JP4247780B2 - Novel photocatalyst and method for detoxifying harmful organic substances using the same - Google Patents
Novel photocatalyst and method for detoxifying harmful organic substances using the same Download PDFInfo
- Publication number
- JP4247780B2 JP4247780B2 JP2003083950A JP2003083950A JP4247780B2 JP 4247780 B2 JP4247780 B2 JP 4247780B2 JP 2003083950 A JP2003083950 A JP 2003083950A JP 2003083950 A JP2003083950 A JP 2003083950A JP 4247780 B2 JP4247780 B2 JP 4247780B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- light
- organic substances
- harmful organic
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 51
- 239000000126 substance Substances 0.000 title claims description 41
- 238000000034 method Methods 0.000 title claims description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 18
- 239000001301 oxygen Substances 0.000 claims description 18
- 229910052760 oxygen Inorganic materials 0.000 claims description 18
- 239000005350 fused silica glass Substances 0.000 claims description 11
- 231100000331 toxic Toxicity 0.000 claims description 11
- 230000002588 toxic effect Effects 0.000 claims description 11
- 239000002253 acid Substances 0.000 claims description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 7
- 238000006303 photolysis reaction Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 230000015843 photosynthesis, light reaction Effects 0.000 claims description 5
- 150000002896 organic halogen compounds Chemical class 0.000 claims description 4
- 238000010306 acid treatment Methods 0.000 claims description 3
- 238000001784 detoxification Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 239000012530 fluid Substances 0.000 description 16
- 239000003054 catalyst Substances 0.000 description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- DHBXNPKRAUYBTH-UHFFFAOYSA-N 1,1-ethanedithiol Chemical compound CC(S)S DHBXNPKRAUYBTH-UHFFFAOYSA-N 0.000 description 4
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 4
- -1 hydroxyl radicals Chemical class 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- DIKBFYAXUHHXCS-UHFFFAOYSA-N bromoform Chemical compound BrC(Br)Br DIKBFYAXUHHXCS-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229950005228 bromoform Drugs 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/30—Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、広い波長領域にわたる放射光に感応し、有害有機物質を光分解して効果的に無害化するための新規な光触媒及びそれを用いた有害有機物質の無害化処理方法に関するものである。
【0002】
【従来の技術】
通常、非常に高いエネルギーを与えなければ進行しない反応を、光によって電子励起状態を生じる触媒を存在させることにより、きわめて低いエネルギーで進行させる反応を一般に光触媒反応といい、この際用いる触媒を光触媒という。
【0003】
この光触媒としては、これまで酸化チタン、酸化亜鉛、硫化カドミウム、酸化タングステンなどのいわゆる半導体触媒や、ルテニウムビピリジル錯体のような金属錯体触媒が知られているが、これらの中で酸化チタンは最も安定性が高く、しかも生物毒性をほとんど示さないので、各種の化学反応や、環境浄化のための光触媒として広く用いられている。
【0004】
この酸化チタンは、400nm付近の近紫外光の照射によって充満帯にある電子が伝導帯に励起されることにより電荷分離を生じ、このようにして生じた電荷サイトで、水酸ラジカルやスーパーオキシドアニオンが発生し、これらの強力な酸化作用で、有機ハロゲン化合物やNOxのような環境汚染物質を分解する。
【0005】
しかしながら、酸化チタンが光触媒能を発揮しうるのは、400nm付近の波長域のみであり、それ以外の波長域では光触媒として作用しない。このことは、酸化チタン以外の光触媒についても同様であり、それ自体の光吸収領域でしか触媒作用を示さない。したがって、これまで知られている有害有機物質を分解するための光触媒は、太陽光のような広い波長領域にわたる光に対する利用効率が低く、使用範囲が制限されるのを免れない。
【0006】
他方、触媒としてシリカを用いてエチレンを光酸化する方法(非特許文献1参照)、シリカ又はマンガン担持シリカの存在下でプロペンをガス状酸素によりエポキシ化する方法(非特許文献2参照)など、シリカを光触媒として用いることも知られているが、これらの方法における反応は、光源として超高圧水銀ランプを用いてはじめて進行する上に、変換率も28.9%と低く、実用化するには必ずしも満足しうる方法とはいえなかった。
【0007】
【非特許文献1】
「スタデイズ・イン・サーフェイス・サイエンス・アンド・キャタリスツ(Studies in Surface Science and Catalysts)」、第130巻、2000年、p.1955−1960
【非特許文献2】
「ジャーナル・オブ・キャタリスツ(J.Catalysts)」、第171巻、1997年、p.351−357
【0008】
【発明が解決しようとする課題】
本発明は、太陽光に対する光吸収がほとんど認められず、広い波長領域において高い利用効率で環境汚染の原因となる有害有機物質を分解しうる光触媒を提供することを目的としてなされたものである。
【0009】
【課題を解決するための手段】
本発明者らは、広い波長領域にわたる放射光に作用する新規な光触媒を開発するために鋭意研究を重ねた結果、これまで光触媒として全く注目されていなかった溶融石英をハロゲン化水素酸で処理すると光触媒としての作用を生じ、しかも意外にも太陽光のような紫外部から可視部にわたる広い波長領域にわたる放射光に対して高い利用効率を示すこと、及びこの光触媒を用いれば環境汚染の主な原因となる各種有害有機物質を分解して無害化しうることを見出し、この知見に基づいて本発明をなすに至った。
【0010】
すなわち、本発明は、ハロゲン化水素酸処理した溶融石英からなる光触媒、及び有害有機物質と酸素との混合物に放射光を照射しながらこの光触媒と接触させ、光分解することを特徴とする有害有機物質の無害化処理方法を提供するものである。
【0011】
【発明の実施の形態】
本発明の光触媒は、実質上、ハロゲン化水素酸処理した溶融石英を主体として構成されるものであるが、この溶融石英は、天然由来の酸化ケイ素源、例えば石英又はケイ砂を原料として、不純分濃度が50ppm以下になるように厳格に制御された条件下で溶融し、固化させて得られる透明な溶融ガラスである。このものは、SiO299.995質量%以上の純度を有し、不純分として、例えば、Al:14ppm以下、As:0.1ppm以下、B:0.2ppm以下、Ca:0.6ppm以下、Cd:0.01ppm以下、Cr:0.05ppm以下、Cu:0.05ppm以下、Fe:0.5ppm以下、K:0.6ppm以下、Li:0.6ppm以下、Mg:0.1ppm以下、Mn:0.7ppm以下、Na:0.7ppm以下、Ni:0.1ppm以下、P:0.2ppm以下、Sb:0.003ppm以下、Ti:500ppm以下、Zr:0.8ppm以下などを含んでいる。また、このものは、赤外吸収スペクトル分析においてOH種の強い吸収を示す。
このような溶融石英は、ジェネラルエレクトリック社(GE社)から、製品名クオーツGE124、144、214、219、224、254などとして市販されている。
【0012】
次に、この溶融石英のハロゲン化水素酸処理は、例えば溶融石英を、ハロゲン化水素酸水溶液に浸漬したのち、水洗乾燥することによって行われる。この際用いるハロゲン化水素酸としては、例えばフッ化水素酸、塩化水素酸、臭化水素酸などがあるが、特にフッ化水素酸が好ましい。これらのハロゲン化水素酸は、1〜50質量%濃度、好ましくは5〜20質量%濃度の水溶液として用いられる。このハロゲン化水素酸処理に要する時間は、使用するハロゲン化水素酸の種類及びその水溶液中の濃度により変わり、一般に高濃度の水溶液を用いれば短時間でよく、低濃度の水溶液を用いれば長時間を要するが、通常5〜60分間の範囲で選ばれる。
【0013】
このようにして得られる本発明の光触媒は、密度2.2〜2.3g/cm3gのち密な固体であり、その形状は所望に応じ、板状、粒状、粉末状、ブロック状、繊維状など任意に形成させることができる。
【0014】
本発明の光触媒は、放射光の照射により有害有機物質を分解する作用を有するが、この有害有機物質としては、特にトリクロロエチレン、テトラクロロエチレン、ジクロロジフルオロメタン、トリブロモメタン、ポリクロロビフェニル(PCB)のような環境汚染の原因となる有機ハロゲン化合物を挙げることができるが、そのほかに、トルエン、キシレンのような芳香族化合物やホルムアルデヒド、アセトアルデヒドのようなアルデヒド類や、エタンジチオールのような含硫黄化合物などに対しても有効である。
【0015】
本発明の光触媒を用いて有害有機物質を分解し、無害化するには、有害有機物質に酸素を混合し、この混合物に放射光を照射しながら光触媒に接触させる。
これまでのTiO2やZnOのような半導体光触媒は、有害有機物質の光吸収領域においてのみ、その分解能力を示すが、それ以外の波長の光では、触媒能力を発揮しないため、太陽光のような自然光を用いた場合、光の利用効率が低くなるのを免れないが、本発明の光触媒は、光吸収をほとんど示さない波長の光によっても有害有機物質を分解することができるので、広範囲の波長領域の放射光、例えば、紫外光や可視光を用いることができる。
【0016】
