JP4155654B2 - ガス混合供給方法およびその装置 - Google Patents
ガス混合供給方法およびその装置 Download PDFInfo
- Publication number
- JP4155654B2 JP4155654B2 JP03677299A JP3677299A JP4155654B2 JP 4155654 B2 JP4155654 B2 JP 4155654B2 JP 03677299 A JP03677299 A JP 03677299A JP 3677299 A JP3677299 A JP 3677299A JP 4155654 B2 JP4155654 B2 JP 4155654B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- concentration
- mixed
- amount
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Description
【発明の属する技術分野】
本発明は、少なくとも2種類のガスを設定混合比となるように混合して、安定した混合比の混合ガスを、例えば、エピタキシャル装置等の所望のユースポイント(使用場所)へ供給するガス混合供給方法およびその装置に関するものである。
【0002】
【従来の技術】
半導体産業の分野においては、ガスを使用して半導体を処理することが頻繁に行われており、例えば、エピタキシャル装置を使用したシリコンエピタキシャルウェーハの製造工程では、エピタキシャル膜の抵抗率を制御するために、水素H2ガスで100ppm程度に希釈されたジボランガス(B2H6/H2)がドーパントガスとして広く使用されている。
【0003】
図3はエピタキシャル装置にジボランガスを供給する一般的なシステムを示すもので、ドーパントガスのガス供給源には水素H2ガスで100ppmに希釈されたジボランガスが詰められたボンベ1が配置され、このボンベ1内の希釈ジボランガスはバルブ、フィルタ等の所要の要素が装備されて成る配管管路2通してユースポイント(使用場所)のエピタキシャル装置(図示せず)に供給される。
【0004】
なお、図中、4は希釈ジボランガスのボンベ1の交換時等に配管管路2の所要部分を窒素ガスでパージするための窒素ガスが収容されたボンベである。
【0005】
【発明が解決しようとする課題】
一般に、エピタキシャル装置を使用したシリコンエピタキシャルウェーハの製造においては、3ヶ月或いは4ヶ月の期間にわたって連続的に装置稼動を行い、この連続装置稼動期間が経過する毎に装置を一時的に停止する使用形態が取られている。図3のシステムを用いて、エピタキシャル膜の抵抗率制御を行う場合、ボンベ1のジボランガスはユースポイントで使用される濃度に合わせた100ppmの希薄ガスが用いられているため、単位時間当たりの消費量が多く、前記連続装置稼動期間中にボンベ1を比較的頻繁に取り替える必要が生じている。
【0006】
しかしながら、ボンベ1のジボランガスは製造ロットが異なることによってジボランガスの濃度に若干のばらつきがあり、ボンベ1の交換直後にジボランガスの濃度が変化するために、抵抗率の最適制御に支障が生じるという問題が発生する。
【0007】
また、ボンベ1を交換するたびに汚染の可能性が生じ、半導体処理の品質上においても問題がある。
【0008】
さらに、ボンベ1を頻繁に交換することは、その分、ボンベのコストが嵩み、製造コストが高くなるという問題が生じる。
【0009】
本発明は上記課題を解決するためになされたものであり、その目的は、連続装置稼動期間中にジボランガス等の供給ガス用ボンベの交換を避けて、ボンベ交換に起因する不具合現象の発生を防止でき、連続装置稼動期間の全期間にわたって一定の安定した混合濃度の処理ガスを供給することが可能なガス混合供給方法およびその装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、上記目的を達成するために、次にような構成をもって課題を解決する手段としている。すなわち、ガス混合供給方法の発明は、第1のガスの供給源から供給される第1のガスと第2のガスの供給源から供給される第2のガスをガスミキサーで混合して第1のガスと第2のガスとの混合ガスをユースポイントへ供給するガス混合供給方法であって、第1および第2の各ガス供給源からガスミキサーへのガス供給ラインを粗混合用ラインと微調混合ラインとの2系統のラインを有して形成し、前記粗混合用ラインを利用してユースポイントで使用されたガス量に見合う量の第1のガスと第2のガスを設定混合比の割合でガスミキサへ供給して使用された量の粗混合ガスを生成し、前記微調混合ラインを利用して設定混合濃度に対する前記粗混合ガス濃度のずれを解消すべく第1のガスと第2のガスの供給量を調整する構成をもって課題を解決する手段としている。
【0011】
また、ガス混合装置の第1の発明は、第1のガスの供給源から供給される第1のガスと第2のガスの供給源から供給される第2のガスを混合して第1のガスと第2のガスの混合ガスをユースポイントへ供給するガスミキサーを備え、前記第1および第2の各ガス供給源からガスミキサーへのガス供給ラインを粗混合用ラインと微調混合ラインとの2系統のラインを有して形成した構成をもって課題を解決する手段としている。
【0012】
さらに、ガス混合供給装置の第2の発明は、前記ガス混合供給装置の第1の発明の構成を備えたものにおいて、ユースポイントで使用される混合ガスの使用量を検出するガス量検出センサと、このガス量検出センサにより検出されるガス使用量をガス生成量設定値として、設定ガス混合比の配分比でもって粗混合用ラインを通して供給される第1のガスと第2のガスの供給量をその混合量が前記ガス生成量設定値となるように配分制御するガス混合制御手段とを備えて成る構成をもって課題を解決する手段としている。
【0013】
さらに、ガス混合供給装置の第3の発明は、前記ガス混合供給装置の第1又は第2の発明の構成を備えたものにおいて、ガスミキサーから排出される混合ガスの混合濃度を検出する混合濃度検出手段と、第1のガスと第2のガスとの設定ガス混合比によって定まる設定混合濃度に対する検出混合濃度のずれを求めこのずれを解消すべく微調混合ラインを通してガスミキサーへ供給する第1のガスと第2のガスの供給量を制御するガス濃度微調制御手段とを備えた構成をもって課題を解決する手段としている。
【0014】
さらに、ガス混合供給装置の第4の発明は、前記ガス混合供給装置の第3の発明の構成を備えたものにおいて、混合濃度検出手段は赤外吸収式のガス濃度検出センサであることをもって課題を解決する手段としている。
【0015】
さらに、ガス混合供給装置の第5の発明は、前記ガス混合供給装置の第1又は第2又は第3又は第4の発明の構成を備えたものにおいて、第1のガスは高濃度ドーパントガスであり、第2のガスはドーパントガスを希釈する希釈用の純ガスであることをもって課題を解決する手段としている。
【0016】
本発明においては、ユースポイントでの混合ガスの時々刻々の使用量がガス量検出センサによって検出される。そして、粗混合ラインを利用して、ガス混合制御手段により、使用量に見合うガス量が第1のガスと第2のガスの設定混合比の割合で供給されることで、ユースポイントで使用された分量の混合ガスがガスミキサーで連続的に生成され、ユースポイントへ供給される。
【0017】
この粗混合ラインを利用して生成される混合ガスの濃度は設定混合比となるように例えば流量に基づき第1のガスと第2のガスが混合制御されるので、流量の制御ばらつき等により、設定混合比によって定まる設定混合濃度に対して実際の混合濃度に多少のずれが生じることが想定される。
【0018】
しかし、本発明では、ガスミキサーから排出される混合ガスの濃度が混合濃度検出手段により時々刻々瞬時に検出され、この検出値に基づき設定混合濃度に対するずれ量が瞬時に求められて、例えば、第1のガスの混合濃度が低い場合には第1のガスの供給量をそのずれを解消する分だけ増加させ、第1のガスの混合濃度が高い場合には第2のガスの供給量をそのずれを解消する分だけ増加させるという如く微調混合ラインを利用して第1のガスと第2のガスの供給量が微調整され、常にガスミキサーから排出される混合ガスの濃度は設定混合濃度に安定調整されてユースポイントへ供給される。
【0019】
特に、本発明では、第1のガスと第2のガスを混合して設定混合比(設定混合濃度)の混合ガスを生成供給する構成としているので、例えば、第1のガスを高濃度のジボランガスとし、第2のガスを水素ガスとすることにより、高濃度(例えば1000ppm)のジボランガスを水素ガスで希釈して設定混合比の希薄濃度(例えば100ppm)のジボランガスをエピタキシャル装置に供給する形態を採り得るので、高濃度ジボランガスの単位時間当りの消費量を少なくでき、連続装置稼動期間中に高濃度ジボランガス供給源のボンベを交換することなく安定した一定濃度の希釈ジボランガスをエピタキシャル装置へ連続供給することができるものである。
【0020】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づき説明する。図1は本発明に係るガス混合供給装置の実施形態例を示し、また、図2は本実施形態例の装置を含むジボランガスの供給システムを示す。このシステムは高濃度のジボランガスを水素ガスで希釈してエピタキシャル装置へ供給するものである。なお、以下の説明において、従来例の図3に示す構成要素に相当する要素には同一符号を付して、その重複説明は簡略化又は省略する。
【0021】
図2において、ジボランガスの供給源には複数本(この図では4本)のボンベ9が配置され、この各ボンベ9には水素ガスで1000ppmに希釈された第1のガスとしての高濃度ジボランガスが詰められている。各ボンベ9の送出通路は配管管路2に統合され、この配管管路2は粗混合ライン2aと微調混合ライン2bとに分岐された後、再び統合されてガスミキサー(以下、単にミキサーともいう)5に連通接続されている。分岐部の管路は二股状としてもよいが、図2の例の分岐部の管路をより詳細に説明すれば、粗混合ライン2aは配管管路2を延長した管路となっており、微調混合ライン2bはその延長管路のバイパス管路となっている。
【0022】
その一方において、第2のガスとしての水素ガスの供給源からは逆止弁6、フィルタ7、各種の所要の弁8等の要素を装備した配管管路10が導出されており、この配管管路10は粗混合ライン10aと微調混合ライン10bとに分岐された後、再び統合されてミキサー5に連通接続されている。この分岐部の管路も二股の管路としてもよいが、図2に示す粗混合ライン10aは配管管路10の延長管路によって形成され、微調混合ライン10bはその延長管路10(10a)のバイパス管路となっている。
【0023】
前記粗混合ライン2aと粗混合ライン10aはボンベ9から配管管路2を介して供給される高濃度ジボランガスと、水素ガスの供給源から配管管路10を介して供給される水素ガスとをミキサー5内で粗混合させる1系統の粗混合ラインを構成し、前記微調混合ライン2bと微調混合ライン10bはボンベ9から配管管路2を介して供給される高濃度ジボランガスと、水素ガスの供給源から配管管路10を介して供給される水素ガスとをミキサー5内で微調混合させる1系統の微調混合ラインを構成する。そして、粗混合ライン2a、10aには高濃度ジボランガスと水素ガスの混合比のバルブ開度によって流量を制御する流量制御装置(マスフローコントローラ)12a、13aが介設され、微調混合ライン2b、10bにはバルブ開度の可変制御によって流量を制御する電子式の流量制御弁12b、13bが介設されている。なお、12b、13bは流量制御弁の代わりにマスフローコントローラ(流量制御装置)を用いて構成することが可能である。
【0024】
ミキサー5の出口には混合ガス供給管路14が接続され、この混合ガス供給通路14は混合ガスの混合濃度検出手段として機能するガス濃度検出センサ15、ミキサーバッファ16、モニタ用ガス濃度検出センサ17、ガス量検出センサ(マスフローメーター)18、バッファ容器3を順に介して図示されていないランダムに稼動する複数台のエピタキシャル装置へ導かれている。前記ガス濃度検出センサ15はミキサー5から排出されるジボランガスと水素ガスとの混合ガスの濃度(ジボランガスの濃度)を瞬時に且つ連続的に検出する赤外線吸収式のインラインセンサである。インラインセンサとは、ガスをサンプリングして濃度を検出し、サンプリングしたガスを捨ててしまわずに、ライン中に直接入れて測定するセンサである。
【0025】
前記ミキサーバッファ16はミキサー5から排出されるガス圧を平準化するバッファタンクである。モニタ用ガス濃度検出センサ17はガス圧が平準化された混合ガスの濃度をモニタする赤外線吸収式のセンサであり、このモニタ用ガス濃度検出センサ17の検出信号は監視装置(図示せず)等へ供給され、モニタ用ガス濃度検出センサ17により異常濃度が検出されたときには監視装置により異常が報知されるようになっている。
【0026】
前記ガス量検出センサ18はエピタキシャル装置のユースポイントで使用される混合ガスの量(単位時間当たりの使用量)を流量測定によって検出する。なお、ガス量検出センサ18とバッファ容器3間の混合ガス供給通路14にはガス除去管路19が分岐接続されており、このガス除去管路19は保圧弁(バックプレッシャレギュレータ)20を介して系外に導かれている。保圧弁20は圧力が設定圧力を越えて上昇したときにその上昇分の圧力をガス除去管路19を介して系外に逃がし、バッファ容器3の圧力を設定圧に保ち、一定圧の混合ガスをエピタキシャル装置へ供給するように作用する。
【0027】
本実施形態例における第1の特徴点は、前記粗混合ライン2a,10aを利用して、高濃度ジボランガスと水素ガスを設定混合比の割合で粗混合した混合ガスを、エピタキシャル装置のユースポイントで使用された分量だけ時々刻々連続的に生成する構成を備えたことである。また、本実施形態例における第2の特徴点は、前記粗混合ライン2a,10aを利用して生成された粗混合ガスの濃度のずれ(設定濃度に対するずれ)を、前記微調混合ライン2b、10bを利用して、解消(ずれ量を零に修正)する構成を備えたことである。
【0028】
前記第1の特徴点の構成は、図1に示されるように、ガス量検出センサ18と、ガス混合制御手段とを有して構成され、このガス混合制御手段は演算制御部(信号発生器)21と、制御駆動信号出力部22(図中構成では図示を簡素化して1出力(1ケの出力)のように描かれているが、実際は2出力であり、図中に×2として2出力であることを示している)と、流量制御装置12a、13aとを有して構成されている。ガス量検出センサ18はミキサーバッファ16から排出される混合ガスの量(流量)をエピタキシャル装置内のユースポイントでのガス使用量として検出し、その検出値PVを演算制御部21へ加える。
【0029】
演算制御部21には予め高濃度ジボランガスと水素ガスとの設定混合比が例えば1:9というようにデータ格納部に与えられており、演算制御部21は前記検出値PVをガス生成量設定値SVとして取り込んで一時的にメモリに記憶し、ガス生成量設定値SVの量の混合ガスを前記設定混合比の割合で得るのに要する高濃度ジボランガスの量(流量)と水素ガスの量(流量)とを算出する。そして、制御駆動信号出力部22はこの算出値を設定値信号として流量制御装置12a、13aに送出する。流量制御装置12a、13aでは前記設定値信号により、流量制御装置12a、13a内のコントロールバルブと内蔵のPID演算部でガス流量を設定値信号のガス流量となるように制御してそのガスをミキサー5に送出する。
【0030】
すなわち、流量制御装置12aは前記設定値信号の高濃度ジボランガス流量となるようにバルブ開度を制御する結果、粗混合ライン2aを通る高濃度ジボランガスの量(流量)は前記演算制御部21で算出された高濃度ジボランガスの量となる。
【0031】
同様に、流量制御装置13aは前記設定値信号の水素ガス流量となるようにバルブ開度を制御する結果、粗混合ライン10aを通る水素ガスの量(流量)は前記演算制御部21で算出された水素ガスの量となる。
【0032】
上記のようにガス量検出センサ18のガス使用量の検出結果に基づき流量制御装置(マスフローコントローラ)12a、13aの開弁量制御が行われる結果、粗混合ライン2a、10aを利用して、高濃度ジボランガスと水素ガスを設定混合比で混合した混合ガス(粗混合ガス)がユースポイントで使用された分だけ時々刻々連続的に生成されてユースポイントへ供給されるのである。
【0033】
本実施形態例における前記第2の特徴点の構成は、ガス濃度検出センサ15とガス濃度微調制御手段とを有して構成され、ガス濃度微調制御手段は、2出力型調節器31と、流量制御弁12bと、流量制御弁13bとを有して構成されている。この第2の特徴点の構成は、前記粗混合ライン2a、10aを利用して生成された混合ガスの濃度(ジボランガスの濃度)のずれ(設定混合濃度からのずれ)を修正するために設けられている。
【0034】
すなわち、前記粗混合ライン2a、10aを利用した混合ガスの生成は前記ガス生成量設定値SVのガス量(生成目標ガス量)を設定混合比の割合で高濃度ジボランガスの量と水素ガスの量とに配分して混合することと等価であり、この混合ガスの生成は流量制御装置12a、13aの流量制御により行っている。しかしながら、流量制御のコントロールバルブは制御精度に例えば±2%の固体差(精度のばらつき)があり、従って、流量制御装置12a、13aを用いてガスを混合させる場合、流量と混合濃度の関係がリニヤとならないために、ユースポイントでのガスの使用量がレシピによって時々刻々変化すると混合濃度も使用量変化(流量変化)に応じて可変してしまうことになり、前記粗混合ライン2a、10aを利用した混合比によるガスの混合方式によって混合濃度を一定に制御することは難しいという事情がある。
【0035】
このような事情に鑑み、本実施形態例では、使用に見合う量の混合ガスを前記粗混合ライン2a、10aを利用してほぼ設定濃度(設定濃度に対し多少のずれを想定した濃度)のガスとして生成し、設定濃度に対するずれは微小流量ラインの微調混合ライン2b、10bを利用して行うことを志向するものであり、前記ガス濃度検出センサ15はミキサー5から排出される混合ガスの濃度(ジボランガスの濃度)を瞬時に検出してその検出信号を2出力型調節器31へ加える。
【0036】
2出力型調節器31には高濃度ジボランガスと水素ガスとの設定混合比によって定まる設定混合濃度の値が設定値として予めメモリ等に与えられており、2出力型調節器31は前記ガス量検出センサ18で検出される混合ガス使用量のデータと、メモリから読み出した設定混合濃度のデータと、前記ガス濃度検出センサ15で検出された混合ガス検出濃度のデータに基づき、設定混合濃度に対する混合ガス検出濃度のずれを零に修正するのに要する高濃度ジボランガスと水素ガスのいずれか一方の追加分のガス補償量をPID演算により算出する。
【0037】
例えば、混合ガス検出濃度(ジボランガス濃度)が設定混合濃度に対し高めにずれていたときには設定混合濃度にするための水素ガスのガス補償量を算出し、その逆に混合ガス検出濃度が低めにずれていたときには高濃度ジボランガスのガス補償量を算出する。さらに、2出力型調節器31は算出したガス補償量を得るための流量制御弁12b、13bの開弁制御信号を作成して対応する流量制御弁12b、13bへ加える。
【0038】
この開弁制御信号を得て流量制御弁12bは前記要求される開弁量となるように弁の開閉可変駆動を行う結果、微調混合ライン2bを通してガス補償量の高濃度ジボランガスがミキサー5へ追加供給され、濃度が低めのミキサー5内の混合ガスは設定混合濃度のガスに修正される。
【0039】
同様に開弁制御信号を得て流量制御弁13bは前記要求される開弁量となるように弁の開閉可変駆動を行う結果、微調混合ライン10bを通してガス補償量の水素ガスがミキサー5へ追加供給され、濃度が高めのミキサー5内の混合ガスは設定混合濃度のガスに修正される。
【0040】
次に、図2のシステムを用いたジボランガスの混合供給作用を説明する。エピタキシャル装置を用いたエピタキシャル膜の抵抗率制御工程では、ジボランガスの供給源の4本のボンベ9が開けらた状態で、各ボンベ9から送出される1000ppmの高濃度ジボランガス(水素ガスで希釈された高濃度ジボランガス)は配管管路2を通りながら合流して粗混合ライン2aを通り、ミキサー5に導入される。一方、水素ガスは水素ガスの供給源から配管管路10を通り、粗混合ライン10aを経由してミキサー5に導入される。このとき、ミキサー5からエピタキシャル装置へ供給されている高濃度ジボランガスと水素ガスとの混合ガスの量(流量)はガス量検出センサ18によりユースポイントでのガス使用量の値として検出され、この検出されたガス使用量と同じ量の混合ガスを発生するように設定混合比の割合で流量制御装置12a、12bの開弁量がガス混合制御手段(演算制御部21、制御駆動信号出力部22および流量制御装置12a、13a)によって制御される。その結果、ユースポイントで使用した分の混合ガスが設定混合比となる混合制御によって時々刻々連続的にミキサー5で生成され、エピタキシャル装置へ供給される。
【0041】
その一方において、ミキサー5から排出される混合ガスの濃度はガス濃度検出センサ15によって検出され、検出濃度が設定濃度よりも高いときには、ガス濃度微調制御手段(2出力型調節器31および流量制御弁12b、13b)により微調混合ライン10bから濃度のずれを修正する分の水素ガス(微量水素ガス)が流量制御弁13bの制御によりミキサー5に追加導入されてガスの混合濃度は設定混合濃度に修正される。
【0042】
同様に、ガス濃度検出センサ15の検出濃度が設定濃度よりも低いときには、ガス濃度微調制御手段により微調混合ライン2bから濃度のずれを修正する分の高濃度ジボランガスが流量制御弁12bの制御によりミキサー5に追加導入されてガスの混合濃度は設定混合濃度に修正される。
【0043】
設定混合濃度の混合ガスはミキサーバッファ16で圧力が平準化され、この圧力平準状態での混合ガス濃度がモニタ用ガス濃度検出センサ17で検出される。このモニタ用ガス濃度検出センサ17の検出濃度に異常が生じたときにはシステム稼動の停止等の安全動作が行われる。
【0044】
設定混合濃度の混合ガスはミキサーバッファ16を経てバッファ容器3に供給されるが、バッファ容器3の手前側には保圧弁20が設けられていて、設定圧力を超えたときには過剰分の圧力がガス除去管路19を通して系外に排出されるので、バッファ容器3は常時設定圧力に維持される。つまり、微調混合ライン2b、10bを利用して濃度調整のガスが追加供給されたときには使用量よりも多い混合ガスがミキサー5で生成されるので混合ガスの圧力は設定圧力を越えることとなる。このときは、追加生成された分量の混合ガスがガス除去管路19を通して系外に捨てられ、バッファ容器3で設定圧力に調整された混合ガスがエピタキシャル装置へ安定に供給される。なお、系外に捨てられるガスは資源の無駄となるが、濃度調整の追加ガス供給量は微調混合ライン2b、10b利用して行われるのでその捨てられるガス量は微量であり、微調混合ライン2b、10bを用いないで濃度調整を行う場合に比べ、捨て去るガス量を大幅に少なくして資源の有効利用を図ることができる。
【0045】
本実施形態例によれば、高濃度のジボランガスを希釈生成してエピタキシャル装置へ供給可能な構成としたので、ジボランガスの供給源に例えば、1000ppmという高濃度のジボランガスを詰めたボンベ9を使用することができる。このことにより、従来例の図3に示すような100ppmの希薄ジボランガスを詰めたボンベ1を使用する場合に比べ、ボンベ内のジボランガスの単位時間当たりの消費量を少なくすることができ、連続装置稼動期間中にジボランガスのボンベを交換することを回避でき、ボンベ交換に伴う従来例の問題点を解消することができる。
【0046】
特に、本実施形態例では、複数本(4本)の高濃度ジボランガスのボンベ9を同時使用しているので、ボンベ9を交換するまでの期間を十分に長くすることができる。また、複数本(4本)の高濃度ジボランガスのボンベ9を同時使用することによって、各ボンベ9間のジボランガス濃度のばらつきの影響を緩和することができる。すなわち、ジボランガスのボンベ9を1本ずつ取り替え使用或いは切り替え使用する場合には、ボンベ9を交換した(切り替えた)直後に濃度のばらつきが生じるが、複数本のボンベ9を同時使用することによって、送出されるガス濃度は各ボンベの濃度をほぼ平均化した濃度となる。したがって、ボンベの一括交換前後のガス濃度のばらつきを充分小さくでき、ボンベ9の交換に伴うガス濃度のばらつきの影響を緩和することができる。
【0047】
さらに、前記のように、ボンベ9の交換の頻度を少なくできるので、その分、ボンベの大幅なコスト節減を図ることが可能となる。特に、現在の市場においては、ジボランガスの価格はガス濃度の違いによって殆ど差がないので、ボンベのコスト削減による利益は大である。
【0048】
さらに、本実施形態例では、ガス濃度検出センサ15をミキサー5の直後であって圧力が平準化される前のミキサーバッファ16の上流側に配置しているため、ミキサー5で混合生成された混合ガスの濃度変化を瞬時に検出して設定濃度からのずれを迅速に修正できることとなる。特に、本実施形態例では、ガス濃度検出センサ15を赤外線吸収式のセンサで構成しているため、検出の応答特性に優れ、ガス濃度のずれ修正の制御精度を格段に高めることができる。
【0049】
さらに、モニタ用ガス濃度検出センサ17とガス量検出センサ18はミキサーバッファ16の下流側に設けたので、モニタ用ガス濃度検出センサ17により、平準化されたガス濃度を正確に検出でき、また、ガス量検出センサ18により、圧力変動の影響の無いガス量検出を正確に検出することができることになる。
【0050】
なお、本発明は上記実施形態例に限定されることはなく他の様々な実施の形態を採り得る。例えば上記実施形態例では、配管管路2を分岐して粗混合ライン2aと微調混合ライン2bを形成したが、例えば、配管管路2を粗混合ライン2aの管路として構成し、微調混合ライン2bは別途ボンベ9側とミキサー5を連通接続する配管を設けて構成し、ボンベ9側とミキサー5を結ぶ互いに独立した管路によりライン2a、2bを構成してもよい。同様に、上記実施形態例では、配管管路10を分岐して粗混合ライン2aと微調混合ライン10bを形成したが、例えば、配管管路10を粗混合ライン10aの管路として構成し、微調混合ライン10bは別途水素ガス供給源とミキサー5を連通接続する配管を設けて構成し、水素ガス供給源とミキサー5を結ぶ互いに独立した管路によりライン10a、10bを構成してもよい。ただ、本実施形態例のように粗混合ラインと微調混合ラインを分岐形成することにより、管路の簡易化が達成でき、管路部材の節減に伴うコスト節減が図れ、管路の配管をすっきりと纏めることができる上に、配管施工の容易化が図れるという効果が得られる。
【0051】
さらに、上記実施形態例では、第1のガスである1000ppmの高濃度ジボランガスを第2のガスである水素ガスで希釈混合してユースポイントで使用する100ppmの希薄ジボランガスを生成供給するようにしたが、第1のガスは純ガスであってもよく、第2ガスは希釈されたガスであってもよい。また、上記例では、第2のガスを第1のガスの希釈用のガス(マザードープガスであるジボランガスを希釈するベースガスの水素ガス)としたが、第1のガスと第2のガスの成分はこれに限定されることはなく、例えば、第1のガスに含まれない成分のガスを第2のガスとしてもよい。また、上記実施形態例ではジボランガスの濃度が1000ppmのものを高濃度ジボランガスとして使用したが、勿論1000ppm以外の濃度のものでもよく、本明細書では、ジボランガスの濃度が500ppm以上のものを高濃度ジボランガスと定義している。
【0052】
さらに、上記実施形態例では、第1のガスと第2のガスとの2種類のガスの混合供給について説明したが、本発明は3種類以上のガスの混合供給に適用することが可能である。この場合は、各ガス種の供給源とミキサー5とを粗混合ラインと微調混合ラインとを有する管路で接続し、上述の2種類のガスを混合する場合と同様に、粗混合ラインを用いて混合比の割合で流量を制御し、微調混合ラインを用いて設定濃度に対するずれを修正すればよい。
【0053】
さらに、上記実施形態例では、ガス濃度検出センサ15を赤外線吸収式のセンサで構成したが、例えばガスクロマトグラフィー等の他の濃度検出手段を用いたものでもよい。
【0054】
さらに上記実施形態例では、微調混合ライン2b、10bを利用して混合ガス濃度(ジボランガス濃度)のずれを微調整する場合、ガス量検出センサ18のガス使用量の情報を利用したが、このガス量検出センサ18の検出情報を用いずに混合ガス濃度のずれ修正を行うようにしてもよい。その場合は、2出力型調節器31のメモリに、設定混合濃度に対するずれ量が大となるに連れガス補償量(ガス追加供給量)を大きくする、ずれ量とガス補償量との関係データを予め与えておく。
【0055】
そしてこの状態で、2出力型調節器31はガス濃度検出センサ15で検出される混合ガス検出濃度と設定混合濃度とを比較して設定混合濃度に対する混合ガス検出濃度のずれを求め、さらに、そのずれ量の大きさに応じたガス補償量を前記関係データに基づきPID演算により求め(プラスのずれ量のときは水素ガスのガス補償量を求め、マイナスのずれ量のときは高濃度ジボランガスのガス補償量を求める)、この求めた高濃度ジボランガスあるいは水素ガスに対するガス補償量の開弁制御信号を対応する流量制御弁12b、13bに加え、上記実施形態例と同様に流量制御弁12b、13bを開弁駆動して混合ガス濃度のずれを零に修正することができる。
【0056】
この制御形態を採れば、混合ガス濃度のずれ修正が行われてずれ量が小さくなるに連れ追加供給されるガス補償量も小さくなって行くので、ずれ修正の制御が繰り返し行われることで、短時間のうちにずれ量は零に集束し、それ以降はずれ量がなくなって設定混合濃度の混合ガスを安定に供給維持でき、しかも、ガス量検出センサ18の検出誤差等の影響を受けずに高精度のガス濃度調整ができるという画期的な効果を奏することができる。
【0057】
さらに、上記実施形態例の図2では、4本の高濃度ジボランガスのボンベ9を束ねて使用したが、2本の高濃度ジボランガスのボンベ9をセットし、1本ずつ交互に切り替え使用する構成としてもよい。また、ユースポイントで異なる濃度のガスを必要とするときには、図2中の破線で囲ったA部分の構成をもう1式追加(図2中の破線で囲ったB部分は共通に使用)することで、対応可能である。
【0058】
さらに、上記実施形態例では、エピタキシャル膜の抵抗率制御を例にして説明したが、本発明は、それ以外の半導体製造の分野での混合ガスの生成に適用されることはもちろんのこと、半導体製造以外の混合ガスの生成分野に適用されるものである。
【0059】
【発明の効果】
本発明は、第1および第2の各ガス供給源からガスミキサーへのガス供給ラインを粗混合ラインと微調混合ラインとの2系統のラインを有して構成したものであるから、粗混合ラインを利用してユースポイントで使用する分のガス量(ユースポイントの使用に見合うガス量)を混合比制御によりほぼ設定濃度に近い濃度でもって混合生成し、設定濃度に対する微小な濃度のずれは微調混合ラインを利用して修正することができる。このように、混合比制御のラインと濃度微調ラインとの2系統のラインを用いて混合ガスを生成する構成とすることにより、例えば、1系統のラインのみで第1のガスと第2のガスを流量制御して混合ガスを生成する場合に比べ、濃度の制御精度が格段に高くなり、信頼性の高い一定濃度の混合ガスを安定に供給できるという効果が得られる。
【0060】
特に、本発明では、ガス混合制御手段により設定ガス混合比の配分比でもって第1のガスと第2のガスを混合してユースポイントで使用された分のガス量を生成するようにしているので、前記の如く、その混合濃度は設定混合濃度にほぼ等しくなる。したがって、濃度の微小ずれを修正する微調混合ライン側の制御手段が万が一故障したとしても微調混合ラインからガスミキサーへ供給されるガス量は微小であるので、設定混合濃度から大きくずれた濃度の混合ガスがユースポイントに供給されてしまうという不具合を防止することが可能となるものである。
【0061】
さらに、本発明は混合濃度検出手段によりガスミキサーから直接排出される混合ガスの濃度を検出するようにしているので、混合濃度の変化を瞬時に検出することができ、その検出値に基づきガス濃度微調制御手段によって濃度のずれを瞬時に修正制御するので、ガス濃度ずれの修正制御の精度を高めることができる。特に、混合濃度検出手段を赤外線吸収式のセンサで構成することにより、濃度検出の応答性を高めることができる上に、検出に利用した混合ガス(赤外線吸収式のセンサに接触した混合ガス)を捨てることなくユースポイントへ供給して利用できるため、ガス利用の無駄が無く、混合ガスの利用効率を十分に高めることができるという効果が得られる。
【0062】
さらに、本発明において、第1のガスを高濃度ジボランガス(高濃度ドーパントガス)とし、第2のガスを水素ガス(希釈用純ガス)とし、高濃度ジボランガスと水素ガスを混合した希釈ジボランガスをエピタキシャル装置へ供給し、エピタキシャル膜の抵抗率制御を行う使用形態に適用した場合、ジボランガスの供給源の容器(例えばボンベ)に高濃度ジボランガスを収容し、この高濃度ジボランガスを水素ガスで希釈してユースポイントへ供給するシステム形態を採り得るので、従来例のようにユースポイントでの使用濃度に等しい希薄濃度のジボランガスをボンベからエピタキシャル装置へ供給する場合に比べ、ボンベから高濃度のジボランガスをガスミキサーへ供給する方式を採り得る本発明の方が、ボンベ内のジボランガスの単位時間当たりのガスの消費量を格段に少なくできる。
【0063】
従って、本発明の構成とすることにより、エピタキシャル装置の連続装置稼動期間中にジボランガスのボンベ交換をすることがなくなり、ボンベ交換の直後にジボランガスの濃度変化が生じて抵抗率制御に支障を来たすというボンベ交換に起因する従来の問題点を解消することが可能となる。
【図面の簡単な説明】
【図1】本発明に係るガス混合供給方法に適用されるガス混合供給装置の一実施形態例の構成説明図である。
【図2】図1に示すガス混合供給装置を含むジボランガス供給システムの説明図である。
【図3】ジボランガス供給システムの従来例の説明図である。
【符号の説明】
2a、10a 粗混合ライン
2b、10b 微調混合ライン
5 ミキサー(ガスミキサー)
12a、13a 流量制御装置(マスフローコントローラ)
12b、13b 流量制御弁
15 ガス濃度検出センサ
18 ガス量検出センサ
20 保圧弁
21 演算制御部(信号発生器)
31 2出力型調節器
Claims (4)
- 第1のガスの供給源から供給される第1のガスと第2のガスの供給源から供給される第2のガスとをガスミキサーで混合して第1のガスと第2のガスとの設定混合濃度の混合ガスをユースポイントへ供給するガス混合供給方法であって、
前記第1および第2の各ガス供給源から前記ガスミキサーへのガス供給ラインをそれぞれ粗混合ラインと微調混合ラインとの2系統のラインを有して形成し、
前記ユースポイントで使用される混合ガスの使用量を検出し、
前記検出されるガス使用量をガス生成量設定値として、前記設定混合濃度となる設定ガス混合比の配分比でもってそれぞれのガスの供給源から粗混合ラインを通して前記ガスミキサーへ供給される第1のガスと第2のガスの供給量をその混合量が前記ガス生成量設定値となるように配分制御するとともに、
前記ガスミキサーから排出される混合ガスの混合濃度を検出し、
前記設定混合濃度に対する検出混合濃度のずれを求め、
前記設定混合濃度に対し第1のガスの検出混合濃度が高めにずれていたときには前記設定混合濃度にするための第2のガスのガス補償量を追加供給し、前記設定混合濃度に対し第1のガスの検出混合濃度が低めにずれていたときには前記設定混合濃度にするための第1のガスのガス補償量を追加供給するという如く、前記設定混合濃度に対する検出混合濃度のずれ方向に応じて第1のガスと第2のガスを択一的に追加供給することを特徴とするガス混合供給方法。 - 第1のガスの供給源から供給される第1のガスと第2のガスの供給源から供給される第2のガスとをガスミキサーで混合して第1のガスと第2のガスとの設定混合濃度の混合ガスをユースポイントへ供給するガス混合供給装置であって、
前記第1および第2の各ガス供給源から前記ガスミキサーへのガス供給ラインをそれぞれ粗混合ラインと微調混合ラインとの2系統のラインを有して形成するとともに、
前記ユースポイントで使用される混合ガスの使用量を検出するガス量検出センサと、
前記ガス量検出センサにより検出されるガス使用量をガス生成量設定値として、前記設定混合濃度の設定ガス混合比の配分比でもってそれぞれのガスの供給源から粗混合ラインを通して前記ガスミキサーへ供給される第1のガスと第2のガスの供給量をその混合量が前記ガス生成量設定値となるように配分制御するガス混合制御手段と、
前記ガスミキサーから排出される混合ガスの混合濃度を検出する混合濃度検出手段と、
前記設定混合濃度に対する検出混合濃度のずれを求めこのずれを解消すべくそれぞれのガスの供給源からそれぞれの微調混合ラインを通して前記ガスミキサーへ供給する第1のガスと第2のガスの供給量を制御するガス濃度微調制御手段と、を備え、
前記ガス濃度微調制御手段は、前記設定混合濃度に対し第1のガスの検出混合濃度が高めにずれていたときには前記設定混合濃度にするための第2のガスのガス補償量を追加供給し、前記設定混合濃度に対し第1のガスの検出混合濃度が低めにずれていたときには前記設定混合濃度にするための第1のガスのガス補償量を追加供給するという如く、前記設定混合濃度に対する検出混合濃度のずれ方向に応じて第1のガスと第2のガスを択一的に追加供給する、
ガス混合供給装置。 - 前記混合濃度検出手段は赤外吸収式のガス濃度検出センサであることを特徴とする請求項2記載のガス混合供給装置。
- 第1のガスは高濃度ドーパントガスであり、第2のガスはドーパントガスを希釈する希釈用の純ガスであることを特徴とする請求項2又は3記載のガス混合供給装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03677299A JP4155654B2 (ja) | 1999-02-16 | 1999-02-16 | ガス混合供給方法およびその装置 |
TW89101614A TW440926B (en) | 1999-02-16 | 2000-01-31 | Gas mixing and feeding method and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03677299A JP4155654B2 (ja) | 1999-02-16 | 1999-02-16 | ガス混合供給方法およびその装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000235952A JP2000235952A (ja) | 2000-08-29 |
JP4155654B2 true JP4155654B2 (ja) | 2008-09-24 |
Family
ID=12479069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03677299A Expired - Lifetime JP4155654B2 (ja) | 1999-02-16 | 1999-02-16 | ガス混合供給方法およびその装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4155654B2 (ja) |
TW (1) | TW440926B (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006222133A (ja) * | 2005-02-08 | 2006-08-24 | Hitachi Cable Ltd | 原料ガス供給方法及びその装置 |
JP5244004B2 (ja) * | 2009-03-25 | 2013-07-24 | 日本碍子株式会社 | 検査装置 |
JP7357213B2 (ja) * | 2017-09-27 | 2023-10-06 | パナソニックIpマネジメント株式会社 | 水素供給装置 |
WO2020050284A1 (ja) * | 2018-09-06 | 2020-03-12 | 住友重機械工業株式会社 | 支援装置、支援方法及び支援プログラム |
CN112768332B (zh) * | 2019-11-05 | 2024-07-05 | 中微半导体设备(上海)股份有限公司 | 一种气体输送系统及半导体处理装置 |
SG10202101459XA (en) * | 2020-02-25 | 2021-09-29 | Kc Co Ltd | Gas mixing supply device, mixing system, and gas mixing supply method |
CN215560801U (zh) | 2021-06-23 | 2022-01-18 | 上海晶盟硅材料有限公司 | 外延掺杂气体的稀释装置 |
-
1999
- 1999-02-16 JP JP03677299A patent/JP4155654B2/ja not_active Expired - Lifetime
-
2000
- 2000-01-31 TW TW89101614A patent/TW440926B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2000235952A (ja) | 2000-08-29 |
TW440926B (en) | 2001-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6772781B2 (en) | Apparatus and method for mixing gases | |
KR101343275B1 (ko) | 공정 유체 재순환을 위한 방법 및 장치 | |
JP3174856B2 (ja) | 混合ガス供給装置 | |
JP4585035B2 (ja) | 流量比率制御装置 | |
KR101255873B1 (ko) | 멀티 챔버 툴을 위한 오존 시스템 | |
KR100855935B1 (ko) | 유동분할시스템과 방법 | |
US8074677B2 (en) | Method and apparatus for controlling gas flow to a processing chamber | |
CA2662830C (en) | In-line gas purity monitoring and control system | |
US20080202588A1 (en) | Method and apparatus for controlling gas flow to a processing chamber | |
JP4235076B2 (ja) | 半導体製造装置および半導体製造方法 | |
JP4155654B2 (ja) | ガス混合供給方法およびその装置 | |
CN104769727B (zh) | 硒化氢混合气体的供给方法及供给装置 | |
WO2012121906A1 (en) | Dynamic gas blending | |
JP2006074027A (ja) | 薬液混合供給装置及びその方法 | |
JP3360539B2 (ja) | ガス供給装置及び気相成長用設備 | |
JP5065115B2 (ja) | ガス供給システム | |
US9373528B2 (en) | Substrate processing apparatus | |
JP4033925B2 (ja) | 混合ガス供給装置 | |
JP2794101B2 (ja) | 試料用流体の流量及び圧力の調整装置 | |
JP3355279B2 (ja) | ガス供給ユニット | |
KR102498710B1 (ko) | 정제기의 충진물 재생용 가스믹싱시스템과 그 제어방법 | |
JP2008172031A (ja) | Cmp装置における洗浄液調合装置及び洗浄液供給方法 | |
JPH1151299A (ja) | 混合ガス供給システム | |
TWI875877B (zh) | 用於將混合物維持在所要濃度之調和系統與將經調和混合物提供至使用點之方法 | |
JPH1043572A (ja) | 原料混合装置および混合原料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080430 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080612 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080708 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110718 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120718 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130718 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |