間経過後に塊状のCaO系フラックスを表2に示される量で真空槽内溶鋼に添加した。なお、本実施例において使用したCaO系フラックスはCaO純分98%以上である。CaO系フラックス添加量が5kg/ton以上となる場合は二分割添加し、5kg/ton未満の場合は一括で添加した。RH処理前の取鍋内溶鋼、およびRH式真空脱ガス処理終了直後の取鍋内溶鋼からサンプルを採取し、溶鋼中硫黄濃度およびREM濃度を定量し、脱硫率および残留率を前述の方法で算出した。結果を表2に示す。   Thereafter, the ladle was transferred to the RH type vacuum degassing apparatus, and the inside of the vacuum chamber was immediately depressurized to 4 kPa, and the reflux treatment was started. After 3 minutes from the start of treatment, REM was added to the molten steel in the vacuum chamber in the amount shown in Table 2. The added REM is an alloy of Ce and La, the composition of which is 65 mass% for Ce and 35 mass% for La. After 3 minutes from the addition of REM, massive CaO-based flux was added to the molten steel in the vacuum tank in the amount shown in Table 2. Note that the CaO-based flux used in this example is 98% or more of pure CaO. When the CaO flux addition amount was 5 kg / ton or more, it was added in two portions, and when it was less than 5 kg / ton, it was added all at once. Samples are taken from the molten steel in the ladle before the RH treatment and from the molten steel in the ladle immediately after the completion of the RH vacuum degassing treatment, and the sulfur concentration and the REM concentration in the molten steel are quantified. Calculated. The results are shown in Table 2.

Figure 0005712945
Figure 0005712945

試験番号15のCaO系フラックスのみを添加した場合の脱硫率は67%、試験番号16のREMのみを添加した場合の脱硫率は15%であるのに対し、REMとCaO系フラックスを添加した試験番号1〜14では80%以上の脱硫率が得られており、REM添加後にCaOを添加することで脱硫率が向上することが解る。   Test with addition of REM and CaO flux, while desulfurization rate when adding only CaO flux of test number 15 is 67%, desulfurization rate when adding only REM of test number 16 is 15% In numbers 1 to 14, a desulfurization rate of 80% or more was obtained, and it can be seen that the desulfurization rate is improved by adding CaO after REM addition.

ただし、試験番号12と14ではREM添加量が0.03kg/tonと少なかったために、脱硫率がやや低位であった。また、試験番号13と14では、CaO添加量が4kg/tonと少なかったために、脱硫率がやや低位であった。   However, in Test Nos. 12 and 14, the amount of REM added was as small as 0.03 kg / ton, so the desulfurization rate was slightly low. In Test Nos. 13 and 14, since the addition amount of CaO was as small as 4 kg / ton, the desulfurization rate was slightly low.

また、試験番号1〜6の結果から、REM添加量が0.05〜0.10kg/tonでは残留率が0.1%以下と実質的に残留していなかったのに比べ、REM添加量が0.20〜0.30kg/tonでは残留率が1.3〜1.4%とやや高くなっていた。このことから、脱硫率と残留率を同時に満足するにはREM添加量が0.05kg/ton以上0.1kg/ton以下が好適であるが、REM除去用の酸素を利用する前提であればREM添加量が0.05kg/ton以上0.30kg/ton以下の範囲で低硫化処理が簡易的に達成されることが確認されたといえる。   In addition, from the results of test numbers 1 to 6, when the REM addition amount is 0.05 to 0.10 kg / ton, the residual ratio is substantially 0.1% or less, and the REM addition amount is relatively small. At 0.20 to 0.30 kg / ton, the residual rate was slightly high at 1.3 to 1.4%. Therefore, in order to satisfy the desulfurization rate and the residual rate at the same time, the amount of REM added is preferably 0.05 kg / ton or more and 0.1 kg / ton or less. However, if it is assumed that oxygen for removing REM is used, REM is used. It can be said that it was confirmed that the low sulfidation treatment was easily achieved in the range of 0.05 kg / ton to 0.30 kg / ton.

