JP4229254B2 - 磁気共鳴イメージング装置 - Google Patents
磁気共鳴イメージング装置 Download PDFInfo
- Publication number
- JP4229254B2 JP4229254B2 JP2000054734A JP2000054734A JP4229254B2 JP 4229254 B2 JP4229254 B2 JP 4229254B2 JP 2000054734 A JP2000054734 A JP 2000054734A JP 2000054734 A JP2000054734 A JP 2000054734A JP 4229254 B2 JP4229254 B2 JP 4229254B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- flow velocity
- magnetic resonance
- resonance imaging
- pulse sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Description
【発明の属する技術分野】
本発明は、磁気共鳴イメージング装置(以下、MRI装置という)に係わり、特に、3Dアンギオグラフィ画像の高画質化を可能とするMRI装置に関する。
【0002】
【従来の技術】
MRI装置は、いわゆるNMR現象を利用して被検体中の所望の検査部位に相当する断面における原子核スピン(以下スピンと称する)の密度分布、緩和時間分布等を計測して、その計測データから被検体の検査部位を画像表示するものである。
【0003】
このようなMRI装置の撮像手法として、被検体中の血流を画像化する手法として3次元MRアンギオグラフィ計測がある。3次元アンギオグラフィ計測では、図7に示すように撮像領域70を所定の領域(スラブ)71〜74に分割し、各領域についてスライスエンコードおよび位相エンコードと呼ばれるデータ計測事前の傾斜磁場の磁場強度を変化させながら、データ計測を繰り返すことにより、3次元データ配列を得て、これを3次元フーリエ変換により再構成することによって3次元画像を得ることができる。
【0004】
また、このパルスシーケンスの繰り返し時間(以下TR)を短縮することにより、脳組織や筋肉など流れていない組織に対して、血管など流れている組織の信号強度を向上させて、流れている部位のみを画像化する手法がTime of Flight法(以下、TOF法という)として知られている。
【0005】
図8(a)に、この手法の原理を示す。図中、矢印方向に流れている部位、たとえば血管84を撮像する場合、任意の時点で計測される撮像断面83内の血液81は、次の計測を行う時点では、位置82まで移動してしまっている。また、この時点で計測される血液は、前回の計測時点では、位置80に存在したものである。即ち、撮影部位の血管は、撮像する断面83(3D計測の場合は、スラブ)の厚さが薄い場合は、必ずはじめて計測される状態となっている。一方、その他の流れていない部分は、毎回計測されることになる。従ってTRが短い場合、繰り返し計測される部分では、NMR信号の飽和現象が発生する。この飽和現象により、血管以外の信号強度は低下し、血管のみが強調された画像データを得ることができる。これは一般に流入効果とも呼ばれている。
【0006】
これに対し、図8(b)に示すように、スラブ厚が厚い場合には、TR時間後にも前回計測した血管内の血液87は、その一部が撮像スラブ内88に存在するため、繰り返し励起され計測される。このため、NMR信号の飽和現象による血管強調効果が低下する。
【0007】
【発明が解決しようとする課題】
このため従来の3次元アンジオグラフィにおいては、撮像するスラブを分割して薄いスラブで計測を繰り返す方法が取られている。この場合、分割されるスラブの厚さは、多くの場合、経験に基づき決められ、対象とする部位を単純に等分割するだけであった。
【0008】
従って、対象とする部位を流れる流体に流速分布がある場合には、必ずしも最適な条件で撮像できず流入効果が得られない場合があった。また確実な流入効果を得るために分割スラブの厚さを薄くしすぎた場合には、計測時間が長くなるという問題があった。
【0009】
そこで本発明は、3次元血管強調画像計測において、目的とする領域内の流体の流速分布に基づき、最適なスラブ分割を自動的に行うことが可能なMRI装置を提供することを目的とする。また本発明は、NMR信号飽和による流れている部分の信号強調効果を向上させることを可能とするMRI装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
このような目的を達成するために、本発明では、事前に、計測スラブ方向における血管の流速分布を計測し、この分布に基づき最適なスラブ分割を算出し、この結果に基づきパルスシーケンスを設定し、計測および再構成を行う。
【0011】
即ち、本発明のMRI装置は、静磁場を発生する静磁場発生手段、前記静磁場中に置かれた被検査体に対して、高周波磁場を印加する送信手段、前記静磁場に磁場勾配を与える傾斜磁場発生手段、前記被検査体から発生する核磁気共鳴信号を計測する受信手段、これら送信手段、傾斜磁場発生手段および受信手段を所定のパルスシーケンスに従い制御する制御手段、計測された核磁気共鳴信号に基づいて画像処理を行う画像処理手段を備え、
前記制御手段は、前記被検査体の計測対象領域における流体を画像化する第1のパルスシーケンスを有し、前記計測対象領域における流体の流速分布に対応して前記計測対象領域の領域分割を行い、前記分割された領域毎に前記第1のパルスシーケンスを実行することを特徴とする。
【0012】
このように構成したMRI装置は、撮像対象とする領域に流速分布がある場合でも、血管強調効果が低減することなく画質の向上した3次元画像を得ることができる。尚、最適な分割領域の算出は、流速分布から逐次計算によって求めてもよいし、あらかじめ流速/分割領域厚の対応テーブルを用意しておき、このテーブルから最適な分割領域を求めてもよい。
【0013】
【発明の実施の形態】
以下、本発明の一実施例を説明する。
【0014】
図1は本発明を適用したMRI装置の全体構成を示すブロツク図である。このMRI装置は、大別すると、中央処理装置(CPU)1と、シーケンサ2と、送信系3と、静磁場発生系4と、受信系5と、信号処理系6とを備えている。静磁場発生系4は、被検体7の置かれる空間に均一な磁場を発生する静磁場発生磁石と、線形の磁場勾配を与える傾斜磁場発生系とを備えている。CPU1は、本発明に基づくプログラムに従ってシーケンサ2、送信系3、受信系5、信号処理系6の各々を制御するものである。
【0015】
シーケンサ2は、CPU1からの制御指令に基づいて動作し、被検体7の断層画像のデータ収集に必要な種々の命令を送信系3、傾斜磁場発生系、受信系5に送る。シーケンサ2によるこれら制御のタイムチャートはパルスシーケンスと呼ばれ、ここではアンギオグラフィ計測のためのパルスシーケンスが組み込まれている。
【0016】
送信系3は、高周波発信器8と変調器9と高周波コイルとしての照射コイル11を備えている。シーケンサ2の指令により高周波発信器8からの高周波パルスを変調器9で振幅変調し、この振幅変調された高周波パルスを高周波増幅器10を介し増幅して照射コイル11に供給することにより、所定のパルス状の電磁波を被検体7に照射する。
【0017】
静磁場発生磁石は、被検体7の回りに任意の方向に均一な静磁場を発生させるためのものであり、この静磁場発生磁石の内部には、照射コイル11の他、傾斜磁場を発生させる傾斜磁場コイル13と、受信系5の受信コイル14が設置されている。
【0018】
傾斜磁場発生系は互いに直交するデカルト座標軸方向にそれぞれ独立に傾斜磁場を印加できる構成を有する傾斜磁場コイル13と、傾斜磁場コイル13に電流を供給する傾斜磁場電源12とから構成されている。この傾斜磁場コイル13に流す電流によって傾斜磁場強度を変化させることができ、これによって所定位置、所定厚さのスライス或いはスラブを選択して励起し、また選択された領域から発生するNMR信号に所望方向のエンコードを付与することができる。傾斜磁場コイルに印加する電流の強さ及びタイミングは上述したパルスシーケンスによって制御される。
【0019】
受信系5は、高周波コイルとしての受信コイル14と、該受信コイル14に接続された増幅器15と、直交位相検波器16と、A/D変換器24とを有し、被検体7からのNMR信号を受信コイル14が検出すると、その信号を増幅器15、直交位相検波器16、A/D変換器24を介しデジタル量に変換するとともに、シーケンサ2からの指令によるタイミングで直交位相検波器16によってサンプリングされた二系列の収集データに変換してCPU1に送るようにしている。
【0020】
信号処理系6は、CPU1と、ROM17、RAM18等の内部メモリと、光磁気ディスク19、磁気ディスク21等の外部記憶装置と、CRT等からなるディスプレイ20と、トラックソール、マウス22やキーボード23等の入力装置とから構成される。受信系5からのデータがCPU1に入力されると、該CPU1が信号処理、画像再構成等の処理を実行し、その結果である被検体7の所望の断面像をディスプレイ20に表示するとともに、外部記憶装置の磁気ディスク21等に記録する。
【0021】
さらにCPU1には、アンギオグラフィ計測おいて、計測領域の血流速分布に基づき最適な領域分割を行うためのプログラムが組み込まれている。
【0022】
次にこのような構成におけるMRI装置の動作について図2に示すフロー図を参照して説明する。
【0023】
実際の計測が開始されると(ステップ201)、まず撮像領域全体についてスライス方向の流速分布を求めるための計測を行う(ステップ202)。流速分布を求めるためのパルスシーケンスとして、例えば図3(a),(b)に示す一組のパルスシーケンスがシーケンサ2組み込まれており、CPU1はこれらシーケンスを条件を算出し、シーケンサ2を介して実行する。このとき撮影されるスライス厚は、3次元計測の対象となるスラブ全体を計測するよう設定される。即ち、図3(a)、(b)のパルスシーケンスにおいて高周波パルスRFと同時に印加されるスライス方向の傾斜磁場Gsの大きさが設定される。
【0024】
図3(a),(b)のパルスシーケンスは、一般的にはPC(Phase Contrast)法と呼ばれる手法の技術を用いたものであり、印加時間及び傾斜磁場強度の絶対値が等しく極性が正反対である一対の傾斜磁場パルス(フローエンコードパルス)31a,31b又は32a,32bを用いる。二つのパルスシーケンスで用いるフローエンコードパルスは、大きさと時間は同じであるが、その印加する極性の順序が異なっている。各パルスシーケンスの実行によって得られたデータの差分から流速分布を求めることができる。
【0025】
即ち、1つのフローエンコードパルスの印加強度Gvと時間Tvの関係は、測定する血管の流速範囲を-v[cm/sec]からv[cm/sec]とすると、以下の式で表記される。
【0026】
2・γ・Gv・Tv・Tv・v=2・π (1)
(a)のパルスシーケンスによって計測される複素信号列をフーリエ変換したデータをDa、(b)のパルスシーケンスによって計測される複素信号列をフーリエ変換したデータをDbとし、各データの位相を算出したデータ列をθ[Da]、θ[Db]とすると、θ[Da]からθ[Db]を引いたデータ列θ[Dc]は、流れている組織のみが画像化されたものとなり、その信号強度は最大値を v、最小値を-vとして流速に比例した信号強度を示す。この場合、θ[Dc]は撮像対象となる3次元領域全体に対して、スライス方向への流速分布を、スライス方向に直角な面内の血管について足し合わせたデータとなる。
【0027】
この様子を模式的に図4に示す。図4において撮像領域40には、2本の血管41、42が存在するが、上記手順で求められた流速分布43はこれら2本の血管についての分布を足し合わせたものとなる。この例では、領域40の図中左側では流速が速く、右側に向かうにつれ流速が遅くなる場合を示している。
【0028】
次に、上記パルスシーケンスによる計測で求めた、スライス方向の流速分布をもとに、撮像領域を分割する最適なスラブ厚さ、スラブ数を決定する(ステップ203)。
【0029】
一般に血管の流速がv[cm/sec]である場合、スラブ厚は繰り返し時間TR[msec]で進む距離とするのが理想的である。即ち、最適スラブ厚S[mm]は以下の式であらわすことができる。
【0030】
S=v×(10/1000)×TR (2)
しかしながら、上記の場合、一般的には、そのスラブ厚は薄いものとなってしまうため、許容範囲を設定するために係数kを設ける。
【0031】
S'=S×k (3)
この条件をステップ203で求めたスライス方向の流速分布データ列Vs[n]に適用してスラブ厚を決定する。このため、まずVsをTRあたりの流速、即ちTR間に移動する距離Vs_TR[n]に変換する。ここでn=1,2,......Ns、Ns は必要とするスライス方向の点数とする。Vs_TR[n]は
Vs_TR[n]=Vs[n]×(10/1000)×TR×k (4)
で表される。ここでも、式(3)と同様に、スラブ厚の許容範囲を指定する係数kを導入する。図4の速度分布を示す曲線43に対応するVs_TR[n]の一例を図5に示すグラフの曲線51として示す。
【0032】
次に、Vs_TR[n]をn方向に離散的に積分したデータ列SvTR[n]を作成する。ただし、スライス方向の分解能をΔn[mm]とする。
【0033】
SvTR[n]=SvTR[n-1]+Vs TR[n]×Δn (5)
このデータ列SvTR[n]は、図5のグラフにおいて曲線52で表され、移動量に相当する。
【0034】
次に、SvTR[n](曲線52)とn2(曲線53)の交点を求め、この点のnをn1とする。このとき、SvTR[n]は離散的なデータであるために、最も近くのデータを交点とする。ここでn2は、位置n=0から位置nまでの任意の領域内のTRあたりの移動量の平均をnとした場合の、スライス方向への累積値に相当する。すなわち実際のTRあたりの速度を積分した値(SvTR)と、TRあたりの移動量がnである場合の累積値とが一致する点を最初のスラブの区切りとする。
【0035】
従ってスラブ内のTRあたりの移動距離平均が長いほど、即ち、流速平均が速いほどnは長くなり、逆にTRあたりの移動距離平均が短いほど、即ち、流速平均が遅いほどnは短くなる。
【0036】
次に、図5に示すようにSvTR[n](曲線52)と(n-n1)2+SvTR[n1](曲線54)の交点を求める。この場合にも最近いデータを交点とし、このnをn2とする。同様にSvTR[n]と(n-ni)2+SvTR[ni](niは、n1,n2,…nL)(曲線55、…)との交点を求める処理をniがNsを超えない最大値nLまで繰り返し、n1,n2,…nLを求める。
【0037】
こうして求めたnl,n2,・・・を図4及び図5下側に示す各スラブ44〜47の境界線とする。次いで各スラブの境界から、表1に示すようにスラブ厚およびスラブ位置を算出する(ステップ204)。
【0038】
【表1】
以上の手順により、撮像領域を流速分布に応じて最適に分割するスラブを自動的に設定し、計測を行うことが可能となる。尚、この表ではスラブどうしの重なりがない場合を示しているが、スラブ厚さを重なり分多くして、スラブどうしが重なるようにしてもよい。
【0039】
つぎに、上記手段により決定した各スラブのスラブ厚及びスラブ位置を用いて、3Dアンギオグラフィ計測のパルスシーケンス(具体的にはスラブを選択して励起する高周波パルスおよび傾斜磁場)を算出し、実行する(ステップ205)。
【0040】
このパルスシーケンスの一例を図6に示す。このパルスシーケンスは、3Dアンギオグラフィ計測のシーケンスとして一般的なものであり、まず高周波パルス60と同時にスラブを選択するための傾斜磁場パルス61を印加し、被検体の所定の領域を励起する。傾斜磁場パルス62は、スピンの位相をもとに戻すために印加する。次いでスライス方向および位相エンコード方向にそれぞれエンコードのための傾斜磁場パルス63、64を印加し、さらに読み出し方向の傾斜磁場65、66を印加してNMR信号67を計測する。エンコードのための傾斜磁場63、64の強度を変えながら繰り返し時間TRで上記シーケンスを繰り返し、選択されたスラブについて三次元データを得る。
【0041】
最初のスラブの計測が終了すると(ステップ206)、次のスラブについても同様の計測を繰り返し(ステップ207)、最後のスラブ(スラブ番号S)まで計測し計測を終了する(ステップ208)。この場合、各スラブについては、前記表に示したスラブ位置、スラブ厚さとなるようにスラブ選択傾斜磁場61の強度が決められている。
【0042】
このように各スラブについて計測したデータを用いて再構成を行うことにより、撮像領域全体の3D血管像を得ることができる。この際、各計測データはそのスラブの流速に対し最適な条件で計測されているので、流速を反映した高画質の3D画像を得ることができる。
【0043】
尚、以上の実施形態では、領域内の累積移動量を表す曲線と二次曲線との交点から順次スライス境界を求める方法を説明したが、流速分布に応じて最適分割スラブを決める方法は、この方法に限定されず、例えば予め流速範囲に応じて最適なスラブ厚を求めたテーブルを用意しておき、このテーブルから、順次スラブ厚を求めることも可能である。
【0044】
また上記実施形態で示したパルスシーケンスは例示であって、本発明のMRI装置はこれらに限定されず、例えば1回の励起で複数のNMR信号をEPIシーケンスなどアンギオグラフィ計測に採用される全てのパルスシーケンスを採用できる。
【0045】
【発明の効果】
以上の説明から明らかなように、本発明によるMRI装置によれば、3Dアンギオグラフィ画像撮影において、対象となる被検体の流速分布に最適な分割スラブ厚を自動的に設定し、計測を行うことが可能となり、3Dアンギオグラフィ画像の高画質化を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明が適用されるMRI装置の全体構成を示すブロック図。
【図2】本発明によるMRI装置における3Dアンギオグラフィ計測の一実施例を示すフロー図。
【図3】本発明によるMRI装置においてスラブ方向の流速分布を計測するためのパルスシーケンスの一例を示す図。
【図4】本発明によるMRI装置におけるスラブ分割方法を説明する図。
【図5】本発明によるMRI装置における最適スラブ分割方法を説明する図。
【図6】本発明によるMRI装置で採用する3Dアンギオグラフィ計測のためのパルスシーケンスの一例を示す図。
【図7】従来のMRI装置におけるスラブ分割方法を説明する図。
【図8】 3Dアンギオグラフィ画像の撮像対象領域の厚さと流速との関係を示す図。
【符号の説明】
1…中央処理装置(CPU)
2…シーケンサ
3…送信系
4…静磁場発生系
5…受信系
6…信号処理系
7…被検査体
Claims (4)
- 静磁場を発生する静磁場発生手段、前記静磁場中に置かれた被検査体に対して、高周波磁場を印加する送信手段、前記静磁場に磁場勾配を与える傾斜磁場発生手段、前記被検査体から発生する核磁気共鳴信号を計測する受信手段、これら送信手段、傾斜磁場発生手段および受信手段を所定のパルスシーケンスに従い制御する制御手段、計測された核磁気共鳴信号に基づいて画像処理を行う画像処理手段を備えた磁気共鳴イメージング装置において、
前記制御手段は、前記被検査体の計測対象領域における流体を画像化する第1のパルスシーケンスを有し、前記計測対象領域における流体の流速分布に対応して前記計測対象領域の領域分割を行い、前記分割された領域毎に前記第1のパルスシーケンスを実行することを特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置において、
前記制御手段は、前記計測対象領域における流体の流速を計測する第2のパルスシーケンスを有して、該第2のパルスシーケンスを用いて取得した流速計測結果に対応して前記計測対象領域の領域分割を行うことを特徴とする磁気共鳴イメージング装置。 - 請求項1又は2記載の磁気共鳴イメージング装置において、
前記制御手段は、スラブ方向にフローエンコードを印加して前記流速計測を行うことを特徴とする磁気共鳴イメージング装置。 - 請求項1乃至3のいずれか一項に記載の磁気共鳴イメージング装置において、
前記制御手段は、前記流速が早い場合の領域分割の大きさを前記流速が遅い場合の領域分割の大きさよりも大きくすることを特徴とする磁気共鳴イメージング装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054734A JP4229254B2 (ja) | 2000-02-29 | 2000-02-29 | 磁気共鳴イメージング装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000054734A JP4229254B2 (ja) | 2000-02-29 | 2000-02-29 | 磁気共鳴イメージング装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001238865A JP2001238865A (ja) | 2001-09-04 |
JP2001238865A5 JP2001238865A5 (ja) | 2007-03-15 |
JP4229254B2 true JP4229254B2 (ja) | 2009-02-25 |
Family
ID=18575948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000054734A Expired - Fee Related JP4229254B2 (ja) | 2000-02-29 | 2000-02-29 | 磁気共鳴イメージング装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4229254B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7613496B2 (en) * | 2005-09-22 | 2009-11-03 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
US9014781B2 (en) * | 2012-04-19 | 2015-04-21 | General Electric Company | Systems and methods for magnetic resonance angiography |
-
2000
- 2000-02-29 JP JP2000054734A patent/JP4229254B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001238865A (ja) | 2001-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4141147B2 (ja) | 磁気共鳴イメージング装置 | |
JP3847512B2 (ja) | 磁気共鳴イメージング装置 | |
US20100277172A1 (en) | Magnetic resonance imaging apparatus and susceptibility-emphasized imaging method | |
US7450982B2 (en) | Magnetic resonance imaging system and method | |
JP4416221B2 (ja) | 磁気共鳴画像診断装置 | |
WO2002045584A1 (fr) | Procede de mesure dans un dispositif d'imagerie par resonance magnetique et dispositif d'imagerie par resonance magnetique | |
JP2002165776A (ja) | 磁気共鳴イメージング装置における計測方法及び磁気共鳴イメージング装置 | |
JP4229254B2 (ja) | 磁気共鳴イメージング装置 | |
JP3987223B2 (ja) | 核磁気共鳴イメージング装置 | |
JP5000963B2 (ja) | 磁気共鳴イメージング装置 | |
JP4297541B2 (ja) | 磁気共鳴イメージング装置 | |
JP2001276016A (ja) | 磁気共鳴イメージング装置 | |
JPH07265277A (ja) | Mr血流情報収集方法およびmri装置 | |
US11885864B2 (en) | Magnetic resonance imaging apparatus and method of controlling the same | |
JP4400957B2 (ja) | 磁気共鳴イメージング装置 | |
JP3108430B2 (ja) | 磁気共鳴イメージング装置 | |
JP3909571B2 (ja) | 磁気共鳴イメージング装置 | |
JP4694713B2 (ja) | Rfパルス調整方法および装置並びに磁気共鳴撮影装置 | |
JP4738056B2 (ja) | 磁気共鳴イメージング装置 | |
JP4079399B2 (ja) | 磁気共鳴イメージング装置 | |
JPH0568672A (ja) | 磁気共鳴イメージング装置における傾斜磁場印加方法 | |
JPH05123314A (ja) | 磁気共鳴イメージング装置におけるマルチスライス撮像方法 | |
JP2004008516A (ja) | 磁気共鳴イメージング装置 | |
JPH0430830A (ja) | 磁気共鳴イメージング装置 | |
JPH07163541A (ja) | 磁気共鳴イメージング装置における血流描出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070124 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |