[go: up one dir, main page]

JP2005161216A - Purification of gas containing harmful organic substances by electron beam irradiation - Google Patents

Purification of gas containing harmful organic substances by electron beam irradiation Download PDF

Info

Publication number
JP2005161216A
JP2005161216A JP2003404486A JP2003404486A JP2005161216A JP 2005161216 A JP2005161216 A JP 2005161216A JP 2003404486 A JP2003404486 A JP 2003404486A JP 2003404486 A JP2003404486 A JP 2003404486A JP 2005161216 A JP2005161216 A JP 2005161216A
Authority
JP
Japan
Prior art keywords
harmful organic
irradiation
gas
electron beam
active species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003404486A
Other languages
Japanese (ja)
Inventor
Teruyuki Hakoda
照幸 箱田
Akihiko Shimada
明彦 島田
Takuji Kojima
拓治 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP2003404486A priority Critical patent/JP2005161216A/en
Publication of JP2005161216A publication Critical patent/JP2005161216A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】 電子ビームEB照射により生ずる高密度活性種とオゾンとを活用することにより、従来法に比べてエネルギー利用効率が向上された、有害有機物を含むガスの浄化法を提供することを課題とする。
【解決手段】 有害有機物を含むガスの浄化法であって、有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、前記照射ガスを固体触媒充填槽に流通させて、未分解有害有機物又は分解生成物を固体触媒表面に付着濃縮させながら、前記照射ガス中の未反応の前記活性種又は電子ビーム照射により生じるオゾンから解離した酸素原子により、触媒表面で前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とする方法。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a method for purifying a gas containing harmful organic substances by utilizing high-density active species and ozone generated by electron beam EB irradiation and improving energy use efficiency as compared with conventional methods. To do.
A method for purifying a gas containing a toxic organic substance comprising irradiating an oxygen-containing gas containing a toxic organic substance with an electron beam, and oxidizing and decomposing the toxic organic substance in the irradiation gas by a high-density active species generated; From the ozone generated by irradiation of the unreacted active species or electron beam in the irradiation gas while allowing the irradiation gas to flow through the solid catalyst filling tank and adhering and concentrating undecomposed harmful organic substances or decomposition products on the surface of the solid catalyst. A method comprising combining the step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product on the catalyst surface with dissociated oxygen atoms.
[Selection] Figure 1

Description

本発明は、ガス中に含まれた人体に有害な有機物の電子ビーム照射による酸化分解及び無害化の方法に関する。   The present invention relates to a method for oxidative decomposition and detoxification by electron beam irradiation of organic substances harmful to a human body contained in a gas.

有害有機物を含むガスの浄化法として、従来、有害有機物を含むガスに電子ビーム(Electron Beam;以下、「EB」ともいう。)を照射し、ガス成分から生じた高密度活性種によりガス中で有害有機物を酸化分解する方法がある。   As a method of purifying gas containing harmful organic substances, conventionally, a gas containing harmful organic substances is irradiated with an electron beam (hereinafter also referred to as “EB”), and the high density active species generated from the gas components in the gas. There is a method to oxidize and decompose harmful organic substances.

上記従来法では、EB照射のあと、有害有機物の濃度が低くなるにつれ、酸化分解に比べ活性種同士又は活性種とベースガス成分との反応が相対的に速くなる。これらの反応から生じる成分は、比較的反応性の小さい活性種であることが多く、ガス中において有害有機物との反応性が小さいため、単位エネルギー投入量当たりの有害有機物が酸化分解される濃度が低下する(例えば、非特許文献1及び2参照)。   In the above conventional method, as the concentration of the harmful organic substance decreases after EB irradiation, the reaction between the active species or between the active species and the base gas component becomes relatively faster as compared with the oxidative decomposition. The components resulting from these reactions are often active species with relatively low reactivity, and since the reactivity with harmful organic substances is small in the gas, the concentration of harmful organic substances per unit energy input is oxidatively decomposed. It falls (for example, refer nonpatent literature 1 and 2).

また、有害有機物から生じる分解生成物として、不揮発性有機物又は不揮発性有機物から構成された粒子状物質が生成する場合があり、これらの物質は照射容器や配管内表面に容易に付着してガス相から取り除かれる(例えば、非特許文献3参照)。このため、ガス中に活性種が存在していても、これらの生成物を酸化分解することができない。   In addition, as decomposition products generated from harmful organic substances, non-volatile organic substances or particulate substances composed of non-volatile organic substances may be generated, and these substances easily adhere to the irradiation container or the inner surface of the pipe and are in the gas phase. (See, for example, Non-Patent Document 3). For this reason, even if active species are present in the gas, these products cannot be oxidatively decomposed.

更に、EB照射に伴ってベースガス成分から生じるオゾンは、有害有機物との反応性が極めて小さいために、これまでガス中で積極的にオゾンを活用する分解技術の開発はなされてこなかった。
K. Hirota、外3名,「電子ビームによる空気中のクロロベンゼンの脱塩素(Dechlorination of chlorobenzene in air with electron beam)」,Radiation Physic and Chemistry,オランダ,Elsevier,2000年,57,p.63−73 K. Hirota、外2名,「空気/窒素中での四塩化炭素の電子ビーム分解(Electron-Beam Decomposition of Carbon Tetrachloride in Air/Nitrogen)」,Bulletin of the Chemical Society of Japan,社団法人日本化学会,2000年,73,p.2719−2724 高橋幹二,「エアロゾル学の基礎」,日本エアロゾル学会,2003年,p.46−71
Furthermore, since ozone generated from the base gas component with EB irradiation has a very low reactivity with harmful organic substances, a decomposition technique that actively utilizes ozone in the gas has not been developed so far.
K. Hirota and three others, “Dechlorination of chlorobenzene in air with electron beam”, Radiation Physic and Chemistry, The Netherlands, Elsevier, 2000, 57, p. 63-73 K. Hirota and two others, “Electron-Beam Decomposition of Carbon Tetrachloride in Air / Nitrogen”, Bulletin of the Chemical Society of Japan, The Chemical Society of Japan 2000, 73, p. 2719-2724 Miki Takahashi, “Basics of Aerosolology”, Aerosol Society of Japan, 2003, p. 46-71

したがって、本発明においては、電子ビーム照射により生ずる高密度活性種とオゾンとを活用することにより、従来法に比べてエネルギー利用効率が向上された、有害有機物を含むガスの浄化法を提供することを課題とする。   Therefore, in the present invention, a method for purifying a gas containing harmful organic matter, which has improved energy utilization efficiency as compared with the conventional method by utilizing high-density active species and ozone generated by electron beam irradiation, is provided. Is an issue.

上記の問題点を解決するため鋭意研究した結果、本発明者らは、EB照射による酸化反応と、固体触媒上又は水中等での酸化反応を組み合わせることにより、エネルギーの利用効率の向上を図ることができることを見出し、本発明を完成させた。   As a result of earnest research to solve the above problems, the present inventors have attempted to improve the energy utilization efficiency by combining the oxidation reaction by EB irradiation and the oxidation reaction on a solid catalyst or in water. The present invention has been completed.

すなわち、本発明は、有害有機物を含むガスの浄化法であって、
有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、
前記照射ガスを固体触媒充填槽に流通させて、未分解有害有機物又は分解生成物を固体触媒表面に付着濃縮させながら、前記照射ガス中の未反応の前記活性種又は電子ビーム照射により生じるオゾンから解離した酸素原子により、触媒表面で前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とするものである。
That is, the present invention is a method for purifying a gas containing harmful organic substances,
Irradiating an oxygen-containing gas containing a harmful organic substance with an electron beam, and oxidizing and decomposing the harmful organic substance in the irradiation gas by the generated high-density active species;
From the ozone generated by irradiation of the unreacted active species or electron beam in the irradiation gas while allowing the irradiation gas to flow through the solid catalyst filling tank and adhering and concentrating undecomposed harmful organic substances or decomposition products on the surface of the solid catalyst. It is characterized by combining with a step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product on the catalyst surface by the dissociated oxygen atoms.

また、本発明は、有害有機物を含むガスの浄化法であって、
有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、
前記照射ガスを水に流通させて、前記照射ガス中成分を溶解し、溶解させた未分解有害有機物又は分解生成物を、溶解させた未反応の前記活性種又は電子ビーム照射により生じるオゾンを溶解して生ずる水溶性活性種により、前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とするものである。
Further, the present invention is a method for purifying a gas containing harmful organic substances,
Irradiating an oxygen-containing gas containing a harmful organic substance with an electron beam, and oxidizing and decomposing the harmful organic substance in the irradiation gas by the generated high-density active species;
Circulating the irradiation gas into water, dissolving the components in the irradiation gas, dissolving dissolved undecomposed harmful organic substances or decomposition products, dissolving dissolved unreacted active species or ozone generated by electron beam irradiation And the step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product with the water-soluble active species generated in this manner.

更に、本発明は、上記の方法において、水の代わりに過酸化水素を含む水を使用することを特徴とするものである。   Furthermore, the present invention is characterized in that in the above method, water containing hydrogen peroxide is used instead of water.

本発明の浄化法により、単位エネルギー投入量当たりの有害有機物の酸化分解率及び無機物までの完全酸化分解率が向上し、高いエネルギー効率で汚染ガスの無害化が可能となった。   According to the purification method of the present invention, the oxidative decomposition rate of harmful organic substances per unit energy input and the complete oxidative decomposition rate up to inorganic substances are improved, and pollutant gas can be rendered harmless with high energy efficiency.

EB照射により生じる活性種又は活性種同士や活性種とベースガス(有害有機物を含む空気等酸素含有ガス)成分との反応から生じる活性種は、有害有機物との反応性は低いが、固体触媒を酸化させて活性化するためには十分な能力を有する。また、これらの活性種は、水又は過酸化水素を含む水中で濃縮された高濃度の有機物を酸化分解することができる。   Active species generated by the reaction of active species or active species produced by EB irradiation, or active species and base gas (oxygen-containing gas such as air containing harmful organic substances) components have low reactivity with harmful organic substances, but solid catalysts Sufficient ability to oxidize and activate. Moreover, these active species can oxidatively decompose high-concentration organic substances concentrated in water or water containing hydrogen peroxide.

本発明の浄化法の概念図を図1に示す。
EB照射場でのガス中の有害有機物の酸化分解反応過程は、まず、有機物から不揮発性のガス状物質が形成され、また、これらの一部が凝縮して粒子状物質が形成される。次いで、これらの物質が酸化分解されて無機物を生じる。このような不揮発性又は粒子状物質は、一般的に表面積の大きな固体触媒等に付着しやすく、また水中に溶解しやすい性質を有している。したがって、本発明においては、これらの物質を固体触媒上に付着させるか又は、水若しくは過酸化水素を含む水中に溶解させながら濃縮させて、上記の活性種同士又は活性種とベースガス成分との反応から生じる、比較的反応性が小さく、寿命も比較的長い活性種により効率よく酸化分解する。
A conceptual diagram of the purification method of the present invention is shown in FIG.
In the oxidative decomposition reaction process of harmful organic substances in the gas in the EB irradiation field, first, nonvolatile gaseous substances are formed from the organic substances, and part of them is condensed to form particulate substances. These materials are then oxidatively decomposed to produce inorganic substances. Such a non-volatile or particulate substance generally has a property of being easily attached to a solid catalyst having a large surface area and being easily dissolved in water. Therefore, in the present invention, these substances are deposited on a solid catalyst or concentrated while being dissolved in water or water containing hydrogen peroxide, so that the above active species or the active species and the base gas component are mixed. Oxidative decomposition is efficiently carried out by active species resulting from the reaction, which have relatively low reactivity and a relatively long lifetime.

更に、照射ガス中に含まれるオゾンは、固体触媒上又は水中で解離し、その結果、有機物を酸化分解できる酸素原子を遊離する。また、過酸化水素を含む水中では過酸化水素との反応から非常に反応性に富んだヒドロキシルラジカルを生成する。これらの酸素原子又はヒドロキシルラジカルを利用すれば、EB照射場では分解できなかった有害有機物や不揮発性又は粒子状物質を極めて短時間に酸化分解することができる。   Furthermore, ozone contained in the irradiation gas is dissociated on the solid catalyst or in water, and as a result, oxygen atoms that can oxidatively decompose organic substances are liberated. Further, in water containing hydrogen peroxide, hydroxyl radicals that are highly reactive are generated from the reaction with hydrogen peroxide. By using these oxygen atoms or hydroxyl radicals, it is possible to oxidize and decompose harmful organic substances and non-volatile or particulate substances that could not be decomposed in an EB irradiation field in a very short time.

EB照射直後に有害有機物を含むガスを、固体触媒、水、又は過酸化水素含有水に流通させることにより、触媒表面上や水等中で反応性の低い活性種を有効活用して、粒子状分解生成物の濃縮及び酸化分解することができ、更に、オゾン解離による活性化を行うことができる。   A gas containing harmful organic substances is circulated through the solid catalyst, water, or hydrogen peroxide-containing water immediately after EB irradiation to effectively utilize active species that are less reactive on the catalyst surface or in water, etc. The decomposition product can be concentrated and oxidatively decomposed, and further activated by ozone dissociation.

ここで、本発明でいう「有害有機物」とは、微量であっても発ガン、免疫機能等の低下、又はシックハウス症候群等の人体に有害な影響を引き起こす可能性のある有機物の総称であり、特に大気汚染防止法の指定物質、有機溶剤中毒予防規則及び特定化学物質等障害予防規則の規制対象有機物、更にベンゼン環を2個〜4個程度有する、ポリ塩化ビフェニル(PCB)、ダイオキシン類や多環芳香族有機物等である。   Here, the `` hazardous organic substance '' as used in the present invention is a general term for organic substances that may cause carcinogenesis, a decrease in immune function, or a harmful effect on the human body such as sick house syndrome, In particular, substances designated by the Air Pollution Control Law, organic solvent poisoning prevention regulations and specific chemical substances, etc., and organic substances that are subject to the regulation of obstacle prevention, as well as polychlorinated biphenyls (PCB), dioxins and many Ring aromatic organic substances and the like.

また、本発明でいう「活性種」とは、エネルギー数eV〜数MeVの電子によりガス分子から生じるフリーラジカル、イオン及び電子等である。
また、本発明でいう「固体触媒」とは、例えば、熱によって活性化できる触媒いわゆる熱触媒や、紫外光又は可視光によって活性化できる光触媒等である。熱触媒としては、ロジウム、パラジウム、又は白金を含む三元触媒等が例示され、室温〜500℃程度の温度に保ちながら使用する。これらの形状は、ハニカム形状や球状が望ましい。一方、光触媒としては、二酸化チタン、リン酸ガリウム、酸化ジルコニウム、酸化タリウム、硫化カドミウム、酸化タリウムカリウム、セレン化カドミウム、酸化チタンストロンチウム、酸化ニオブ、酸化亜鉛、硫化モリブデン、酸化鉄、酸化ビスマス、酸化タングステン、又は酸化スズを含む担体に、白金、金、銀、タングステン、モリブデン、バナジウム、クロム、銅、若しくはコバルト等の遷移金属を添加したもの等が例示される。なお、担体の結晶構造による制限はなく、例えば、光触媒として幅広く利用されている二酸化チタンの場合では、アナターゼ、ルチル、又はブルッカイトのいずれであってもよい。更に、触媒の形状は、球状触媒を充填した形状、ハニカム形状、繊維形状等が望ましく、使用温度は室温〜最大500℃程度が適している。
In addition, the “active species” in the present invention is free radicals, ions, electrons, and the like generated from gas molecules by electrons having an energy number of eV to several MeV.
The “solid catalyst” in the present invention is, for example, a catalyst that can be activated by heat, a so-called thermal catalyst, a photocatalyst that can be activated by ultraviolet light or visible light, and the like. Examples of the thermal catalyst include a three-way catalyst containing rhodium, palladium, or platinum, and the thermal catalyst is used while being kept at a temperature of about room temperature to 500 ° C. These shapes are preferably a honeycomb shape or a spherical shape. On the other hand, photocatalysts include titanium dioxide, gallium phosphate, zirconium oxide, thallium oxide, cadmium sulfide, potassium thallium oxide, cadmium selenide, titanium strontium oxide, niobium oxide, zinc oxide, molybdenum sulfide, iron oxide, bismuth oxide, oxidation Examples thereof include a carrier containing tungsten or tin oxide added with a transition metal such as platinum, gold, silver, tungsten, molybdenum, vanadium, chromium, copper, or cobalt. In addition, there is no restriction | limiting by the crystal structure of a support | carrier, For example, in the case of the titanium dioxide widely utilized as a photocatalyst, any of anatase, a rutile, or brookite may be sufficient. Furthermore, the shape of the catalyst is preferably a shape filled with a spherical catalyst, a honeycomb shape, a fiber shape, or the like, and the use temperature is preferably from room temperature to a maximum of about 500 ° C.

更に、本発明でいう「過酸化水素を含む水」とは、過酸化水素濃度が最大30重量%である水溶液である。
本発明の浄化法の第一の一態様を図2に示す。
Furthermore, the “water containing hydrogen peroxide” in the present invention is an aqueous solution having a hydrogen peroxide concentration of 30% by weight at the maximum.
A first embodiment of the purification method of the present invention is shown in FIG.

図2においては、まず、有害有機物を含むガス6を照射容器に流通させる。次いで、電子ビーム発生器1から生じた電子ビーム2を、照射容器3の照射窓箔4を透過させてガス中に入射させる。その際、照射容器内の電子ビーム照射場4において活性種が有害有機物と反応する。次いで、電子ビーム照射場の後段に設置した固体触媒8中に照射ガスを流通させる。ここで必要に応じて、ヒーター9により固体触媒を加熱する。残存活性種により固体触媒表面が活性化され、未反応の有害有機物や分解生成物が固体触媒表面上で酸化され、結果として浄化ガス10が得られる。   In FIG. 2, first, a gas 6 containing harmful organic substances is circulated through the irradiation container. Next, the electron beam 2 generated from the electron beam generator 1 passes through the irradiation window foil 4 of the irradiation container 3 and is incident on the gas. At that time, the active species react with harmful organic substances in the electron beam irradiation field 4 in the irradiation container. Subsequently, irradiation gas is distribute | circulated in the solid catalyst 8 installed in the back | latter stage of the electron beam irradiation field. Here, the solid catalyst is heated by the heater 9 as necessary. The surface of the solid catalyst is activated by the remaining active species, and unreacted harmful organic substances and decomposition products are oxidized on the surface of the solid catalyst. As a result, the purified gas 10 is obtained.

ここで、本発明でいう「EB発生器」とは、真空中で金属製フィラメントを熱したり、金属電極等に強電場を印加したりすることにより金属表面から生じた電子を、電場により加速し、金属等の無機物又は有機物の薄い隔膜を通過させて、加速した電子を大気圧ガスに取り出す装置である。EB発生器により発生させるビームは、連続的又はパルス的のいずれであってもよい。   Here, the “EB generator” as used in the present invention means that electrons generated from a metal surface are accelerated by an electric field by heating a metal filament in a vacuum or applying a strong electric field to a metal electrode or the like. This is an apparatus for extracting accelerated electrons into an atmospheric pressure gas by passing through a thin diaphragm made of an inorganic material or an organic material such as a metal. The beam generated by the EB generator may be either continuous or pulsed.

本発明の浄化法の第二の態様を図3に示す。
図3においては、上記説明した第一の態様と同様に、照射容器内の電子ビーム照射場14において活性種を有害有機物と反応させたあと、電子ビーム照射場の後段の位置で、水18と照射ガスとを混合する。この際、水中で活性化された残存活性種により、未反応の有害有機物や分解生成物が水中で酸化され、結果として浄化ガス20が得られる。
A second embodiment of the purification method of the present invention is shown in FIG.
In FIG. 3, similarly to the first aspect described above, after reacting the active species with harmful organic substances in the electron beam irradiation field 14 in the irradiation container, water 18 and Mix with irradiation gas. At this time, unreacted harmful organic substances and decomposition products are oxidized in water by the remaining active species activated in water, and as a result, purified gas 20 is obtained.

本発明の浄化法の第三の態様を図4に示す。
図4においては、上記説明した第二の態様において、水18に代えて過酸化水素混合水28を使用する。
A third embodiment of the purification method of the present invention is shown in FIG.
In FIG. 4, in the second embodiment described above, hydrogen peroxide mixed water 28 is used instead of water 18.

照射ガス成分を水又は過酸化水素を含む水に溶解させる方法としては、これらの水又は水溶液中に照射ガスを曝気させる方法や、水又は水溶液が噴霧されている管内に照射ガスを流通させる方法、更に、金属充填物等が詰められこの壁面を水又は水溶液が伝わりながら流れる管内に照射ガスを流通させる方法等がある。   As a method of dissolving the irradiation gas component in water or water containing hydrogen peroxide, a method of aeration of the irradiation gas in the water or aqueous solution, or a method of circulating the irradiation gas in a pipe sprayed with water or an aqueous solution Furthermore, there is a method in which irradiation gas is circulated in a tube filled with a metal filling or the like and flowing through this wall while water or an aqueous solution is transmitted.

以下の実施例により本発明を更に詳細に説明する。   The following examples illustrate the invention in more detail.

(実施例1)
1100ppmvのベンゼンを含む純空気(二酸化炭素濃度が0.5ppmv以下)に、加速エネルギーlMeVのEBを吸収線量5kGy照射した(以下、これを「基本実験系」と称する。)。
(Example 1)
Pure air containing 1100 ppmv of benzene (carbon dioxide concentration of 0.5 ppmv or less) was irradiated with EB of acceleration energy lMeV at an absorbed dose of 5 kGy (hereinafter referred to as “basic experimental system”).

この結果得られたガス中には約60ppmvのベンゼン、約30ppmvの二酸化炭素及び約20ppmvのオゾンが含まれていた。したがって、ベンゼンの酸化分解率(=減少したベンゼン濃度/照射前ベンゼン濃度×100)は約40%で、完全酸化分解率(=生成した二酸化炭素濃度/(照射前ベンゼン濃度×6)×100)は約5%であった。   The resulting gas contained about 60 ppmv benzene, about 30 ppmv carbon dioxide and about 20 ppmv ozone. Therefore, the oxidative decomposition rate of benzene (= decreased benzene concentration / pre-irradiation benzene concentration × 100) is about 40%, and the complete oxidative decomposition rate (= generated carbon dioxide concentration / (pre-irradiation benzene concentration × 6) × 100). Was about 5%.

上記基本実験系において照射容器の直後に固体触媒を充填した容器を導入した。この固体触媒を充填した容器を、EBやそれに伴う制動X線が直接照射されないように遮蔽用鉛板で覆った。この実験系において、100ppmvのベンゼンを含む純空気を、吸収線量が5kGyとなるようにEB照射し、照射ガスを固体触媒である球状(直径5mm)のアナターゼ型二酸化チタンのペレットを充填した容器に導いた。その結果、得られたガス中には約50ppmvのベンゼン、約50ppmvの二酸化炭素及び約10ppmvのオゾンが含まれていた。ベンゼンの酸化分解率及び完全酸化分解率は、それぞれ、約50%及び約8.3%といずれも基本実験系の結果より高い値となった。   In the basic experimental system, a container filled with a solid catalyst was introduced immediately after the irradiation container. The container filled with the solid catalyst was covered with a shielding lead plate so that EB and accompanying braking X-rays were not directly irradiated. In this experimental system, pure air containing 100 ppmv of benzene was irradiated with EB so that the absorbed dose was 5 kGy, and the irradiation gas was put into a container filled with spherical (diameter 5 mm) anatase-type titanium dioxide pellets as a solid catalyst. lead. As a result, the obtained gas contained about 50 ppmv benzene, about 50 ppmv carbon dioxide and about 10 ppmv ozone. The oxidative degradation rate and complete oxidative degradation rate of benzene were about 50% and about 8.3%, both higher than the results of the basic experimental system.

(実施例2)
実施例1に示した基本実験系において、照射容器の直後に超純水の入った洗気ビンを設置した。この超純水を入れた洗気ビンを、EBやそれに伴う制動X線が直接照射されないように遮蔽用鉛板で覆った。この実験系で、100ppmvのベンゼンを含む純空気を、吸収線量が5kGyとなるようにEB照射し、照射ガスを超純水が入った洗気ビンに導いた。洗気ビンを通過した後のガス中のベンゼン濃度は、照射ガス導入直後は約50ppmvまで減少したが、30分程度経過した以降は約60ppmvで一定となった。また、洗気ビン通過ガスには、約50ppmvの二酸化炭素が含まれていた。ベンゼンの酸化分解率は基本実験系と同じ結果となったが、完全酸化分解率は約8.3%であり基本実験系で得られた値より大きな値が得られた。また、洗気ビン通過ガス中にオゾンはほとんど検出されなかった。
(Example 2)
In the basic experimental system shown in Example 1, a washing bottle containing ultrapure water was installed immediately after the irradiation container. The air-cleaning bottle containing the ultrapure water was covered with a shielding lead plate so that EB and accompanying braking X-rays were not directly irradiated. In this experimental system, pure air containing 100 ppmv of benzene was EB-irradiated so that the absorbed dose was 5 kGy, and the irradiation gas was guided to a washing bottle containing ultrapure water. The benzene concentration in the gas after passing through the washing bottle decreased to about 50 ppmv immediately after the irradiation gas was introduced, but became constant at about 60 ppmv after about 30 minutes. Further, the gas passing through the washing bottle contained about 50 ppmv of carbon dioxide. The oxidative degradation rate of benzene was the same as that in the basic experimental system, but the complete oxidative degradation rate was about 8.3%, which was larger than the value obtained in the basic experimental system. Further, almost no ozone was detected in the gas passing through the washing bottle.

(実施例3)
実施例1に示した基本実験系において、照射容器の直後に、10%の過酸化水素を含む超純水(以下、単に「過酸化水素水」と称する。)を入れた洗気ビンを設置した。この過酸化水素を入れた洗気ビンを、EBやそれに伴う制動x線が直接照射されないように遮蔽用鉛板で覆った。この実験系で、l00ppmvのベンゼンを含む純空気を、吸収線量が5kGyとなるようにEB照射し、照射ガスを洗気ビンに導いた。洗気ビンを通過した後のガス中のベンゼン及び二酸化炭素濃度は、それぞれ、約45ppmv及び60ppmvであり、オゾンは全く検出されなかった。ベンゼンの酸化分解率及び完全酸化分解率は、それぞれ、約55%及び約10%であり、いずれも基本実験系の結果より高い値となった。
(Example 3)
In the basic experimental system shown in Example 1, a washing bottle containing ultrapure water containing 10% hydrogen peroxide (hereinafter simply referred to as “hydrogen peroxide solution”) is installed immediately after the irradiation container. did. The washing bottle containing hydrogen peroxide was covered with a shielding lead plate so that EB and the accompanying braking x-rays were not directly irradiated. In this experimental system, pure air containing 100 ppmv of benzene was irradiated with EB so that the absorbed dose was 5 kGy, and the irradiation gas was guided to a washing bottle. The concentrations of benzene and carbon dioxide in the gas after passing through the washing bottle were about 45 ppmv and 60 ppmv, respectively, and no ozone was detected. The oxidative degradation rate and complete oxidative degradation rate of benzene were about 55% and about 10%, respectively, which were higher than the results of the basic experimental system.

図1は、本発明の浄化法の概念図である。FIG. 1 is a conceptual diagram of the purification method of the present invention. 図2は、本発明の浄化法の第一の態様を示す概念図である。FIG. 2 is a conceptual diagram showing a first embodiment of the purification method of the present invention. 図3は、本発明の浄化法の第二の態様を示す概念図である。FIG. 3 is a conceptual diagram showing a second embodiment of the purification method of the present invention. 図4は、本発明の浄化法の第三の態様を示す概念図である。FIG. 4 is a conceptual diagram showing a third aspect of the purification method of the present invention.

符号の説明Explanation of symbols

1 電子ビーム発生器
2 電子ビーム
3 照射容器
4 電子ビーム照射場
5 照射窓泊
6 有害有機物を含んだガス
7 固体触媒充填槽
8 固体触媒
9 ヒーター
10 浄化ガス
11 電子ビーム発生器
12 電子ビーム
13 照射容器
14 電子ビーム照射場
15 照射窓泊
16 有害有機物を含んだガス
17 貯水槽
18 水槽
19 噴霧水
20 浄化ガス
21 電子ビーム発生器
22 電子ビーム
23 照射容器
24 電子ビーム照射場
25 照射窓泊
26 有害有機物を含んだガス
27 貯混合水槽
28 混合水槽
29 噴霧混合水
30 浄化ガス
DESCRIPTION OF SYMBOLS 1 Electron beam generator 2 Electron beam 3 Irradiation container 4 Electron beam irradiation field 5 Irradiation window stay 6 Gas containing harmful organic substance 7 Solid catalyst filling tank 8 Solid catalyst 9 Heater 10 Purifying gas 11 Electron beam generator 12 Electron beam 13 Irradiation Container 14 Electron beam irradiation field 15 Irradiation window night 16 Gas containing harmful organic substances 17 Water tank 18 Water tank 19 Spray water 20 Purified gas 21 Electron beam generator 22 Electron beam 23 Irradiation container 24 Electron beam irradiation field 25 Irradiation window night 26 Harmful Gas containing organic matter 27 Storage water tank 28 Mixed water tank 29 Spray mixed water 30 Purified gas

Claims (3)

有害有機物を含むガスの浄化法であって、
有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、
前記照射ガスを固体触媒充填槽に流通させて、未分解有害有機物又は分解生成物を固体触媒表面に付着濃縮させながら、前記照射ガス中の未反応の前記活性種又は電子ビーム照射により生じるオゾンから解離した酸素原子により、触媒表面で前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とする方法。
A purification method for gases containing harmful organic substances,
Irradiating an oxygen-containing gas containing a harmful organic substance with an electron beam, and oxidizing and decomposing the harmful organic substance in the irradiation gas by the generated high-density active species;
From the ozone generated by irradiation of the unreacted active species or electron beam in the irradiation gas while allowing the irradiation gas to flow through the solid catalyst filling tank and adhering and concentrating undecomposed harmful organic substances or decomposition products on the surface of the solid catalyst. A method comprising combining the step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product on the catalyst surface with dissociated oxygen atoms.
有害有機物を含むガスの浄化法であって、
有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、
前記照射ガスを水に流通させて、前記照射ガス中成分を溶解し、溶解させた未分解有害有機物又は分解生成物を、溶解させた未反応の前記活性種又は電子ビーム照射により生じるオゾンを溶解して生ずる水溶性活性種により、前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とする方法。
A purification method for gases containing harmful organic substances,
Irradiating an oxygen-containing gas containing a harmful organic substance with an electron beam, and oxidizing and decomposing the harmful organic substance in the irradiation gas by the generated high-density active species;
Circulating the irradiation gas into water, dissolving the components in the irradiation gas, dissolving dissolved undecomposed harmful organic substances or decomposition products, dissolving dissolved unreacted active species or ozone generated by electron beam irradiation And a step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product with the water-soluble active species generated as described above.
有害有機物を含むガスの浄化法であって、
有害有機物を含む酸素含有ガスに電子ビームを照射し、生じる高密度活性種により有害有機物を前記照射ガス中で酸化分解する工程と、
前記照射ガスを過酸化水素を含む水に流通させて、前記照射ガス中成分を溶解し、溶解させた未分解有害有機物又は分解生成物を、溶解させた未反応の前記活性種又は電子ビーム照射により生じるオゾンを溶解して生ずる水溶性活性種により、前記未分解有害有機物又は分解生成物を酸化分解する工程とを組み合わせたことを特徴とする方法。
A purification method for gases containing harmful organic substances,
Irradiating an oxygen-containing gas containing a harmful organic substance with an electron beam, and oxidizing and decomposing the harmful organic substance in the irradiation gas by the generated high-density active species;
The irradiation gas is circulated in water containing hydrogen peroxide to dissolve the components in the irradiation gas, and the dissolved undecomposed harmful organic substance or decomposition product is dissolved into the unreacted active species or electron beam irradiated. And a step of oxidatively decomposing the undecomposed harmful organic substance or decomposition product with a water-soluble active species generated by dissolving ozone generated by the process.
JP2003404486A 2003-12-03 2003-12-03 Purification of gas containing harmful organic substances by electron beam irradiation Pending JP2005161216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003404486A JP2005161216A (en) 2003-12-03 2003-12-03 Purification of gas containing harmful organic substances by electron beam irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003404486A JP2005161216A (en) 2003-12-03 2003-12-03 Purification of gas containing harmful organic substances by electron beam irradiation

Publications (1)

Publication Number Publication Date
JP2005161216A true JP2005161216A (en) 2005-06-23

Family

ID=34727464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003404486A Pending JP2005161216A (en) 2003-12-03 2003-12-03 Purification of gas containing harmful organic substances by electron beam irradiation

Country Status (1)

Country Link
JP (1) JP2005161216A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119401A (en) * 2007-11-16 2009-06-04 Japan Atomic Energy Agency Cleaning method and cleaning apparatus for contaminated gas
KR100926143B1 (en) * 2007-12-05 2009-11-10 건국대학교 산학협력단 Organic compound removal device using electron beam and external catalyst and removal method using the same
CN101890278A (en) * 2010-07-01 2010-11-24 陈有添 Environment-friendly waste gas purification method
CN110180387A (en) * 2019-07-02 2019-08-30 苏州仕净环保科技股份有限公司 A kind of efficient process system polluting gas source

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122441A (en) * 1995-10-27 1997-05-13 Kurita Water Ind Ltd Method for decomposing organic chlorine compounds
JPH09299762A (en) * 1996-05-10 1997-11-25 Toshiba Corp Waste gas treating system
JP2000117049A (en) * 1998-08-10 2000-04-25 Sandensha:Kk Purification method and device for removing nitrogen oxides and sulfur oxides
JP2000189749A (en) * 1998-12-28 2000-07-11 Toshiba Corp Treating device
JP2000510036A (en) * 1995-12-06 2000-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Plasma oxidation of exhaust stream from chlorination process of titanium-containing materials
JP2001300257A (en) * 2000-04-26 2001-10-30 Mitsubishi Heavy Ind Ltd Treatment device and decomposing method of waste gas by plasma decomposition process
JP2002191964A (en) * 2000-12-12 2002-07-10 Korea Mach Res Inst Catalytic reactor for treating harmful gas using low-temperature plasma and dielectric heat, and method of treating the same
JP2002224200A (en) * 2001-02-07 2002-08-13 Meidensha Corp Method and equipment for treating gas
JP2003017297A (en) * 2001-07-04 2003-01-17 Daikin Ind Ltd Discharge device and plasma reactor
JP2003164728A (en) * 2001-12-04 2003-06-10 Canon Inc Gas treatment method and gas treatment apparatus
JP2003210938A (en) * 2002-01-25 2003-07-29 Mitsubishi Electric Corp Exhaust-gas cleaning device
JP2003251146A (en) * 2002-02-07 2003-09-09 Tbi Co Ltd Method for removing dioxins and dust by using high temperature plasma and device therefor
JP2003293741A (en) * 2002-04-01 2003-10-15 Toshiba Corp Generation cleaning system and its method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122441A (en) * 1995-10-27 1997-05-13 Kurita Water Ind Ltd Method for decomposing organic chlorine compounds
JP2000510036A (en) * 1995-12-06 2000-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Plasma oxidation of exhaust stream from chlorination process of titanium-containing materials
JPH09299762A (en) * 1996-05-10 1997-11-25 Toshiba Corp Waste gas treating system
JP2000117049A (en) * 1998-08-10 2000-04-25 Sandensha:Kk Purification method and device for removing nitrogen oxides and sulfur oxides
JP2000189749A (en) * 1998-12-28 2000-07-11 Toshiba Corp Treating device
JP2001300257A (en) * 2000-04-26 2001-10-30 Mitsubishi Heavy Ind Ltd Treatment device and decomposing method of waste gas by plasma decomposition process
JP2002191964A (en) * 2000-12-12 2002-07-10 Korea Mach Res Inst Catalytic reactor for treating harmful gas using low-temperature plasma and dielectric heat, and method of treating the same
JP2002224200A (en) * 2001-02-07 2002-08-13 Meidensha Corp Method and equipment for treating gas
JP2003017297A (en) * 2001-07-04 2003-01-17 Daikin Ind Ltd Discharge device and plasma reactor
JP2003164728A (en) * 2001-12-04 2003-06-10 Canon Inc Gas treatment method and gas treatment apparatus
JP2003210938A (en) * 2002-01-25 2003-07-29 Mitsubishi Electric Corp Exhaust-gas cleaning device
JP2003251146A (en) * 2002-02-07 2003-09-09 Tbi Co Ltd Method for removing dioxins and dust by using high temperature plasma and device therefor
JP2003293741A (en) * 2002-04-01 2003-10-15 Toshiba Corp Generation cleaning system and its method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119401A (en) * 2007-11-16 2009-06-04 Japan Atomic Energy Agency Cleaning method and cleaning apparatus for contaminated gas
KR100926143B1 (en) * 2007-12-05 2009-11-10 건국대학교 산학협력단 Organic compound removal device using electron beam and external catalyst and removal method using the same
CN101890278A (en) * 2010-07-01 2010-11-24 陈有添 Environment-friendly waste gas purification method
CN110180387A (en) * 2019-07-02 2019-08-30 苏州仕净环保科技股份有限公司 A kind of efficient process system polluting gas source

Similar Documents

Publication Publication Date Title
EP0818239B1 (en) Photocatalyst, method of producing the photocatalyst, and photocatalytic reaction method
Borello et al. Photocatalytic degradation of DDT mediated in aqueous semiconductor slurries by simulated sunlight
Huang et al. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment
US5449443A (en) Photocatalytic reactor with flexible supports
KR101925751B1 (en) Photocatalyst for dioxin treatment, method for preparing the same and method for treating dioxin in soil using the photocatalyst
Li et al. Experimental study on ozone photolytic and photocatalytic degradation of H2S using continuous flow mode
Reddy et al. A review of photocatalytic treatment for various air pollutants
JPS60187322A (en) How to purify waste
EP0997439B1 (en) Method for decomposing bromic acid by photocatalyst
Shifu et al. Photocatalytic degradation of trace gaseous acetone and acetaldehyde using TiO2 supported on fiberglass cloth
US10835854B2 (en) Process for low temperature gas cleaning with ozone and a catalytic bag filter for use in the process
JP2005161216A (en) Purification of gas containing harmful organic substances by electron beam irradiation
CN1171800C (en) Photo catalytic oxidation treatment method of meta dimethylhydrazine waste water
JP4247780B2 (en) Novel photocatalyst and method for detoxifying harmful organic substances using the same
JPS63305922A (en) Method for treating waste ozone
JP2005125236A (en) Catalyst for removing aromatic halogen compound including dioxin, carbon monoxide, and nitrogen oxide and use thereof
JP3679969B2 (en) Composite photocatalyst and organic halogen compound decomposition method
JPS61178402A (en) Method of decomposition treatment of ozone
JP2006272034A (en) Contaminating gas treatment apparatus and method using photocatalyst
JP4130150B2 (en) Photochemical reaction method, soil or incineration ash treatment method and treatment equipment
JPH05337469A (en) Photcatalytic treatment of waste water
JPH0483515A (en) Method for decomposing fluorocarbon type cooling medium
WO2023249571A1 (en) Method and system for gas treatment and purification using modified advanced oxidation technology
JP4288094B2 (en) Photochemical reaction method, liquid processing method and liquid processing apparatus
Senthilkumar Dheeaa Al Deen Atallah Aljoubory (2014) Phenol Degradation of Industrial Wastewater by Photocatalysis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120413