さらに、試験番号7〜10の結果から、CaO系フラックス添加量が5〜17kg/tonでは脱硫率が84〜86%と安定していた。このことから、CaO系フラックス添加量は5kg/ton以上20kg/ton以下が適当であることが確認され、それは5kg/ton以上15kg/ton以下でも殆ど同じであることが確認された。   Furthermore, from the results of test numbers 7 to 10, the desulfurization rate was stable at 84 to 86% when the CaO flux addition amount was 5 to 17 kg / ton. From this, it was confirmed that the addition amount of CaO-based flux was 5 kg / ton or more and 20 kg / ton or less, and it was confirmed that it was almost the same at 5 kg / ton or more and 15 kg / ton or less.

加えて、試験番号11からREM添加量とCaO系フラックス添加量がともに多いと脱硫率は高くなるが、残留率も高くなることが確認された。
2)残留REM除去およびノズル詰まり防止
予め、必要に応じて溶銑脱硫および溶銑脱燐処理を行った溶銑を、250トン規模の上底吹き転炉に装入して脱炭し、取鍋に出鋼した。出鋼時に各種脱酸剤および合金を添加して取鍋内溶鋼成分を、C:0.04〜0.07%、Si:0.001〜0.003%、Mn:0.5〜0.6%、S:20〜25ppm、sol.Al:0.200〜0.220%とした。さらに、出鋼時にCaOを添加し、スラグ中CaO/Al重量比を1.9〜2.1、スラグ中FeOとMnOとの合計濃度を5%以下に調整した。
In addition, it was confirmed from Test No. 11 that when both the REM addition amount and the CaO-based flux addition amount are large, the desulfurization rate increases, but the residual rate also increases.
2) Residual REM removal and prevention of nozzle clogging Hot metal that has been subjected to hot metal desulfurization and hot metal dephosphorization as needed is placed in a 250-ton scale top-bottom blowing converter, decarburized, and discharged to the ladle. Made of steel. Various deoxidizers and alloys are added at the time of steel output, and the molten steel components in the ladle are changed to C: 0.04 to 0.07%, Si: 0.001 to 0.003%, Mn: 0.5 to 0.00. 6%, S: 20-25 ppm, sol. Al: 0.200 to 0.220%. Furthermore, CaO was added at the time of steel output, and the CaO / Al 2 O 3 weight ratio in the slag was adjusted to 1.9 to 2.1, and the total concentration of FeO and MnO in the slag was adjusted to 5% or less.

その後、取鍋をRH式真空脱ガス装置へ移送し、直ちに真空槽内を4kPaに減圧し、環流処理を開始した。処理開始後3分間経過後に、真空槽内溶鋼に0.1kg/tonのREMを添加した。添加したREMはNdである。REM添加から3分間経過後に塊状のCaO系フラックスをCaO成分で12kg/ton添加し、さらに上吹き酸素を0.1〜1.5Nm/ton吹き付けて残留REMを除去するとともに溶鋼温度を1580〜1590℃に調整した後、溶鋼環流処理を3〜15分間行った。その後、鋳型サイズφ191〜φ360mm、6ストランドの連続鋳造機を用いて、鋳造速度0.5〜3.6m/minで連続鋳造した。結果を表3に示す。 Then, the ladle was transferred to the RH type vacuum degassing apparatus, and the inside of the vacuum chamber was immediately depressurized to 4 kPa, and the reflux treatment was started. After 3 minutes from the start of the treatment, 0.1 kg / ton REM was added to the molten steel in the vacuum chamber. The added REM is Nd. After a lapse of 3 minutes from the addition of REM, 12 kg / ton of a massive CaO-based flux is added as a CaO component, and 0.1 to 1.5 Nm 3 / ton of blown oxygen is further blown to remove residual REM and a molten steel temperature of 1580 to After adjusting to 1590 degreeC, the molten steel reflux process was performed for 3 to 15 minutes. Thereafter, continuous casting was performed at a casting speed of 0.5 to 3.6 m / min using a continuous casting machine having a mold size of φ191 to φ360 mm and 6 strands. The results are shown in Table 3.

Figure 0005712945
Figure 0005712945

試験番号1〜3では、本発明の要件を全て満たしていたために、連続鋳造を計画通り8チャージ連続して行うことができた。
しかし、試験番号4ではREM添加後の酸素吹付け量が0.08Nm/tonと少なかったために、連続して鋳造することができたチャージ数は5チャージに留まった。また、試験番号5では酸素上吹き後の溶鋼環流時間が3分間と短かったために、連続して鋳造することができたチャージ数は4チャージに留まった。
In Test Nos. 1 to 3, since all the requirements of the present invention were satisfied, continuous casting could be continuously performed for 8 charges as planned.
However, in Test No. 4, the amount of oxygen sprayed after the addition of REM was as small as 0.08 Nm 3 / ton, so the number of charges that could be cast continuously remained at 5 charges. Moreover, in the test number 5, since the molten steel reflux time after blowing up oxygen was as short as 3 minutes, the number of charges that could be continuously cast was only 4 charges.

Claims (2)

質量%で、Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.0035%以下、Al:0.005%以上1%以下、その他合金成分を含む溶鋼をRH式真空脱ガス処理装置にて精錬処理を行うに際し、
溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上をそれらの合計量で0.05kg/溶鋼ton以上0.30kg/溶鋼ton以下添加した後、
CaOを主体とするフラックスをCaO純分で5kg/ton以上20kg/溶鋼ton以下の量で、真空槽内から上吹きランスを介さずに一括で1分間以内に添加し、さらに、
前記CaOを主体とするフラックスの添加後に、該真空槽内の上吹きランスから前記溶鋼へ酸素を0.1Nm/ton以上吹き付けてから、
該溶鋼の還流処理を10分間以上行うこと
を特徴とする、溶綱の脱硫方法。
In mass%, Mn: 0.1% to 2%, Si: 0.001% to 1%, S: 0.0035% or less, Al: 0.005% to 1%, other alloy components included When refining molten steel with RH vacuum degassing equipment,
After adding one or two or more selected from the group consisting of La, Ce and Nd to the molten steel in a total amount of 0.05 kg / molten steel ton to 0.30 kg / molten steel ton,
A CaO-based flux is added in a quantity of 5 kg / ton to 20 kg / molten steel ton in terms of pure CaO within one minute at a time without going through the top blowing lance from the inside of the vacuum chamber,
After the addition of the flux mainly composed of CaO, oxygen is blown to the molten steel from the top blowing lance in the vacuum chamber at least 0.1 Nm 3 / ton,
A method for desulfurizing a molten steel, wherein the molten steel is refluxed for 10 minutes or more.
質量%で、Mn:0.1%以上2%以下、Si:0.001%以上1%以下、S:0.0035%以下、Al:0.005%以上1%以下、O:0.003%以下、その他合金成分を含む溶鋼をRH式真空脱ガス処理装置にて精錬処理を行うに際し、
溶鋼にLa、CeおよびNdからなる群から選ばれる一種または二種以上をそれらの合計量で0.05kg/溶鋼ton以上0.10kg/溶鋼ton以下添加した後、
CaOを主体とするフラックスをCaO純分で5kg/ton以上15kg/溶鋼ton以下の量で、真空槽内から上吹きランスを介さずに一括で1分間以内に添加し、さらに、
前記CaOを主体とするフラックスの添加後に、該真空槽内の上吹きランスから前記溶鋼へ酸素を0.1Nm/ton以上吹き付けてから、
該溶鋼の還流処理を10分間以上行うこと
を特徴とする、溶綱の脱硫方法。
In mass%, Mn: 0.1% to 2%, Si: 0.001% to 1%, S: 0.0035% or less, Al: 0.005% to 1%, O: 0.003 %, When refining the molten steel containing other alloy components in the RH vacuum degassing equipment,
After adding one or two or more selected from the group consisting of La, Ce and Nd to the molten steel in a total amount of 0.05 kg / molten steel ton or more and 0.10 kg / molten steel ton or less,
A CaO-based flux is added in a quantity of 5 kg / ton to 15 kg / molten steel ton in terms of pure CaO within one minute at a time without going through the top blowing lance from the inside of the vacuum chamber,
After the addition of the flux mainly composed of CaO, oxygen is blown to the molten steel from the top blowing lance in the vacuum chamber at least 0.1 Nm 3 / ton,
A method for desulfurizing a molten steel, wherein the molten steel is refluxed for 10 minutes or more.
JP2012021994A 2012-02-03 2012-02-03 Method for melting low-sulfur steel Active JP5712945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021994A JP5712945B2 (en) 2012-02-03 2012-02-03 Method for melting low-sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021994A JP5712945B2 (en) 2012-02-03 2012-02-03 Method for melting low-sulfur steel

Publications (2)

Publication Number Publication Date
JP2013159810A JP2013159810A (en) 2013-08-19
JP5712945B2 true JP5712945B2 (en) 2015-05-07

Family

ID=49172329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021994A Active JP5712945B2 (en) 2012-02-03 2012-02-03 Method for melting low-sulfur steel

Country Status (1)

Country Link
JP (1) JP5712945B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491467B (en) * 2022-10-08 2024-07-09 首钢股份公司迁安钢铁公司 Heating method for top gun head and molten steel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4256701B2 (en) * 2003-03-13 2009-04-22 新日本製鐵株式会社 Inclusion finely dispersed steel with excellent fatigue life
JP5151448B2 (en) * 2007-12-17 2013-02-27 新日鐵住金株式会社 Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP5267513B2 (en) * 2010-07-02 2013-08-21 新日鐵住金株式会社 High-speed desulfurization denitrification method for molten steel
JP2012158789A (en) * 2011-01-31 2012-08-23 Sumitomo Metal Ind Ltd Method for desulfurizing molten metal using vacuum degassing apparatus

Also Published As

Publication number Publication date
JP2013159810A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
RU2433189C2 (en) Method for obtaining steel for steel pipes with excellent resistance in acid medium
JP6524801B2 (en) High purity steel and its refining method
KR101055899B1 (en) Ultra Low Sulfur Low Nitrogen High Cleanness Solvent Method
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
KR20220008897A (en) Ca Addition Method to Molten Steel
JP5891826B2 (en) Desulfurization method for molten steel
JP5332568B2 (en) Denitrification method for molten steel
KR100985308B1 (en) Ultra low sulfur high purity steel manufacturing method
JP5712945B2 (en) Method for melting low-sulfur steel
JP2008163389A (en) Method for producing bearing steel
JP5888194B2 (en) Desulfurization method for molten steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP2012158789A (en) Method for desulfurizing molten metal using vacuum degassing apparatus
JP6555068B2 (en) Flux for refining molten steel and method for refining molten steel
JP2007270178A (en) Method for producing ultra-low sulfur steel
JP2000345224A (en) Method for desulfurizing molten iron
JP5293759B2 (en) Desulfurization method for molten steel
JP5803866B2 (en) Desulfurizing agent for molten steel and desulfurization method using the same
JP5387045B2 (en) Manufacturing method of bearing steel
JPH0873923A (en) Method for producing clean steel with excellent resistance to hydrogen-induced cracking
JP2005015890A (en) Method for producing low-carbon high-manganese steel
JP2019000903A (en) Smelting method and continuous casting method of steel
JP5515651B2 (en) Desulfurization method for molten steel
KR100929178B1 (en) Calcium input method in molten steel during steel manufacturing
JPH0696734B2 (en) Method for producing clean steel with excellent resistance to hydrogen-induced cracking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R151 Written notification of patent or utility model registration

Ref document number: 5712945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350