[go: up one dir, main page]

JP3118558B2 - Water treatment catalyst and water treatment method - Google Patents

Water treatment catalyst and water treatment method

Info

Publication number
JP3118558B2
JP3118558B2 JP35358896A JP35358896A JP3118558B2 JP 3118558 B2 JP3118558 B2 JP 3118558B2 JP 35358896 A JP35358896 A JP 35358896A JP 35358896 A JP35358896 A JP 35358896A JP 3118558 B2 JP3118558 B2 JP 3118558B2
Authority
JP
Japan
Prior art keywords
water treatment
water
titanium oxide
oxide film
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35358896A
Other languages
Japanese (ja)
Other versions
JPH10174882A (en
Inventor
博史 垰田
野浪  亨
光春 深谷
栄次 渡辺
耕三 伊勢田
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP35358896A priority Critical patent/JP3118558B2/en
Publication of JPH10174882A publication Critical patent/JPH10174882A/en
Application granted granted Critical
Publication of JP3118558B2 publication Critical patent/JP3118558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃水処理や浄水処
理、あるいは水の殺菌や殺藻などを行うための水処理用
触媒及び水処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment catalyst and a water treatment method for performing wastewater treatment, water purification treatment, water sterilization and algicidal treatment.

【0002】[0002]

【従来の技術】近年、生活排水や産業廃水などによる水
質汚染、特に、現在行われている活性汚泥法などの水処
理法では処理が難しい有機塩素系の溶剤や農薬、合成洗
剤(界面活性剤)、合成染料など、種々の化学物質によ
る水源の汚染などが広範囲に進んでおり、環境の汚染が
重大な社会問題となっている。
2. Description of the Related Art In recent years, water pollution due to domestic wastewater and industrial wastewater, especially, organic chlorine-based solvents, pesticides, synthetic detergents (surfactants) which are difficult to treat by water treatment methods such as the activated sludge method currently used. ), Pollution of water sources by various chemical substances such as synthetic dyes and the like has been widespread, and environmental pollution has become a serious social problem.

【0003】現在広く行われている廃水処理法は活性汚
泥法であるが、この方法は微生物という生き物を用いる
ため温度、pH、ガス雰囲気、毒性などの反応条件が厳
しく、しかも上述の農薬や有機溶剤(特にハロカーボ
ン)、界面活性剤(特に側鎖の付いたもの)、合成染料
などの分解・除去が困難であるという欠点を持ってい
る。
[0003] The wastewater treatment method widely used at present is the activated sludge method. However, since this method uses living organisms called microorganisms, the reaction conditions such as temperature, pH, gas atmosphere and toxicity are severe, and the above-mentioned pesticides and organic compounds are used. It has the disadvantage that it is difficult to decompose and remove solvents (especially halocarbons), surfactants (especially those with side chains), and synthetic dyes.

【0004】半導体に光を照射すると強い還元作用を持
つ電子と強い酸化作用を持つ正孔が生成し、半導体に接
触した分子種を酸化還元作用により分解する。半導体の
このような作用、すなわち光触媒作用を利用することに
よって、水中に溶解している有機溶剤や農薬、界面活性
剤、合成染料などの環境汚染物質の分解除去を行うこと
ができる。この方法は半導体と光を利用するだけであ
り、微生物を用いる生物処理などの方法に比べて、温
度、pH、ガス雰囲気、毒性などの反応条件の制約が少
なく、しかも生物処理法では処理しにくい有機ハロゲン
化合物や有機リン化合物のようなものでも容易に分解・
除去できるという長所を持っている。しかし、これまで
行われてきた光触媒による有機物の分解除去の研究で
は、光触媒として半導体粉末が用いられていた(例え
ば、A. L. Pruden and D. F. Ollis, Journal of Catal
ysis, Vol.82, 404 (1983)、H. Hidaka, H. Jou, K. No
hara, J. Zhao, Chemosphere, Vol.25, 1589 (1992)、
久永輝明、原田賢二、田中啓一、工業用水、第379号、1
2 (1990))。そのため、光触媒としての取扱いや使用が
難しく、水処理の場合、光触媒粉末を回収するため、処
理した水を濾過しなければならないが、光触媒が微粉末
であるため目詰まりを起こしたりして、濾過が容易でな
く、処理物と光触媒との分離や回収が困難で、連続的に
水処理できないなどの問題があった。加えて、高濃度の
廃水処理に時間がかかり過ぎるという欠点があった。
When a semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. By utilizing such an action of the semiconductor, that is, a photocatalytic action, it is possible to decompose and remove environmental pollutants such as organic solvents, pesticides, surfactants, and synthetic dyes dissolved in water. This method only utilizes semiconductors and light, and has less restrictions on reaction conditions such as temperature, pH, gas atmosphere, toxicity, and the like, and is difficult to process using a biological treatment method, as compared to methods such as biological treatment using microorganisms. Easily decomposes even compounds such as organic halogen compounds and organic phosphorus compounds.
It has the advantage that it can be removed. However, semiconductor powders have been used as photocatalysts in studies on decomposition and removal of organic substances using photocatalysts (for example, see AL Pruden and DF Ollis, Journal of Catal
ysis, Vol. 82, 404 (1983), H. Hidaka, H. Jou, K. No
hara, J. Zhao, Chemosphere, Vol. 25, 1589 (1992),
Teruaki Hisaga, Kenji Harada, Keiichi Tanaka, Industrial Water, No. 379, 1
2 (1990)). Therefore, it is difficult to handle and use as a photocatalyst.In the case of water treatment, the treated water must be filtered to recover the photocatalyst powder.However, since the photocatalyst is a fine powder, clogging may occur. However, there is a problem that it is difficult to separate and recover the treated product and the photocatalyst, and it is not possible to continuously treat water. In addition, there is a disadvantage that it takes too much time to treat high-concentration wastewater.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、水質汚染に対処して、活性汚泥法では処理しにくい
農薬や有機溶剤(特にハロカーボン)、界面活性剤(特
に側鎖の付いたもの)、合成染料などで汚染された水を
温和な条件で容易にかつ迅速に処理して浄化することが
できる高性能で取扱い易い水処理用触媒及び経済的な水
浄化法を提供しようとするものである。
SUMMARY OF THE INVENTION In view of the above, the present invention addresses water pollution and is difficult to treat by the activated sludge method for pesticides, organic solvents (particularly halocarbons), surfactants (particularly side chains). To provide a high-performance, easy-to-handle water treatment catalyst capable of easily and quickly treating and purifying water contaminated with synthetic dyes and the like under mild conditions, and an economical water purification method. It is assumed that.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の目的を
達成するため、鋭意研究を重ねた結果、酸化チタン膜で
表面が覆われ、過酸化水素、オゾン、酸素などの酸化剤
を吸着した多孔体を化学物質で汚染された水に入れ、光
を照射することによって、化学物質が迅速かつ効率良く
炭酸ガスなどに酸化分解され、無害化されることを見い
出し、本発明をなすに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above object, and as a result, the surface is covered with a titanium oxide film and adsorbs oxidizing agents such as hydrogen peroxide, ozone and oxygen. By placing the porous body in water contaminated with a chemical substance and irradiating it with light, it was found that the chemical substance was quickly and efficiently oxidized and decomposed into carbon dioxide gas and the like and detoxified, thereby leading to the present invention. Was.

【0007】本発明は、多孔体の表面を酸化チタン膜で
被覆し、過酸化水素やオゾン、酸素を吸着させた水処理
用触媒、及びそれを処理すべき水に入れ、光を照射する
ことによる水処理方法である。本発明において、多孔質
の材料で構成される多孔体とは、全体として多孔質の材
料を意味するものとして定義されるものであり、単に、
表面に微細凹凸が形成された基材は含まない。
The present invention provides a water treatment catalyst in which the surface of a porous body is coated with a titanium oxide film and adsorbs hydrogen peroxide, ozone, and oxygen, and the catalyst is placed in water to be treated and irradiated with light. Water treatment method. In the present invention, porous
The porous body composed of the above materials is a porous material as a whole.
Fee is defined as
It does not include a substrate having fine irregularities formed on the surface.

【0008】[0008]

【発明の実施の形態】本発明に用いられる多孔体は、活
性炭、活性アルミナ、シリカゲル、ゼオライト、粘土焼
結体、多孔質ガラス、フォームセラミックス、泡金属、
フォームプラスチックスなど、いろいろなものが挙げら
れるが、光を透過するという点でシリカゲルや多孔質ガ
ラスが特に好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The porous material used in the present invention is activated carbon, activated alumina, silica gel, zeolite, clay sintered body, porous glass, foam ceramic, foam metal,
Various materials such as foam plastics can be mentioned, and silica gel and porous glass are particularly preferable in terms of transmitting light.

【0009】本発明に用いられる多孔体の形状は、粒
状、板状、円筒状、角柱状、円錐状、球状、瓢箪型、ラ
グビーボール型など、どのような形であっても良い。
The shape of the porous body used in the present invention may be any shape such as a granular shape, a plate shape, a cylindrical shape, a prism shape, a conical shape, a spherical shape, a gourd shape, and a rugby ball shape.

【0010】多孔体表面への酸化チタン膜の被覆は、蒸
着やPVD、CVD、スパッタリング、ゾルゲル法によ
るチタニアゾルのコーティング、超微粒子の酸化チタン
の固着など、いろいろな方法によって行われる。
[0010] The titanium oxide film is coated on the surface of the porous body by various methods such as vapor deposition, PVD, CVD, sputtering, coating of titania sol by a sol-gel method, and fixing of ultrafine titanium oxide.

【0011】本発明に用いられる酸化チタン膜は、光触
媒として高性能の、結晶形がアナターゼであることが好
ましい。ルチルやブルッカイト、非晶質のものは光触媒
としての活性が低いため、あまり好ましくない。
It is preferable that the titanium oxide film used in the present invention has a high performance as a photocatalyst and the crystal form is anatase. Rutile, brookite, and amorphous ones are not preferred because of their low photocatalytic activity.

【0012】本発明の水処理用触媒は、酸化チタン膜で
表面が覆われた多孔体に過酸化水素、オゾン、酸素など
の酸化剤を吸着させることによって調製される。本発明
において、酸素とは、酸素単独(即ち、純酸素)を意味
する。
The catalyst for water treatment of the present invention is prepared by adsorbing an oxidizing agent such as hydrogen peroxide, ozone, or oxygen on a porous body whose surface is covered with a titanium oxide film. The present invention
In the above, oxygen means oxygen alone (ie, pure oxygen)
I do.

【0013】こうして得られた本発明の水処理用触媒を
化学物質で汚染された水に入れ、光を照射することによ
って、多孔体が水中に溶解している化学物質を効率良く
吸着し、光の照射によって酸化チタン膜に生成した電子
と正孔が、吸着されていた過酸化水素、オゾン、酸素な
どの酸化剤と反応して、極めて大きな酸化ポテンシャル
を有する活性酸素種を生成し、その強力な酸化力によ
り、化学物質が迅速かつ効率良く炭酸ガスなどに酸化分
解され、無害化される。この際、撹拌することにより、
処理速度を大幅に増大させることができる。
The water treatment catalyst of the present invention thus obtained is placed in water contaminated with a chemical substance and irradiated with light, whereby the porous substance efficiently adsorbs the chemical substance dissolved in the water, and The electrons and holes generated in the titanium oxide film by the irradiation of hydrogen react with the oxidizing agent such as hydrogen peroxide, ozone, and oxygen that are adsorbed to generate active oxygen species having an extremely large oxidation potential. Due to the oxidizing power, the chemical substance is quickly and efficiently oxidized and decomposed into carbon dioxide gas and the like, thereby rendering it harmless. At this time, by stirring,
The processing speed can be greatly increased.

【0014】また、本発明の水処理用触媒の酸化チタン
膜の表面に、白金やロジウム、ルテニウム、パラジウ
ム、銀、銅、亜鉛などの金属が担持されていると、化学
物質の酸化分解速度がさらに大きくなる。
Further, when a metal such as platinum, rhodium, ruthenium, palladium, silver, copper, zinc or the like is carried on the surface of the titanium oxide film of the water treatment catalyst of the present invention, the oxidative decomposition rate of the chemical substance increases. It gets even bigger.

【0015】こうして得られた本発明による多孔質光触
媒は多孔質で比表面積が大きいため、水中に溶解してい
る有機溶剤や農薬などの環境を汚染している有機化合物
を効率良く吸着し、太陽光や蛍光灯、白熱灯、ブラック
ライト、UVランプ、水銀灯、キセノンランプ、ハロゲ
ンランプ、メタルハライドランプなどからの人工光の照
射で表面の酸化チタン薄膜に生成した電子や正孔と吸着
されていた過酸化水素、オゾン、酸素が反応して生成す
る活性酸素種の極めて強い酸化力により、炭酸ガスなど
に迅速かつ連続的に分解除去することができる。
The porous photocatalyst according to the present invention thus obtained is porous and has a large specific surface area, so that it efficiently adsorbs organic compounds contaminating the environment such as organic solvents dissolved in water and agricultural chemicals, and Light, fluorescent lamp, incandescent lamp, black light, UV lamp, mercury lamp, xenon lamp, halogen lamp, metal halide lamp, etc. Due to the extremely strong oxidizing power of the active oxygen species generated by the reaction of hydrogen oxide, ozone and oxygen, it can be quickly and continuously decomposed and removed to carbon dioxide or the like.

【0016】次に本発明を実施例に基づいて説明する
が、本発明は当該実施例によって何ら限定されるもので
はない。
Next, the present invention will be described based on examples, but the present invention is not limited to the examples.

【実施例】【Example】

実施例1 直径3mmの粒状発泡ポリエチレン(比表面積15m2
/g)を加熱して表面を融解し、粒径7nmのアナター
ゼの酸化チタンの超微粒子のスラリーをコーティングし
た。これを濃度31%の過酸化水素水の入ったビーカー
に入れ、十分に吸着させた。得られた水処理用触媒を用
いて、ハイテク産業やクリーニング業で溶剤や洗浄剤と
して広く使用され、地下水や土壌を汚染して問題となっ
ているトリクロロエチレンの分解を行った。10ppm
の濃度のトリクロロエチレンの水溶液18mlを石英ガ
ラス製試験管に入れ、その中に得られた水処理用触媒を
0.1gを入れた後、500Wの高圧水銀ランプの光を
照射した。1時間後、反応液に含まれるトリクロロエチ
レンの量をガスクロマトグラフを用いて測定した結果、
トリクロロエチレンは分解されて、検出されなかった。
Example 1 Granular foamed polyethylene having a diameter of 3 mm (specific surface area: 15 m 2
/ G) was heated to melt the surface and coated with a slurry of ultrafine particles of titanium oxide of anatase having a particle size of 7 nm. This was placed in a beaker containing a 31% aqueous solution of hydrogen peroxide and sufficiently adsorbed. The obtained catalyst for water treatment was used to decompose trichlorethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry, and has become a problem by contaminating groundwater and soil. 10 ppm
Was placed in a quartz glass test tube, and 0.1 g of the obtained water treatment catalyst was placed therein, followed by irradiation with light from a 500 W high-pressure mercury lamp. One hour later, as a result of measuring the amount of trichlorethylene contained in the reaction solution using a gas chromatograph,
Trichlorethylene was decomposed and not detected.

【0017】実施例2 チタンテトラブトキシドに無水エタノールとトリエタノ
ールアミンと水を添加して透明なゾル液を調製し、滴下
法により球状シリカゲルの表面に酸化チタン膜をコーテ
ィングした。すなわち、このゾル液を少量、直径約5m
mの球状シリカゲル(比表面積450m2/g)の表面
に滴下し、余分な液を落として乾燥した後、室温から徐
々に600℃の温度にまで加熱昇温して焼成した。これ
を3回繰り返して球状シリカゲルの表面に酸化チタン膜
を作った。得られた酸化チタン膜の結晶構造をX線回折
によって調べた結果、アナターゼ100%であった。こ
れを濃度31%の過酸化水素水の入ったビーカーに入
れ、十分に吸着させた。得られた水処理用触媒を用い
て、染色排液の脱色を行った。モデル排液としてエオシ
ン100ppmの水溶液3mlを石英セルに入れた後、
得られた水処理用触媒1.5gを入れ、300Wのキセ
ノンランプを照射し、UV−可視吸収スペクトルを測定
した。その結果、1時間後、完全に脱色されて無色透明
になった。
Example 2 A transparent sol solution was prepared by adding anhydrous ethanol, triethanolamine and water to titanium tetrabutoxide, and the surface of spherical silica gel was coated with a titanium oxide film by a dropping method. That is, a small amount of this sol solution, about 5 m in diameter
The resulting mixture was dropped onto the surface of a spherical silica gel having a specific surface area of 450 m (specific surface area: 450 m 2 / g), dried after dropping an excess liquid, and then gradually heated from room temperature to 600 ° C. and calcined. This was repeated three times to form a titanium oxide film on the surface of the spherical silica gel. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. This was placed in a beaker containing a 31% aqueous solution of hydrogen peroxide and sufficiently adsorbed. The dyeing effluent was decolorized using the obtained water treatment catalyst. After putting 3 ml of an aqueous solution of eosin 100 ppm as a model drain into a quartz cell,
1.5 g of the obtained catalyst for water treatment was put therein, and irradiated with a xenon lamp of 300 W to measure a UV-visible absorption spectrum. As a result, after one hour, it was completely decolorized and became colorless and transparent.

【0018】実施例3 チタンテトライソプロポキシドにイソプロパノール、ジ
エタノールアミンを添加して透明なゾル液を調製し、ス
プレー法により粒状ゼオライトの表面に酸化チタン膜を
コーティングした。すなわち、直径2mm、長さ3mm
の粒状ゼオライト(比表面積30m2/g)を微細な金
網の上で揺すりながらゾル液をスプレーし、乾燥した
後、室温から徐々に620℃にまで加熱昇温して焼成し
た。これを4回繰り返して粒状ゼオライトの表面に酸化
チタン膜を作った。得られた酸化チタン膜の結晶構造を
X線回折によって調べた結果、アナターゼ100%であ
った。これを真空デシケーターの中に入れ、外からオゾ
ンを注入して、十分に吸着させた。得られた水処理用触
媒を用いて、現在、ハイテク産業やクリーニング業で溶
剤や洗浄剤として広く使用され、地下水や土壌を汚染し
て問題となっているテトラクロロエチレンの分解を行っ
た。10ppmの濃度のテトラクロロエチレンの水溶液
18mlを石英ガラス製試験管に入れ、その中に得られ
た水処理用8gを浸し、200Wの低圧水銀ランプの光
を照射した。1.5時間後、反応液に含まれるテトラク
ロロエチレンの濃度をガスクロマトグラフを用いて測定
した結果、テトラクロロエチレンが分解されて濃度が0
ppmに減少していた。
Example 3 A transparent sol solution was prepared by adding isopropanol and diethanolamine to titanium tetraisopropoxide, and the surface of the granular zeolite was coated with a titanium oxide film by a spray method. That is, 2 mm in diameter and 3 mm in length
Was sprayed while rocking a granular zeolite (specific surface area: 30 m 2 / g) on a fine wire mesh, dried, and then heated from room temperature to 620 ° C., and calcined. This operation was repeated four times to form a titanium oxide film on the surface of the granular zeolite. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. This was put in a vacuum desiccator, and ozone was injected from the outside to allow sufficient adsorption. The obtained catalyst for water treatment was used to decompose tetrachloroethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry, and is a problem that pollutes groundwater and soil. 18 ml of an aqueous solution of tetrachloroethylene having a concentration of 10 ppm was placed in a quartz glass test tube, and 8 g of the obtained water treatment was immersed therein, and irradiated with light from a 200 W low-pressure mercury lamp. After 1.5 hours, the concentration of tetrachloroethylene contained in the reaction solution was measured using a gas chromatograph.
ppm.

【0019】実施例4 チタンテトライソプロポキシドにエタノールとN−エチ
ルジエタノールアミンを添加して透明なゾル液を調製
し、滴下法により粒状活性炭の表面に酸化チタン膜をコ
ーティングした。すなわち、80℃に加熱した10%の
硝酸水溶液で処理した直径約3mmの粒状活性炭(比表
面積250m2/g)の表面にこのゾル液を少量、滴下
し、余分な液を落として乾燥した後、300℃の温度で
加熱焼成した。これを5回繰り返して粒状活性炭の表面
に酸化チタン膜を作った。得られた酸化チタン膜の結晶
構造をX線回折によって調べた結果、アナターゼ100
%であった。これを真空デシケーターの中に入れ、外か
ら酸素を注入して、十分に吸着させた。得られた水処理
用触媒を用いて、この多孔質光触媒を用いて、酢酸の分
解を行った。20ppmの濃度の酢酸の水溶液10ml
を石英容器に入れ、その中に得られた水処理用触媒5g
を浸し、撹拌しながら500Wの超高圧水銀ランプの光
を照射した。1時間後、得られた反応液に含まれる酢酸
の濃度をガスクロマトグラフを用いて測定した結果、酢
酸が分解されて0%になっていた。
Example 4 A transparent sol solution was prepared by adding ethanol and N-ethyldiethanolamine to titanium tetraisopropoxide, and the surface of the granular activated carbon was coated with a titanium oxide film by a dropping method. That is, a small amount of this sol solution is dropped on the surface of granular activated carbon (specific surface area: 250 m 2 / g) having a diameter of about 3 mm and treated with a 10% aqueous nitric acid solution heated to 80 ° C. And calcined at a temperature of 300 ° C. This was repeated five times to form a titanium oxide film on the surface of the granular activated carbon. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
%Met. This was placed in a vacuum desiccator, and oxygen was injected from the outside to allow sufficient adsorption. Acetic acid was decomposed using the obtained water treatment catalyst and this porous photocatalyst. 10 ml of an aqueous solution of acetic acid having a concentration of 20 ppm
Into a quartz container, and 5 g of the water treatment catalyst obtained therein.
Was immersed and irradiated with light from a 500 W ultra-high pressure mercury lamp while stirring. One hour later, the concentration of acetic acid contained in the obtained reaction solution was measured using a gas chromatograph. As a result, acetic acid was decomposed to 0%.

【0020】実施例5 直径5mmの球状活性アルミナの表面(比表面積80m
2/g)にスパッタリングにより酸化チタン膜をコーテ
ィングした。その後、室温から徐々に550℃の温度に
まで加熱昇温して焼成した。得られた酸化チタン膜の結
晶構造をX線回折によって調べた結果、アナターゼ10
0%であった。これを2g/lの塩化白金酸カリウムの
エタノール水溶液に漬け、マグネチックスターラーで撹
拌しながら、100Wの水銀ランプの光を1時間照射
し、光電着法で酸化チタン膜の表面に白金をコートし
た。これを乾燥した後、濃度31%の過酸化水素水の入
ったビーカーに入れ、十分に吸着させた。得られた水処
理用触媒を用いて、有機リン系の農薬である4−ニトロ
フェニルエチルフェニルホスフィナートの分解を行っ
た。50ppmの濃度の4−ニトロフェニルエチルフェ
ニルホスフィナートの水溶液18mlを硬質ガラス製試
験管に入れ、その中に得られた水処理用触媒1gを入
れ、500Wのキセノンランプの光を照射した。1時間
後、反応液に含まれる4−ニトロフェニルエチルフェニ
ルホスフィナートの量をガスクロマトグラフを用いて測
定した結果、4−ニトロフェニルエチルフェニルホスフ
ィナートは分解されて濃度が0%に減少していた。
Example 5 The surface of a spherical activated alumina having a diameter of 5 mm (specific surface area: 80 m)
2 / g) was coated with a titanium oxide film by sputtering. Thereafter, the temperature was gradually increased from room temperature to a temperature of 550 ° C., followed by firing. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
It was 0%. This was immersed in a 2 g / l aqueous solution of potassium chloroplatinate in ethanol, irradiated with light from a 100 W mercury lamp for 1 hour while stirring with a magnetic stirrer, and the surface of the titanium oxide film was coated with platinum by a photoelectric deposition method. . After this was dried, it was placed in a beaker containing a 31% concentration of hydrogen peroxide solution and sufficiently adsorbed. Using the obtained catalyst for water treatment, 4-nitrophenylethylphenylphosphinate, which is an organic phosphorus-based pesticide, was decomposed. 18 ml of an aqueous solution of 4-nitrophenylethylphenylphosphinate at a concentration of 50 ppm was placed in a hard glass test tube, and 1 g of the obtained water treatment catalyst was placed therein, followed by irradiation with a 500 W xenon lamp. One hour later, the amount of 4-nitrophenylethylphenylphosphinate contained in the reaction solution was measured using a gas chromatograph. As a result, the concentration of 4-nitrophenylethylphenylphosphinate was reduced to 0% by decomposition. I was

【0021】実施例6 チタンテトライソプロポキシドに水と硝酸を添加して透
明なチタニアゾルを調製し、浸漬法により粘土焼結体の
表面に酸化チタン膜をコーティングした。すなわち、こ
のチタニアゾルの中に径約8mmほどの大きさの粘土焼
結体(比表面積10m2/g)を浸漬し、余分な液を落
として乾燥した後、室温から徐々に650℃の温度にま
で加熱昇温して焼成した。これを3回繰り返して粘土焼
結体の表面に酸化チタン膜を作った。得られた酸化チタ
ン膜の結晶構造をX線回折によって調べた結果、アナタ
ーゼ100%であった。これを硫酸銅水溶液に漬け、室
温から徐々に650℃の温度にまで加熱昇温して焼成し
た後、濃度31%の過酸化水素水の入ったビーカーに入
れ、十分に吸着させた。得られた水処理用触媒を用い
て、染色排液の脱色を行った。モデル排液としてメチル
オレンジ200ppmの水溶液3mlを石英セルに入れ
た後、得られた水処理用触媒2gを入れ、500Wの超
高圧水銀ランプを照射し、UV−可視吸収スペクトルを
測定した。その結果、1時間後、完全に脱色されて無色
透明になった。
Example 6 A transparent titania sol was prepared by adding water and nitric acid to titanium tetraisopropoxide, and the surface of the clay sintered body was coated with a titanium oxide film by an immersion method. That is, a clay sintered body (specific surface area: 10 m 2 / g) having a diameter of about 8 mm is immersed in the titania sol, excess liquid is dropped and dried, and the temperature is gradually lowered from room temperature to 650 ° C. Then, the temperature was increased to sintering. This was repeated three times to form a titanium oxide film on the surface of the clay sintered body. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. This was immersed in an aqueous solution of copper sulfate, heated and gradually heated from room temperature to 650 ° C., calcined, and then placed in a beaker containing a 31% concentration of hydrogen peroxide solution to be sufficiently adsorbed. The dyeing effluent was decolorized using the obtained water treatment catalyst. After placing 3 ml of a 200 ppm aqueous solution of methyl orange as a model drain into a quartz cell, 2 g of the obtained catalyst for water treatment was placed therein, and irradiated with a 500 W ultrahigh pressure mercury lamp to measure a UV-visible absorption spectrum. As a result, after one hour, it was completely decolorized and became colorless and transparent.

【0022】実施例7 径約7mmほどの大きさの発泡アルミニウム(比表面積
8m2/g)の表面にPVDにより酸化チタン膜をコー
ティングした。その後、室温から徐々に550℃の温度
にまで加熱昇温して焼成した。得られた酸化チタン膜の
結晶構造をX線回折によって調べた結果、アナターゼ1
00%であった。これを真空デシケーターの中に入れ、
外からオゾンを注入して、十分に吸着させた。得られた
水処理用触媒を用いて、エタノールの分解を行った。3
00ppmのエタノール水溶液15mlを硬質ガラス試
験管に入れた後、得られた水処理用触媒2gを入れ、5
00Wのキセノンランプを照射した。1時間後、反応液
に含まれるエタノールの濃度をガスクロマトグラフを用
いて測定した結果、0%に減少していた。
Example 7 A titanium oxide film was coated on the surface of foamed aluminum (specific surface area: 8 m 2 / g) having a diameter of about 7 mm by PVD. Thereafter, the temperature was gradually increased from room temperature to a temperature of 550 ° C., followed by firing. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
00%. Put this in a vacuum desiccator,
Ozone was injected from outside to allow sufficient adsorption. Ethanol was decomposed using the obtained water treatment catalyst. 3
15 ml of a 00 ppm aqueous ethanol solution was placed in a hard glass test tube, and 2 g of the obtained water treatment catalyst was placed therein.
A 00 W xenon lamp was irradiated. One hour later, the concentration of ethanol contained in the reaction solution was measured using a gas chromatograph, and as a result, it was reduced to 0%.

【0023】実施例8 チタンテトラブトキシドにエタノール、トリエタノール
アミンを添加して透明なゾル液を調製し、浸漬法により
多孔質ガラスの表面に酸化チタン膜をコーティングし
た。すなわち、このゾル液の中に径約8mmほどの多孔
質ガラス(比表面積150m2/g)を浸漬し、余分な
液を落として乾燥した後、室温から徐々に550℃の温
度にまで加熱昇温して焼成した。これを4回繰り返して
多孔質ガラスの表面に酸化チタン膜を作った。得られた
酸化チタン膜の結晶構造をX線回折によって調べた結
果、アナターゼ100%であった。これを真空デシケー
ターの中に入れ、外から酸素を注入して、十分に吸着さ
せた。得られた水処理用触媒を用いて、現在、ハイテク
産業やクリーニング業で溶剤や洗浄剤として広く使用さ
れ、地下水や土壌を汚染して問題となっているトリクロ
ロエタンの分解を行った。15ppmの濃度のトリクロ
ロエタンの水溶液3mlを石英セルに入れ、その中に得
られた水処理用3gを浸し、15Wのブラックライト5
本の光を照射した。3時間後、反応液に含まれるトリク
ロロエタンの濃度をガスクロマトグラフを用いて測定し
た結果、トリクロロエタンが分解されて濃度が0ppm
に減少していた。
Example 8 A transparent sol solution was prepared by adding ethanol and triethanolamine to titanium tetrabutoxide, and the surface of a porous glass was coated with a titanium oxide film by an immersion method. That is, a porous glass (specific surface area: 150 m 2 / g) having a diameter of about 8 mm is immersed in this sol solution, excess liquid is dropped and dried, and then heated from room temperature to 550 ° C. gradually. Heated and fired. This was repeated four times to form a titanium oxide film on the surface of the porous glass. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. This was placed in a vacuum desiccator, and oxygen was injected from the outside to allow sufficient adsorption. The obtained catalyst for water treatment was used to decompose trichloroethane, which is now widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry, and has become a problem by contaminating groundwater and soil. 3 ml of an aqueous solution of trichloroethane having a concentration of 15 ppm was placed in a quartz cell, and 3 g of the obtained water treatment was immersed in the quartz cell.
The book was irradiated with light. Three hours later, the concentration of trichloroethane contained in the reaction solution was measured using a gas chromatograph. As a result, the concentration of trichloroethane was decomposed to 0 ppm.
Was decreasing.

【0024】実施例9 チタンテトライソプロポキシドにエタノール、ジエタノ
ールアミンを添加して透明なゾル液を調製し、フォーム
セラミックスの表面にディップコーティング法により酸
化チタン膜をコーティングした。すなわち、直径2c
m、長さ5cmのフォームセラミックス(比表面積5m
2/g)をゾル液に漬け、ゆっくりと引き上げた後、室
温から徐々に650℃の温度にまで加熱昇温して焼成し
た。得られた酸化チタン膜の結晶構造をX線回折によっ
て調べた結果、アナターゼ100%であった。これを濃
度31%の過酸化水素水の入ったビーカーに入れ、十分
に吸着させた。得られた水処理用触媒を用いて、有機リ
ン系の農薬であるパラチオンの分解を行った。10pp
mの濃度のパラチオンの水溶液50mlを硬質ガラス製
ビーカーに入れ、その中に得られた水処理用触媒を入
れ、200Wの高圧水銀ランプ3本の光を三方から照射
した。2時間後、反応液に含まれるパラチオンの量を液
体クロマトグラフを用いて測定した結果、分解されて0
になっていた。
Example 9 Ethanol and diethanolamine were added to titanium tetraisopropoxide to prepare a transparent sol solution, and a surface of a foam ceramic was coated with a titanium oxide film by a dip coating method. That is, the diameter 2c
m, foam ceramics 5cm in length (specific surface area 5m
2 / g) was immersed in a sol solution, slowly raised, and then heated from room temperature to a temperature of 650 ° C. and calcined. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. This was placed in a beaker containing a 31% aqueous solution of hydrogen peroxide and sufficiently adsorbed. Using the obtained catalyst for water treatment, parathion, which is an organic phosphorus-based pesticide, was decomposed. 10pp
50 ml of an aqueous solution of parathion having a concentration of m was placed in a hard glass beaker, the obtained catalyst for water treatment was placed therein, and three 200 W high-pressure mercury lamps were irradiated from three sides. Two hours later, the amount of parathion contained in the reaction solution was measured using a liquid chromatograph.
Had become.

【0025】[0025]

【発明の効果】本発明は以上説明したように、水中に溶
解している有機化合物などの環境汚染物質を温和な条件
で容易にかつ迅速に処理して浄化することができる高性
能で取扱い易い水処理用触媒及び経済的な水浄化法の提
供を目的としたものである。本発明に用いられる酸化チ
タンは塗料や化粧品、歯磨き粉などにも使われており、
耐候性や耐久性に優れ、無毒かつ安全など、数多くの利
点を持っている。そのため、多孔体を酸化チタンで被覆
した本発明による水処理用触媒は、基材の多孔体がシリ
カゲルのように水に弱いものであってもその欠点が改善
され、耐水性や耐候性、耐久性などにおいて優れた特性
を示す。そして、本発明による水処理用触媒は、電灯あ
るいは太陽光などの外部からの光を受けて酸化チタン膜
に生成した電子と正孔が、吸着されていた過酸化水素、
オゾン、酸素などの酸化剤と反応して、極めて大きな酸
化ポテンシャルを有する活性酸素種を生成し、その強力
な酸化力により、水中に溶解している有機溶剤や農薬な
どの環境を汚染している有機化合物を分解するが、光触
媒が多孔質であるため、環境汚染物質の濃度が薄い場合
でも吸着することにより、迅速に、かつ効果的に分解除
去することができる。しかも、酸化チタン膜の表面に白
金あるいはロジウム、ルテニウム、パラジウム、銀、
銅、亜鉛などを被覆すれば、その触媒作用により分解除
去効果がさらに増大する。この場合、光触媒が多孔質で
あるため、金属がうまく分散して光触媒を被覆するの
で、金属の触媒作用を特に効果的に引き出すことができ
る。
As described above, the present invention has high performance and is easy to handle because it can easily and quickly treat and purify environmental pollutants such as organic compounds dissolved in water under mild conditions. The purpose of the present invention is to provide a catalyst for water treatment and an economical water purification method. The titanium oxide used in the present invention is also used in paints, cosmetics, toothpastes, etc.
It has many advantages such as excellent weather resistance and durability, and is non-toxic and safe. Therefore, the catalyst for water treatment according to the present invention, in which the porous body is coated with titanium oxide, has its defects improved even if the porous body of the base material is weak to water such as silica gel, and has water resistance, weather resistance, and durability. It shows excellent characteristics in properties and the like. And the water treatment catalyst according to the present invention, the electrons and holes generated in the titanium oxide film by receiving light from the outside such as an electric lamp or sunlight, the hydrogen peroxide that has been adsorbed,
Reacts with oxidants such as ozone and oxygen to generate reactive oxygen species with extremely high oxidation potential, and due to its strong oxidizing power, pollutes the environment such as organic solvents and pesticides dissolved in water. Organic compounds are decomposed, but since the photocatalyst is porous, even if the concentration of environmental pollutants is low, it can be quickly and effectively decomposed and removed by adsorption even when the concentration is low. In addition, platinum or rhodium, ruthenium, palladium, silver,
If copper, zinc or the like is coated, its catalytic action further increases the decomposition removal effect. In this case, since the photocatalyst is porous, the metal is well dispersed and covers the photocatalyst, so that the catalytic action of the metal can be particularly effectively brought out.

【0026】さらに、本発明による水処理用触媒は、廃
水処理あるいはプールや貯水の浄化だけでなく、菌やカ
ビの繁殖防止を効果的に行うことができるなど、幅広い
用途に適用できる。そして、酸化チタン膜の上に白金や
ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛など
の金属皮膜を被覆した場合には、その触媒作用により金
属皮膜が抗菌抗カビ作用を持っているため、膜上の雑菌
及びカビの繁殖を効果的に防止することができる。本発
明による水処理用方法は、光を照射するだけで、低コス
ト・省エネルギー的でかつメンテナンスフリーで行うこ
とができ、過酸化水素やオゾン、酸素をただ単に溶液に
添加する場合と異なって、吸着させているため、無駄に
消費されるものが少なくなって有効に使用できるので、
経済的な効果が大きい。
Further, the catalyst for water treatment according to the present invention can be applied to a wide range of uses such as not only wastewater treatment or purification of pools and stored water, but also effective prevention of propagation of bacteria and fungi. When a metal film such as platinum, rhodium, ruthenium, palladium, silver, copper, or zinc is coated on the titanium oxide film, the metal film has an antibacterial and antifungal effect due to its catalytic action. The propagation of the above germs and mold can be effectively prevented. The method for water treatment according to the present invention can be performed at low cost, energy saving and maintenance-free only by irradiating light, unlike hydrogen peroxide, ozone, and oxygen, which are simply added to a solution. Because it is adsorbed, less waste is consumed and it can be used effectively,
Great economic effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 栄次 愛知県海部郡佐屋町大字善太新田字古株 41番地 (72)発明者 伊勢田 耕三 三重県桑名市大山田4丁目11番1号 (56)参考文献 特開 平8−309202(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 38/74 C02F 1/30 - 1/32 C02F 1/72 - 1/78 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Eiji Watanabe 41st old stock of Zenta Nitta character, Sayacho, Kaifu-gun, Aichi prefecture (72) Inventor Kozo Iseda 4-1-1, Oyamada, Kuwana-shi, Mie (56) References JP-A-8-309202 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01J 21/00-38/74 C02F 1/30-1/32 C02F 1/72- 1/78 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 多孔質の材料で構成される多孔体に酸化
チタン膜を形成する工程、及び特定の酸化剤を吸着させ
る工程により作製した水処理用触媒であって、前記多孔
質の多孔体の表面を酸化チタン膜で被覆し、過酸化水
素、オゾン、酸素の内から選ばれた少なくとも一種の
酸化剤を吸着させたことを特徴とする水処理用触媒。
1. A method of oxidizing a porous body made of a porous material.
Step of forming a titanium film and adsorbing a specific oxidizing agent
Water treatment catalyst produced by the step of
A water treatment catalyst characterized in that the surface of a porous material is coated with a titanium oxide film and at least one oxidizing agent selected from hydrogen peroxide, ozone and pure oxygen is adsorbed.
【請求項2】 多孔体が活性炭、活性アルミナ、シリカ
ゲル、ゼオライト、粘土焼結体、多孔質ガラス、フォー
ムセラミックス、泡金属、フォームプラスチックの内か
ら選ばれた少なくとも一種であることを特徴とする請求
項1記載の水処理用触媒。
2. The method according to claim 1, wherein the porous body is at least one selected from activated carbon, activated alumina, silica gel, zeolite, sintered clay, porous glass, foam ceramics, foam metal, and foam plastic. Item 7. The water treatment catalyst according to Item 1.
【請求項3】 酸化チタン膜の結晶形がアナターゼであ
ることを特徴とする請求項1または2記載の水処理用触
媒。
3. The catalyst for water treatment according to claim 1, wherein the crystal form of the titanium oxide film is anatase.
【請求項4】 請求項1記載の多孔質触媒を用いて水を
処理する方法であって、酸化チタン膜で表面が覆われ、
過酸化水素、オゾン、純酸素の内から選ばれた少なくと
も一種の酸化剤を吸着した多孔質の多孔体を、処理すべ
き水に入れ、光を照射することを特徴とする水処理方
法。
4. Use of the porous catalyst according to claim 1 to remove water.
A method of treating , the surface is covered with a titanium oxide film,
A water treatment method comprising: placing a porous body, which has adsorbed at least one oxidizing agent selected from hydrogen peroxide, ozone, and pure oxygen, in water to be treated, and irradiating the water with light.
【請求項5】 請求項1記載の多孔質触媒を用いて水を
処理する方法であって、酸化チタン膜で表面が覆われ、
過酸化水素、オゾン、純酸素の内から選ばれた少なくと
も一種の酸化剤を吸着した多孔質の多孔体を、処理すべ
き水に入れ、攪拌しながら光を照射することを特徴とす
る水処理方法。
5. A method for producing water using the porous catalyst according to claim 1.
A method of treating , the surface is covered with a titanium oxide film,
Water treatment characterized by placing a porous body adsorbing at least one oxidizing agent selected from hydrogen peroxide, ozone and pure oxygen in water to be treated, and irradiating light with stirring. Method.
JP35358896A 1996-12-16 1996-12-16 Water treatment catalyst and water treatment method Expired - Lifetime JP3118558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35358896A JP3118558B2 (en) 1996-12-16 1996-12-16 Water treatment catalyst and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35358896A JP3118558B2 (en) 1996-12-16 1996-12-16 Water treatment catalyst and water treatment method

Publications (2)

Publication Number Publication Date
JPH10174882A JPH10174882A (en) 1998-06-30
JP3118558B2 true JP3118558B2 (en) 2000-12-18

Family

ID=18431861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35358896A Expired - Lifetime JP3118558B2 (en) 1996-12-16 1996-12-16 Water treatment catalyst and water treatment method

Country Status (1)

Country Link
JP (1) JP3118558B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770257B1 (en) 1999-02-04 2004-08-03 Kawasaki Jukogyo Kabushiki Kaisha Processes for producing anatase titanium oxide and titanium oxide coating material
JP2000279975A (en) * 1999-03-30 2000-10-10 Kanagawa Acad Of Sci & Technol Water treatment method and apparatus by combined use of photocatalyst and ozone
JP3337023B2 (en) * 2000-04-14 2002-10-21 卓郎 石橋 Water purification pot using titanium dioxide photocatalyst
JP2003226512A (en) * 2001-11-28 2003-08-12 Ueda Shikimono Kojo:Kk Photocatalytic activated carbon, colored photocatalytic activated carbon, coloring activated carbon, deodorant and/adsorption product using them, and soil cleaning method
KR101021567B1 (en) * 2009-05-25 2011-03-16 성균관대학교산학협력단 Photocatalyst, preparation method thereof and decomposition method of volatile organics using same
KR102298987B1 (en) * 2014-12-15 2021-09-09 재단법인 포항산업과학연구원 Oxidizing agent, and method for purifying ground warter using the same
WO2024053726A1 (en) * 2022-09-09 2024-03-14 有限会社ソルチ Detoxification treatment material for pollutant, method for producing same, and method for using same

Also Published As

Publication number Publication date
JPH10174882A (en) 1998-06-30

Similar Documents

Publication Publication Date Title
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP3275032B2 (en) Environmental purification material and method for producing the same
EP0634363B1 (en) Process for preparing a photocatalyst and process for purifying water
US5449443A (en) Photocatalytic reactor with flexible supports
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
Han et al. Titanium dioxide-based antibacterial surfaces for water treatment
JP2600103B2 (en) Photocatalytic filter and method for producing the same
Ambrosetti et al. Degradation of antibiotics in aqueous solution by photocatalytic process: comparing the efficiency in the use of ZnO or TiO2
US5932111A (en) Photoelectrochemical reactor
Machrouhi et al. Synthesis, characterization, and photocatalytic degradation of anionic dyes using a novel ZnO/activated carbon composite
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
CN1872405A (en) Active carbon of carrying catalyst in titanium series and preparation method
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP4505688B2 (en) Novel photocatalyst and method for producing the same
JP2001232206A (en) Porous photocatalyst and method for producing the same
CN116571072B (en) Malodorous waste gas water-based composite absorbent and preparation method and application thereof
JPH10180118A (en) Immobilized photocatalyst, method for producing the same, and method for decomposing and removing harmful substances
Divya et al. Nano-photocatalysts in the treatment of colored wastewater-a review
Ghowsi et al. Synthesize of ZnO/NPs and investigation of its effect in reduction of electrochemical charge transfer resistance; application of it for photodecomposition of calcon (CI 15705) dye in various media
JP3579082B2 (en) Photocatalyst
JP3430218B2 (en) Water treatment equipment
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
JPH08252461A (en) Preparation of photocatalyst
TWM479924U (en) Photocatalyst filter composite structure for degrading organics in water

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term