すなわち、紫外光の波長領域は200〜400nm、可視光の波長領域は400〜800nmと考えられているが、本発明の光触媒は200〜800nmという広範囲の波長領域の放射光を用いることができる。有機ハロゲン化合物を高効率で分解させる場合には、240〜500nmの波長領域の放射光を用いるのが好ましい。
【0017】
また、これらの放射光を人工的に発生させる光源としては、例えば放射光源として慣用されている紫外線ランプ、キセノンランプ、蛍光灯、白熱灯などを挙げることができる。
【0018】
本発明の光触媒を用いて有害有機物質の光分解を連続的に行う場合は、この有害有機物質を酸素とともに流体、例えば気体又は液体に担送させて、光触媒に接触させるが、この場合に用いる流体としては、有害有機物質の光分解を阻害するものでない限り、特に制限はない。しかしながら、大量に入手可能で、環境汚染の原因とならないという点で、気体としては窒素ガス、液体としては水が好ましい。
【0019】
有害有機物質の光分解に際し、これに混合させる流体の酸素濃度については、特に制限はない。この濃度が大きいほど有害有機物質の分解効率は高くなるので好ましいが、流体が気体の場合、コスト的な面で空気を用いるのが好ましいため、酸素濃度は約20体積%になるし、また液体の場合は、同様の理由で水が用いられるので、酸素濃度は4.9体積%(標準状態)となる。
他方、有害有機物質に対する酸素の割合としては、有害有機物質の分子中に含まれる炭素原子1個に対して酸素分子少なくとも2個の割合が好ましいが、特に制限はない。
【0020】
本発明方法において、有害有機物質と酸素との混合物を光触媒に接触させる方法としては、密閉容器中に両者を封入して、流体の熱運動で流体と光触媒表面とを接触させるバッチ方式及び流体を強制的に流動させて流体と光触媒表面を接触させる流動方式のいずれも用いることができる。
【0021】
次に、添付図面に従って光触媒を用いて有害有機物質を光分解し、無害化する方法を説明する。
図1は、本発明方法を実施するのに好適な装置の1例を示す縦断面図であり、ガラス製円筒型密閉容器1中に、表面を光触媒すなわちハロゲン化水素酸処理した無定形石英ガラス管2を外套とした低圧水銀灯3が配置され、この両端が密閉容器1の端部4,4´により支持された構造を有している。
【0022】
有害有機物質は、流体すなわち気体又は液体に担送されて供給口5から密閉容器1内に流入し、酸素導入口6から導入された酸素と混合され、光触媒2と接触したのち、排出口7より外部へ排出される。この間、有害有機物質と酸素との混合物は、低圧水銀灯3からの放射光の照射を受け、光分解が進行し、無害化が行われる。
【0023】
この装置は、光の照射用石英あるいは石英ガラスの窓を備えたシリカの充填層に有害有機物質と酸素を含有した流体を供給口5から供給し、該充填層と流体を接触させた後、排出口7から流出し得る構造にすることもできる。この装置における流体の供給方法としては、入口側に加圧ポンプを設ける方法、あるいは、出口側に減圧ポンプを設ける方法が一般的であるが、気体の場合のファンによる送風方法や液体の場合の重力流下方法などの他の流体供給方法を使用することができる。
【0024】
充填層の大きさと流体の流速は処理する有害有機物質の濃度及び照射光強度、処理装置構造などによって決まるもので、特定の数値で規定できるものではない。換言すれば、光分解処理をした流体中の有害有機物質濃度がほとんど検出されないような運転条件を設定すればよいことになる。
【0025】
この装置における光源としては、有害有機物質が光触媒表面に接触した場合に、該物質を分解させ得る照射光強度を発生できるものであればよく、特に制限はない。このようなものとしては、人工光源装置として通常の紫外線ランプ、キセノンランプ、蛍光灯や白熱灯を、また、自然光源装置として太陽光照射装置を挙げることができる。
【0026】
図2は、バッチ方式で行う場合に用いる装置の1例を示す縦断面図で、光触媒2を装入した光照射用窓(石英又は石英ガラスで外部と隔離)8を備えた密閉容器1の中にバルブを備えたガス導入口9から有害有機物質と酸素との混合物を封入し、光照射用窓8を通して、有害有機物質が消失するまで放射光を照射したのち、バルブを備えたガス排出口10から分解生成物を含むガスを取り出す。このようにすれば、余計な操作を行うことなく、簡単に無害化を達成することができる。上記の光照射用窓8は、平面状、曲面状、円筒状など任意の形状に形成させることができる。
【0027】
この装置は、光照射可能な石英又は石英ガラス製の窓を有し、かつ光触媒を保持する部分を内部に有する密閉容器であればよいから、低コストで作製可能であり、また、太陽光を利用できることから、ランニングコストも低くすることができる。
【0028】
以上、いずれの装置を用いても、反応する温度については、特に制限はなく、−30から550℃の範囲内で任意に選ぶことができる。また、この分解反応は、大気圧下で十分進行するが、所望ならば加圧して反応を促進させることもできる。
このようにして、光強度0.1〜1.0mW/cm2、照射時間40〜360分の条件下で、分解率100%を達成することができる。
【0029】
【実施例】
次に実施例により本発明をさらに詳細に説明するが、本発明はこれらによりなんら限定されるものではない。
【0030】
なお、各実施例の実験は図3に示す反応装置を用い、以下の(a)ないし(i)の順序に従って操作して行った。
【0031】
(a)反応容器R内の受光用窓Wに一致させるように触媒試料CSを乗せた試料皿SPをセットする。
【0032】
(b)真空ポンプPを駆動して、二方コックC1、C2を開ける。また、三方コックCTをコックC2と圧力検出器Gとが導通状態となるように開ける。そして、二方コックC1から三方コックCT1と圧力検出器G間に存在するガス(残存空気)を排気する。
【0033】
(c)圧力検出器Gの指示値が1.0Torr以下になったとき、コックC1を閉じる。
【0034】
(d)酸素ガス供給用マスフロー・コントローラーFC1を20ml/minに、また、窒素ガス供給用マスフロー・コントローラーFC2を80ml/minに設定して駆動させると共に、それらのガスを反応容器Rへ導入できるように三方コックCT1とCT2を導通状態にする。
【0035】
(e)酸素と窒素との混合ガスを混合ガス溜め器MRを介して反応容器Rに供給し、圧力検出器Gの指示値が大気圧力に到達したとき、三方コックCT1とCT2の導通状態を遮断する。
【0036】
(f)(b)から(e)の反応容器R内のガス交換(排気と供給)操作を3回繰り返す。4回目に酸素ガスと窒素ガスを反応容器Rに充填したら、二方コックC1とC2を閉じる。そして、真空ポンプP及びマスフロー・コントローラーFC1とFC2を停止する。
【0037】
(g)有機物質(例:トリクロロエチレン)約1.0μlをシリンジで反応ガス採取口Eから注入して、1hr保持する。1hr経過したとき、反応容器R内の充填ガス1.0mlを反応ガス再採取口Eから採取し、そのガス濃度をガスクロで測定して有機物質の初期充填量とした。
【0038】
(h)光源LS(例:低圧水銀灯)を点灯し、照射光LBを受光用窓Wを通して触媒試料CSへ当てる。
【0039】
(i)所定時間光照射後、反応容器R内のガス1.0mlを採取し、ガスクロで有機物質の残存濃度を求め、初期充填量より減少した量を分解量とした。
なお、図中Hは反応容器のフリンジと蓋の留め金を示す。
【0040】
参考例1
3リットル体積ポリエチレン容器に、10質量%濃度のフッ化水素水溶液2リットルを収容し、この中へ溶融石英製円筒管(GE社製、製品名「クオーツGE214」、密度2.21g/cm3)を浸漬し、25℃において10分間振とうしたのち取り出し、水洗し、乾燥することにより、円筒型光触媒を製造した。この光触媒の全表面積は1.4×102cm2であった。
【0041】
参考例2
参考例1で用いたのと同じ溶融石英製円筒管を3モル濃度(11.0質量%)の塩化水素水溶液に浸漬し、25℃において60分間振とうしたのち、水洗し、乾燥することにより、円筒型光触媒を製造した。この光触媒の全表面積は1.4×102cm2であった。
【0042】
実施例
円筒型反応容器(内径45mm、長さ200mm)の内部に参考例1又は2で製造した光触媒を配置し、これにトルエン(TLE)、アセトアルデヒド(ALD)、エタンジチオール(ETL)又はトリクロロエチレン(TCE)を乾燥空気(O2/N2体積比=1/4)とともに封入し、光源として低圧水銀灯(線特殊光源UVL−10、波長230nm以上、試料表面における光強度0.15mW/cm2)を用い、24℃において表1に示す照射時間で放射光を照射し、光分解させた。その結果を表1に示す。なお、比較のために市販光触媒(TiO2)を用いた場合の結果も併記した。
【0043】
【表1】
*:光源としてブラックライト(ナショナルFL6BL、6W、試料表面での光強度0.19mW/cm2)を用いた。
【0044】
この表から分るように、本発明の光触媒を用いると、従来汎用されていたTiO2光触媒を用いた場合に比べ、4〜5桁も速い分解速度で各種有害有機物質を光分解することができる。
【0045】
【発明の効果】
本発明によれば、ハロゲン化水素処理された溶融石英からなる、これまで知られていなかった新規光触媒を用いることにより、これまで知られている中で最も優れた光触媒とされている酸化チタン触媒に匹敵する分解率で有害有機物質を分解除去することができる。
【図面の簡単な説明】
【図1】 本発明光触媒を用いて、連続的に有害有機物質を光分解させるための装置例を示す縦断面図。
【図2】 本発明光触媒を用いてバッチ式で有害有機物質を光分解させるための装置例を示す縦断面図。
【図3】 実施例において用いた反応装置の説明図。
【符号の説明】
1 密閉容器
2 光触媒
3 光源
5 流体供給口
6 酸素導入口
7 排出口
8 光照射用窓
9 ガス導入口
10 ガス排出口
R 反応容器(覆い付)
W 受光用窓
CS 触媒試料
SP 試料皿
P 真空ポンプ
C1、C2 二方コック
CT1、CT2 三方コック
G 圧力検出器
FC1、FC2 マスフロー・コントローラー
MR 混合ガス溜め器
E 反応ガス採取口
LS 光源
LB 照射光
H 反応容器のフリンジと蓋の留め金[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel photocatalyst that is sensitive to synchrotron radiation over a wide wavelength region, and that effectively detoxifies and detoxifies harmful organic substances, and a method for detoxifying harmful organic substances using the same. .
[0002]
[Prior art]
In general, a reaction that does not proceed unless very high energy is applied, and a reaction that proceeds with extremely low energy by the presence of a catalyst that generates an electronically excited state by light is generally called a photocatalytic reaction. The catalyst used at this time is called a photocatalyst. .
[0003]
To date, so-called semiconductor catalysts such as titanium oxide, zinc oxide, cadmium sulfide, and tungsten oxide and metal complex catalysts such as ruthenium bipyridyl complexes are known as photocatalysts. Among these, titanium oxide is the most stable. It is highly used and exhibits little biotoxicity, so it is widely used as a photocatalyst for various chemical reactions and environmental purification.
[0004]
This titanium oxide causes charge separation by excitation of electrons in the full band to the conduction band by irradiation with near-ultraviolet light in the vicinity of 400 nm. At the charge sites thus generated, hydroxyl radicals and superoxide anions These powerful oxidizing actions decompose environmental pollutants such as organic halogen compounds and NOx.
[0005]
However, titanium oxide can exhibit photocatalytic activity only in the wavelength region near 400 nm, and does not act as a photocatalyst in other wavelength regions. This is the same for photocatalysts other than titanium oxide, and it exhibits a catalytic action only in its own light absorption region. Therefore, the photocatalyst for decomposing harmful organic substances known so far has low utilization efficiency with respect to light over a wide wavelength region such as sunlight, and the range of use is inevitable.
[0006]
On the other hand, a method of photooxidizing ethylene using silica as a catalyst (see Non-Patent Document 1), a method of epoxidizing propene with gaseous oxygen in the presence of silica or manganese-supporting silica (see Non-Patent Document 2), etc. It is also known that silica is used as a photocatalyst. However, the reaction in these methods proceeds only when an ultrahigh pressure mercury lamp is used as a light source, and the conversion rate is as low as 28.9%. It was not always a satisfactory method.
[0007]
[Non-Patent Document 1]
“Studies in Surface Science and Catalysts”, Vol. 130, 2000, p. 1955-1960
[Non-Patent Document 2]
“Journal of Catalysts”, Vol. 171, 1997, p. 351-357
[0008]
[Problems to be solved by the invention]
The present invention has been made for the purpose of providing a photocatalyst that hardly decomposes light into sunlight and can decompose harmful organic substances that cause environmental pollution with high utilization efficiency in a wide wavelength region.
[0009]
[Means for Solving the Problems]
As a result of intensive research to develop a novel photocatalyst that acts on synchrotron radiation over a wide wavelength region, the present inventors have treated molten quartz that has not been attracting attention as a photocatalyst with hydrohalic acid. It acts as a photocatalyst, and unexpectedly shows high utilization efficiency for radiation light over a wide wavelength range from the ultraviolet part to the visible part such as sunlight, and if this photocatalyst is used, the main cause of environmental pollution The present inventors have found that various harmful organic substances can be decomposed and made harmless, and based on this finding, the present invention has been made.
[0010]
That is, the present invention is toxic organic, characterized in that while radiant light in a mixture of a photocatalyst, and toxic organic substances and oxygen consisting of a hydrohalic acid-treated fused silica is contacted with the photocatalyst, photolysis A method for detoxifying a substance is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The photocatalyst of the present invention is substantially composed mainly of a hydrohalic acid-treated fused quartz, and this fused quartz is impure using a naturally occurring silicon oxide source, for example, quartz or silica sand as a raw material. It is a transparent molten glass obtained by melting and solidifying under strictly controlled conditions such that the partial concentration is 50 ppm or less. This has a purity of SiO 2 99.995% by mass or more, and as impurities, for example, Al: 14 ppm or less, As: 0.1 ppm or less, B: 0.2 ppm or less, Ca: 0.6 ppm or less, Cd: 0.01 ppm or less, Cr: 0.05 ppm or less, Cu: 0.05 ppm or less, Fe: 0.5 ppm or less, K: 0.6 ppm or less, Li: 0.6 ppm or less, Mg: 0.1 ppm or less, Mn : 0.7 ppm or less, Na: 0.7 ppm or less, Ni: 0.1 ppm or less, P: 0.2 ppm or less, Sb: 0.003 ppm or less, Ti: 500 ppm or less, Zr: 0.8 ppm or less . This also shows strong absorption of OH species in infrared absorption spectrum analysis.
Such fused quartz is commercially available from General Electric Company (GE) under the product names Quartz GE124, 144, 214, 219, 224, 254, and the like.
[0012]
Next, the hydrohalic acid treatment of the fused quartz is performed, for example, by immersing the fused quartz in a hydrohalic acid aqueous solution, followed by washing and drying. Examples of the hydrohalic acid used at this time include hydrofluoric acid, hydrochloric acid, hydrobromic acid and the like, and hydrofluoric acid is particularly preferable. These hydrohalic acids are used as an aqueous solution having a concentration of 1 to 50% by mass, preferably 5 to 20% by mass. The time required for this hydrohalic acid treatment varies depending on the type of hydrohalic acid used and its concentration in the aqueous solution. Generally, a high concentration aqueous solution is used for a short time, and a low concentration aqueous solution is used for a long time. However, it is usually selected in the range of 5 to 60 minutes.
[0013]
The photocatalyst of the present invention thus obtained is a dense solid having a density of 2.2 to 2.3 g / cm 3 g, and its shape is plate-like, granular, powder-like, block-like, fiber as desired. It can be arbitrarily formed.
[0014]
Photocatalyst of the present invention has the effect of decomposing toxic organic substances by irradiation with radiation beam, as the toxic organic substances, especially trichlorethylene, tetrachlorethylene, dichlorodifluoromethane, tribromomethane, as polychlorinated biphenyls (PCB) Organic halogen compounds that cause environmental pollution can be mentioned, but in addition, aromatic compounds such as toluene and xylene, aldehydes such as formaldehyde and acetaldehyde, sulfur-containing compounds such as ethanedithiol, etc. Also effective.
[0015]
In order to decompose and detoxify a harmful organic substance using the photocatalyst of the present invention, oxygen is mixed with the harmful organic substance, and the mixture is brought into contact with the photocatalyst while irradiating radiation.
Conventional semiconductor photocatalysts such as TiO 2 and ZnO show their decomposing ability only in the light-absorbing region of harmful organic substances. When natural light is used, the light use efficiency is unavoidable. However, the photocatalyst of the present invention can decompose harmful organic substances even with light having a wavelength that hardly exhibits light absorption. Radiation light in the wavelength region, for example, ultraviolet light or visible light can be used.
[0016]
That is, although the wavelength region of ultraviolet light is considered to be 200 to 400 nm and the wavelength region of visible light is considered to be 400 to 800 nm, the photocatalyst of the present invention can use emitted light in a wide wavelength region of 200 to 800 nm. In the case of decomposing an organic halogen compound with high efficiency, it is preferable to use emitted light in a wavelength region of 240 to 500 nm.
[0017]
Examples of light sources that artificially generate these radiated lights include ultraviolet lamps, xenon lamps, fluorescent lamps, and incandescent lamps that are commonly used as radiant light sources.
[0018]
When the photocatalyst of the present invention is used for continuous photodecomposition of harmful organic substances, the harmful organic substances are transported together with oxygen to a fluid, for example, a gas or a liquid, and contacted with the photocatalyst. The fluid is not particularly limited as long as it does not inhibit the photolysis of harmful organic substances. However, nitrogen gas is preferable as the gas and water is preferable as the liquid because it is available in large quantities and does not cause environmental pollution.
[0019]
There is no particular limitation on the oxygen concentration of the fluid mixed in the photodecomposition of the toxic organic substance . The higher the concentration, the higher the decomposition efficiency of harmful organic substances, which is preferable. However, when the fluid is a gas, it is preferable to use air in terms of cost, so the oxygen concentration is about 20% by volume, and the liquid is liquid. In this case, since water is used for the same reason, the oxygen concentration is 4.9% by volume (standard state).
On the other hand, the ratio of oxygen to the harmful organic substance is preferably a ratio of at least two oxygen molecules to one carbon atom contained in the molecule of the harmful organic substance, but is not particularly limited.
[0020]
In the method of the present invention, as a method of bringing a mixture of a toxic organic substance and oxygen into contact with the photocatalyst, a batch method in which both are enclosed in a sealed container and the fluid is brought into contact with the photocatalyst surface by thermal motion of the fluid and a fluid Any of the flow methods in which the fluid and the photocatalyst surface are brought into contact with each other by forcible flow can be used.
[0021]
Next, a method for decomposing and detoxifying harmful organic substances using a photocatalyst according to the attached drawings will be described.
FIG. 1 is a longitudinal sectional view showing an example of an apparatus suitable for carrying out the method of the present invention. An amorphous quartz glass whose surface is treated with a photocatalyst, that is, hydrohalic acid, in a glass cylindrical sealed
[0022]
The harmful organic substance is transferred to a fluid, that is, a gas or a liquid, flows into the sealed
[0023]
In this apparatus, a fluid containing harmful organic substances and oxygen is supplied from a
[0024]
The size of the packed bed and the flow rate of the fluid are determined by the concentration of the harmful organic substance to be processed, the irradiation light intensity, the structure of the processing apparatus, etc., and cannot be defined by specific numerical values. In other words, it is only necessary to set operating conditions such that the concentration of harmful organic substances in the fluid subjected to the photolysis treatment is hardly detected.
[0025]
The light source in this apparatus is not particularly limited as long as it can generate irradiation light intensity capable of decomposing the harmful organic substance when it contacts the surface of the photocatalyst. Examples of such a light source device include normal ultraviolet lamps, xenon lamps, fluorescent lamps and incandescent lamps as artificial light source devices, and solar light irradiation devices as natural light source devices.
[0026]
FIG. 2 is a longitudinal sectional view showing an example of an apparatus used in the case of performing a batch method, and shows a sealed
[0027]
Since this device only needs to be a sealed container having a window made of quartz or quartz glass capable of irradiating light and having a portion for holding a photocatalyst inside, it can be manufactured at low cost, and can also emit sunlight. Since it can be used, the running cost can be reduced.
[0028]
As described above, regardless of which apparatus is used, the reaction temperature is not particularly limited and can be arbitrarily selected within the range of −30 to 550 ° C. Further, this decomposition reaction proceeds sufficiently under atmospheric pressure, but if desired, it can be pressurized to promote the reaction.
In this way, a decomposition rate of 100% can be achieved under conditions of light intensity of 0.1 to 1.0 mW / cm 2 and irradiation time of 40 to 360 minutes.
[0029]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these.
[0030]
In addition, experiment of each Example was performed by operating according to the order of the following (a) thru | or (i) using the reaction apparatus shown in FIG.
[0031]
(A) The sample dish SP on which the catalyst sample CS is placed is set so as to coincide with the light receiving window W in the reaction vessel R.
[0032]
(B) The vacuum pump P is driven to open the two-way cocks C1 and C2. Further, the three-way cock CT is opened so that the cock C2 and the pressure detector G are in a conductive state. Then, the gas (residual air) existing between the three-way cock CT1 and the pressure detector G is exhausted from the two-way cock C1.
[0033]
(C) When the indicated value of the pressure detector G becomes 1.0 Torr or less, the cock C1 is closed.
[0034]
(D) The oxygen gas supply mass flow controller FC1 is set to 20 ml / min, and the nitrogen gas supply mass flow controller FC2 is set to 80 ml / min to drive them, and these gases can be introduced into the reaction vessel R. Next, the three-way cocks CT1 and CT2 are made conductive.
[0035]
(E) When the mixed gas of oxygen and nitrogen is supplied to the reaction vessel R through the mixed gas reservoir MR and the indicated value of the pressure detector G reaches the atmospheric pressure, the conduction state of the three-way cocks CT1 and CT2 is changed. Cut off.
[0036]
(F) The gas exchange (exhaust and supply) operation in the reaction vessel R from (b) to (e) is repeated three times. When oxygen gas and nitrogen gas are charged into the reaction vessel R for the fourth time, the two-way cocks C1 and C2 are closed. Then, the vacuum pump P and the mass flow controllers FC1 and FC2 are stopped.
[0037]
(G) About 1.0 μl of an organic substance (eg, trichloroethylene) is injected from the reaction gas sampling port E with a syringe and held for 1 hr. When 1 hour had elapsed, 1.0 ml of the filling gas in the reaction vessel R was taken from the reaction gas re-collecting port E, and the gas concentration was measured with a gas chromatograph to obtain the initial filling amount of the organic substance.
[0038]
(H) The light source LS (eg, a low-pressure mercury lamp) is turned on, and the irradiation light LB is applied to the catalyst sample CS through the light receiving window W.
[0039]
(I) After light irradiation for a predetermined time, 1.0 ml of gas in the reaction vessel R was collected, the residual concentration of the organic substance was obtained by gas chromatography, and the amount reduced from the initial filling amount was taken as the decomposition amount.
In the figure, H indicates the fringe of the reaction vessel and the clasp of the lid.
[0040]
Reference example 1
In a 3 liter volume polyethylene container, 2 liters of a 10% strength by weight aqueous solution of hydrogen fluoride are accommodated, into which a fused quartz cylindrical tube (manufactured by GE, product name “Quartz GE214”, density 2.21 g / cm 3 ). Was taken out, shaken at 25 ° C. for 10 minutes, taken out, washed with water, and dried to produce a cylindrical photocatalyst. The total surface area of this photocatalyst was 1.4 × 10 2 cm 2 .
[0041]
Reference example 2
By immersing the same fused quartz cylindrical tube used in Reference Example 1 in a 3 molar concentration (11.0 mass%) hydrogen chloride aqueous solution, shaking at 25 ° C. for 60 minutes, washing with water and drying. A cylindrical photocatalyst was produced. The total surface area of this photocatalyst was 1.4 × 10 2 cm 2 .
[0042]
Example The photocatalyst produced in Reference Example 1 or 2 was placed inside a cylindrical reaction vessel (inner diameter 45 mm, length 200 mm), and toluene (TLE), acetaldehyde (ALD), ethanedithiol (ETL) or trichlorethylene (ETL) TCE) is enclosed with dry air (O 2 / N 2 volume ratio = 1/4), and a low-pressure mercury lamp as a light source (line special light source UVL-10, wavelength 230 nm or more, light intensity at the sample surface 0.15 mW / cm 2 ) Was irradiated with radiant light at 24 ° C. for the irradiation time shown in Table 1, and photolyzed. The results are shown in Table 1. Incidentally, it is also shown the results of the case of using a commercially available photocatalyst (TiO 2) for comparison.
[0043]
[Table 1]
*: Black light (National FL6BL, 6W, light intensity on the sample surface 0.19 mW / cm 2 ) was used as a light source.
[0044]
As can be seen from this table, when the photocatalyst of the present invention is used, various harmful organic substances can be photodecomposed at a decomposition rate that is 4 to 5 orders of magnitude faster than when a conventionally used TiO 2 photocatalyst is used. it can.
[0045]
【The invention's effect】
According to the present invention, by using a novel photocatalyst made of hydrogen halide-treated fused quartz, which has not been known so far, the titanium oxide catalyst which has been the best photocatalyst known so far It is possible to decompose and remove harmful organic substances at a decomposition rate comparable to
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for continuously photodegrading harmful organic substances using the photocatalyst of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of an apparatus for photodegrading harmful organic substances in a batch manner using the photocatalyst of the present invention.
FIG. 3 is an explanatory diagram of a reaction apparatus used in Examples.
[Explanation of symbols]
DESCRIPTION OF
W Light-receiving window CS Catalyst sample SP Sample pan P Vacuum pump C1, C2 Two-way cock CT1, CT2 Three-way cock G Pressure detector FC1, FC2 Mass flow controller MR Mixed gas reservoir E Reaction gas sampling port LS Light source LB Irradiation light H Reaction vessel fringes and lid clasps
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083950A JP4247780B2 (en) | 2003-03-25 | 2003-03-25 | Novel photocatalyst and method for detoxifying harmful organic substances using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083950A JP4247780B2 (en) | 2003-03-25 | 2003-03-25 | Novel photocatalyst and method for detoxifying harmful organic substances using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004290747A JP2004290747A (en) | 2004-10-21 |
JP4247780B2 true JP4247780B2 (en) | 2009-04-02 |
Family
ID=33399240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003083950A Expired - Fee Related JP4247780B2 (en) | 2003-03-25 | 2003-03-25 | Novel photocatalyst and method for detoxifying harmful organic substances using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4247780B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153803A1 (en) | 2011-05-10 | 2012-11-15 | 国際先端技術総合研究所株式会社 | Glass sheet for window |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007307430A (en) | 2004-03-18 | 2007-11-29 | Tetsuo Yazawa | Novel photocatalyst, method for producing the same, and purification method using the same |
JP4757593B2 (en) * | 2005-09-30 | 2011-08-24 | Bnt株式会社 | photocatalyst |
JP2007098205A (en) * | 2005-09-30 | 2007-04-19 | Bnt Kk | Powdery photocatalyst |
EP2492375B1 (en) | 2009-10-21 | 2017-12-06 | International Frontier Technology Laboratory Inc. | Photocell |
JPWO2012036231A1 (en) | 2010-09-15 | 2014-02-03 | 国際先端技術総合研究所株式会社 | Glass with photocatalytic activity |
TWI542023B (en) | 2011-03-11 | 2016-07-11 | Internat Frontier Tech Lab Inc | Silicon dioxide solar cells |
WO2012169530A1 (en) | 2011-06-06 | 2012-12-13 | 国際先端技術総合研究所株式会社 | Composite glass plate |
US10121601B2 (en) | 2012-05-22 | 2018-11-06 | International Frontier Technology Laboratory, Inc. | Photoelectrode material and photocell material |
-
2003
- 2003-03-25 JP JP2003083950A patent/JP4247780B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012153803A1 (en) | 2011-05-10 | 2012-11-15 | 国際先端技術総合研究所株式会社 | Glass sheet for window |
Also Published As
Publication number | Publication date |
---|---|
JP2004290747A (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0611378B2 (en) | Method for removing volatile organic chlorine compounds | |
JPH09262482A (en) | Photocatalyst, method for producing photocatalyst, and method for photocatalytic reaction | |
JP4247780B2 (en) | Novel photocatalyst and method for detoxifying harmful organic substances using the same | |
JP4214221B2 (en) | Method for removing nitrogen oxides by photoreaction | |
JP4505688B2 (en) | Novel photocatalyst and method for producing the same | |
Wang et al. | The study of the photocatalytic degradation kinetics for dichloroethylene in vapor phase | |
Diaz-Uribe et al. | Photocatalytic study of TiO2 thin films modified with Anderson-type polyoxometalates (Cr, Co and Ni): Experimental and DFT study | |
CA2344780A1 (en) | Method, catalyst and photocatalyst for the destruction of phosgene | |
KR100533877B1 (en) | Catalyst for Removing Aromatic Halogenated Compounds Comprising Dioxin, Carbon Monoxide, and Nitrogen Oxide and Use Thereof | |
Liu et al. | The gas-photocatalytic degradation of trichloroethylene without water | |
JP2001300260A (en) | Photodecomposition method of non-metallic fluoride in gas | |
JP3118558B2 (en) | Water treatment catalyst and water treatment method | |
JPWO2012036231A1 (en) | Glass with photocatalytic activity | |
JPH0824629A (en) | Photocatalytic reaction tank | |
JP3944149B2 (en) | Catalyst for removing aromatic halogen compounds, carbon monoxide and nitrogen oxides including dioxins | |
KR100372535B1 (en) | the Apparatus and Method for Decomposing Volatile Gaseous Organic Compound | |
JP2004089953A (en) | Continuous decomposition and removal method of organic substances contained in gas | |
JPH0532321B2 (en) | ||
Batakliev et al. | Ozone decomposition | |
KR101235015B1 (en) | Volatile organic compound treatment system using honeycomb adsorptive element and ozone, and voc treatment method using it | |
JP2005161216A (en) | Purification of gas containing harmful organic substances by electron beam irradiation | |
Ghouma et al. | An optimization study of nickel catalyst supported on activated carbon for the 2-nitrophenol catalytic ozonation | |
JP2001104753A (en) | Exhaust gas cleaning method | |
JP3769613B2 (en) | Photocatalyst reactivation and reuse method | |
Wiltowski et al. | Photocatalytic oxidation of trichloroethylene and carbon tetrachloride using titanium dioxide filter as a catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060407 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060410 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081211 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4247780 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |