[go: up one dir, main page]

JP4245000B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP4245000B2
JP4245000B2 JP2006086260A JP2006086260A JP4245000B2 JP 4245000 B2 JP4245000 B2 JP 4245000B2 JP 2006086260 A JP2006086260 A JP 2006086260A JP 2006086260 A JP2006086260 A JP 2006086260A JP 4245000 B2 JP4245000 B2 JP 4245000B2
Authority
JP
Japan
Prior art keywords
switching element
booster circuit
turned
voltage
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006086260A
Other languages
English (en)
Other versions
JP2006230193A (ja
Inventor
浩 鈴木
厚夫 酒井
和彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2006086260A priority Critical patent/JP4245000B2/ja
Publication of JP2006230193A publication Critical patent/JP2006230193A/ja
Application granted granted Critical
Publication of JP4245000B2 publication Critical patent/JP4245000B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Description

本発明は、自動車や車両の操舵系にモータによるアシスト力を付与する電動パワーステアリング装置に係り、詳しくは、車載バッテリからのモータへの供給電流を調整することができる昇圧回路を備えた電動パワーステアリング装置に関する。
従来から、モータの回転力を利用して、ステアリングホイールの操作を補助する電動パワーステアリング制御装置が用いられている。このような電動パワーステアリング装置においては、運転者がステアリングホイールを回転させて操舵を行った時の操舵トルクに応じた操舵補助力が、モータからステアリング機構に与えられるようになっている。
ところで、前記のような電動パワーステアリング装置は大きなトルクを得ようとするために大電流を必要とするシステムである。
従来は、車載バッテリ(DC12V)を直に印加するようにしており、モータもDC12V仕様のものを使用し、大電流を前記モータに供給するために、モータの大型化、使用配線の大容量化(太線化)は避けることはできない。
この問題を解決するため、車載バッテリからの供給電流を調整することができる電動パワーステアリング装置(特許文献1)が提案されている。
この電動パワーステアリング装置においては、モータに電流を供給する回路に図51に示すような昇圧回路300及び昇圧回路制御装置301を設けている。
昇圧回路300は、車載バッテリからのバッテリ電圧VPIG(DC12V)の印加点P1と前記モータへの電圧印加点P2との間に設けられている。昇圧回路300はコンデンサC1,C2、コイルL、ダイオードD、スイッチング用のトランジスタQ1を備えている。
昇圧回路制御装置301は、昇圧回路300のトランジスタQ1に対して、昇圧のためのデューティ比駆動信号を出力し、このデューティ比駆動信号によって、トランジスタQ1をデューティ制御する。このデューティ制御により、トランジスタQ1が図52に示すようにスイッチング動作を行ない、この結果、コイルLでエネルギーの蓄積と放出とが繰り返され、ダイオードDのカソード側に放出の際の高電圧が現れる。なお、図52に示すように本明細書中、Tαはオン時間、Tはパルス周期、αはデューティ比(オンデューティ)を示している。トランジスタQ1がオンとなるとコイルLに電流が流れ、トランジスタQ1がオフとなるとコイルLに流れる電流が遮断される。
コイルLに流れる電流が遮断されると、この電流の遮断による磁束の変化を妨げるように、ダイオードDのカソード側に高電圧が発生する。この繰り返しによって、ダイオードDのカソード側に高電圧が繰り返し発生し、コンデンサC2で平滑(充電)され、出力電圧VBPIG として点P2に生じる。
このとき、昇圧回路300により、昇圧する電圧は昇圧回路制御装置301から出力されるデューティ比駆動信号のデューティ比と関連する。デューティ比が大きければ出力電圧VBPIGは高くなり、デューティ比が小さければ出力電圧VBPIGは低くなる。
特開平8−127350号公報
ところが、従来の昇圧回路300においては、上記のようにダイオードDを使用しているため、モータが回生状態に入ったとき、このダイオードDのために電圧印加点P2側からバッテリBに電流が流れることができず、出力電圧VBPIGが上昇する。この電圧の上昇により、昇圧回路300が破損する虞があった。例えば、図51の例では、昇圧回路300を構成を構成しているコンデンサC2や、ダイオードDが破壊される虞がある。
本発明の目的は、モータが回生状態になった場合においても、昇圧回路が破壊されることがない電動パワーステアリング装置を提供することにあり、又、電動パワーステアリング装置のアシスト制御中に力行及び回生を行う際に、スイッチング素子の発熱(スイッチング損失)や出力電圧の上昇を制御し得る昇圧回路制御を実現した電動パワーステアリング装置を提供することにある。
上記問題点を解決するために、請求項1に記載の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止するとともに、前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする電動パワーステアリング装置を要旨とするものである。
請求項2の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、前記目標出力電圧設定手段は、車両又は電動機の運転状況を示す運転状況パラメータを入力し、運転状況パラメータに応じて目標出力電圧を可変にし、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、前記昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする。
請求項3の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、前記昇圧回路制御手段は、所定デューティ比を越えてPWM制御しないように、デューティ制限し、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、前記昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする。
請求項4の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止し、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、前記昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする。
請求項5の発明は、請求項4において、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、電動機の電力をオンオフする第2開閉手段を備え、前記判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする。
請求項6の発明は、請求項4において、前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする。
請求項7の発明、請求項2乃至請求項6のうちいずれか1項において、電動機の電力をオンオフする第2開閉手段を備え、前記第1故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする。
請求項8の発明は、請求項2乃至請求項6のうちいずれか1項において、電動機の電力をオンオフする第2開閉手段を備え、前記第1故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をともにオン制御し、かつ、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする。
請求項9の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、前記目標出力電圧設定手段は、車両又は電動機の運転状況を示す運転状況パラメータを入力し、運転状況パラメータに応じて目標出力電圧を可変にし、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする。
請求項10の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、前記昇圧回路制御手段は、所定デューティ比を越えてPWM制御しないように、デューティ制限し、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする。
請求項11の発明は、少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止し、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする。
請求項12の発明は、請求項11において、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、電動機の電力をオンオフする第2開閉手段を備え、前記判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする。
請求項13の発明は、請求項11において、前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする。
請求項14の発明は、請求項2乃至請求項8のいずれか1項において、昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、昇圧回路制御手段には、イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする。
請求項15の発明は、請求項9乃至請求項14のいずれか1項において、電動機の電力をオンオフする第2開閉手段を備え、前記第2故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする。
請求項16の発明は、請求項9乃至請求項14のいずれか1項において、電動機の電力をオンオフする第2開閉手段を備え、前記第2故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をともにオン制御し、かつ、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする。
以上詳述したように、請求項1乃至請求項1に記載の発明によれば、モータが回生状態になった場合においても、昇圧回路が破壊されることがない電動パワーステアリング装置を提供することができる。
請求項2、9に記載の発明によれば、車両又は電動機の運転状況を示す運転状況パラメータに応じて目標出力電圧を可変にしているため、運転状況に応じて第1、第2スイッチング素子をオンオフ制御することができる。
請求項3、10に記載の発明によれば、デューティ制限を設けているため、力行時及び回生時のいずれにおいても昇圧回路の破損を防止することができる。
請求項1、4〜6、11〜13に記載の発明によれば、昇圧回路が故障している場合には、昇圧回路の昇圧制御を中止することができ、昇圧回路の異常時における昇圧回路の破壊を防止することができる。
請求項5、12に記載の発明によれば、昇圧回路が故障している場合には、マニュアルステアリングに移行させることができる。又、回生時においても回生電流が、昇圧回路に流れることがなくなり、昇圧回路を構成している回路素子破壊を防止することができる。
請求項6、13に記載の発明によれば、昇圧回路が故障している場合には、アシスト制御をバッテリ電圧で継続実行できるとともに、回生時においては、回生電流をバッテリに吸収させることができる。
請求項2〜8、14に記載の発明によれば、昇圧回路の故障判定をイグニッションスイッチをオンした後のイニシャルチェック時の段階で行うことができる。
請求項7に記載の発明によれば、イグニッションスイッチをオンした後のイニシャルチェック時の段階で昇圧回路が故障している場合、フェールセーフを掛けることができる。
請求項8に記載の発明によれば、イグニッションスイッチをオンした後のイニシャルチェック時の段階で昇圧回路が故障している場合、昇圧回路で昇圧した電圧でアシスト制御はできないが、アシスト制御をバッテリ電圧で実行できるとともに、回生時においては、回生電流をバッテリに吸収させることができる。
請求項9乃至請求項16に記載の発明によれば、昇圧回路の故障判定をイグニッションスイッチをオンした後のイニシャルチェック時の段階で行うことができる。
請求項15に記載の発明によれば、イグニッションスイッチをオンした後のイニシャルチェック時の段階で昇圧回路が故障している場合、フェールセーフを掛けることができる。
請求項16に記載の発明によれば、イグニッションスイッチをオンした後のイニシャルチェック時の段階で昇圧回路が故障している場合、昇圧回路で昇圧した電圧でアシスト制御はできないが、アシスト制御をバッテリ電圧で実行できるとともに、回生時においては、回生電流をバッテリに吸収させることができる。
1.第1実施形態(参考実施形態)
(構成)
尚、第1実施形態〜第10実施形態は、参考実施形態として具体化した電動パワーステアリング装置を図1〜図6に従って説明する。
図1は、電動パワーステアリング装置の制御装置の概略を示す。
ステアリングホイール1に連結したステアリングシャフト2には、トーションバー3が設けられている。このトーションバー3には、トルクセンサ4が装着されている。そして、ステアリングシャフト2が回転してトーションバー3に力が加わると、加わった力に応じてトーションバー3が捩れ、その捩れ、即ちステアリングホイール1にかかる操舵トルクτをトルクセンサ4が検出している。
トルクセンサ4は操舵トルク検出手段を構成している。
又、ステアリングシャフト2には減速機5が固着されている。この減速機5には電動機としての電動モータ(以下、モータという)6の回転軸に取着したギア7が噛合されている。前記モータ6は、三相同期式永久磁石モータで構成したブラシレスモータである。
又、モータ6には、同モータ6の回転角を検出するためのエンコーダにより構成された回転角センサ30が組み付けられている(図2参照)。回転角センサ30は、モータ6の回転子の回転に応じてπ/2ずつ位相の異なる2相パルス列信号と基準回転位置を表す零相パルス列信号を出力する。
更に、減速機5にはピニオンシャフト8が固着されている。ピニオンシャフト8の先端には、ピニオン9が固着されるとともに、このピニオン9はラック10と噛合している。ラック10の両端には、タイロッド12が固設されており、そのタイロッド12の先端部にはナックル13が回動可能に連結されている。このナックル13には、タイヤとしての前輪14が固着されている。又、ナックル13の一端は、クロスメンバ15に回動可能に連結されている。
従って、モータ6が回転すると、その回転数は減速機5によって減少されてピニオンシャフト8に伝達され、ピニオン及びラック機構11を介してラック10に伝達される。そして、ラック10は、タイロッド12を介してナックル13に設けられた前輪14の向きを変更して車両の進行方向を変えることができる。
前輪14には、車速センサ16が設けられている。
次に、この電動パワーステアリング装置20の電気的構成を示す。
トルクセンサ4は、ステアリングホイール1の操舵トルクτに応じた電圧を出力している。車速センサ16は、その時の車速を前輪14の回転数に相対する周期のパルス信号として出力する。
電動パワーステアリング制御装置(以下、制御装置という)20は、中央処理装置(CPU)21、読み出し専用メモリ(ROM)22及びデータを一時記憶する読み出し及び書き込み専用メモリ(RAM)23を備えている。このROM22には、CPU21による演算処理を行わせるための制御プログラムが格納されている。RAM23は、CPU21が演算処理を行うときの演算処理結果等を一時記憶する。
ROM22は、図示しない基本アシストマップが格納されている。基本アシストマップは、操舵トルクτ(回動トルク)に対応し、かつ車速に応じた基本アシスト電流を求めるためのものであり、操舵トルクτに対する基本アシスト電流が記憶されている。
この制御装置20が、三相同期式永久磁石モータを駆動制御する機能は公知の構成であるため、簡単に説明する。
なお、制御装置20は制御信号発生手段に相当する。
図3は、前記CPU21内部において、プログラムで実行される機能を示す制御ブロック図である。同制御ブロック図で図示されている各部は、独立したハードウエアを示すものではなく、CPU21で実行される機能を示している。
制御装置20は、指令トルクτ*を計算するための基本アシスト力演算部51、戻し力演算部52及び加算部53を備える。基本アシスト力演算部51は、トルクセンサ4からの操舵トルクτ及び車速センサ16によって検出された車速Vを入力し、操舵トルクτの増加にしたがって増加するとともに車速Vの増加にしたがって減少するアシストトルクを計算する。
戻し力演算部52は、車速Vと共にモータ6の回転子の電気角θ(回転角に相当)及び角速度ωを入力し、これらの入力値に基づいてステアリングシャフト2の基本位置への復帰力及びステアリングシャフト2の回転に対する抵抗力に対応した戻しトルクを計算する。加算部53は、アシストトルクと戻しトルクを加算することにより指令トルクτ*を計算し、指令電流設定部54に出力する。
指令電流設定部54は、指令トルクτ*に基づいて、2相指令電流Id*,Iq*を計算する。指令電流Id*,Iq*は、モータ6の回転子上の永久磁石が作り出す回転磁束と同期した回転座標系において、永久磁石と同一方向のd軸及びこれに直交したq軸にそれぞれ対応する。これらの指令電流Id*,Iq*はそれぞれd軸及びq軸指令電流という。
d軸指令電流Id*,q軸指令電流Iq*は減算器55,56に供給される。減算器55,56は、d軸指令電流Id*,q軸指令電流Iq*と、d軸及びq軸検出電流Id,Iqとのそれぞれの差分値ΔId,ΔIqを演算し、その結果をPI制御部(比例積分制御部)57,58に供給する。q軸指令電流Iq*は電動機制御信号に相当する。
PI制御部57,58は、差分値ΔId,ΔIqに基づきd軸及びq軸検出電流Id,Iqがd軸指令電流Id*,q軸指令電流Iq*に追従するようにd軸及びq軸指令電圧Vd*,Vq*をそれぞれ計算する。
d軸及びq軸指令電圧Vd*,Vq*は、非干渉制御補正値演算部63及び減算器59,60により、d軸及びq軸補正指令電圧Vd**,Vq**に補正されて2相/3相座標変換部61に供給される。
非干渉制御補正値演算部63は、d軸及びq軸検出電流Id,Iq及びモータ6の回転子の角速度ωに基づいて、d軸及びq軸指令電圧Vd*,Vq*のための非干渉制御補正値ω・La・Iq,−ω・(φa+La・Id)を計算する。なお、インダクタンスLa、及び磁束φaは、予め決められた定数である。
減算器59,60は、d軸及びq軸指令電圧Vd*,Vq*から前記非干渉制御補正値をそれぞれ減算することにより、d軸及びq軸補正指令電圧Vd**,Vq**を算出して、2相/3相座標変換部61に出力する。2相/3相座標変換部61は、d軸及びq軸補正指令電圧Vd**,Vq**を3相指令電圧Vu*,Vv*,Vw*に変換して、同変換した3相指令電圧Vu*,Vv*,Vw*をPWM制御部62に出力する。
PWM制御部62は、この3相指令電圧Vu*,Vv*,Vw*に対応したPWM制御信号UU,VU,WU(PWM波信号及びモータ6の回転方向を表す信号を含む)に変換し、インバータ回路であるモータ駆動装置35に出力する。
モータ駆動装置35は、図2に示すようにFET(Field-Effect Transistor) 81U,82Uの直列回路と、FET81V,82Vの直列回路と、FET81W,82Wの直列回路とを並列に接続して構成されている。各直列回路には、車両に搭載されたバッテリの電圧よりも昇圧された電圧が印加されている。そして、FET81U,82U間の接続点83UがモータMのU相巻線に接続され、FET81V,82V間の接続点83Vがモータ6のV相巻線に接続され、FET81W,82W間の接続点83Wがモータ6のW相巻線に接続されている。
FET81U,82U、FET81V,82V及びFET81W,82Wには、それぞれPWM制御部62からPWM制御信号UU,VU,WU(各相のPWM制御信号にはPWM波信号及びモータ6の回転方向を表す信号を含む)が入力される。
モータ駆動装置35は、PWM制御信号UU,VU,WUに対応した3相の励磁電流を発生して、3相の励磁電流路を介してモータ6にそれぞれ供給する。
モータ駆動装置35は、電動機駆動手段を構成している。
3相の励磁電流路のうちの2つには電流センサ71,72が設けられ、各電流センサ71,72は、モータ6に対する3相の励磁電流Iu,Iv,Iwのうちの2つの励磁電流Iu,Ivを検出して図3に示す3相/2相座標変換部73に出力する。
なお、3相/2相座標変換部73には、演算器74にて検出励磁電流Iu,Ivに基づいて計算された励磁電流Iwが入力される。3相/2相座標変換部73は、これらの3相検出励磁電流Iu,Iv,Iwを2相のd軸及びq軸検出電流Id,Iqに変換し、減算器55,56、非干渉制御補正値演算部63に入力する。
又、回転角センサ30からの2相パルス列信号及び零相パルス列信号は、所定のサンプリング周期で電気角変換部64に連続的に供給されている。電気角変換部64は、前記各パルス列信号に基づいてモータ6における回転子の固定子に対する電気角θを演算し、演算された電気角θを角速度変換部65に入力する。角速度変換部65は、電気角θを微分して回転子の固定子に対する角速度ωを演算する。角速度ωは、正により回転子の正方向の回転を表し、負により回転子の負方向の回転を表している。
次に、バッテリ電圧を昇圧する昇圧回路100及び同昇圧回路100を制御する昇圧回路制御装置について説明する。昇圧回路100は昇圧回路に相当する。又、本実施形態では、昇圧回路制御装置は、前記制御装置20が兼用している。
昇圧回路100は、車載バッテリ(以下、バッテリという)Bとモータ駆動装置35間の電流供給回路に設けられている。
本実施形態の昇圧回路100は、印加点P1と電圧印加点P2間には、昇圧用コイル(以下、単にコイルという)Lと、トランジスタQ2が接続されている。前記トランジスタQ2は、ソースがコイルLに接続され、ドレインが電圧印加点P2に接続されている。又、トランジスタQ2のゲートは制御装置20のCPU21に接続されている。D2はトランジスタQ2の寄生ダイオードである。
又、印加点P1は整流用のコンデンサC1を介して接地されている。電圧印加点P2は昇圧用のコンデンサC2を介して接地されている。
前記コンデンサC2は昇圧用コイルによる昇圧電圧を平滑するコンデンサに相当する。
トランジスタQ1は、ドレインがコイルLとトランジスタQ2の接続点に接続され、ソースが接地されている。又、トランジスタQ1のゲートは昇圧回路制御装置101のCPU21に接続されている。D1はトランジスタQ1の寄生ダイオードである。電圧印加点P2の電圧検出のために、電圧印加点P2は制御装置20のCPU21の図示しない電圧入力ポートに接続され、出力電圧VBPIGを検出可能にされている。
前記トランジスタQ1及びトランジスタQ2はnチャンネル形のMOSFETからなる。トランジスタQ1は第1スイッチング素子を構成し、トランジスタQ2は第2スイッチング素子を構成する。
次に、トランジスタQ1,Q2を制御する制御装置20について説明する。
図5は、制御装置20の機能ブロック図を示している。すなわち、CPU21内部において、プログラムで実行される機能を示す制御ブロック図である。
同制御ブロック図で図示されている各部は、独立したハードウエアを示すものではなく、CPU21で実行される機能を示す。
制御装置20は昇圧回路制御手段を構成する。
CPU21は、演算器110、PID制御部120、PWM演算部130、A/D変換部150を備えている。
演算器110は、ROM22に予め格納されている目標出力電圧VBPIG*(本実施形態では20V)と、A/D変換部150を介して入力したVBPIGとの偏差を算出し、PID制御部120にその偏差を供給する。
PID制御部120は、その偏差を縮小すべく比例(P)・積分(I)・微分(D)処理を施して、トランジスタQ1,Q2の制御量を演算する回路である。PID制御部120にて演算された制御量は、さらにPWM演算部130によって制御量に対応するデューティ比αが演算されてデューティ比駆動信号に変換され、該変換されたデューティ比駆動信号が昇圧回路100の各トランジスタQ1,Q2に印加される。なお、本実施形態では前記演算されたデューティ比駆動信号は、トランジスタQ1とトランジスタQ2に対して交互にオンオフ制御するように印加される(図6参照)。この印加は、モータ6の力行時及び回生時ともに同様に行う。
図6はトランジスタQ1に印加するパルス信号(デューティ比駆動信号)を示しており、Tαはオン時間、Tはパルス周期、αはトランジスタQ1に係るデューティ比(オンデューティ)である。なお、トランジスタQ2に係るデューティ比は(1−|α|)となる。
なお、デューティ比αが「+」のときは力行状態、「−」のときは回生状態である。
第1実施形態では、力行状態でのデューティ比αは、0≦α≦α0<1としている。α0は制限値であり、PWM演算部130にてデューティ比αを算出した結果が、α0を超える場合には、デューティ比αとして、α0が決定される。
回生状態でのデューティ比αは、0≦|α|≦1としている。
なお、第1実施形態を始めとして、他の実施形態において、トランジスタQ2がトランジスタQ1と交互にオンオフする場合、トランジスタQ2のデューティ比については(1−|α|)にて算出できるため、特に断らない限り説明を省略する。
又、トランジスタQ2に対しては、トランジスタQ1がオンのときは、オフとし、トランジスタQ1がオフのときには、オンするパルス信号(デューティ比駆動信号)が印加される。トランジスタQ1,Q2に印加されるデューティ比駆動信号は可聴周波数外の周波数を有する。
(第1実施形態の作用)
さて、本実施形態では、図6に示す駆動パターンのデューティ比駆動信号により、トランジスタQ1,Q2が力行時及び回生時において、交互にオンオフ駆動される。
詳説すると、力行時においては、昇圧回路100では前記信号によるデューティ制御により、トランジスタQ1がスイッチング動作を行なう。この結果、コイルLでエネルギーの蓄積と放出とが繰り返され、トランジスタQ2のドレイン側に放出の際、高電圧が現れる。すなわち、トランジスタQ1がオンして、トランジスタQ2がオフすると、トランジスタQ1を介して接地側(なお、グランドということがある)に電流が流れる。次にトランジスタQ1がオフとなると、コイルLに流れる電流が遮断される。コイルL1に流れる電流が遮断されると、この電流の遮断による磁束の変化を妨げるように、オン作動しているトランジスタQ2のドレイン側に高電圧が発生する。この繰り返しによって、トランジスタQ2のドレイン側に高電圧が繰り返し発生し、コンデンサC2で平滑(充電)され、出力電圧VBPIG として点P2に生じる。
このとき、昇圧回路100により、昇圧される電圧は制御装置20から出力されるデューティ比駆動信号のデューティ比αと関連する。デューティ比αが大きければ出力電圧VBPIGは高くなり、デューティ比αが小さければ出力電圧VBPIGは低くなる。
次に、モータ6が回生状態に入ったとき、出力電圧VBPIGが上昇するが、回生時においても、トランジスタQ2がデューティ制御によりオン作動している。このため、トランジスタQ2を介してバッテリBに電流が流れ、吸収される。
第1実施形態によれば、以下のような特徴がある。
(1) 本実施形態では、車速Vとステアリングホイール1の操舵トルクτに基づいてd軸指令電流Id*,q軸指令電流Iq*(電動機制御信号)を決定し、同信号を出力する指令電流設定部54(制御信号発生手段)と、d軸指令電流Id*,q軸指令電流Iq*(電動機制御信号)に基づいてモータ6(電動機)を駆動するモータ駆動装置35(電動機駆動手段)とを備えるようにした。そして、バッテリBとモータ駆動装置35(電動機駆動手段)間の電流供給回路に昇圧回路100を設けた。昇圧回路100は、一端側がバッテリBに接続されてバッテリ電圧が印加されるコイルL(昇圧用コイル)と、同コイルLを地絡又は開放するトランジスタQ1(第1スイッチング素子)と、コイルLの他端側に接続され、オンオフするトランジスタQ2(第2スイッチング素子)と、トランジスタQ2の出力側に接続され、コイルLによる出力電圧(昇圧電圧)を平滑するコンデンサC2とを備えた。
そして、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、トランジスタQ1、トランジスタQ2のうち、力行時には、トランジスタQ1,Q2を交互にオンオフさせてモータ6の供給電圧を昇圧した。又、回生時にはトランジスタQ1,Q2を交互にオンオフさせる制御装置20(昇圧回路制御手段)とを備えた。
この結果、モータ6が回生状態になった場合においても、昇圧回路100が破壊されることがない。
(2) 第1実施形態では、バッテリBとモータ駆動装置35(電動機駆動手段)間の電流供給回路に昇圧回路100を設けた。又、昇圧回路100は、バッテリBに接続されたコイルL(昇圧用コイル)と、コイルLを地絡又は開放するトランジスタQ1(第1スイッチング素子)と、コイルLに接続されるトランジスタQ2(第2スイッチング素子)と、出力電圧を平滑するコンデンサC2とを設けた。
そして、20V(目標出力電圧VBPIG*)と出力電圧VBPIGとの偏差に基づいて、トランジスタQ1,Q2を力行時及び回生時に、交互にオンオフさせてモータ6(電動機)の供給電圧を昇圧し、回生する制御装置20(昇圧回路制御手段)とを設けた。
従来例では、ダイオードDを使用しているため、力行時において、トランジスタQ1をオフしたときにダイオードDに流れる電流による発熱量が大きい。それに対して、本実施形態では、トランジスタQ2をオンした際に流れる電流による発熱量(ロス)が少ないため、効率を上げることができる。
(3) 又、従来例では、モータ6が回生状態に入ったとき、前記ダイオードDのために出力電圧VBPIGが上昇するが、電圧上昇を解消するための手段が設けられていないため、電圧が上昇しすぎて、回路が破損する虞がある。
それに対して、本実施形態では、回生時においては、出力電圧VBPIGが上昇しても、トランジスタQ2がオンされるため、バッテリBに電流が流れ、出力電圧VBPIGの上昇を回避することができる。
(4) 本実施形態では、トランジスタQ1,Q2のデューティ比駆動信号は可聴周波数外の周波数を有するようにしている。この結果、昇圧回路100の昇圧駆動中にデューティ比駆動信号によって異音が生ぜず、運転者への不快感を抑制することができる。
2.第2実施形態(参考実施形態)
次に、第2実施形態を図7を参照して説明する。
なお、本実施形態を含む以下の実施形態では、他の実施形態(第2実施形態では第1実施形態)と同一構成又は相当する構成については、同一符号を付して、説明を省略し、異なるところを中心にして説明する。
第2実施形態では、第1実施形態の制御装置20が、さらに、操舵状態判定手段を構成しているところが異なり、他の構成は、第1実施形態と同じ構成とされている。
すなわち、第1実施形態において、PID制御部120ではトランジスタQ1,Q2の制御量を演算し、演算された制御量は、PWM演算部130によって対応するデューティ比駆動信号に変換される。このときのデューティ比αが「−」のときは回生状態であり、「+」のときは力行状態であることを示している。従って、PWM演算部130が、特に操舵状態判定手段に相当する。PWM演算部130Wでは、デューティ比が「+」のとき(力行状態)と、デューティ比が「−」のとき(回生状態)に応じてデューティ比駆動信号を各トランジスタQ1,Q2に印加する。
なお、第2実施形態のデューティ比αは、力行状態では第1実施形態と同様に0≦α≦α0<1とし、PWM演算部130にてデューティ比αを算出した結果が、α0を超える場合には、デューティ比αとして、α0が決定される。
回生状態でのデューティ比αは、第1実施形態と同様に0≦|α|≦1としている。
そして、PWM演算部130から出力されたデューティ比駆動信号は、第2実施形態では、モータ6の力行時と回生時におけるトランジスタQ1,Q2の駆動パターンが図7に示すように異なっている。
力行時では、トランジスタQ1がオンオフ駆動され、一方、トランジスタQ2は、オフの状態のままとなるようにデューティ比駆動信号が印加される。
又、回生時では、トランジスタQ1,Q2は交互にオンオフ駆動されるようにデューティ比駆動信号が印加される。
(第2実施形態の作用)
力行時においては、デューティ比αが「+」であるため、PWM演算部130から、トランジスタQ1をオンオフ駆動するデューティ比駆動信号が印加され、一方、トランジスタQ2をオフの状態のままとなるデューティ比駆動信号が印加される。以下、前記デューティ比αが「+」のときには、「制御装置20は、モータ6が力行状態であるとの判定をした」といい、デューティ比αが「−」のときには、「制御装置20は、モータ6が回生状態であるとの判定をした」という。
すなわち、制御装置20は、モータ6が力行状態であるとの判定を行うと、トランジスタQ2を全オフとするように制御する。
このため、昇圧回路100では、トランジスタQ1のみがスイッチング動作を行なう。この結果、コイルLでエネルギーの蓄積と放出とが繰り返される。このとき、第1実施形態と同様にトランジスタQ2のドレイン側に放出の際の高電圧が現れる。これは、トランジスタQ2がオフ状態であっても、トランジスタQ2に寄生ダイオードD2があるため、同寄生ダイオードD2を介してトランジスタQ2のドレイン側に高電圧が生ずるためである。
このようにして、トランジスタQ1のみのオンオフ駆動の繰り返しにより、トランジスタQ2のドレイン側に高電圧が発生する。この繰り返しによって、トランジスタQ2のドレイン側に高電圧が繰り返し発生し、コンデンサC2で平滑(充電)され、出力電圧VBPIG として点P2に生じる。
回生時は、デューティ比αが「−」となるため、PWM演算部130から、トランジスタQ1,Q2が交互にオンオフ駆動されるようにデューティ比駆動信号が印加される。すなわち、制御装置20は、モータ6が回生状態であると判定すると、トランジスタQ1,Q2を交互にオンオフとするように制御する。このため、回生時は、第1実施形態と同じ作用となる。
なお、この回生状態が継続して行われると、デューティ比αが小さくなる結果、トランジスタQ1が全オフとなり、トランジスタQ2だけがオンしている状態となる。このようにして、回生電流がバッテリBに流れて吸収される。
第2実施形態では以下のような特徴がある。
(1) 第2実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。さらに、制御装置20は、力行状態と判定すると、トランジスタQ1(第1スイッチング素子)のみをオンオフして制御するようにした。
この結果、力行時においては、第1実施形態と同様に従来例のダイオードDよりも発熱が少なく、ロスを低減できる。
(2) 又、制御装置20が、回生状態と判定すると、トランジスタQ1,Q2の両者を交互にオンオフ制御するようにした。
この結果、回生時においても、第1実施形態と同様に出力電圧VBPIGの上昇を回避することができる。
3.第3実施形態(参考実施形態)
次に、第3実施形態を図8を参照して説明する。
なお、第3実施形態から第10実施形態では、第2実施形態と同様に制御装置20(PWM演算部130)が操舵状態判定手段を構成している。
そして、第3実施形態では、第2実施形態と構成は同一であるが、制御が異なっている。すなわち、力行時は、第2実施形態と同様にトランジスタQ1,Q2に対してデューティ比駆動信号を印加するが、回生時においては、下記のように異なっている。
すなわち、回生時においては、PWM演算部130は、トランジスタQ1に全オフとなるデューティ比駆動信号を印加し、トランジスタQ2には、所定デューティ比となるデューティ比駆動信号を印加するようにされている。なお、図8において、トランジスタQ1に印加するデューティ比駆動信号のTα1(=T×α)は第2実施形態のTαと同じである。一方、トランジスタQ2に対しては、Tα2=T×(1−|α|)をオン時間とするデューティ比駆動信号を印加するようにされている。
なお、力行状態でのトランジスタQ1のデューティ比αの大きさは、第2実施形態と同様に0≦α≦α0<1とし、PWM演算部130にてデューティ比αを算出した結果が、α0を超える場合には、デューティ比αとして、α0が決定される。回生状態でのトランジスタQ2でのデューティ比(1−|α|)は、0≦|α|≦1としている。
第3実施形態では以下のような特徴がある。
(1) 第3実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。制御装置20は、力行状態と判定すると、トランジスタQ1(第1スイッチング素子)のみをオンオフ制御し、回生状態と判定すると、トランジスタQ2のみをオンオフ制御するようにした。
この結果、力行時(力行状態)では、第2実施形態の力行時(力行状態)のときと同じ効果を奏する。
又、回生時(回生状態)では、トランジスタQ2のみがオンオフ駆動されるため、第1実施形態の回生時(回生状態)と同様に、本実施形態では、トランジスタQ2をオンした際に流れる電流による発熱量(ロス)が少ないため、効率を上げることができる。
4.第4実施形態(参考実施形態)
次に、第4実施形態を図9及び図10を参照して説明する。第4実施形態の構成は、第2実施形態と同一の構成とされており、第2実施形態と制御が異なっている。
すなわち、第4実施形態では、力行時は、図9に示すようにPWM演算部130からのデューティ比駆動信号によりトランジスタQ1,Q2が交互にオンオフ駆動される。すなわち、制御装置20は、力行状態と判定すると、トランジスタQ1,Q2をオンオフ駆動制御する。本実施形態では、図9において、200μsecの演算周期毎に、デューティ比αの演算処理が行われ、その演算結果が演算直後においてトランジスタQ1のオンオフ駆動に反映するようにされている。なお、パルス周期Tは50μsecとされている。
又、回生時は、図10に示すように第3実施形態と同様にトランジスタQ1に全オフとなるデューティ比駆動信号を印加し、トランジスタQ2には、所定デューティ比となるデューティ比駆動信号を印加するようにされている。すなわち、制御装置20は回生状態と判定すると、トランジスタQ1を全オフとし、トランジスタQ2をオンオフ駆動制御する。
なお、第4実施形態では、力行状態でのデューティ比αは、第1実施形態と同じである。
第4実施形態の回生状態でのトランジスタQ2でのデューティ比(1−|α|)は、0≦|α|≦1としている。
従って、第4実施形態では以下のような特徴がある。
(1) 第4実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。制御装置20は、力行状態と判定すると、トランジスタQ1,Q2を交互にオンオフ制御し、回生状態と判定すると、トランジスタQ2のみをオンオフ制御するようにした。
このようにしても、力行時(力行状態)には、第1実施形態の力行時(力行状態)における効果と同様の効果を奏する。又、第2、第3実施形態の力行時(力行状態)では、トランジスタQ2は全オフとして、寄生ダイオードD2を介して、コンデンサC2に充電するようにして昇圧していた。このため、力行時(力行状態)においては、寄生ダイオードD2が発熱する。それに対して、本実施形態は、力行時(力行状態)に昇圧のためトランジスタQ2をオン駆動し、寄生ダイオードD2よりもトランジスタQ2をオンした際に流れる電流による発熱量(ロス)を少なくしている。このことから、昇圧時(力行時)の効率を上げることができる。
又、回生時においては、第3実施形態の回生時(回生状態)と同じ効果を奏する。
5.第5実施形態(参考実施形態)
次に第5実施形態を図11〜図13を参照して説明する。
本実施形態では、第1実施形態の構成中、印加点P1とトランジスタQ1のドレイン間に、ブートストラップ回路BSが接続されているところが異なり、他の構成は第1実施形態と同様に構成されている。ブートストラップ回路BSは、ダイオードD3及びブートストラップコンデンサ(以下、単にコンデンサという)C3からなる。ダイオードD3のアノードは印加点P1に接続され、カソードがコンデンサC3に接続されている。
なお、第1〜4実施形態では、説明しなかったが、第5実施形態と異なり、第1〜4実施形態ではトランジスタQ2のゲートには、制御装置20内に図示しないチャージポンプが接続されており、必要なときにゲート電位を印加できるようになっている。従って、例えば第3、第4実施形態での作用で説明したように、回生時にトランジスタQ1が全オフのときにおいても、トランジスタQ2は駆動電源(チャージポンプ)から印加され、オンオフ駆動できるようにされている。
第5実施形態では、さらに、制御装置20は、CPU21に接続されたICからなるプリドライバ24を備えている。プリドライバ24はプリドライバ手段を構成する。
ダイオードD3のカソードはプリドライバ24のVB端子に接続されている。
又、プリドライバ24のVS端子は、トランジスタQ1のドレインに接続されている。プリドライバ24は、CPU21からのトランジスタQ2に関するデューティ比駆動信号に基づいて、コンデンサC3にチャージした電圧を、HO端子を介してトランジスタQ2のゲートに印加可能にされている。
印加点P1はプリドライバ24のVCC端子に接続されている。そして、プリドライバ24は、CPU21からのトランジスタQ1に関するデューティ比駆動信号に基づいて、印加点P1の電圧(本実施形態ではDC12V)をLO端子を介してトランジスタQ1のゲートに印加可能にされている。
(作用)
次に、第5実施形態の作用を説明する。
制御装置20は、第4実施形態と同様にモータ6が力行状態であると判定すると、トランジスタQ1,Q2を交互にオンオフ制御する(図12参照)。このとき、トランジスタQ1をオンすると、トランジスタQ1のドレインがグランド電位に落ちる。すると、コンデンサC3が印加点P1の電位(DC12V)にチャージされる。又、次にトランジスタQ1がオフすると、前記トランジスタQ1のドレイン電位が12Vになるため、ダイオードD3とコンデンサC3との接続点の電位が24Vになる。
このように、トランジスタQ1がオフすると、ダイオードD3とコンデンサC3の接続点の電位を、トランジスタQ2のソース電位よりも高くすることができる。
従って、このコンデンサC3の電圧が、トランジスタQ2に関するデューティ比駆動信号(オン信号の場合)に基づいて、トランジスタQ2のゲートに印加される。このとき、トランジスタQ2のゲート電位Vgがソース電位Vsよりも高いため、トランジスタQ2がオンする。
なお、本実施形態において、デューティ比αの演算周期は、力行状態、回生状態に関係なく第4実施形態と同様の周期で行われる。
又、制御装置20は、モータ6が回生状態であると判定すると、図13に示すようにトランジスタQ1,Q2を制御する。
すなわち、制御装置20は、トランジスタQ1,Q2を交互にオンオフ駆動する第1期間Taと、トランジスタQ1をオフするとともにトランジスタQ2のみをオンオフする第2期間Tbが繰り返し存在するように制御する。
第5実施形態では、第1期間Taは、充電期間に相当するとともに、α演算が反映しない非反映期間に相当する。第2期間Tbは、放電期間に相当するとともに、α演算が反映する反映期間に相当する。
すなわち、制御装置20は一定周期毎(本実施形態では、演算周期である200μsec毎)に、トランジスタQ1,Q2をそれぞれ固定デューティ比α1及び固定デューティ比(1−|α1|)にてオンオフ駆動する。
従って、第1期間Ta中の、トランジスタQ1のオンデューティ時間To(To=パルス周期×α1)は、固定値である。そして、第1期間Ta中、トランジスタQ1は固定デューティ比α1にてオンオフ駆動され、コンデンサC3を充電する。なお、固定デューティ比α1データは、予めROM22に格納されており、制御装置20が回生状態と判定すると、この値に基づき第1期間Taにおいて、PWM制御する。なお、本実施形態では、パルス周期は50μsecである。
そして、このオンデューティ時間Toは、第2期間Tbにおいて、トランジスタQ1がオフされていても、トランジスタQ2のゲート電位Vgがソース電位Vsよりも高い状態を保持できる値とされている。すなわち、ソース電位Vsよりもゲート電位Vgが常に大きければ、トランジスタQ2は、オン制御できるからである。
なお、第5実施形態での力行状態でのデューティ比α、デューティ比(1−|α|)は、第1実施形態と同じである。又、回生状態の制御においては、トランジスタQ2のデューティ比(1−|α|)はトランジスタQ2が全オンする100%のデューティ比を含む。すなわち、0≦|α|≦1としている。
従って、第5実施形態によれば、下記の効果を奏する。
(1) 第5実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。又、第1スイッチング素子及び第2スイッチング素子をnチャンネル形MOSFETのトランジスタQ1,Q2にて構成した。さらに、バッテリBとトランジスタQ1のドレイン間に接続されるとともに、トランジスタQ2のゲートに印加する電圧を発生するブートストラップ回路BSを設けた。又、前記ブートストラップ回路BSにはコンデンサC3(ブートストラップコンデンサ)を含むように、同コンデンサC3の電位をトランジスタQ2のゲートに印加可能にしている。
一方、制御装置20は、力行状態と判定すると、トランジスタQ1,Q2を交互にオンオフ制御するようにした。又、回生状態と判定すると、トランジスタQ2をオンオフ制御するとともに、トランジスタQ1を固定デューティ比α1にてオンオフ制御する第1期間Ta(200μsec)と、トランジスタQ1をオフに保持するようにした第2期間Tb(200μsec)を含む一定周期毎で制御を行うようにした。
上記のように、第5実施形態では、第1実施形態等のチャージポンプ方式にてトランジスタQ2の電源を確保している場合と異なっている。すなわち、ブートストラップ回路BSを、力行状態及び回生状態のときのトランジスタQ2のゲートの電源としている。
第1実施形態のようにチャージポンプ方式でトランジスタQ2の電源とした場合には、回生状態の際にも、トランジスタQ2を全オンとしても問題なく作動する。
しかし、第5実施形態のようにブートストラップ回路BSを設けた場合、回生時に仮にトランジスタQ1をオンしないと、コンデンサC3は充電されないことになる。このため、コンデンサC3が放電して、いずれゲート電位Vgがソース電位Vsよりも下がり、トランジスタQ2がオンできなくなって回生電流の吸収ができなくなる。
しかし、第5実施形態では、回生時にはトランジスタQ1を固定デューティ比α1にてPWM制御する第1期間Taを設けているため、第2期間TbにてコンデンサC3を放電しても、十分にトランジスタQ2をオンオフ駆動できる効果を奏する。
この結果、回生状態の際にも、回生電流をバッテリに吸収することができる。
前記第5実施形態を下記のようにしても良い。
○第5実施形態では、回生時には、一定周期毎に、固定デューティ比にて第1スイッチング素子であるトランジスタQ1をオンオフ制御するようにした。この代わりに、前記第1期間Taは、トランジスタQ1を固定デューティ比にてオンオフ制御し、第2期間Tbを可変デューティ比にてオンオフ制御するようにしても良い。
6.第6実施形態(参考実施形態)
次に第6実施形態を図14〜図17を参照して説明する。なお、第6実施形態は、第5実施形態の回路構成と同じであって、回生時の制御を変形した実施形態であるため、第5実施形態と同一構成については、同一符号を付してその説明を省略する。
なお、図16、図17は、昇圧回路100の作用を示すためのものであって、説明の便宜上、ブートストラップ回路BS等の回路を省略し、本実施形態における昇圧回路100の実質的な作用を等価回路的に示したものである。
図14は、制御装置20のCPU21において、回生時の制御プログラムで実行される機能を示す制御ブロック図である。
第6実施形態では、回生時の制御において、図14に示すようにガード機能部140を、PWM演算部130と昇圧回路100との間に設けている。
なお、本実施形態では、力行時の制御は、第5実施形態と同様に行う。
回生時の制御においては、第5実施形態と異なり、トランジスタQ1を全オフとし、トランジスタQ2がオンオフ駆動するようにPWM制御される。そして、トランジスタQ2のデューティ比(1−|α|)はトランジスタQ2が全オンとならないように、言い換えると、必ずオフできるようにガード(制限)されている。
具体的には、PWM演算部130で演算されたデューティ比|α|がPWM演算部130により算出されたとき、|α|がガード値(制限値)αg(0≦|α|<αg<1)を超える場合には、αgを選択するようにされている。すなわち、この場合には、トランジスタQ2はデューティ比(1−αg)にてオン駆動される。
なお、ガード値αg以下のデューティ比とした場合、後述するトランジスタQ2がオフしたとき(モードII時)のコンデンサC3の充電により、トランジスタQ2のゲート電位Vgがソース電位Vsよりも高く維持するようにされている。すなわち、モードIIでは、必ずトランジスタQ2がオフするように設定されている。
図15は回生状態でのトランジスタQ1,Q2の駆動パターンを示している。
同図に示すように本実施形態においても、第1期間Ta及び第2期間Tbが交互に繰り返される駆動パターンとされている。第6実施形態は第5実施形態と同様に第1期間Taは、充電期間に相当するとともに、α演算が反映しない非反映期間に相当する。第2期間Tbは、放電期間に相当するとともに、α演算が反映する反映期間に相当する。
第6実施形態では第1期間Ta中は、モードIとモードIIとが交互に繰り返される。
図15に示す第1期間TaのモードI(トランジスタQ2がオン、トランジスタQ1がオフ)のときは、図16に示すようにモータ6で発生した回生電力は、トランジスタQ2、コイルLを通じて回生電流I1がバッテリBに流れ込み吸収される。
又、図15に示す第1期間TaのモードII(トランジスタQ2がオフ、トランジスタQ1がオフ)のときは下記の通りとなる。すなわち、モードIからモードIIに遷移したときに、図17に示すようにトランジスタQ2はオフする。しかし、コイルL及びモータ6の巻線(図示しない)に流れている電流は直ちには零にはならない。コイルLではトランジスタQ1の寄生ダイオードD1がオンして電流I2はGND(グランド)→トランジスタQ1→コイルL→バッテリBに流れ、コイルLに蓄えられている電磁エネルギはバッテリBに吸収される。
この時、コイルLと寄生ダイオードD1のカソードとの接続点P3の電位は、寄生ダイオードD1がオンすることにより、GND(グランド)電位に落ちるため、コンデンサC3をチャージすることができる。
一方、モータ6の図示しない巻線ではトランジスタQ2がオフし、回生電流が流れるルートが遮断されるため、この回生電流I3によりコンデンサC2がチャージされる。
このようにモードIIにおいては、トランジスタQ2が必ずオフし、ブートストラップ回路BSのコンデンサC3がチャージされる。この結果、トランジスタQ2のゲート電位Vgをソース電位Vsよりも高く維持することができ、その後のトランジスタQ2のオンを可能にしている。すなわち、第6実施形態では、回生状態ではトランジスタQ1が全オフとなるが、上記のようにモードII時において、トランジスタQ2が必ずオフしてコンデンサC3がチャージされるため、トランジスタQ2のオンが可能である。
第2期間Tbは、第5実施形態と同様にα演算が反映されてトランジスタQ2がPWM制御にてオンオフ駆動される。
第6実施形態では、下記の効果がある。
(1) 第6実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。
又、第1スイッチング素子及び第2スイッチング素子をnチャンネル形MOSFETのトランジスタQ1,Q2にて構成した。さらに、バッテリBとトランジスタQ1のドレインに接続されるとともに、トランジスタQ2のゲートに印加する電圧を発生するブートストラップ回路BSを設けた。
一方、制御装置20は、力行状態と判定すると、トランジスタQ1,Q2を交互にオンオフ制御するようにした。
又、回生状態と判定すると、トランジスタQ1を全オフし、トランジスタQ2(第2スイッチング素子)のみをオンオフ制御のためにPWM制御するとともに、同PWM制御では所定デューティ比(1−αg)を越えてPWM制御しないように、デューティ制限するようにした。すなわち、トランジスタQ2には必ずオフする期間を含むようにオンオフ制御すべくPWM制御した。
この結果、回生状態では、必ずトランジスタQ2がオフする。このため、トランジスタQ2がオフしている時間(モードIIの期間)に、電流I2はGND(グランド)→トランジスタQ1(寄生ダイオードD1)→コイルL→バッテリBに流れ、コイルLに蓄えられている電磁エネルギをバッテリBに吸収させることができる。
又、寄生ダイオードD1がオンすると、コンデンサC3と寄生ダイオードD1との接続点がGND電位になるため、コンデンサC3を充電でき、トランジスタQ2を駆動させることができる。
(2) 又、第6実施形態においても、回生状態でトランジスタQ2がオンされるので、トランジスタQ2をオンした際に流れる電流による発熱量(ロス)が少ないため、効率を上げることができる。
7.第7実施形態(参考実施形態)
次に第7実施形態を図2、図18及び図19を参照して説明する。
第7実施形態は、第4実施形態の構成及び第4実施形態の回生時のトランジスタQ1,Q2の制御と同一とされている。そして、力行状態のトランジスタQ1,Q2の制御が第4実施形態と異なっている。
なお、本実施形態の制御装置20は、操舵状態判定手段及びモータ6の負荷状態を判定する負荷状態判定手段を構成している。
負荷状態判定手段としての制御装置20は、CPU21が、図2に示すように入力した操舵トルクτ(操舵トルク信号)に基づいてモータ6の負荷状態が高負荷か低負荷であるかを判定する。本実施形態では、判定基準値として、0を採用し、操舵トルクτが0の場合を低負荷とし、それ以外の場合を高負荷と判定している。
なお、判定基準値は0以外であってもよく、要は、昇圧回路100により、昇圧が必要でない場合の値を判定基準値とし、その判定基準値以下の操舵トルクτが検出された場合を低負荷であるとし、そうでない場合を高負荷としてもよい。
そして、制御装置20が力行状態と判定し、かつ、モータ6の負荷状態が高負荷であると判定した際には、図18に示すように第4実施形態の力行状態のときと同様に、トランジスタQ1,Q2を交互にオンオフ駆動する。なお、制御装置20が力行状態と判定し、かつ、モータ6の負荷状態が高負荷であると判定した際には、第2実施形態の力行状態のときと同様に、トランジスタQ1をオンオフ駆動し、一方、トランジスタQ2を全オフとしてもよい(図7)。
又、制御装置20が力行状態と判定し、かつ、モータ6の負荷状態が低負荷であると判定した際には、図19に示すように、トランジスタQ1をPWM制御によりオンオフ駆動するとともに、トランジスタQ2を全オフとするデューティ比駆動信号をそれぞれ印加する。
この結果、モータ6の負荷状態が低負荷の場合には、トランジスタQ2が全オフとなり、トランジスタQ2がオン作動することがない。
第7実施形態では下記の効果がある。
(1)第7実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。又、制御装置20は、操舵トルクτ(操舵トルク信号)に基づいてモータ6(電動機)の負荷状態が高負荷か低負荷であるかを判定するように構成した(負荷状態判定手段)。
制御装置20は、力行状態と判定し、かつ、モータ6の負荷状態が低負荷であると判定すると、トランジスタQ1(第1スイッチング素子)のみをオンオフ制御(PWM制御)し、かつ、トランジスタQ2を全オフするように制御した。又、力行状態と判定し、かつ、モータ6の負荷状態が高負荷であると判定すると、両トランジスタQ1,Q2を交互にオンオフ制御(PWM制御)するようにした。
一方、制御装置20は回生状態と判定すると、トランジスタQ2(第2スイッチング素子)のみをオンオフ制御(PWM制御)するようにした。
この結果、力行状態であって、モータ6の負荷状態が、低負荷の場合、特に本実施形態では無負荷の場合には、トランジスタQ2が全オフするため、トランジスタQ2の発熱がなくなって、スイッチング損失(ロス)がなくなり、効率を上げることができる。
又、操舵トルクτが0になった場合には、トランジスタQ1のデューティ比αは0%(オンデューティ時間Tα=0)となってくるので、トランジスタQ1は全オフとなり、トランジスタQ1のスイッチング損失もなくなる。
(2) 回生時には、第4実施形態の回生時と同様の効果を奏する。
8.第8実施形態(参考実施形態)
次に、第8実施形態について説明する。
前記第7実施形態では、チャージポンプをトランジスタQ2の電源としていたが、第8実施形態では、第7実施形態の構成中、チャージポンプの代わりにトランジスタQ2の電源としてブートストラップ回路BSを備えた構成としたところが異なっている。すなわち、第8実施形態の構成は、第5実施形態と同一の構成としているところが異なっている。
そして、第8実施形態では、制御装置20が第7実施形態と同様に操舵状態判定手段として力行状態と判定した場合には、制御装置20は負荷状態判定手段として、モータ6の負荷状態が低負荷か、高負荷か否かを判定する。高負荷と判定したときには、制御装置20は第7実施形態と同様に図18に示すようにトランジスタQ1,Q2にデューティ比駆動信号を印加する。又、低負荷と判定した場合には第7実施形態と同様に図19に示すようにトランジスタQ1,Q2にデューティ比駆動信号を印加する。
さらに、制御装置20が回生状態と判定した場合には、第5実施形態と同様に図13に示すようにトランジスタQ1,Q2にデューティ比駆動信号を印加する。
この結果、第8実施形態では、下記の効果を奏する。
(1) 第8実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。又、第1スイッチング素子及び第2スイッチング素子をnチャンネル形MOSFETのトランジスタQ1,Q2にて構成した。さらに、バッテリBとトランジスタQ1のドレインに接続されるとともに、トランジスタQ2のゲートに印加する電圧を発生するブートストラップ回路BSを設けた。同ブートストラップ回路BSにはコンデンサC3を含むように構成し、コンデンサC3の電位を印加可能に同コンデンサをトランジスタQ2(第2スイッチング素子)のゲートに接続した。
制御装置20は、力行状態と判定し、かつ、モータ6の負荷状態が低負荷であると判定すると、トランジスタQ1(第1スイッチング素子)のみをオンオフ制御(PWM制御)し、かつ、トランジスタQ2を全オフするように制御した。又、力行状態と判定し、かつ、モータ6の負荷状態が高負荷であると判定すると、両トランジスタQ1,Q2を交互にオンオフ制御(PWM制御)するようにした。
この結果、第7実施形態の(1)の効果と同様の効果を奏する。
(2)又、第8実施形態では、制御装置20は、回生状態と判定すると、両トランジスタQ1,Q2を固定デューティ比α1にてオンオフ制御する第1期間Taと、トランジスタQ1をオフに保持し、かつトランジスタQ2をオンオフ駆動制御するようにした第2期間Tbを含む周期で制御を行うようにした。
この結果、第5実施形態の(1)の効果と同様の効果を奏する。
9.第9実施形態(参考実施形態)
次に、第9実施形態について説明する。
第9実施形態は、第8実施形態のハード構成と同一構成であり、かつ、力行状態のときの制御も第8実施形態と同様に制御するようにされている。そして、第9実施形態は、回生状態のときの制御が第8実施形態と異なっている。
なお、本実施形態においても、第8実施形態と同様に制御装置20は、操舵状態判定手段及び負荷状態判定手段を構成している。
そして、制御装置20は、回生状態と判定したときには、第6実施形態と同様に図15に示すようにトランジスタQ1,Q2にデューティ比駆動信号を印加するようにされている。
この結果、第9実施形態では、下記の効果を奏する。
(1) 目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。又、第1スイッチング素子及び第2スイッチング素子をnチャンネル形MOSFETのトランジスタQ1,Q2にて構成した。さらに、バッテリBとトランジスタQ1のドレインに接続されるとともに、トランジスタQ2のゲートに印加する電圧を発生するブートストラップ回路BSを設けた。同ブートストラップ回路BSにはコンデンサC3を含むように構成し、コンデンサC3の電位を印加可能に同コンデンサをトランジスタQ2(第2スイッチング素子)のゲートに接続した。
制御装置20は、力行状態と判定し、かつ、モータ6の負荷状態が低負荷であると判定すると、トランジスタQ1(第1スイッチング素子)のみをオンオフ制御(PWM制御)し、かつ、トランジスタQ2を全オフするように制御した。又、力行状態と判定し、かつ、モータ6の負荷状態が高負荷であると判定すると、両トランジスタQ1,Q2を交互にオンオフ制御(PWM制御)するようにした。
この結果、第7実施形態の(1)の効果と同様の効果を奏する。
(2) 又、制御装置20は、回生状態と判定すると、トランジスタQ1を全オフし、トランジスタQ2(第2スイッチング素子)のみをオンオフ制御のためにPWM制御するとともに、同PWM制御では所定デューティ比(1−αg)を越えてPWM制御しないように、デューティ制限するようにした。すなわち、トランジスタQ2には必ずオフする期間を含むようにオンオフ制御するためにPWM制御した。
この結果、回生状態では、必ずトランジスタQ2がオフする。このため、トランジスタQ2がオフしている時間(モードIIの期間)に、電流I2はGND(グランド)→トランジスタQ1(寄生ダイオードD1)→コイルL→バッテリBに流れ、コイルLに蓄えられている電磁エネルギをバッテリBに吸収させることができる。
又、寄生ダイオードD1がオンすると、コンデンサC3と寄生ダイオードD1との接続点がGND電位になるため、コンデンサC3を充電でき、トランジスタQ2を駆動させることができる。
10.第10実施形態(参考実施形態)
次に、第10実施形態について図12、図20を参照して説明する。
第10実施形態では、第5実施形態と同一構成については、同一符号を付してその説明を省略し、第5実施形態の構成と異なるところを中心に説明する。
第5実施形態では、ダイオードD3のアノードは印加点P1に接続した。それに対して、本実施形態ではブートストラップ回路BSを構成しているダイオードD3のアノードが電圧印加点P2、すなわち、トランジスタQ2のドレインに接続されているところが異なっている。
他の構成は第5実施形態と同一構成である。
例えば、プリドライバ24は、CPU21からのトランジスタQ2に関するデューティ比駆動信号に基づいて、コンデンサC3にチャージした電圧を、HO端子を介してトランジスタQ2のゲートに印加する。又、プリドライバ24は、CPU21からのトランジスタQ1に関するデューティ比駆動信号に基づいて、印加点P1の電圧(本実施形態ではDC12V)をLO端子を介してトランジスタQ1のゲートに印加する。
本実施形態では、制御装置20は、操舵状態判定手段を構成している。
(作用)
上記のように構成された第10実施形態の作用を説明する。
制御装置20が、第5実施形態と同様にモータ6が力行状態であると判定すると、トランジスタQ1,Q2を交互にオンオフ制御する(図12参照)。この結果、コイルLでエネルギーの蓄積と放出とが繰り返され、トランジスタQ2のドレイン側に放出の際の高電圧が現れる。
すなわち、トランジスタQ1がオンして、トランジスタQ2がオフすると、トランジスタQ1を介して接地側に電流が流れる。次にトランジスタQ1がオフとなると、コイルLに流れる電流が遮断される。コイルL1に流れる電流が遮断されると、この電流の遮断による磁束の変化を妨げるように、オン作動しているトランジスタQ2のドレイン側に高電圧が発生する。この繰り返しによって、トランジスタQ2のドレイン側に高電圧が繰り返し発生し、コンデンサC2で平滑(充電)され、出力電圧VBPIG として点P2に生じる。
このようにして、トランジスタQ2のドレイン電位が上がるため、ブートストラップ回路BSのコンデンサC3もブートストラップの働きで上がる。すなわち、トランジスタQ1をオンすると、トランジスタQ1のドレインがグランド電位に落ちる。すると、コンデンサC3が電圧印加点P2の電位(トランジスタQ2のドレイン電位)にチャージされる。又、次にトランジスタQ1がオフすると、前記トランジスタQ1のドレイン電位が12Vになるため、ダイオードD3とコンデンサC3との接続点の電位が「12V+トランジスタQ2のドレイン電位」となる。
このように、トランジスタQ1がオフすると、ダイオードD3とコンデンサC3の接続点の電位を、トランジスタQ2のソース電位よりも高くすることができる。
従って、このコンデンサC3の電圧が、トランジスタQ2に関するデューティ比駆動信号(オン信号の場合)に基づいて、トランジスタQ2のゲートに印加される。このとき、トランジスタQ2のゲート電位Vgがソース電位Vsよりも高いため、トランジスタQ2がオンする。
又、制御装置20は、モータ6が回生状態であると判定すると、トランジスタQ1を全オフし,トランジスタQ2をオンオフ制御(PWM制御)する。
この場合、回生状態であるため、トランジスタQ1を全オフとしても、モータ6で発生した回生電力のため、トランジスタQ2のドレイン電位が上がる。このため、トランジスタQ1のオフによってトランジスタQ1のドレイン電位が12Vになって、ダイオードD3とコンデンサC3との接続点の電位が「12V+トランジスタQ2のドレイン電位」となる。
この結果、トランジスタQ1がオフしている場合、ダイオードD3とコンデンサC3の接続点の電位を、トランジスタQ2のソース電位よりも高くすることができる。
従って、このコンデンサC3の電圧が、トランジスタQ2に関するデューティ比駆動信号(オン信号の場合)に基づいて、トランジスタQ2のゲートに印加される。このとき、トランジスタQ2のゲート電位Vgがソース電位Vsよりも高いため、トランジスタQ2がオンする。
従って、第10実施形態によれば、下記の効果を奏する。
(1) 第10実施形態では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいて、モータ6の力行、回生状態を判定する制御装置20(操舵状態判定手段)を設けた。
又、第1スイッチング素子及び第2スイッチング素子をnチャンネル形MOSFETのトランジスタQ1,Q2にて構成した。さらに、トランジスタQ2のドレインにコンデンサC3(ブートストラップコンデンサ)を含むブートストラップ回路BSを接続し、同ブートストラップ回路BSをトランジスタQ2(第2スイッチング素子)の駆動源として、前記コンデンサC3の電位を印可可能に同コンデンサC3をトランジスタQ2のゲートに接続した。
一方、制御装置20は、力行状態と判定すると、トランジスタQ1,Q2を交互にオンオフ制御し、回生状態と判定すると、トランジスタQ2のみをオンオフ制御した。
この結果、第10実施形態においても、回生状態では、トランジスタQ1を全オフした状態でも、トランジスタQ2のドレイン電位が回生電力により上がり、結果的に、トランジスタQ2のゲート電位Vgをソース電位Vsよりも高くする。このため、トランジスタQ2をオンオフ制御できるため、回生電流をバッテリBに吸収することができる。
(2) 第10実施形態は、第5実施形態のブートストラップ回路BSの接続構成の場合に比較して、下記の利点がある。
第5実施形態では、回生時には、トランジスタQ1を固定デューティ比α1にて、PWM制御する第1期間Taを設けることにより、第2期間TbにてコンデンサC3を放電しても、トランジスタQ2をオンオフ駆動できるようにしていた。それに対して、第10実施形態では、トランジスタQ1を全オフにすることができるため、トランジスタQ1による発熱がなくなり、効率を上げることができる。
(3) チャージポンプ方式は、コスト的に高い回路となるが、第10実施形態においては、チャージポンプ方式を採用せず、ダイオードとコンデンサからなる簡単な回路にて構成できるため、コスト的には、チャージポンプ方式よりも安価にすることができる。又、回生時の性能は、チャージポンプ方式と同等の性能を得ることができる。
11.第11実施形
次に第11実施形態を図21及び図22を参照して説明する。
第11実施形態は、第2実施形態及び第1実施形態の構成と同一であり、目標出力電圧VBPIG*を可変にしたところが異なっているため、異なるところを中心にして説明する。
本実施形態のトランジスタQ1,Q2を制御する制御装置20について説明する。
図21は、制御装置20の機能ブロック図を示している。すなわち、CPU21内部において、プログラムで実行される機能を示す制御ブロック図である。
同制御ブロック図で図示されている各部は、独立したハードウエアを示すものではなく、CPU21で実行される機能を示す。制御装置20は昇圧回路制御手段を構成する。
CPU21は、目標出力電圧設定部160、演算器110、PID制御部120、PWM演算部130、A/D変換部150を備えている。
前記演算器110、PID制御部120、PWM演算部130、A/D変換部150は第1実施形態で説明したので、そちらの説明を参照されたい。
第1実施形態及び第2実施形態では、目標出力電圧VBPIG*を例えば20Vのように一定にしていた。それに対して、本実施形態では、目標出力電圧設定部160により、q軸指令電流Iq*に応じて、目標出力電圧VBPIG*を可変にしている。具体的には、目標出力電圧設定部160は図21に示すようにq軸指令電流Iq*が大きい領域M3では、そうでない領域M1,M2に比して目標出力電圧VBPIG*を低下させるように設定する。すなわち、目標出力電圧設定部160は、q軸指令電流Iq*と目標出力電圧VBPIG*とからなる2次元マップにて構成されており、ROM22に格納されている。そして、CPU21は、q軸指令電流Iq*を入力すると、この2次元マップを利用して、目標出力電圧VBPIG*を算出する。
これは、例えば、据え切り、低速走行時等の大出力時には、モータ回転数の追従性は要求されないので、昇圧させる必要がない。この場合、昇圧用のトランジスタQ1,Q2を完全に停止してもよい。低速(車速0の場合を含む)走行時ではq軸指令電流Iq*は大きい領域M3に入ってくるため、q軸指令電流Iq*が大きい領域M3では目標出力電圧VBPIG*を低下させてやるのである。この結果、昇圧回路100は昇圧を停止するか、昇圧レベルを領域M1,M2よりも低下する。
又、中高速走行では、q軸指令電流Iq*はそれほど必要ではないが、モータ回転数だけ欲しい領域M2であるので、q軸指令電流Iq*が大きい領域M3より以上のレベルで、昇圧回路100にて昇圧させるのである。
又、高速走行では、モータ回転数の追従性が要求されるため、昇圧させる必要がある領域M1となる。このため、q軸指令電流Iq*が大きい領域M2より以上のレベルで、昇圧回路100にて昇圧させるのである。
力行状態及び、回生状態時での制御は図22に示すように第2実施形態と同様に制御する。
第11実施形態の効果は下記の効果がある。
(1) 第11実施形態においても、第2実施形態と同様の力行時、回生時の制御を行っているため、第2実施形態と同様の効果を奏する。
(2) 第11実施形態では、制御装置20(昇圧回路制御手段)は、昇圧回路100の目標出力電圧VBPIG*を設定する目標出力電圧設定部160(目標出力電圧設定手段)と、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいてPID制御演算するPID制御部120(少なくともP制御する制御演算手段)と、PID制御部120の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算部130(PWM演算手段)とを含むようにした。そして、PWM演算部130にて演算されたデューティ比αに基づいて第1、第2スイッチング素子Q1,Q2をオンオフ制御するようにした。
さらに、目標出力電圧設定部160はモータ6の運転状況パラメータであるq軸指令電流Iq*(電動機制御信号)を入力すると、その値に応じて目標出力電圧VBPIG*を可変にした。
この結果、据え切り、低速走行時等の大出力時には、モータ回転数の追従性は要求されないので、これらの場合には、そうでない場合に比してq軸指令電流Iq*が大きい領域M3では目標出力電圧VBPIG*を低下させる。このため、コイルLやトランジスタQ1,Q2での発熱を抑えることができ、ロスがなくなり、効率を上げることができる。
12.第12実施形
次に第12実施形態を図23を参照して説明する。
第12実施形態は、第11実施形態の一部を変更したものである。
第11実施形態の目標出力電圧設定部160は、q軸指令電流Iq*と目標出力電圧VBPIG*とからなる2次元マップにて構成した。本実施形態の目標出力電圧設定部160は、車速Vと目標出力電圧VBPIG*とからなる2次元マップにて構成されているところが異なっている。
すなわち、本実施形態では、目標出力電圧設定部160により、車速Vに応じて、目標出力電圧VBPIG*を可変にしている。具体的には、目標出力電圧設定部160は図23に示すように車速Vが低速走行領域V1では、そうでない領域V2,V3に比して目標出力電圧VBPIG*を小さくなるように設定する。このマップはROM22に格納されている。そして、CPU21は、車速Vを入力すると、この2次元マップを利用して、目標出力電圧VBPIG*を算出する。
従って、第12実施形態では、下記の作用をなす。
第12実施形態においても、第11実施形態と同様に、据え切り、低速走行時等の大出力時には、モータ回転数の追従性は要求されないので、昇圧させる必要がない。従って、低速走行の場合には、この場合、昇圧用のトランジスタQ1,Q2を完全に停止してもよい。低速(車速0の場合を含む)走行領域V1では目標出力電圧VBPIG*を低下させてやるのである。この結果、昇圧回路100は昇圧を停止するか、昇圧レベルを領域V2,V3よりも低下する。
又、中高速走行領域V2では、モータ回転数だけ欲しい領域であるので、低速走行領域V1より以上のレベルで、昇圧回路100にて昇圧させるのである。
又、高速走行領域V3では、モータ回転数の追従性が要求されるため、昇圧させる必要がある領域となる。このため、中高速走行領域V2より以上のレベルで、昇圧回路100にて昇圧させるのである。
力行状態及び、回生状態時での制御は第11実施形態の図22に示すように同様に制御する。
従って、第12実施形態は、下記の効果を奏する。
(1) 第11実施形態の(1)と同様の効果を奏する。
(2) 第12実施形態では、制御装置20(昇圧回路制御手段)は、昇圧回路100の目標出力電圧VBPIG*を設定する目標出力電圧設定部160(目標出力電圧設定手段)と、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいてPID制御演算するPID制御部120(少なくともP制御する制御演算手段)と、PID制御部120の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算部130(PWM演算手段)とを含むようにした。そして、PWM演算部130にて演算されたデューティ比αに基づいて第1、第2スイッチング素子Q1,Q2をオンオフ制御するようにした。
さらに、目標出力電圧設定部160は車両の運転状況パラメータである車速Vを入力すると、その値に応じて目標出力電圧VBPIG*を可変にした。
この結果、第12実施形態では、据え切り、低速走行時等の大出力時には、目標出力電圧VBPIG*を低下するため、コイルLやトランジスタQ1,Q2での発熱を抑えることができ、ロスがなくなり、効率を上げることができる。
13.第13実施形
次に第13実施形態を図24を参照して説明する。
第13実施形態は、第11実施形態の一部を変更したものである。
第11実施形態の目標出力電圧設定部160は、q軸指令電流Iq*と目標出力電圧VBPIG*とからなる2次元マップにて構成した。それに対して、本実施形態の目標出力電圧設定部160は、角速度ω(モータ角速度)と目標出力電圧VBPIG*とからなる2次元マップにて構成されているところが異なっている。
すなわち、本実施形態では、目標出力電圧設定部160により、角速度ωに応じて、目標出力電圧VBPIG*を可変にしている。具体的には、目標出力電圧設定部160は図24に示すように角速度ωが遅い領域ω1では、そうでない領域ω2,ω3に比して目標出力電圧VBPIG*を小さくなるように設定する。このマップは、ROM22に格納されている。そして、CPU21は、角速度ωを入力すると、この2次元マップを利用して、目標出力電圧VBPIG*を算出する。
従って、第13実施形態では、下記の作用をなす。
モータ回転数の追従性が問題になってくるのは、モータ6が高速回転している時にモータ6の図示しない巻線に電流を流し込めるかどうかである。このため、モータ角速度ωに応じて出力電圧を上昇させてモータ回転数の追従性を向上させるのである。
このため、モータ角速度ωが遅い領域ω1は、昇圧させる必要がない。従って、この場合には、この場合、昇圧用のトランジスタQ1,Q2を完全に停止してもよい。この領域ω1では目標出力電圧VBPIG*を低下させてやるのである。この結果、昇圧回路100は昇圧を停止するか、昇圧レベルを領域ω2,ω3よりも低下する。
又、モータ角速度ωが速い領域ω3では、昇圧させる必要がある領域となる。
このため、領域ω1より以上のレベルで、昇圧回路100にて昇圧させるのである。又、領域ω1と領域ω3の中間域ω2では、領域ω1より以上のレベルで、かつ、領域ω3以下のレベルになるように昇圧回路100にて昇圧させるのである。
力行状態及び、回生状態時での制御は第11実施形態の図22に示すように同様に制御する。
従って、第13実施形態は、下記の効果を奏する。
(1) 第11実施形態の(1)と同様の効果を奏する。
(2) 第13実施形態では、制御装置20(昇圧回路制御手段)は、昇圧回路100の目標出力電圧VBPIG*を設定する目標出力電圧設定部160(目標出力電圧設定手段)と、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいてPID制御演算するPID制御部120(少なくともP制御する制御演算手段)と、PID制御部120の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算部130(PWM演算手段)とを含むようにした。そして、PWM演算部130にて演算されたデューティ比αに基づいて第1、第2スイッチング素子Q1,Q2をオンオフ制御するようにした。
さらに、目標出力電圧設定部160はモータ6の運転状況パラメータであるモータ角速度ωを入力すると、その値に応じて目標出力電圧VBPIG*を可変にした。この結果、第13実施形態では、モータ角速度ωに応じて出力電圧を上昇させてモータ回転数の追従性を向上させた。すなわち、電圧が必要な時のみ出力電圧を昇圧させることにより、常時昇圧する場合に比して、コイルL、及びトランジスタQ1,Q2の発熱を抑えることができる。
14.第14実施形
次に第14実施形態を図25を参照して説明する。
第14実施形態は、第11実施形態の一部を変更したものである。
第11実施形態の目標出力電圧設定部160は、q軸指令電流Iq*と目標出力電圧VBPIG*とからなる2次元マップにて構成した。それに対して、本実施形態の目標出力電圧設定部160は、操舵トルクτと目標出力電圧VBPIG*とからなる2次元マップにて構成されているところが異なっている。
すなわち、本実施形態では、目標出力電圧設定部160により、操舵トルクτに応じて、目標出力電圧VBPIG*を可変にしている。具体的には、目標出力電圧設定部160は図25に示すように操舵トルクτが小さい領域τ1では、そうでない領域τ2,τ3に比して目標出力電圧VBPIG*を小さくなるように設定する。このマップは、ROM22に格納されている。そして、CPU21は、操舵トルクτを入力すると、この2次元マップを利用して、目標出力電圧VBPIG*を算出する。
従って、第14実施形態では、下記の作用をなす。
モータ回転数の追従性が問題になってくるのは、モータ6が高速回転して逆起電力が大きくなった場合である。この場合、モータ6に電流を流しこめなくなるため、アシスト力が低下して操舵トルクが大きくなってしまう。
このため、操舵トルクτをモニタし、操舵トルクτに応じて出力電圧を上昇させてモータ6に電流を流し込めるようにし、追従性を向上するのである。
具体的には、操舵トルクτに応じて出力電圧を上昇させてモータ回転数の追従性を向上させるのである。
このため、操舵トルクτが小さい領域τ1は、昇圧させる必要がない。従って、この場合には、この場合、昇圧用のトランジスタQ1,Q2を完全に停止してもよい。この領域τ1では目標出力電圧VBPIG*を低下させてやるのである。この結果、昇圧回路100は昇圧を停止するか、昇圧レベルを領域τ2,τ3よりも低下する。
又、操舵トルクτが大きい領域τ3では、昇圧させる必要がある領域となる。
このため、領域τ1より以上のレベルで、昇圧回路100にて昇圧させるのである。又、領域τ1と領域τ3の中間域τ2では、領域τ1より以上のレベルで、かつ、領域τ以下のレベルになるように昇圧回路100にて昇圧させるのである。
力行状態及び、回生状態時での制御は第11実施形態の図22に示すように同様に制御する。
従って、第14実施形態は、下記の効果を奏する。
(1) 第11実施形態の(1)と同様の効果を奏する。
(2) 第14実施形態では、制御装置20(昇圧回路制御手段)は、昇圧回路100の目標出力電圧VBPIG*を設定する目標出力電圧設定部160(目標出力電圧設定手段)と、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいてPID制御演算するPID制御部120(制御演算手段)と、PID制御部120の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算部130(PWM演算手段)とを含むようにした。そして、PWM演算部130にて演算されたデューティ比αに基づいて第1、第2スイッチング素子Q1,Q2をオンオフ制御するようにした。
さらに、目標出力電圧設定部160は車両の運転状況パラメータである操舵トルクτを入力すると、その値に応じて目標出力電圧VBPIG*を可変にした。
この結果、第14実施形態では、操舵トルクτに応じて出力電圧を上昇させてモータ回転数の追従性を向上させた。すなわち、電圧が必要な時のみ出力電圧を昇圧させることにより、常時昇圧する場合に比して、コイルL、及びトランジスタQ1,Q2の発熱を抑えることができる。
15.第15実施形
次に第15実施形態を図26を参照して説明する。
第15実施形態は、第2実施形態の一部を変更したものである。
本実施形態では、第2実施形態の構成にさらに、第6実施形態(図14参照)で説明したガード機能部140が設けられている。なお、第6実施形態では、ガード機能部140は、回生時のみガード作用を行ったが、本実施形態では、力行時と回生時には第2実施形態の図7に示すようにトランジスタQ1,Q2をオンオフ制御し、この制御中に、ガード機能部140を作用させるようにしている。
本実施形態のガード機能部140は、何らかの理由によりPWM演算部130にてデューティ比αを算出した結果が、α0を超える場合には、デューティ比αとして、α0が決定される。
従って、第15実施形態では、力行時及び回生時のいずれにおいても、PWM演算部130にて演算されたデューティ比αがα0を超える場合には、ガード機能部140にてα0に設定される。このため、昇圧回路100の出力電圧が異常に大きくなることがなく、この結果、昇圧回路100が破損する虞はない。
従って、第15実施形態では、第2実施形態の作用効果を奏する以外にさらに下記の効果を奏する。
(1) 第15実施形態では、制御装置20(昇圧回路制御手段)は、昇圧回路100の目標出力電圧VBPIG*を設定する目標出力電圧設定部160(目標出力電圧設定手段)と、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差に基づいてPID制御演算するPID制御部120(制御演算手段)と、PID制御部120の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算部130(PWM演算手段)とを含むようにした。そして、PWM演算部130にて演算されたデューティ比αに基づいて第1、第2スイッチング素子Q1,Q2をオンオフ制御するようにした。
そして、制御装置20(昇圧回路制御手段)は、α0(所定デューティ比)を越えてPWM制御しないように、デューティ制限するようにした。
この結果、RAM23に故障が生じたり、何らかの原因でモニタしている出力電圧VBPIG が異常値のときPWM演算部130の演算結果であるデューティ比αが大きくなる場合がある。本実施形態では、このような場合、ガード機能部140によりデュティー制限を設けているため、力行時及び回生時のいずれにおいても昇圧回路100の破損を防止することができる。
○ 第16〜22実施形態
前記第1〜15実施形態の各実施形態は、アシスト制御を実行中に、力行及び回生のための昇圧回路制御(以下、昇圧制御という。)を行うものである。それに対して、第16〜22実施形態は、上記のような昇圧制御を行っている際に、昇圧回路100自体に不具合が生じた場合の制御の実施形態である。
第16〜22実施形態では、説明の便宜上後記するS30の「通常の昇圧制御」は、第2実施形態で説明した昇圧制御が行われていることを前提として説明するが、これに限定されるものではない。もちろん、第1〜15実施形態のいずれの昇圧制御を前提としても以下の第16〜22実施形態を実現することは可能である。
16.第16実施形
次に第16実施形態を図27を参照して説明する。
第16実施形態は、第15実施形態の構成にさらに、制御装置20が図27の制御を行うところが異なっている。
図27は、制御装置20のCPU21が実行する昇圧回路100の昇圧制御と、アシスト制御を行うルーチンである。この制御プログラムはROM22に予め格納されている。
ステップ(以下、ステップをSという)10では、目標出力電圧VBPIG*と出力電圧VBPIGとの偏差(VBPIG*−VBPIG)が第1基準値λ1(>0)以上か否かを判定する。なお、第1基準値λ1は予めROM22に格納されており、オープン故障又はショート故障を判定するために、予め試験等で得られた値である。このS10では、トランジスタQ1がオープン故障しているか、又はトランジスタQ2がショート故障しているか否かを判定するのである。すなわち、トランジスタQ1がオープン故障している場合や、トランジスタQ2がショート(短絡)故障している場合には、出力電圧VBPIGは上昇しないため、第1基準値λ1以上の偏差があれば、トランジスタQ1のオープン故障又はトランジスタQ2のショート故障とするのである。
第1基準値λ1未満のときは、オープン故障又はショート故障ではなく正常であるためS20で時間計測カウンタTime1を0にリセットし、S30で通常の昇圧制御とアシスト制御を行い、S10に戻る。
本実施形態において、判定値は、(目標出力電圧VBPIG*−第1基準値λ1)に相当する。すなわち、S10で行う偏差(VBPIG*−VBPIG)≧第1基準値λ1か否かの判定は、(目標出力電圧VBPIG*−第1基準値λ1)≧出力電圧VBPIGを判定することと同じだからである。
なお、通常の昇圧制御とは、力行時及び回生時の制御を含むものであり、具体的には、第2実施形態で説明した図7に示す力行時及び回生時におけるトランジスタQ1、トランジスタQ2のオンオフ制御を行う。
S10で第1基準値λ1以上の場合には、オープン故障又はショート故障であるとしてS40で、時間計測カウンタTime1をインクリメントし、S50で第1所定時間T1経過したか否かを時間計測カウンタTime1に基づいて判定する。オープン故障又はショート故障が第1所定時間T1経過していなければ、昇圧回路100は正常であると判定してS10にリターンする。このS50で経過時間を判定するのは、たまたまそのような場合があったとしても、オープン故障又はショート故障が回復する場合があるから、これを排除するためである。
S50において、第1所定時間T1経過していたときは、昇圧回路100は異常であると判定して、S60で昇圧制御を中止し、代わりに、トランジスタQ1を常時オフするとともに、トランジスタQ2を常時オンする。この処理は、実際には、トランジスタQ1はオープン故障しているか、或いはトランジスタQ2がショート故障しているが、制御においても、実際にトランジスタQ1をオフ制御及びトランジスタQ2をオン制御するのである。
又、仮にトランジスタQ1がオープン故障であって、トランジスタQ2が正常な場合であっても、トランジスタQ2をオン制御することにより、回生時に回生電流がバッテリBに流れるようにするのである。
続くS70でインストルメントパネル等に設けられた図示しない警告灯に警告信号(報知信号)を出力してを表示制御し、S80ではバッテリ電圧(12V)によるアシスト制御を実行する。
すなわち、昇圧回路100での昇圧制御は中止にするが、バッテリ電圧でのアシスト制御は可能であるので、この電圧の下で、アシスト制御を実行するのである。従って、回生時には、回生電流をトランジスタQ2を介してバッテリBに流す。
本実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
第16実施形態によれば、第15実施形態の作用効果を奏するとともにさらに、下記の効果がある。
(1) 第16実施形態では、制御装置20は、昇圧回路100の出力電圧VBPIG(状態パラメータ)を検出する状態パラメータ検出手段、及び、出力電圧VBPIGと判定値である(目標出力電圧VBPIG*−第1基準値λ1)とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている。
そして、制御装置20は、昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした(S60参照)。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。この結果、昇圧回路100の異常時における昇圧回路100の破壊を防止することができる。
(2) 本実施形態では、昇圧回路100が正常でない場合には、警告灯(報知手段)にて報知するようにした。この結果、車両の運転者に昇圧回路100の故障を知らせることができる。
(3) 本実施形態では、昇圧回路100が正常でない場合に、特に、目標出力電圧VBPIG*と出力電圧VBPIGとの差が第1基準値λ1以上の場合、トランジスタQ1がオープン故障又はトランジスタQ2がショート故障していると判定した(故障判定)。
そして、この場合には、トランジスタQ1(第1スイッチング素子)を常時オフ制御し、トランジスタQ2(第2スイッチング素子)を常時オン制御するようにした。
この結果、昇圧回路100で昇圧した電圧でアシスト制御はできないが、アシスト制御をバッテリ電圧で継続実行できるとともに、回生時においては、回生電流をバッテリBに吸収させることができる。
(4) 本実施形態では、
出力電圧VBPIG≦(目標出力電圧VBPIG*−第1基準値λ1)
のとき、トランジスタQ1がオープン故障又はトランジスタQ2がショート故障していると判定することができる。
(5) 第16実施形態では、制御装置20(判定手段)は、異常状態が第1所定時間T1継続しているときに、昇圧回路100に異常が生じていると判定した。第1所定時間T1内での異常状態の場合には、異常と判定しないため、第1所定時間T1内で異常状態が回復した場合を排除することができる。
17.第17実施形
第17実施形態を図28及び図29を参照して説明する。
本実施形態では、第16実施形態のハード構成に、さらに、図28に示すようにバッテリBと印加点P1と接続点に、電源リレー200が設けられている。電源リレー200は制御装置20の制御信号により、オンオフする。なお、制御装置20が起動された状態では、電源リレー200は制御装置20にてオン状態に制御されているものとする。
さらに、モータ駆動装置35のFET81UとFET82Uの接続点83Uとモータ6のU相の巻線の接続点間には,相開放リレー210が設けられている。又、モータ駆動装置35のFET81WとFET82Wの接続点83Wとモータ6のW相の巻線の接続点間には,相開放リレー220が設けられている。両相開放リレー210,220は制御装置20の制御信号により、オンオフする。なお、制御装置20が起動された状態では、両相開放リレー210,220は制御装置20にてオン状態に制御されているものとする。
電源リレー200は第1開閉手段に相当し、印加点P1はバッテリ電圧供給部に相当する。前記相開放リレー210,220は第2開閉手段に相当する。
又、本実施形態では、第16実施形態の制御中、図29に示すようにS10の代わりにS10Aの判定を行うとともに、S60〜S80の代わりに、S90及びS100の処理を行った後、制御を終了するところが異なっている。他のステップは同じであるため、同じステップ符号を付して説明を省略する(以下の各実施形態についても同一ステップについては同一符号を付してその説明を省略することとする。)。
S10Aでは、出力電圧VBPIGと目標出力電圧VBPIG*との偏差(VBPIG−VBPIG*)が第2基準値λ2(>0)以上か否かを判定する。なお、第2基準値λ2は予めROM22に格納されており、前記オープン故障を判定するために、予め試験等で得られた値である。このS10Aでは、トランジスタQ2がオープン故障しているか否かを判定するのである。トランジスタQ2がオープン故障している場合には、回生時には回生電流がバッテリBに流れず、コンデンサC2が放電できないため、出力電圧VBPIGは上昇する。このため第2基準値λ2以上の偏差があれば、トランジスタQ2がオープン故障していると判定するのである。
偏差が第2基準値λ2未満のときは、S20に移行する。又、偏差が第2基準値λ2以上のときは、S40を介してS50に移行する。
本実施形態において、判定値は、(第2基準値λ2+目標出力電圧VBPIG*)に相当する。すなわち、S10Aで行う偏差(VBPIG−VBPIG*)≧第2基準値λ2か否かの判定は、出力電圧VBPIG≧(第2基準値λ2+目標出力電圧VBPIG*)を判定することと同じだからである。
S50において、所定時間経過していると判定した場合には、S90に移行する。
S90では、相開放リレー210,220へオフ制御信号を印加し、両相開放リレー210,220を開放するとともに、トランジスタQ1,Q2への昇圧制御のためのデューティ比駆動信号の出力を中止する。又、これと同時に制御装置20は電源リレー200をオフ制御する。
この結果、昇圧回路100、及びモータ6の2相(U相、W相)の巻線の電力供給が行われないように遮断される。
この後、S100において、インストルメントパネル等に設けられた図示しない警告灯に対して警告信号(報知信号)を出力して表示制御し、図29の制御ルーチンを終了する。
本実施形態においても、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
第17実施形態では第16実施形態の(5)の効果を奏するとともに下記の効果を奏する。
(1) 本実施形態では、制御装置20は、昇圧回路100の出力電圧VBPIG(状態パラメータ)を検出する状態パラメータ検出手段と、及び、出力電圧VBPIGと判定値である(第2基準値λ2+目標出力電圧VBPIG*)とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている。
そして、制御装置20は昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした(S90参照)。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。
(2) 又、第16実施形態と同様に昇圧回路100が正常でない場合には、警告灯(報知手段)にて報知するようにした。この結果、第16実施形態と同様の効果を奏する。
(3) さらに、本実施形態では、昇圧回路100が正常でない場合に、特に、出力電圧VBPIGと目標出力電圧VBPIG*との偏差が第2基準値λ2以上の場合、トランジスタQ2がオープン故障していると判定した。
そして、この場合には、電源リレー200(第1開閉手段)を作動して、昇圧回路100への電力供給を停止した。又、相開放リレー210,220(第2開閉手段)へオフ制御信号を印加して、両相開放リレー210,220を開放し、モータ6に係る2相の巻線への電力供給を遮断した。
この結果、昇圧回路100が故障している場合には、マニュアルステアリングに移行させ、モータ6が回生時においても回生電流が、昇圧回路100に流れることがなくなる。このため、昇圧回路100を構成しているコンデンサC2等の回路素子やモータ駆動装置35の各回路素子の破壊を防止することができる。
(4) 本実施形態では、
出力電圧VBPIG≧(第2基準値λ2+目標出力電圧VBPIG*)
のとき、トランジスタQ2がオープン故障していると判定することができる。
18.第18実施形
第18実施形態を図30を参照して説明する。
本実施形態のハード構成は、第17実施形態のハード構成と同じである。
又、本実施形態では、図30に示すように、第16実施形態の図27のルーチンの一部(図27参照)と、第17実施形態のルーチンの一部(図29参照)とを合わせたものにされている。
すなわち、第18実施形態の昇圧回路100の昇圧制御と、アシスト制御を行うルーチンは、S10〜S50,S90,S100の各ステップからなる。
本実施形態においても、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
従って、第18実施形態では、下記の効果を奏する。
(1) 本実施形態では、第16実施形態に記載の構成を備えるため、第16実施形態の(1)、(2)、(4)、(5)と同一の効果を奏する。
(2) 本実施形態では、昇圧回路100が正常でない場合に、特に、目標出力電圧VBPIG*と出力電圧VBPIGとの差が第1基準値λ1以上の場合、トランジスタQ1がオープン故障又はトランジスタQ2がショート故障していると判定した。
そして、この場合には、第17実施形態と同様に作動して、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
この結果、昇圧回路100が故障している場合には、マニュアルステアリングに移行させ、モータ6が回生時においても回生電流が、昇圧回路100に流れることがなくなる。このため、昇圧回路100を構成しているコンデンサC2等の回路素子やモータ駆動装置35の各回路素子の破壊を防止することができる。
19.第19実施形
第19実施形態を図31、図32を参照して説明する。
本実施形態のハード構成は、第17実施形態と同じ構成を備え、さらに、トランジスタQ1のドレイン電圧VPIG2が検出できるように、トランジスタQ1のドレインが制御装置20の電圧入力ポートに接続されている。
そして、本実施形態の昇圧回路100の昇圧制御と、アシスト制御を行うルーチンは、図32に示すように、第18実施形態のルーチンのS10の代わりにS110の判定が行われるところが異なっている。他のステップは第18実施形態と同じである。
S110では、トランジスタQ1がショートしているか否かを判断するために、入力したドレイン電圧VPIG2が第3基準値λ3(判定値)以下か否かを判定する。なお、第3基準値λ3は予めROM22に格納されており、ショート故障を判定するために、予め試験等で得られた値であってグランド電位に近い値である。このS110で、ドレイン電圧VPIG2が第3基準値λ3以下であると判定した場合には、トランジスタQ1がショート故障しているとして、S40に移行する。又、ドレイン電圧VPIG2が第3基準値λ3を超えている場合には、ショート故障していないものと判定し、S20に移行する。
本実施形態においても、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
従って、第19実施形態では、下記の効果を奏する。
(1) 第19実施形態では、制御装置20は、昇圧回路100の状態パラメータであるトランジスタQ1のドレイン電圧VPIG2を検出する状態パラメータ検出手段、及び、ドレイン電圧VPIG2と判定値である第3基準値λ3とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている。
そして、制御装置20は、昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした(S90参照)。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。
(2) 第16実施形態の(2)、(5)と同様の効果を奏する。
(3) 第19実施形態では、昇圧回路100が正常でない場合に、特に、トランジスタQ1のドレイン電圧VPIG2が第3基準値λ3以下であると判定した場合には、トランジスタQ1がショート故障していると判定した。そして、この場合には、第17実施形態と同様に作動し、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
仮にトランジスタQ1がショート故障していると、バッテリBからコイルLを介してグランドに短絡電流が流れてしまい、短絡電流が流れる回路素子が異常発熱する虞がある。
それに対して、本実施形態では、上記のように構成したので、短絡電流による異常発熱の発生を防止することができる。
又、昇圧回路100が故障している場合には、マニュアルステアリングに移行させ、モータ6が回生時においても回生電流が、昇圧回路100に流れることがなくなる。このため、昇圧回路100を構成しているコンデンサC2等の回路素子やモータ駆動装置35の各回路素子の破壊を防止することができる。
(4) 第19実施形態では、制御装置20(状態パラメータ検出手段)は、状態パラメータとしてトランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2を検出し、制御装置20(判定手段)は、ドレイン電圧VPIG2が第3基準値λ3(判定値)以下のとき、昇圧回路100が異常と判定した。
この結果、トランジスタQ1がショート故障していると判定できる。
20.第20実施形
第20実施形態を図33を参照して説明する。
本実施形態のハード構成は、第17実施形態と同様のハード構成としている。
そして、本実施形態の昇圧回路100の昇圧制御と、アシスト制御を行うルーチンは図33に示すように、第18実施形態のルーチンのS10の代わりにS120の判定が行われるところが異なっている。他のステップは第18実施形態と同じである。
S120では、トランジスタQ2がオープン故障しているか否かを判断するために、入力した出力電圧VBPIGが第4基準値λ4(判定値)以上か否かを判定する。なお、第4基準値λ4は予めROM22に格納されており、オープン故障を判定するために、予め試験等で得られた値である。このS120で、出力電圧VBPIGが第4基準値λ4以上であると判定した場合には、トランジスタQ2がオープン故障しているとして、S40に移行する。又、出力電圧VBPIGが第4基準値λ4を未満の場合には、オープン故障していないものと判定し、S20に移行する。
本実施形態においても、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
従って、第20実施形態では、下記の効果を奏する。
(1) 本実施形態では、制御装置20は、昇圧回路100の出力電圧VBPIG(状態パラメータ)を検出する状態パラメータ検出手段、及び、出力電圧VBPIGと判定値である第4基準値λ4とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている。
そして、制御装置20は、昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。
(2) 第16実施形態の(2)、(5)と同様の効果を奏する。
(3) 本実施形態では、昇圧回路100が正常でない場合に、特に、トランジスタQ2のドレイン電圧(出力電圧VBPIG)が第4基準値λ4以上であると判定した場合には、トランジスタQ2がオープン故障していると判定した。
そして、この場合には、第17実施形態と同様に作動し、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
この結果、昇圧回路100が故障している場合には、マニュアルステアリングに移行させ、モータ6が回生時においても回生電流が、昇圧回路100に流れることがなくなる。このため、昇圧回路100を構成しているコンデンサC2等の回路素子やモータ駆動装置35の各回路素子の破壊を防止することができる。
(4) 第20実施形態では、制御装置20(状態パラメータ検出手段)は、状態パラメータとしてトランジスタQ2(第2スイッチング素子)のドレイン電圧(出力電圧VBPIG)を検出し、制御装置20(判定手段)は、ドレイン電圧(出力電圧VBPIG)が第4基準値λ4(判定値)以上のとき、昇圧回路100が異常と判定した。
この結果、トランジスタQ2がオープン故障していると判定できる。
21.第21実施形
第21実施形態を図34を参照して説明する。
本実施形態のハード構成は、第17実施形態と同じハード構成としている。
そして、本実施形態の昇圧回路100の昇圧制御と、アシスト制御を行うルーチンは図34に示すように、第18実施形態のルーチンのS10の代わりにS130の判定が行われるところが異なっている。他のステップは第18実施形態と同じである。
S130では、トランジスタQ2がモータ駆動装置35を構成する回路間で地絡故障しているか否かを判断するために、入力した出力電圧VBPIGが第5基準値λ5(判定値)以下か否かを判定する。なお、第5基準値λ5は予めROM22に格納されており、地絡故障を判定するために、予め試験等で得られた値であってグランド電位に近い値である。
このS130で、出力電圧VBPIGが第5基準値λ5以下であると判定した場合には、トランジスタQ2が地絡故障しているとして、S40に移行する。又、出力電圧VBPIGが第5基準値λ5を超えている場合には、地絡故障していないものと判定し、S20に移行する。
本実施形態においても、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、及び判定手段に相当する。
従って、第21実施形態では、下記の効果を奏する。
(1) 本実施形態では、制御装置20は、昇圧回路100の出力電圧VBPIG(状態パラメータ)を検出する状態パラメータ検出手段、及び、出力電圧VBPIGと判定値である第5基準値λ5とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている。
そして、制御装置20は、昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。
(2) 第16実施形態の(2)、(5)と同様の効果を奏する。
(3) 本実施形態では、昇圧回路100が正常でない場合に、特に、トランジスタQ2のドレイン電圧(出力電圧VBPIG)が第5基準値λ5以下であると判定した場合には、トランジスタQ2が地絡故障していると判定した。
そして、この場合には、第17実施形態と同様に作動し、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
この結果、昇圧回路100が故障している場合には、マニュアルステアリングに移行させ、モータ6が回生時においても回生電流が、昇圧回路100に流れることがなくなる。このため、昇圧回路100を構成しているコンデンサC2等の回路素子やモータ駆動装置35の各回路素子の破壊を防止することができる。
(4) 第21実施形態では、制御装置20(状態パラメータ検出手段)は、状態パラメータとしてトランジスタQ2(第2スイッチング素子)のドレイン電圧(出力電圧VBPIG)を検出し、制御装置20(判定手段)は、ドレイン電圧(出力電圧VBPIG)が第5基準値λ5(判定値)以下のとき、昇圧回路100が異常と判定した。
この結果、トランジスタQ2が地絡故障していると判定できる。
22−1.第22実施形
第22実施形態を図35及び図36を参照して説明する。
本実施形態のハード構成は、第17実施形態のハード構成にさらに、図35に示すようにトランジスタQ1のソース側に電流検出器180が設けられている。
電流検出器180はトランジスタQ1に流れる電流Iを検出して、その検出した信号(検出信号)を制御装置20の電流入力ポートに入力する。なお、電流検出器180は、トランジスタQ1のソース側に設けたが、ドレイン側に接続してもよい。
図36は、制御装置20のCPU21が実行する昇圧回路100の昇圧制御と、アシスト制御を行うルーチンである。
この制御ルーチンを開始すると、S200では、力行時におけるトランジスタQ1に流れる電流Iを電流検出器180が検出した検出信号に基づいて検出する。S210では、前記電流Iが判定値である第1電流基準値K1と比較する。なお、第1電流基準値K1は予めROM22に格納されており、トランジスタQ1のショート故障を判定するために、予め試験等で得られた値である。トランジスタQ1がショート故障した場合には、そうでない場合に比べて大電流が流れるため、この大電流が流れたか否かを第1電流基準値K1にて判定するのである。
電流Iが第1電流基準値K1以上の場合には、トランジスタQ1がショート故障しているとしてS220で時間計測カウンタTime2をインクリメントし、S230で第2所定時間T2経過したか否かを時間計測カウンタTime2に基づいて判定する。
ショート故障が第2所定時間T2経過していなければ、昇圧回路100は正常であると判定してS200にリターンする。このS230で経過時間を判定するのは、たまたまそのような場合があったとしても、ショート故障が回復する場合があるから、これを排除するためである。
第2所定時間T2経過していたときは、昇圧回路100は異常であると判定して、S240において、インストルメントパネル等に設けられた図示しない警告灯に対して警告信号(報知信号)を出力して表示制御する。続く、S250では、相開放リレー210,220へオフ制御信号を印加し、両相開放リレー210,220を開放するとともに、トランジスタQ1,Q2への昇圧制御のためのデューティ比駆動信号の出力を中止する。又、これと同時に制御装置20は電源リレー200をオフ制御する。この結果、昇圧回路100、及びモータ6の2相(U相、W相)の巻線の電力供給が行われないように遮断される。すなわち、昇圧回路100及びモータ6の電力供給を停止することにより、マニュアルステアリングとする。この処理後、本制御ルーチンを終了する。
S210において、電流Iが第1電流基準値K1未満の場合には、トランジスタQ1はショート故障ではないと判定し、次にS260で電流Iが第2電流基準値K2以上か否かを判定する。なお、第2電流基準値K2(<K1)は予めROM22に格納されており、トランジスタQ2のショート故障を判定するために、予め試験等で得られた値である。
なお、力行時において、トランジスタQ1が正常に作動し、トランジスタQ2がショート故障している場合、トランジスタQ1がオンした瞬間にトランジスタQ2に短絡電流が流れる。そして、トランジスタQ1がオフすると、トランジスタQ2の短絡電流が遮断される。このとき、トランジスタQ2がショート故障している場合、トランジスタQ1がショート故障している場合に比してトランジスタQ1に流れる電流(トランジスタQ1がオン時の電流)は少ない。従って、第2電流基準値K2はトランジスタQ1がショート故障時に流れる電流値より小さい値であって、トランジスタQ2がショート故障しているときに流れる電流を判定できる値とされている。
S260において、電流Iが第2電流基準値K2以上の場合には、トランジスタQ2がショート故障であると判定し、S270でS220とは異なる他の時間計測カウンタTime3をインクリメントする。次のS280で第3所定時間T3経過したか否かを時間計測カウンタTime3に基づいて判定する。
ショート故障が第3所定時間T3経過していなければ、昇圧回路100は正常であると判定してS200にリターンする。このS280で経過時間を判定するのは、たまたまそのような場合があったとしても、ショート故障が回復する場合があるから、これを排除するためである。
第3所定時間T3経過していたときは、昇圧回路100は異常であると判定して、S290で、S240と同様に警告灯に対して警告信号(報知信号)を出力して表示制御する。続く、S300では、S250と同様に処理してマニュアルステアリングとする。この処理後、本制御ルーチンを終了する。
又、S260において、電流Iが第2電流基準値K2未満のときは、両トランジスタQ1,Q2ともショート故障ではなく正常であるため、S310で両時間計測カウンタTime2,Time3を0にリセットし、S320で通常の昇圧制御とアシスト制御を行い、S210に戻る。
第22実施形態においても、制御装置20は第2実施形態で説明した各手段に相当し、又、判定手段に相当する。又、制御装置20及び電流検出器180とにより状態パラメータ検出手段を構成している。
従って、第22実施形態では、下記の効果を奏する。
(1) 本実施形態では、制御装置20と電流検出器180とにより、昇圧回路100の状態パラメータであるトランジスタQ1に流れる電流(状態パラメータ)を検出する状態パラメータ検出手段とした。又、制御装置20は、前記電流Iと判定値である第1電流基準値K1及び第2電流基準値K2とを比較して昇圧回路100が正常か否かを判定する判定手段として機能させている(S210,S260)。
そして、制御装置20は、昇圧回路制御手段として、前記判定した結果に応じて、昇圧回路100の昇圧制御を中止するようにした(S250,S300)。
この結果、昇圧回路100が故障している場合には、昇圧回路100の昇圧制御を中止することができる。
(2) 第16実施形態の(2)と同様の効果を奏する(S240,290参照)。
(3) 第22実施形態では、昇圧回路100が正常でない場合に、特に、トランジスタQ1に流れる電流Iが判定値である第1電流基準値K1以上であると判定した場合には、トランジスタQ1がショート故障していると判定した(S210参照)。そして、この場合には、第17実施形態と同様に作動し、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
この結果、第19実施形態の(3)の効果と同じ理由から、第19実施形態の(3)で記載した効果を奏することができる。
(4) 第22実施形態では、トランジスタQ1に流れる電流Iが判定値である第1電流基準値K1未満でかつ、第2電流基準値K2以上であると判定した場合には、トランジスタQ2がショート故障していると判定した(S260参照)。そして、この場合には、第17実施形態と同様に作動し、昇圧回路100及びモータ6に係る2相の巻線への電力供給を遮断した。
この結果、上記(3)と同様に第19実施形態の(3)で記載した効果を奏することができる。
(5) 第22実施形態では、S230で第2所定時間T2経過した後に、昇圧回路100、モータ6(電動機)への電力供給を停止した。
この結果、第2所定時間T2内にトランジスタQ1のショート故障が回復した場合や、誤判定の場合を排除でき、その後の昇圧制御や、アシスト制御を好適に行うことができる。
(6) 第22実施形態では、S270で第3所定時間T3経過した後に、昇圧回路100、モータ6(電動機)への電力供給を停止した。
この結果、第3所定時間T3内にトランジスタQ2のショート故障が回復した場合や、誤判定の場合を排除でき、その後の昇圧制御や、アシスト制御を好適に行うことができる。
(7) 第22実施形態では、制御装置20及び電流検出器180(状態パラメータ検出手段)は、状態パラメータとしてトランジスタQ1(第1スイッチング素子)に流れる電流Iを検出し、制御装置20(判定手段)は、前記電流Iと第1電流基準値K1、第2電流基準値K2(判定値)とを比較して、昇圧回路100が異常と判定するようにした。この結果、トランジスタQ1、トランジスタQ2の異常が判定できる。
22−2.第22実施形態の変形例
次に、第22実施形態の変形例を図37を参照して説明する
この変形例では、制御装置20のCPU21が実行する昇圧回路100の昇圧制御と、アシスト制御を行うルーチンの一部が先の第22実施形態のルーチンと異なっている。図37は、その変形例のルーチンを示している。
図37に示すように、先に説明した制御ルーチン(図36参照)のS300の代わりに、S330及びS340の処理を行うところが異なっている。
S330では、トランジスタQ1を常時オフするとともに、トランジスタQ2を常時オンする。すなわち、実際には、トランジスタQ2がショート故障しているが、制御においても、トランジスタQ1をオフ制御し、かつトランジスタQ2をオン制御する。
この結果、昇圧回路100での昇圧制御は中止にするが、バッテリ電圧(本実施形態では12V)でのアシスト制御は可能であるので、この電圧の下で、アシスト制御を実行するのである。従って、回生時には、回生電流をトランジスタQ2を介してバッテリBに流すことができる。
この変形例では、第22実施形態の(1)〜(3)、(5)〜(7)の効果を奏するとともに、トランジスタQ2がショート故障の場合には、バッテリ電圧でのアシスト制御ができる。
○第23〜29実施形態
第16〜22実施形態の各実施形態は、昇圧制御を行っている最中に、昇圧回路100に不具合が生じた場合の制御の実施形態である。それに対して、第2329実施形態は、車両のイグニッションスイッチがオンされたとき、イニシャルチェックを行って、昇圧回路100に異常があるか否かの判定を行い、異常がある場合の制御の実施形態である。
なお、第23〜29実施形態では、説明の便宜上後記するS520の「昇圧制御」は、第2実施形態で説明した昇圧制御が行われていることを前提として説明するが、これに限定されるものではない。もちろん、第1〜15実施形態のいずれの昇圧制御を前提としても第23〜29実施形態を実現することは可能である。
23−1.第23実施形
第23実施形態を図38〜図40を参照して説明する。
なお、第1〜22実施形態ではその構成作用においては、直接関係しないため説明はしなかったが、車両にはイグニッションスイッチIGSが備えてられている。そして、第23実施形態でも同様に図38に示すようにイグニッションスイッチIGSが設けられており、同イグニッションスイッチIGSをオンすると、制御装置20に電力が供給される。
そして、第23実施形態では、第19実施形態の構成(図31参照)に図39に示すように下記の構成を付加したところが異なっている。なお、図39は昇圧回路100の電気回路図である。
イグニッション回路φはイグニッションスイッチIGSがオンすると、イグニッション電圧VIGが印加されるようになっている。本実施形態ではイグニッション電圧VIGはバッテリ電圧と同じ電圧である。イグニッション回路φの接続点P4と、印加点P1とコイルLとの接続点P5間には、抵抗R1が接続されている。抵抗R1は、接続点P4,P5間に電流がほとんど流れない高抵抗のものとしている。前記抵抗R1が接続点P4,P5間に接続されることにより、プルアップ回路が構成されている。
そして、本実施形態では、制御装置20は、下記の制御をイグニッションスイッチIGSがオンされた際に図41に示すイニシャルチェックルーチンを含む制御プログラムを実行する。この制御プログラムはROM22に予め格納されている。なお、イグニッションスイッチIGSがオンされる以前は、電源リレー200及び相開放リレー210,220はオフ状態である。
イグニッションスイッチIGSがオンされると、S400では、CPU21は、ROM22、RAM23のチェックを行う。イグニッションスイッチIGSのオンにより、イグニッション回路φにはバッテリ電圧と等しいイグニッション電圧VIGが印加される。そして、電源リレー200がオン状態となっていなくても、昇圧回路100のドレイン電圧VPIG2がバッテリ電圧にプルアップされる。
S410で制御装置20のインタフェース回路(図示しない)、スペシャルファンクションレジスタ等の各種レジスタの初期設定を行う。S420でトランジスタQ1に全オン信号を出力し、S430でトランジスタQ1のドレイン電圧VPIG2を検出する(読み込む)。
S440ではトランジスタQ1のドレイン電圧VPIG2が第6基準値λ6(>0)以上か否かを判定する。第6基準値λ6は予めROM22に格納されており、トランジスタQ1のオープン故障を判定するために、予め試験等で得られた値である。
すなわち、トランジスタQ1がオープン故障していない場合、前記全オン信号の印加により、トランジスタQ1が導通するため、トランジスタQ1のドレイン電圧VPIG2は下がる。この値は、第6基準値λ6未満であるため、トランジスタQ1はオープン故障ではないと判定する。
一方、トランジスタQ1がオープン故障の場合には、前記全オン信号の印加によっても、トランジスタQ1は導通しないため、トランジスタQ1のドレイン電圧VPIG2は下がらない。従って、ドレイン電圧VPIG2が第6基準値λ6以上の場合には、トランジスタQ1がオープン故障していると判定するのである。
S440でオープン故障ではないと判定した場合にはS510に移行する。S510では、電源リレー200及び相開放リレー210,220をオン制御し、以後、S520で昇圧制御及びアシスト制御を行う。
一方、S440でオープン故障であると判定すると、S450で、時間計測カウンタTime4をインクリメントし、S460で第4所定時間T4経過したか否かを時間計測カウンタTime4に基づいて判定する。
オープン故障が第4所定時間T4経過していなければ、昇圧回路100は正常であると判定してS430にリターンする。このS460で経過時間を判定するのは、たまたまそのような場合があったとしても、オープン故障が回復する場合があるから、これを排除するためである。
S460において、第4所定時間T4経過していたときは、昇圧回路100は異常であると判定して、続くS470でインストルメントパネル等に設けられた図示しない警告灯に警告信号(報知信号)を出力してを表示制御する。
そして、続くS480では、トランジスタQ1を常時オフするとともに、トランジスタQ2を常時オンする。
この処理は、実際には、トランジスタQ1はオープン故障しているが、制御においては、実際にトランジスタQ1をオフ制御する。又、S480ではトランジスタQ2をオン制御するのは、回生時に回生電流がバッテリBに流れるようにするのである。
そして、S490で、電源リレー200,相開放リレー210,220をオン制御し、S500で、S520と同様に昇圧制御及びアシスト制御を行う。
すなわち、昇圧回路100での昇圧制御は中止にするが、バッテリ電圧でのアシスト制御は可能であるので、このバッテリ電圧の下で、アシスト制御を実行するのである。従って、回生時には、回生電流をトランジスタQ2を介してバッテリBに流す。
本実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、第1故障判定手段及び第1素子制御手段に相当する。又、第5基準値λ5は第1故障判定値に相当する。抵抗R1は第1抵抗に相当する。
電源リレー200は第1開閉手段、相開放リレー210,220は第2開閉手段に相当する。
第23実施形態によれば、第2実施形態の効果の効果を奏するとともにさらに、下記の効果がある。
(1) 第23実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ1(第1スイッチング素子)のドレインと印加点P1間の接続点P5に対して抵抗R1(第1抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第1素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1をオン制御するようにした。さらに、制御装置20は、トランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧VPIG2と第5基準値λ5(第1故障判定値)とを比較して、昇圧回路100の故障判定をする第1故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で行うことができる。
(2) 第23実施形態では、モータ6(電動機)の電力をオンオフする相開放リレー210,220(第2開閉手段)を備えるようにした。
又、制御装置20が第1故障判定手段として昇圧回路100を故障判定したときには、制御装置20(昇圧回路制御手段)は、電源リレー200及び相開放リレー210,220をともにオン制御した(S490参照)。また、さらに、トランジスタQ1(第1スイッチング素子)を常時オフ制御し、トランジスタQ2(第2スイッチング素子)を常時オン制御するようにした(S480参照)。
この結果、昇圧回路100で昇圧した電圧でアシスト制御はできないが、アシスト制御をバッテリ電圧で実行できるとともに、回生時においては、回生電流をバッテリBに吸収させることができる。
(3) 本実施形態では、昇圧回路100が正常でない場合には、警告灯(報知手段)にて報知するようにした(S470参照)。この結果、車両の運転者に昇圧回路100の故障を知らせることができる。
(4) 第23実施形態では、S450で第4所定時間T4経過した後に、S470(警告灯表示)の処理を行った。この結果、第4所定時間T4内にトランジスタQ1のオープン故障が回復した場合を排除できる。
(5) 第23実施形態では、S450で第4所定時間T4経過した後に、S480の処理を行った。この結果、第4所定時間T4内にトランジスタQ1のオープン故障が回復した場合を排除できる。
23−2.第23実施形態の変形例
次に、第23実施形態の変形例を図41を参照して説明する。
図41は、変形例においてCPU21が処理する制御フローチャートである。
本変形例は、ハード構成は、第23実施形態と同一であり、制御ルーチンが下記のように異なっている。
すなわち、前記図40で示すフローチャートのうち、S480〜S500の処理が省略され、S470の処理が終了後、この制御ルーチンを終了するところが異なっている。
この結果、トランジスタQ1にオープン故障があった場合には、電源リレー200、相開放リレー210,220はオンされず、オフ制御されていることになる。
この変形例の効果は、上記第23実施形態の(1)、(3)、(4)の効果と同一の効果を奏する以外に下記の効果を奏する。
(1) この変形例では、トランジスタQ1にオープン故障があったとされると、電源リレー200、相開放リレー210,220はオンされず、オフ制御されている。
従って、トランジスタQ1がオープン故障、すなわち、昇圧回路100が故障している場合、フェールセーフを掛けることができる。
24.第24実施形
第24実施形態は、第23実施形態のハード構成と同一であり、又、制御は、第23実施形態の変形例の図41で示した制御と一部異なっている。
すなわち、図42に示すようにS420の代わりにS420Aが、S440の代わりにS440Aの処理が行われるところが異なる。
S420Aでは、トランジスタQ1に全オフ信号を出力する。
又、S440AではS430で検出したトランジスタQ1のドレイン電圧VPIG2が、第7基準値λ7(>0)以下か否かを判定する。第7基準値λ7は予めROM22に格納されており、トランジスタQ1のショート故障を判定するために、予め試験等で得られた値である。
すなわち、トランジスタQ1がショート故障していない場合、前記全オフ信号の印加により、トランジスタQ1はオフ状態のため、トランジスタQ1のドレイン電圧VPIG2はバッテリ電圧にプルアップされたままである。
この値は、第7基準値λ7を超える値であるため、トランジスタQ1はショート故障ではないと判定する。
一方、トランジスタQ1がショート故障の場合には、前記全オフ信号の印加によっても、トランジスタQ1はショートしているため、トランジスタQ1のドレイン電圧VPIG2は下がって、グランド電位に落ちている。従って、ドレイン電圧VPIG2が第7基準値λ7以下の場合には、トランジスタQ1がショート故障していると判定するのである。
第24実施形態によれば、第2実施形態の効果、第23実施形態の(3)の効果を奏する以外に下記の効果を奏する。
(1) 第24実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ1(第1スイッチング素子)のドレインと印加点P1間の接続点P5に対して抵抗R1(第1抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第1素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1をオフ制御するようにした。さらに、制御装置20は、トランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧VPIG2と第7基準値λ7(第1故障判定値)とを比較して、昇圧回路100の故障判定をする第1故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で、行うことができる。
(2) 第24実施形態では、S450で第4所定時間T4経過した後に、警告灯(報知手段)を駆動制御した。この結果、第4所定時間T4内にトランジスタQ1のショート故障が回復した場合を排除できる。
(3) 本実施形態では、トランジスタQ1にショート故障があったとされると、電源リレー200、相開放リレー210,220はオンされず、オフ制御されている。
従って、トランジスタQ1がショート故障の場合、すなわち、昇圧回路100が故障している場合、フェールセーフを掛けることができる。
25.第25実施形
図43は第25実施形態においてCPU21が処理する制御フローチャートである。
第25実施形態は、第23実施形態のハード構成と同一であり、又、制御は、第23実施形態の変形例の図41で示した制御と一部異なっている。
すなわち、S420の代わりにS420Bが、S430の代わりにS430Aが、S440の代わりにS440Bの処理が行われるところが異なっている。
S420Bでは、トランジスタQ1に全オフ信号を出力し、かつ、同時にトランジスタQ2に全オン信号を出力する。

S430Aでは、トランジスタQ2のドレイン電圧V(出力電圧VBPIG)を検出する。
S440BではS430Aで検出したトランジスタQ2のドレイン電圧すなわち、出力電圧VBPIGが、第8基準値λ8(>0)以下か否かを判定する。
第8基準値λ8は予めROM22に格納されており、トランジスタQ2のオープン故障を判定するために、予め試験等で得られた値である。
トランジスタQ1を全オフとした状態では、トランジスタQ1のドレイン電圧VPIG2はプルアップ回路によりバッテリ電圧にプルアップされたままである。そして、トランジスタQ2が全オンの信号が印加された状態で、トランジスタQ2がオープン故障していない場合、トランジスタQ2のドレイン電圧(出力電圧VBPIG)もバッテリ電圧となる。この値は、第8基準値λ8を超える値であるため、トランジスタQ2はオープン故障ではないと判定する。
一方、トランジスタQ2がオープン故障の場合には、前記全オン信号の印加によっても、トランジスタQ2はオープン故障しているため、トランジスタQ2のドレイン電圧(出力電圧VBPIG)は、バッテリ電圧に達しない。従って、ドレイン電圧(出力電圧VBPIG)が第8基準値λ8以下の場合には、トランジスタQ2がオープン故障していると判定するのである。
第25実施形態によれば、第2実施形態の効果、第23実施形態の(3)、(4)の効果を奏する以外に下記の効果を奏する。
(1) 第25実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ1(第1スイッチング素子)のドレインと印加点P1間の接続点P5に対して抵抗R1(第1抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第1素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1をオフ制御し、トランジスタQ2をオン制御するようにした。
さらに、制御装置20は、トランジスタQ2(第2スイッチング素子)のドレイン電圧(出力電圧VBPIG)を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧(出力電圧VBPIG)と第8基準値λ8(第1故障判定値)とを比較して、昇圧回路100の故障判定をする第1故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で、行うことができる。
(2) 本実施形態では、トランジスタQ2にオープン故障があったとされると、電源リレー200、相開放リレー210,220はオンされず、オフ制御されている。従って、トランジスタQ2がオープン故障の場合、すなわち、昇圧回路100が故障している場合、フェールセーフを掛けることができる。
26.第26実施形
第26実施形態を図44、図45を参照して説明する。
第26実施形態は、第23の実施形態の構成を一部変更するとともに、制御を変更したものである。
すなわち、第23実施形態でのプルアップ回路の接続を図44に示すように、トランジスタQ2のドレインとの接続点P6に対して接続したところが異なっている。なお、本実施形態でのプルアップ回路の抵抗R2は、接続点P4,P6間に電流がほとんど流れない高抵抗のものとしている。
そして、第26実施形態では、第23実施形態の制御ルーチンのうち、S420の代わりにS420Bが、S440の代わりに第24実施形態のS440Aの処理が行われるところが異なっている。
S420Bでは、トランジスタQ1に全オフ信号を出力し、かつ、同時にトランジスタQ2に全オン信号を出力する。
又、S440AではS430で検出したトランジスタQ1のドレイン電圧VPIG2が、第7基準値λ7(>0)以下か否かを判定する。
両トランジスタQ1,Q2が正常な場合、トランジスタQ1を全オフとし、トランジスタQ2を全オンとした状態では、トランジスタQ1のドレイン電圧VPIG2はプルアップ回路によりバッテリ電圧にプルアップされたままである。すなわち、トランジスタQ1のドレイン電圧VPIG2はバッテリ電圧となる。この値は、第7基準値λ7を超える値であるため、トランジスタQ1はショート故障ではないと判定する。
一方、トランジスタQ1がショート故障の場合には、トランジスタQ1のドレイン電圧VPIG2は、グランド電位となって下がるため、バッテリ電圧に達しない。従って、ドレイン電圧VPIG2が第7基準値λ7以下の場合には、トランジスタQ1がショート故障していると判定するのである。
第26実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、第2故障判定手段及び第2素子制御手段に相当する。又、第7基準値λ7は第2故障判定値に相当する。抵抗R2は第2抵抗に相当する。
電源リレー200は第1開閉手段、相開放リレー210,220は第2開閉手段に相当する。
第26実施形態によれば、第2実施形態の効果、第23実施形態の(3)、(4)、第24実施形態の(2)、(3)の効果を奏するとともにさらに、下記の効果がある。
(1) 第26実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ2(第2スイッチング素子)のドレインに対して抵抗R2(第2抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第2素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1(第1スイッチング素子)及びトランジスタQ2(第2スイッチング素子)の両者に対して同時にそれぞれオフ制御、オン制御するようにした。さらに、制御装置20は、トランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧VPIG2と第7基準値λ7(第2故障判定値)とを比較して、昇圧回路100の故障判定をする第2故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で、行うことができる。
27−1.第27実施形
第27実施形態を図46を参照して説明する。
第27実施形態は、第26実施形態の構成と同一とし、制御が一部異なっている。
すなわち、第26実施形態の図45に示した制御ルーチンのうち、S420Bの代わりにS420Cが、S440Aの代わりにS440Cの処理が行われるところが異なっている。
S420Cでは、トランジスタQ1,及びトランジスタQ2に同時に全オフ信号を出力を出力する。
又、S440CではS430で検出したトランジスタQ1のドレイン電圧VPIG2が、第9基準値λ9(>0)以下か否かを判定する。第9基準値λ9は予めROM22に格納されており、トランジスタQ2のショート故障を判定するために、予め試験等で得られた値である。
両トランジスタQ1,Q2が正常な場合、トランジスタQ1、及びトランジスタQ2を全オフとした状態では、トランジスタQ2のドレイン電圧(出力電圧VBPIG)はプルアップ回路によりバッテリ電圧にプルアップされた状態となる。
すなわち、トランジスタQ2のドレイン電圧(出力電圧VPIG2)はバッテリ電圧となる。
又、このときトランジスタQ2はオフとされているため、トランジスタQ1のドレイン電圧VPIG2は上がらない。この値は、第9基準値λ9を超える値であるため、トランジスタQ2はショート故障ではないと判定し、S510に移行する。
一方、トランジスタQ2がショート故障の場合には、トランジスタQ1のドレイン電圧VPIG2は、バッテリ電圧に上昇するため、ドレイン電圧VPIG2が第9基準値λ9以上の場合には、トランジスタQ2がショート故障していると判定するのである。
第27実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、第2故障判定手段及び第2素子制御手段に相当する。又、第9基準値λ9は第2故障判定値に相当する。抵抗R2は第2抵抗に相当する。
電源リレー200は第1開閉手段、相開放リレー210,220は第2開閉手段に相当する。
第27実施形態によれば、第2実施形態の効果、第23実施形態の(3)の効果を奏するとともにさらに、下記の効果がある。
(1) 第27実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ2(第2スイッチング素子)のドレインに対して抵抗R2(第2抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第2素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1(第1スイッチング素子)及びトランジスタQ2(第2スイッチング素子)の両者に対して同時にそれぞれオフ制御するようにした。さらに、制御装置20は、トランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧VPIG2と第9基準値λ9(第2故障判定値)とを比較して、昇圧回路100の故障判定をする第2故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で、行うことができる。
(2) 第27実施形態では、S450で第4所定時間T4経過した後に、警告灯(報知手段)を駆動制御した。この結果、第4所定時間T4内にトランジスタQ2のショート故障が回復した場合を排除できる。
(3) 第27実施形態では、モータ6(電動機)の電力をオンオフする相開放リレー210,220(第2開閉手段)を備えるようにした。
又、制御装置20が第2故障判定手段として昇圧回路100を故障判定したときには、制御装置20(昇圧回路制御手段)は、電源リレー200及び相開放リレー210,220をともにオン制御した(S490参照)。また、さらに、トランジスタQ1(第1スイッチング素子)を常時オフ制御し、トランジスタQ2(第2スイッチング素子)を常時オン制御するようにした(S480参照)。
この結果、昇圧回路100で昇圧した電圧でアシスト制御はできないが、アシスト制御をバッテリ電圧で実行できるとともに、回生時においては、回生電流をバッテリBに吸収させることができる。
27−2.第27実施形態の変形
図47は第23実施形態の変形例を示している。本変形例は、ハード構成は、第27実施形態と同一であり、制御ルーチンが下記のように異なっている。
すなわち、前記図46で示すフローチャートのうち、S480〜S500の処理が省略され、S470の処理が終了後、この制御ルーチンを終了するところが異なっている。
この結果、トランジスタQ2にショート故障があった場合には、電源リレー200、相開放リレー210,220はオンされず、オフ制御されていることになる。
この変形例の効果は、第2実施形態の効果、第23実施形態の(3)の効果、上記第27実施形態の(1)、(2)の効果と同一の効果を奏する以外に下記の効果を奏する。
(1) この変形例では、S460で第4所定時間T4経過していると判定されると、すなわち、トランジスタQ1にオープン故障があったとされると、電源リレー200、相開放リレー210,220はオンされず、オフ制御されている。
従って、トランジスタQ2がショート故障の場合、フェールセーフを掛けることができる。
28.第28実施形
図48は第28実施形態のCPU21が処理する制御フローチャートである。
本実施形態のハード構成は、第27実施形態と同一であり、制御ルーチンが下記のように異なっている。
すなわち、図46のS420C,S430,S440Cの代わりに、それぞれS420D,430B,S440Dの処理を行う。
S430Bでは、トランジスタQ1,トランジスタQ2の両者に全オン信号を同時に出力する。又、S430BではトランジスタQ1のドレイン電圧VPIG2、及びトランジスタQ2のドレイン電圧(出力電圧VBPIG)を検出する。
そして、S440Dでは、ドレイン電圧VPIG2が第10基準値λ10(>0)以上であって、かつ、ドレイン電圧(出力電圧VBPIG)が第10基準値λ11(>0)以上の条件を満たしているか否かを判定する。
第10基準値λ10及び第11基準値λ11は予めROM22に格納されており、トランジスタQ1のオープン故障を判定するために、予め試験等で得られた値である。
両トランジスタQ1,Q2が正常な場合、トランジスタQ1、及びトランジスタQ2を全オンとした状態では、トランジスタQ2のドレイン電圧(出力電圧VBPIG)はプルアップ回路によりバッテリ電圧にプルアップされても、両電圧はグランド電圧となる。
従って、両電圧がそれぞれ第10基準値λ11未満、第11基準値λ11未満のときは、トランジスタQ1はオープン故障しておらず正常であるとしてS510に移行する。
一方、トランジスタQ1がオープン故障している場合、トランジスタQ1のドレイン電圧VPIG2及びトランジスタQ2のドレイン電圧(出力電圧VBPIG)はグランド電圧にならない。すなわち、両電圧はそれぞれ第10基準値λ11以上、第11基準値λ11以上となるため、トランジスタQ1はオープン故障しているとる判定し、S450に移行する。
第28実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、第2故障判定手段及び第2素子制御手段に相当する。又、第10基準値λ10及び第11基準値λ11は第2故障判定値に相当する。抵抗R2は第2抵抗に相当する。
電源リレー200は第1開閉手段、相開放リレー210,220は第2開閉手段に相当する。
第28実施形態によれば、第2実施形態の効果、第23実施形態の(3)〜、(5)、第27実施形態の(3)の効果を奏するとともにさらに、下記の効果がある。
(1) 第28実施形態では、昇圧回路100の印加点P1(バッテリ電圧供給部)に対して接続されるとともに制御装置20(昇圧回路制御手段)にてオンオフ制御される電源リレー200(第1開閉手段)を設けた。又、トランジスタQ2(第2スイッチング素子)のドレインに対して抵抗R2(第2抵抗)を介して接続され、イグニッションスイッチIGSのオン時にイグニッション電圧VIGを印加するプルアップ回路を設けた。
そして、制御装置20は、第2素子制御手段として、イグニッションスイッチIGSがオン時に、電源リレー200をオン制御する前に、トランジスタQ1(第1スイッチング素子)及びトランジスタQ2(第2スイッチング素子)の両者に対して同時にそれぞれオン制御するようにした。さらに、制御装置20は、トランジスタQ1(第1スイッチング素子)のドレイン電圧VPIG2及びトランジスタQ2のドレイン電圧(出力電圧VBPIG)を検出するドレイン電圧検出手段として機能するとともに、ドレイン電圧VPIG2と第10基準値λ10(第2故障判定値)、ドレイン電圧(出力電圧VBPIG)と第11基準値λ11(第2故障判定値))とを比較して、昇圧回路100の故障判定をする第2故障判定手段として機能する。
その結果、昇圧回路100の故障判定を、イグニッションスイッチIGSをオンした後のイニシャルチェック時の段階で、行うことができる。
28−2.第28実施形態の変形
図49は第28実施形態の変形例を示している。本変形例は、ハード構成は、第28実施形態と同一であり、制御ルーチンが下記のように異なっている。
すなわち、前記図48で示すフローチャートのうち、S480〜S500の処理が省略され、S470の処理が終了後、この制御ルーチンを終了するところが異なっている。
この結果、トランジスタQ2にショート故障があった場合には、電源リレー200、相開放リレー210,220はオンされず、オフ制御されていることになる。
この変形例の効果は、第2実施形態の効果、第23実施形態の(3)、(4)の効果、上記第28実施形態の(1)の効果と同一の効果を奏する以外に下記の効果を奏する。
(1) この変形例では、S460で第4所定時間T4経過していると判定されると、すなわち、トランジスタQ1にオープン故障があったとされると、電源リレー200、相開放リレー210,220はオンされず、オフ制御されている。
従って、トランジスタQ2がショート故障の場合、フェールセーフを掛けることができる。
29.第29実施形
第29実施形態は、第28実施形態の変形例の構成と同一とし、制御が一部異なっている。
すなわち、図50に示すように第28実施形態の図49に示した制御ルーチンのうち、S440Dの代わりにS440Eの処理が行われるところが異なっている。
そして、S440Eでは、ドレイン電圧VPIG2が第12基準値λ12(>0)以下であって、かつ、ドレイン電圧(出力電圧VBPIG)が第13基準値λ13(>0)以上の条件を満たしているか否かを判定する。
第12基準値λ12及び第13基準値λ13は予めROM22に格納されており、トランジスタQ2のオープン故障を判定するために、予め試験等で得られた値である。
両トランジスタQ1,Q2が正常な場合、トランジスタQ1,Q2を全オンとした状態では、トランジスタQ2のドレイン電圧(出力電圧VBPIG)はプルアップ回路によりバッテリ電圧にプルアップされても、両電圧はグランド電圧となる。
従って、ドレイン電圧VPIG2が第12基準値λ12(>0)以下であって、かつ、ドレイン電圧(出力電圧VBPIG)が第13基準値λ13(>0)以上の条件を満たさないため、トランジスタQ2は正常とし判定して、S510に移行する。
一方、トランジスタQ2がオープン故障している場合、トランジスタQ1のドレイン電圧VPIG2はグランド電圧に落ち、トランジスタQ2のドレイン電圧(出力電圧VBPIG)はグランド電圧にならず、バッテリ電圧のままである。
すなわち、ドレイン電圧VPIG2は第12基準値λ12以下、第13基準値λ13以上となるため、トランジスタQ2はオープン故障していると判定し、S450に移行する。
第29実施形態では、制御装置20は第2実施形態で説明した各手段に相当するとともに、状態パラメータ検出手段、第2故障判定手段及び第2素子制御手段に相当する。又、第12基準値λ12及び第13基準値λ13は第2故障判定値に相当する。抵抗R2は第2抵抗に相当する。
電源リレー200は第1開閉手段、相開放リレー210,220は第2開閉手段に相当する。
第29実施形態によれば、第2実施形態の効果、第23実施形態の(3)、第28実施形態の変形例の(1)の効果を奏するとともにさらに、下記の効果がある。
(1) 第29実施形態では、S450で第4所定時間T4経過した後に、警告灯(報知手段)を駆動制御した。この結果、第4所定時間T4内にトランジスタQ2のオープン故障が回復した場合を排除できる。
なお、本発明の実施形態は以下のように変更してもよい。
○ 操舵トルクτと、車速Vとを使用した実施形態に代わって、操舵トルクτのみで、電動機制御信号を決定するようにしてもよい。
○ 第7〜9実施形態では、CPU21は操舵トルクτに基づいてモータ6の負荷状態を判定したが、指令電流設定部54で設定したq軸指令電流Iq*(電動機制御信号)に基づいて、モータ6の負荷状態を低負荷か高負荷かを判定してもよい。
この場合、負荷状態判定手段としての制御装置20は、q軸指令電流Iq*(電動機制御信号)に基づいてモータ6(電動機)の負荷判定を行う。
○ 第7〜9実施形態では、モータ6はDCブラシレスモータで構成したが、DCブラシ付モータにて構成してもよい。この場合、CPU21では、加算部53の下段に公知のアシスト指令電流演算部及び電流制御部を備える。そして、同アシスト電流演算部にて指令トルクτ*に基づいてアシスト指令電流値(電動機制御信号)が演算される。電流制御部はモータ電流がアシスト指令電流値となるようにPWM演算を行い、その演算結果に基づいて、ブラシ付モータを駆動する公知の駆動回路を介してモータ6を駆動するようにされている。
このようなブラシ付モータを駆動する場合において、前記アシスト指令電流値に基づいてモータ6の負荷状態を低負荷か高負荷かを判定してもよい。
この場合、負荷状態判定手段としての制御装置20は、アシスト指令電流値(電動機制御信号)に基づいてモータ6(電動機)の負荷判定を行う。
○ 第1〜14実施形態では、CPU21は、昇圧回路100に対して、PID制御部120にてPID制御を行ったが、この代わりにPI制御部を設けて、PI制御を行っても良い。
PI制御部は、目標出力電圧(本実施形態では20V)と、A/D変換部150を介して入力したVBPIGとの偏差を縮小すべく比例(P)・積分(I)処理を施して、トランジスタQ1,Q2の制御量を演算する回路である。PI制御部にて演算された制御量は、さらにPWM演算部130によって制御量に対応するデューティ比αが演算されてデューティ比駆動信号に変換され、該変換されたデューティ比駆動信号が昇圧回路100の各トランジスタQ1,Q2に印加される。
○ 第1〜14実施形態では、CPU21は、昇圧回路100に対してPID制御部120にてPID制御を行ったが、この代わりにPD制御部を設けて、PD制御を行っても良い。
PD制御部は、目標出力電圧(本実施形態では20V)と、A/D変換部150を介して入力したVBPIGとの偏差を縮小すべく比例(P)・微分(D)処理を施して、トランジスタQ1,Q2の制御量を演算する回路である。PD制御部にて演算された制御量は、さらにPWM演算部130によって制御量に対応するデューティ比αが演算されてデューティ比駆動信号に変換され、該変換されたデューティ比駆動信号が昇圧回路100の各トランジスタQ1,Q2に印加される。
○ 第6実施形態、第9実施形態、第15実施形態では各スイッチング素子のPWM制御では所定デューティ比を越えてPWM制御しないように、デューティ制限した。しかし、これらの実施形態に限らず、他の実施形態においても同様にデューティ制限をしても良い。この場合、他の実施形態においても、ガード機能部140を同様に設けることにより、デュティー制限ができ、このことにより、力行時及び回生時のいずれにおいても昇圧回路100の破損を防止することができる。
○ 第1〜14実施形態では、CPU21は、昇圧回路100に対してPID制御部120にてPID制御を行ったが、この代わりにP制御部を設けて、P制御を行っても良い。
P制御部は、目標出力電圧(本実施形態では20V)と、A/D変換部150を介して入力したVBPIGとの偏差を縮小すべく比例(P)処理を施して、トランジスタQ1,Q2の制御量を演算する回路である。P制御部にて演算された制御量は、さらにPWM演算部130によって制御量に対応するデューティ比αが演算されてデューティ比駆動信号に変換され、該変換されたデューティ比駆動信号が昇圧回路100の各トランジスタQ1,Q2に印加される。
○ 前記第16〜29実施形態では、昇圧回路100が異常な場合、警告灯を警告信号にて点灯するようにしたが、警告灯以外に、ブザーや、ディスプレイ等の報知手段に報知信号を出力して、鳴動作動や警告表示をするようにしてもよい。
○ 前記16〜29実施形態では、昇圧回路100が異常な場合、所定時間(第1所定時間T1〜第4所定時間)経過後、警告灯を警告信号にて点灯するようにしたが、この所定時間経過せずに、すぐに、警告灯を点灯するようにしても良い。
○ 前記16〜29実施形態では、各ステップ(S10,S10A,S110,S120,S130,S210,S260)において判定後、所定時間(第1所定時間T1〜第4所定時間)経過後、昇圧回路100の異常とした。
この代わりに、所定時間(第1所定時間T1〜第4所定時間T4)経過を待たずに、前記各ステップで異常判定した直後、警告灯を点灯させたり、各実施形態で説明した、昇圧回路100異常時における他の必要なステップを実行するようにしても良い。
次に、請求項に記載した発明以外の技術的思想であって、前記実施形態及び別例から把握できるものについて、以下に記載する。
(1) 運転状況パラメータは、電動機の運転状況パラメータである電動機制御信号であることを特徴とする電動パワーステアリング装置。こうすると、据え切り、低速走行時等の大出力時には、電動機回転数の追従性は要求されないので、これらの場合には、そうでない場合に比して電動機制御信号が大きい領域では目標出力電圧を低下させ、昇圧コイルや第1、第2スイッチング素子での発熱を抑えることができ、ロスがなくなり、効率を上げることができる。第1実施形態のq軸指令電流Iq*が電動機制御信号に相当する。
(2) 運転状況パラメータは、車両の運転状況パラメータである車速であることを特徴とする電動パワーステアリング装置。こうすると、据え切り、低速走行時等の大出力時には、目標出力電圧を低下するため、昇圧コイルや第1、第2スイッチング素子での発熱を抑えることができ、ロスがなくなり、効率を上げることができる。
(3) 運転状況パラメータは、電動機の運転状況パラメータであるモータ角速度であることを特徴とする電動パワーステアリング装置。こうすると、モータ角速度に応じて出力電圧を上昇させてモータ回転数の追従性を向上させ、電圧が必要な時のみ出力電圧を昇圧させることにより、常時昇圧する場合に比して、昇圧コイル、及び第1、第2スイッチング素子の発熱を抑えることができる。
(4) 運転状況パラメータは、車両の運転状況パラメータである操舵トルクであることを特徴とする電動パワーステアリング装置。こうすると、操舵トルクに応じて出力電圧を上昇させてモータ回転数の追従性を向上させ、電圧が必要な時のみ出力電圧を昇圧させることにより、常時昇圧する場合に比して、昇圧コイル、及び第1、第2スイッチング素子の発熱を抑えることができる。
(5) 状態パラメータ検出手段は、状態パラメータとして昇圧回路の出力電圧を検出し、判定手段は、前記出力電圧が目標出力電圧と関係する判定値以下のとき、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。こうすると、第1スイッチング素子がオープン故障又は第2スイッチング素子がショート故障していると判定できる。
なお、第16実施形態及び第18実施形態の(目標出力電圧VBPIG*−第1基準値λ1)が、目標出力電圧と関係する判定値に相当する。
(6) 状態パラメータ検出手段は、状態パラメータとして昇圧回路の出力電圧を検出し、判定手段は、前記出力電圧が目標出力電圧と関係する判定値以上のとき、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。
こうすると、第2スイッチング素子がオープン故障していると判定できる。
なお、第17実施形態の(第2基準値λ2+目標出力電圧VBPIG*)が目標出力電圧と関係する判定値に相当する。
(7) 状態パラメータ検出手段は、状態パラメータとして第1スイッチング素子のドレイン電圧を検出し、判定手段は、前記ドレイン電圧が判定値以下のとき、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。
こうすると、第1スイッチング素子がショート故障していると判定できる。
この場合、第19実施形態の第3基準値λ3が判定値に相当する。
(8) 状態パラメータ検出手段は、状態パラメータとして第2スイッチング素子のドレイン電圧を検出し、判定手段は、前記ドレイン電圧が判定値以上のとき、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。
こうすると、第2スイッチング素子がオープン故障していると判定できる。
この場合、第20実施形態の第4基準値λ4が判定値に相当する。
(9) 状態パラメータ検出手段は、状態パラメータとして第2スイッチング素子のドレイン電圧を検出し、判定手段は、前記ドレイン電圧が判定値以下のとき、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。
こうすると、第2スイッチング素子が地絡故障していると判定できる。
この場合、第21実施形態の第5基準値λ5が判定値に相当する。
(10) 状態パラメータ検出手段は、状態パラメータとして第1スイッチング素子に流れる電流Iを検出し、判定手段は、前記電流と判定値とを比較して、昇圧回路が異常と判定することを特徴とする電動パワーステアリング装置。こうすると、第1スイッチング素子又は第2スイッチング素子の異常が判定できる。
この場合、第21実施形態の第1電流基準値K1、第2電流基準値K2が判定値に相当する。
(11) 判定値は、第1電流基準値K1と第2電流基準値K2(<K1)を含み、判定手段は、前記電流Iが、K2≦I<K1のとき、第2スイッチング素子がショート故障であると判定し、前記電流Iが、I≧K1のとき第1スイッチング素子がショート故障であると判定することを特徴とする前記(10)に記載の電動パワーステアリング装置。こうすると、第1スイッチング素子に流れる電流と第1電流基準値K1と第2電流基準値K2との大小関係により、第1、第2スイッチング素子の異常を判定することができる。
(12) 定手段は、異常状態が所定時間継続しているときに、昇圧回路に異常が生じていると判定することを特徴とする電動パワーステアリング装置。このようにすると、所定時間範囲内での異常状態の場合には、異常と判定しないため、所定時間内で異常状態が回復した場合を排除することができる。
この場合、所定時間とは、第16〜第29実施形態の第1所定時間T1〜第4所定時間T4が相当する。
(13) 記昇圧回路制御手段は、前記判定手段が異常と判定した場合には、報知信号を出力することを特徴とする電動パワーステアリング装置。こうすると、報知信号が出力されることにより、例えば、警告灯や、ブザー等を駆動することができ、運転者に昇圧回路に異常が生じたことを報知することができる。
本発明の実施形態に具体化した電動パワーステアリング装置の概略図。 同じく電動パワーステアリング装置の制御ブロックダイヤグラム。 同じくCPU21の制御ブロック図。 同じく昇圧回路の電気回路図。 同じく昇圧時の制御装置の制御ブロックダイヤグラム。 同じくトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第2実施形態のトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第3実施形態のトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第4実施形態の力行状態のときのトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第4実施形態の回生状態のときのトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第5実施形態の昇圧回路の電気回路図。 同じく力行状態のときのトランジスタQ1,Q2のデューティ比駆動信号の波形図。 同じく回生状態のときのトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第6実施形態のCPUにおける回生時の制御プログラムで実行される機能を示す制御ブロック図。 同じく回生状態でのトランジスタQ1,Q2の駆動パターンを示す説明図。 同じくモードIのときの昇圧回路の等価回路。 同じくモードIのときの昇圧回路の等価回路。 第7実施形態の力行状態のときのトランジスタQ1,Q2の駆動パターンを示す説明図。 同じく力行状態のときのトランジスタQ1,Q2の駆動パターンを示す説明図。 第10実施形態の昇圧回路の電気回路図。 第11実施形態の昇圧時の制御装置の制御ブロックダイヤグラム。 第11実施形態のトランジスタQ1,Q2のデューティ比駆動信号の波形図。 第12実施形態の昇圧時の制御装置の制御ブロックダイヤグラム。 第13実施形態のCPUにおける機能を示す制御ブロック図。 第14実施形態のCPUにおける機能を示す制御ブロック図。 第15実施形態のCPUにおける機能を示す制御ブロック図。 第16実施形態のCPUが処理する制御フローチャート。 第17実施形態の電動パワーステアリング装置の制御ブロックダイヤグラム。 第17実施形態のCPUが処理する制御フローチャート。 第18実施形態のCPUが処理する制御フローチャート。 第19実施形態の昇圧回路の電気回路図。 第19実施形態のCPUが処理する制御フローチャート。 第20実施形態のCPUが処理する制御フローチャート。 第21実施形態のCPUが処理する制御フローチャート。 第22実施形態の昇圧回路の電気回路図。 同じくCPUが処理する制御フローチャート。 第22実施形態の変形例においてCPUが処理する制御フローチャート。 第23実施形態の電動パワーステアリング装置の制御ブロックダイヤグラム。 第23〜25実施形態の昇圧回路の電気回路図。 第23実施形態のCPUが処理する制御フローチャート。 第23実施形態の変形例においてCPUが処理する制御フローチャート。 第24実施形態においてCPUが処理する制御フローチャート。 第25実施形態においてCPUが処理する制御フローチャート。 第26〜29実施形態の昇圧回路の電気回路図。 第26実施形態のCPUが処理する制御フローチャート。 第27実施形態のCPUが処理する制御フローチャート。 第27実施形態の変形例のCPUが処理する制御フローチャート。 第28実施形態のCPUが処理する制御フローチャート。 第28実施形態の変形例のCPUが処理する制御フローチャート。 第29実施形態のCPUが処理する制御フローチャート。 従来の昇圧回路の回路図。 同じくトランジスタQ1の駆動パルス波形を示す波形図。
符号の説明
4…トルクセンサ
6…モータ(電動機)
20…制御装置(制御信号発生手段、昇圧回路制御手段、操舵状態判定手段、負荷状態判定手段、状態パラメータ検出手段、判定手段、第1故障判定手段、第1素子制御手段、ドレイン電圧検出手段、第2素子制御手段、第2故障判定手段)、
21…CPU
24…プリドライバ(プリドライバ手段)
35…モータ駆動装置(電動機駆動手段)
54…指令電流設定部(特に制御信号発生手段に相当する)
100…昇圧回路
120…PID制御部(制御演算手段)
130…PWM演算部(操舵状態判定手段、PWM演算手段)
160…目標出力電圧設定部(目標出力電圧設定手段)
200…電源リレー(第1開閉手段)
210,220…相開放リレー(第2開閉手段)
B…バッテリ 、L…コイル(昇圧用コイル)
C2…コンデンサ(昇圧用コイルによる出力電圧を平滑するコンデンサ)
C3…コンデンサ(ブートストラップコンデンサ)
Q1…トランジスタ(第1スイッチング素子)
Q2…トランジスタ(第2スイッチング素子)
BS…ブートストラップ回路

Claims (16)

  1. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において
    昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、
    前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、
    前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止するとともに、前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする電動パワーステアリング装置。
  2. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において
    前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、
    前記目標出力電圧設定手段は、車両又は電動機の運転状況を示す運転状況パラメータを入力し、運転状況パラメータに応じて目標出力電圧を可変にし、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    前記昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、
    第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  3. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において
    前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、
    前記昇圧回路制御手段は、所定デューティ比を越えてPWM制御しないように、デューティ制限し、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    前記昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、
    第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  4. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、
    昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、
    前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、
    前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止し、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第1スイッチング素子のドレインと前記バッテリ電圧供給部間の接続点に対して第1抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    前記昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子のうち少なくとも第1スイッチング素子をオン又はオフ制御する第1素子制御手段と、
    第1スイッチング素子又は第2スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第1故障判定値とを比較して、昇圧回路の故障判定をする第1故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  5. 昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    電動機の電力をオンオフする第2開閉手段を備え、
    前記判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする請求項に記載の電動パワーステアリング装置。
  6. 前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする請求項に記載の電動パワーステアリング装置。
  7. 電動機の電力をオンオフする第2開閉手段を備え、
    前記第1故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする請求項2乃至請求項6のうちいずれか1項に記載の電動パワーステアリング装置。
  8. 電動機の電力をオンオフする第2開閉手段を備え、
    前記第1故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をともにオン制御し、
    かつ、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする請求項2乃至請求項6のうちいずれか1項に記載の電動パワーステアリング装置。
  9. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、
    前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、
    前記目標出力電圧設定手段は、車両又は電動機の運転状況を示す運転状況パラメータを入力し、運転状況パラメータに応じて目標出力電圧を可変にし、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、
    第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  10. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、
    前記昇圧回路制御手段は、昇圧回路の目標出力電圧を設定する目標出力電圧設定手段と、目標出力電圧と出力電圧との偏差に基づいて少なくともP制御演算する制御演算手段と、前記制御演算手段の演算値に基づいてPWM演算を行いデューティ比を演算するPWM演算手段とを含み、PWM演算手段にて演算されたデューティ比に基づいて前記第1、第2スイッチング素子をオンオフ制御するものであり、
    前記昇圧回路制御手段は、所定デューティ比を越えてPWM制御しないように、デューティ制限し、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、
    第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  11. 少なくともステアリングホイールの操舵トルクに基づいて電動機制御信号を決定し、同信号を出力する制御信号発生手段と、前記電動機制御信号に基づいて電動機を駆動する電動機駆動手段とを備えるとともに、
    バッテリと前記電動機駆動手段間の電流供給回路に昇圧回路を設け、
    前記昇圧回路は、一端側がバッテリに接続されてバッテリ電圧が印加される昇圧用コイルと、同昇圧用コイルを地絡又は開放する第1スイッチング素子と、前記昇圧用コイルの他端側に接続され、オンオフする第2スイッチング素子と、前記第2スイッチング素子の出力側に接続され、前記昇圧用コイルによる昇圧電圧(以下、出力電圧という)を平滑するコンデンサとを含み、
    目標出力電圧と前記出力電圧との偏差に基づいて、第1、及び第2スイッチング素子のうち、力行時には、少なくとも前記第1スイッチング素子をオンオフさせて電動機の供給電圧を昇圧するとともに、回生時には少なくとも第2スイッチング素子をオンオフさせる昇圧制御を実行する昇圧回路制御手段とを備える電動パワーステアリング装置において、
    昇圧回路の状態パラメータを検出する状態パラメータ検出手段と、
    前記状態パラメータ検出手段が検出した状態パラメータと判定値とを比較して昇圧回路が正常か否かを判定する判定手段とを備え、
    前記昇圧回路制御手段は、前記判定手段が判定した結果に応じて、昇圧回路の昇圧制御を中止し、
    昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、
    第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする電動パワーステアリング装置。
  12. 昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    電動機の電力をオンオフする第2開閉手段を備え、
    記判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする請求項11に記載の電動パワーステアリング装置。
  13. 前記判定手段が故障判定したときには、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする請求項11に記載の電動パワーステアリング装置。
  14. 昇圧回路のバッテリ電圧供給部に対して接続されるとともに昇圧回路制御手段にてオンオフ制御される第1開閉手段と、
    第2スイッチング素子のドレインに対して第2抵抗を介して接続され、イグニッションスイッチのオン時にイグニッション電圧を印加する回路とを、備え、
    昇圧回路制御手段には、
    イグニッションスイッチがオン時に、第1開閉手段をオン制御する前に、第1スイッチング素子及び第2スイッチング素子の両者に対して同時にそれぞれオン制御又はオフ制御、或いは同時にそれぞれオフ制御、オン制御する第2素子制御手段と、
    第1スイッチング素子、第2スイッチング素子のうち少なくとも第1スイッチング素子のドレイン電圧を検出するドレイン電圧検出手段と、
    前記ドレイン電圧と第2故障判定値とを比較して、昇圧回路の故障判定をする第2故障判定手段とを備えたことを特徴とする請求項2乃至請求項8のうちいずれか1項に記載の電動パワーステアリング装置。
  15. 電動機の電力をオンオフする第2開閉手段を備え、
    前記第2故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をオフ制御することを特徴とする請求項9乃至請求項14のうちいずれか1項に記載の電動パワーステアリング装置。
  16. 電動機の電力をオンオフする第2開閉手段を備え、
    前記第2故障判定手段が故障判定したときには、昇圧回路制御手段は、第1開閉手段及び第2開閉手段をともにオン制御し、
    かつ、第1スイッチング素子を常時オフ制御し、第2スイッチング素子を常時オン制御することを特徴とする請求項9乃至請求項14のうちいずれか1項に記載の電動パワーステアリング装置。
JP2006086260A 2006-03-27 2006-03-27 電動パワーステアリング装置 Expired - Fee Related JP4245000B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006086260A JP4245000B2 (ja) 2006-03-27 2006-03-27 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006086260A JP4245000B2 (ja) 2006-03-27 2006-03-27 電動パワーステアリング装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001283396A Division JP3805657B2 (ja) 2001-09-18 2001-09-18 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2006230193A JP2006230193A (ja) 2006-08-31
JP4245000B2 true JP4245000B2 (ja) 2009-03-25

Family

ID=36991014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006086260A Expired - Fee Related JP4245000B2 (ja) 2006-03-27 2006-03-27 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP4245000B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220766A (ja) * 2008-03-18 2009-10-01 Jtekt Corp 電動パワーステアリング装置
JP6623540B2 (ja) * 2015-04-10 2019-12-25 株式会社デンソー 制御装置及び電動パワーステアリング装置
JP7099066B2 (ja) * 2018-06-14 2022-07-12 株式会社ジェイテクト 補助電源装置及び電動パワーステアリング装置
WO2024095355A1 (ja) * 2022-11-01 2024-05-10 三菱電機株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
JP2006230193A (ja) 2006-08-31

Similar Documents

Publication Publication Date Title
JP3805657B2 (ja) 電動パワーステアリング装置
JP5212464B2 (ja) 電動パワーステアリング装置
JP6709014B2 (ja) インバータ装置
JP2017169405A (ja) モータ制御装置及び操舵制御装置
CN101421148A (zh) 电动动力转向装置
JP5338969B2 (ja) 電源状態診断方法及び装置
JP2014091456A (ja) 電動パワーステアリング装置
JP5310579B2 (ja) 電動パワーステアリング装置
JP5991264B2 (ja) 電動パワーステアリング装置
JP4245000B2 (ja) 電動パワーステアリング装置
CN110871840B (zh) 车辆控制装置
JP2003319699A (ja) 電動パワーステアリング装置
JP5857941B2 (ja) 電動パワーステアリング装置
JP5057026B2 (ja) モータ駆動装置
JP5831060B2 (ja) モータ制御装置及び車両用操舵装置
JP3798725B2 (ja) 電動パワーステアリング装置
JP3777403B2 (ja) 電動パワーステアリング装置
JP6436012B2 (ja) 車両用電動モータ制御装置
JP3795827B2 (ja) 電動パワーステアリング装置
JP2012153355A (ja) 電動パワーステアリング装置
JP3805714B2 (ja) 電動パワーステアリング装置
JP2014091454A (ja) 電動パワーステアリング装置
JP2012147658A (ja) モータ駆動制御装置
JP2003319685A (ja) 電動パワーステアリング制御装置及び電動パワーステアリング制御装置の電動機電流演算方法
JP2008201198A (ja) 電気式動力舵取装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Ref document number: 4245000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees