JP4087651B2 - 固体高分子電解質型燃料電池用電極触媒 - Google Patents
固体高分子電解質型燃料電池用電極触媒 Download PDFInfo
- Publication number
- JP4087651B2 JP4087651B2 JP2002206216A JP2002206216A JP4087651B2 JP 4087651 B2 JP4087651 B2 JP 4087651B2 JP 2002206216 A JP2002206216 A JP 2002206216A JP 2002206216 A JP2002206216 A JP 2002206216A JP 4087651 B2 JP4087651 B2 JP 4087651B2
- Authority
- JP
- Japan
- Prior art keywords
- platinum
- mea
- electrode
- catalyst
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【発明の属する技術分野】
本発明は、固体高分子電解質型燃料電池に用いられる電極触媒に関する。
【0002】
【従来の技術】
固体高分子電解質型燃料電池は、低温で高い電流密度が取り出せることから、ポータブル電源、電気自動車の駆動電源、また、コージェネレーションの電源として開発が進められている。
【0003】
固体高分子電解質型燃料電池の基本構造は、燃料極(アノード)、空気極(カソード)及び両電極間に配された固体高分子電解質であるイオン交換膜から構成されている。通常、燃料極と空気極の両電極は貴金属が担持された触媒と高分子電解質の混合体から構成される。
【0004】
固体高分子電解質型燃料電池において、水素を燃料とした場合、燃料極では、水素ガスが電極中の細孔を通過して電解質と電極の界面に達し、触媒表面で電子を放出して水素イオンとなる。水素イオンは電極中の電解質および両電極間の固体高分子電解質膜を通じ空気極に達する。放出された電子は電極中の触媒担体を通って外部回路に流れ、外部回路から空気極に達する。一方、酸素を酸化剤とした空気極では、酸素が電極中の細孔を通過して触媒に達し、燃料極から到達した水素イオン、および外部回路により移動した電子と反応して水を生成する。
【0005】
一般的に燃料電池の出力を向上させるには両電極反応を促進させることが必要である。その為には、電極触媒の活性物質である白金や白金合金が両電極反応に対して高活性を有し、さらに、電極内において白金や白金合金が効率的かつ有効に両電極反応に利用されることが必要である。即ち、触媒には高活性な貴金属、特に白金または白金合金をカーボンブラック上に担持した触媒が用いられ、導電性電解質としてはイオン伝導性の高い高分子電解質であるパーフルオロカーボンスルホン酸等が使用され、両者が十分に接触することが求められる。
【0006】
電極の製造方法としてはこれまでに種々の方法が提案されている。
例えば、「電気化学」53、No.10、p.812〜817(1985)には、固体高分子電解質としてパーフルオロカーボンスルホン酸樹脂であるNafion117溶液(商品名、Aldrich Chemical社製、H型、脂肪族アルコールと水の混合溶媒中5%の溶液)を用い、触媒粉末と混合する方法が報告されている。
【0007】
特開平4−162365号公報には、白金触媒担持のカーボンブラックと触媒無担持のカーボンブラックとを、固体高分子電解質であるNafionのブタノール溶液で浸漬処理し、ついでポリテトラフルオロエチレンのディスパージョンで処理することが記載されている。
【0008】
特開平8−418153号公報においては、▲1▼まず触媒粒子として、例えば白金ブラックや白金を担持させたカーボンブラック粒子を製造し、▲2▼この粒子と固体高分子電解質溶液とを、さらに溶媒を加えて均一にすることにより懸濁液を調製し、▲3▼次いで、必要に応じて結合剤としてのポリテトラフルオロエチレン等を混合する方法が記載されている。この方法においては、▲2▼の混合による懸濁液調製工程と、その懸濁液から含まれている溶媒を除去する工程とが特に重要であることが説明されている。
【0009】
特開平8−227716号公報には、電極触媒と固体高分子電解質の混合工程において遊星ボールミルにて物理的に混合する方法を開示されている。
【0010】
【発明が解決しようとする課題】
しかし上記いずれの方法によって得られる電極触媒も、白金を担持させたカーボンブラックの表面はグラファイトの構造と官能基をあわせもつために、親水性部と疎水性部を共有する結果、凝集粒子を生成し易く、高分散を達成することができない。また、Nafion117溶液のようなパーフルオロスルホン酸樹脂が凝集を起こし易かったり、電極触媒とこれらの樹脂との接触が不十分であるという問題を有している。
【0011】
本発明は上記従来の課題を解決するもので、触媒の活性金属がカーボンブラック上に高分散しており、しかも固体高分子電解質、特にパーフルオロカーボンスルホン酸樹脂と親和性の高い電極触媒を提供するものである。
【0012】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは、触媒の担体として用いられるカーボンブラックを酸処理することにより、その表面構造を改質し、パーフルオロカーボンスルホン酸樹脂の凝集抑制と触媒表面への高分散状態での付着を実現し得ることを見出した。
【0013】
すなわち、本発明は、カーボンブラックと、該カーボンブラックに担持された白金または白金合金とからなり、JIS K1474に記載の方法により測定されたpHが2〜7であることを特徴とする、固体高分子型燃料電池用電極触媒を提供する。
【0014】
【発明の実施の形態】
本発明の電極触媒には担体としてカーボンブラックが使用される。
【0015】
本発明の電極触媒には活性金属として白金または白金合金が使用される。白金合金としては、例えば白金−ルテニウム合金、白金−モリブデン合金等があがられ、中でも好ましいのは白金−ルテニウム合金である。白金または白金合金の好ましい担持量は、5〜70質量%、さらに好ましくは10〜60質量%である。
【0016】
本発明の電極触媒は、JIS K1474に記載の方法により測定されたpHが2〜7である点に特徴を有する。pHは、好ましくはpH3〜6の範囲であり、より好ましくは3.5〜5.5の範囲である。pHが低すぎると白金や白金合金が溶出しやすくなる。
【0017】
触媒のpHを調整するのに使用される酸としては、無機酸、有機酸のいずれも使用することができ、無機酸としては、例えば塩酸、硝酸、硫酸などが挙げられ、有機酸としては、例えばギ酸、酢酸、しゅう酸、マロン酸等の脂肪族カルボン酸が挙げられる。なかでも好ましいものは脂肪族有機酸、特にカルボン酸である。
【0018】
本発明の電極触媒の製造方法としては、担体であるカーボンブラックを酸で処理した後に白金または白金合金を担持させる方法でも、カーボンブラックに白金または白金合金を担持させた後に酸で処理する方法でもよい。
このような酸処理により、カーボンブラックの表面状態が疎水性から親水性に変換され、さらに酸との親和状態も良好になる結果、パーフルオロカーボンスルホン酸の良好な接触が得られる。
【0019】
【実施例】
以下に実施例を挙げて本発明を具体的に説明する。
なお、触媒のpHはJIS K1474 5.10の活性炭試験方法のpH値測定方法に従い測定した。具体的には、電極触媒の乾燥カーボン質量で1.0gを秤量し、水100mlを加えて静かに5分間の沸騰後、室温まで冷却後水を加えて100mlにメスアップし、よく攪拌しながら懸濁液のpHを測定した。
【0020】
〔実施例1〕
市販の電極触媒SA50BK(エヌ・イー ケムキャット製 50%Ptカーボンブラック BET比表面積 347m2/g、X線回折によるPt粒子径 2.5nm、pH 6.5)を10.0gを秤量し1.5Lの水に懸濁させスラリーとした。次に濃度1モル/Lの硝酸溶液を調製し、これを10mlスラリーに加えた後、スラリー温度を上昇させ、沸騰状態にて3時間還流をおこなった。次に、この触媒を濾別、洗浄、乾燥、粉砕した。このように処理した後の触媒粉末を測定したところ、Pt分析値50%、BET比表面積338m2/g、Ptの結晶子径は2.6nm、pH 4.0であった。
【0021】
〔実施例2〕
実施例1において加える酸を1モル/Lの硝酸溶液に変えて蟻酸(和光純薬製純度99%)10mlに変更してPt50%の電極触媒の粉末を調製した。該粉末は、BET比表面積345m2/g、Ptの結晶子径は2.5nm、pH 5.8であった。
【0022】
〔実施例3〕
実施例1において加える酸を硝酸に変えて酢酸(和光純薬製 特級 純度99.7%以上)10mlに変更してPt50%の電極触媒の粉末を調製した。 該粉末はBET比表面積346m2/g、Ptの結晶子径は2.5nm、pH 4.8であった。
【0023】
〔実施例4〕 実施例1において加える酸を硝酸に変えてしゅう酸2水和物(和光純薬製 特級)10gに変更してPt50%の電極触媒の粉末を調製した。該粉末はBET比表面積345m2/g、Ptの結晶子径は2.6nm、pH 5.0であった。
【0024】
〔実施例5〕
市販の電極触媒SA27−13RC(エヌ・イー ケムキャット製 27%Pt13%Ruカーボンブラック BET比表面積 130m2/g、X線回折によるPt粒子径 6.2nm、pH 7.5)を10.0gを秤量し1.5Lの水に懸濁させスラリーとした。次に1モル/Lの硝酸溶液を調製し、10mlを加えた後、スラリー温度を上昇させ、沸騰状態にて3時間還流をおこなった。この触媒を濾別、洗浄、乾燥、粉砕した。該粉末は、Pt分析値27%、Ru13%、BET比表面積130m2/g、Ptの結晶子径は6.2nm、pH 4.0であった。
【0025】
〔比較例1〕
実施例1で使用した市販の電極触媒SA50BK(エヌ・イー ケムキャット製 50%Ptカーボンブラック BET比表面積 347m2/g、X線回折によるPt粒子径 2.5nm、pH 6.5)を使用した。
【0026】
〔比較例2〕
実施例1で添加した硝酸とその添加量を濃硝酸(和光純薬製 特級)50mlとした。該粉末は、Pt分析値47.3%、BET比表面積335m2/g、Ptの結晶子径 2.6nm、pH 2.4であった。
【0027】
〔比較例3〕
実施例5で使用した市販の電極触媒SA27−13RC(エヌ・イー ケムキャット製 27%Pt13%Ruカーボンブラック BET比表面積 130m2/g、X線回折によるPt粒子径 6.2nm、pH 7.5)を使用した。
【0028】
〔電池性能評価の為の電極調製〕
PTFE(ポリテトラフルオロエチレン、三井フルオロケミカル製:テフロン30J)で撥水処理した50×50mm、厚さ120μmの多孔質カーボンペーパー(東レ製:TGP−H−120)を電極基質として準備した。次に、実施例1〜5および比較例1〜3で得られた白金担持カーボン粉末および白金−ルテニウム担持カーボン粉末触媒それぞれと水、5重量%ナフィオン溶液(アルドリッチ社製)を所定量混ぜ合わせペーストとした。このようにペースト状にしたものを上記電極基質の片面全面に均一に塗布してから乾燥し、触媒層を形成した。こうして、各実施例及び各比較例の白金担持カーボン粉末又は白金−ルテニウム担持カーボン粉末を用いた電極を作成した。
【0029】
次に、実施例1の白金担持カーボン粉末を用いて得た電極二枚を、パーフルオロスルフォン酸電解質膜(デュポン社製、商品名:ナフィオン112)の両面に、それぞれの電極の触媒層側が電解質に接するように重ね合わせ、ホットプレス機で熱圧着して電解質膜−電極接合体MEA−1を得た。
【0030】
次に、実施例2の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−2を作製した。
【0031】
次に、実施例3の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−3を作製した。
【0032】
次に、実施例4の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−4を作製した。
【0033】
次に、比較例1の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−5を作製した。
【0034】
次に、比較例2の白金担持カーボン粉末を用いて得た電極二枚を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−6を作製した。
【0035】
次に、アノードとなる実施例5の白金−ルテニウム担持カーボン粉末による電極と、カソードとして比較例1の白金担持カーボン粉末による電極を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−7を作製した。
【0036】
次に、アノードとなる比較例3の白金−ルテニウム担持カーボン粉末による電極と、カソードとして比較例1の白金担持カーボン粉末による電極を用いた以外は、上記MEA−1の作製と同様の方法で電解質膜−電極接合体MEA−8を作製した。
【0037】
上記のように作製した各MEAを燃料電池単セル評価装置(Scriber Associates製:model890)に組み込み、セル温度を80℃とし、アノードに90℃にて飽和水蒸気で加湿した1気圧の純水素もしくは100ppmCOを含む水素を、カソードには同様に50℃で加湿した1気圧の酸素を、それぞれのガスの利用率が常に50%となるように流量を増加させ単セルを運転した。
【0038】
図1に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例1によるMEA−1および比較例1によるMEA−5を用い、アノードガスとして純水素を供給したた場合の電流密度−電圧曲線を示す。硝酸洗浄を行うことにより、特に低電流密度領域において性能の向上が見られる。このような領域における電極性能は、反応界面への反応ガスの拡散や反応生成水の系外への移動といった物質拡散の影響を受けにくく、触媒本来の活性が電極反応を支配する領域であり、触媒粒子とパーフルオロカーボンスルホン酸の接触が良好に保たれることにより得られる。ここで、このような領域に帰属するセル電圧0.85VにおけるIRフリー電流密度を測定し、得られた値を電極幾何面積あたりの白金使用量で割り返したものを触媒の質量活性と規定し計算を行ったところ、比較例1によるMEA−5では305A/g−Ptであるのに対して、実施例1によるMEA−1では345A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0039】
図2に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例2によるMEA−2および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。蟻酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例2によるMEA−2では325A/g−Ptとなり、活性が向上していることが分かる。
【0040】
図3に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例3によるMEA−3および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。酢酸酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例3によるMEA−3では386A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0041】
図4に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例4によるMEA−4および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。しゅう酸洗浄を行うことでも、全ての電流密度領域において性能の向上が見られる。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、実施例4によるMEA−4では415A/g−Ptとなり、活性が大幅に向上していることが分かる。
【0042】
図5に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした比較例2によるMEA−6および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。実施例1と同じ硝酸洗浄でも比較例2のように酸濃度が高いと、触媒中の白金が溶出するため、全ての電流密度領域において性能の低下が見られた。セル電圧0.85VにおけるIRフリー電流密度を測定し、質量活性の計算を行ったところ、比較例1によるMEA−5の305A/g−Ptに対して、比較例2によるMEA−6では266A/g−Ptとなり、活性が大きく低下していることが分かる。
【0043】
以上の性能試験の結果をまとめたものについて表1に示す。ここから、pH3.5−5.5の範囲において良好な質量活性が得られていることがわかる。
【表1】
【0044】
図6に、電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例5によるMEA−7および比較例3によるMEA−8を用い、アノードガスとして100ppmCOを含む水素を供給した場合の電流密度−電圧曲線を示す。硝酸洗浄を行うことにより、全ての電流密度領域においてCO耐性の向上が見られる。電流密度0.5A/cm2におけるセル電圧を比較したところ、比較例3によるMEA−8の0.642Vに対して、実施例5によるMEA−7では0.728Vとなった。
【0045】
以上の性能試験の結果をまとめたものについて表2に示す。
【表2】
【0046】
【発明の効果】
本発明の固体高分子電解質型燃料電池用電極触媒は、活性金属である白金または白金合金がカーボンブラック上に高分散しており、しかも固体高分子電解質、特にパーフルオロカーボンスルホン酸樹脂と親和性に優れている。そのため、このような樹脂と高い接触を実現できるので燃料電池の出力向上に大いに寄与するものである。
【図面の簡単な説明】
【図1】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例1によるMEA−1および比較例1によるMEA−5を用い、アノードガスとして純水素を供給したた場合の電流密度−電圧曲線を示す。
【図2】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例2によるMEA−2および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図3】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例3によるMEA−3および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図4】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例4によるMEA−4および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図5】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした比較例2によるMEA−6および比較例1によるMEA−5を用い、アノードガスとして純水素を供給した場合の電流密度−電圧曲線を示す。
【図6】 電極幾何面積あたりの白金使用量を0.30mg/cm2とした実施例5によるMEA−7および比較例3によるMEA−8を用い、アノードガスとして100ppmCOを含む水素を供給した場合の電流密度−電圧曲線を示す。
Claims (4)
- カーボンブラックと、該カーボンブラックに担持された白金または白金合金とからなり、JIS K1474に記載の方法により測定されたpHが3〜6であることを特徴とする、パーフルオロカーボンスルフォン酸電解質膜を用いた固体高分子型燃料電池用電極触媒。
- 請求項1に記載の電極触媒であって、前記カーボンブラックに担持された白金合金が白金ルテニウム合金であることを特徴とする上記電極触媒。
- 請求項1又は2に記載の電極触媒であって、前記の触媒のpHが脂肪族有機酸を用いて調整されたことを特徴とする上記電極触媒。
- 請求項3に記載の電極触媒であって、前記の脂肪族有機酸がカルボン酸であることを特徴とする上記電極触媒。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002206216A JP4087651B2 (ja) | 2002-07-15 | 2002-07-15 | 固体高分子電解質型燃料電池用電極触媒 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002206216A JP4087651B2 (ja) | 2002-07-15 | 2002-07-15 | 固体高分子電解質型燃料電池用電極触媒 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004047386A JP2004047386A (ja) | 2004-02-12 |
JP4087651B2 true JP4087651B2 (ja) | 2008-05-21 |
Family
ID=31711302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002206216A Expired - Lifetime JP4087651B2 (ja) | 2002-07-15 | 2002-07-15 | 固体高分子電解質型燃料電池用電極触媒 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4087651B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179427A (ja) * | 2004-12-24 | 2006-07-06 | Toyota Motor Corp | 燃料電池用電極触媒及び燃料電池 |
KR100846478B1 (ko) | 2006-05-16 | 2008-07-17 | 삼성에스디아이 주식회사 | 담지 촉매, 그 제조방법 및 이를 이용한 연료전지 |
KR100738062B1 (ko) * | 2006-05-16 | 2007-07-10 | 삼성에스디아이 주식회사 | 막 전극 접합체 및 이를 이용한 연료전지 |
JP5270468B2 (ja) | 2009-06-22 | 2013-08-21 | トヨタ自動車株式会社 | 燃料電池用電極触媒、その製造方法、及びそれを用いた固体高分子型燃料電池 |
JP5821330B2 (ja) * | 2011-02-21 | 2015-11-24 | 株式会社エクォス・リサーチ | 燃料電池用触媒の製造装置 |
-
2002
- 2002-07-15 JP JP2002206216A patent/JP4087651B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004047386A (ja) | 2004-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4083721B2 (ja) | 高濃度炭素担持触媒、その製造方法、該触媒を利用した触媒電極及びそれを利用した燃料電池 | |
US20080020924A1 (en) | Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications | |
JP3643552B2 (ja) | 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法 | |
CN111900420A (zh) | 一种阳极催化剂浆料、阳极催化剂层、膜电极及燃料电池 | |
JP2007250274A (ja) | 貴金属利用効率を向上させた燃料電池用電極触媒、その製造方法、及びこれを備えた固体高分子型燃料電池 | |
WO2006119147A2 (en) | Supports for fuel cell catalysts | |
WO2007011153A1 (en) | Electrode catalyst with improved longevity properties and fuel cell using the same | |
JPWO2007119640A1 (ja) | 燃料電池用電極触媒及びその製造方法 | |
JP2020047432A (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
WO2006018257A2 (en) | Platinum/ruthenium catalyst for direct methanol fuel cells | |
WO2020059503A1 (ja) | 燃料電池用アノード触媒層及びそれを用いた燃料電池 | |
KR100541977B1 (ko) | 다공성 나노 탄소 구형 지지체 및 이에 담지된백금/루테늄합금 직접메탄올 연료전지용 전극촉매 및 이의제조방법 | |
Armstrong et al. | Nanoscale titania ceramic composite supports for PEM fuel cells | |
JP4087651B2 (ja) | 固体高分子電解質型燃料電池用電極触媒 | |
JP6956851B2 (ja) | 燃料電池用電極触媒及びそれを用いた燃料電池 | |
JP4892811B2 (ja) | 電極触媒 | |
EP3005452B1 (en) | Metal alloy catalysts for fuel cell anodes | |
US11901565B2 (en) | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same | |
JP2006179427A (ja) | 燃料電池用電極触媒及び燃料電池 | |
JP7346729B2 (ja) | 燃料電池用触媒、その製造方法、及びそれを含む膜-電極アセンブリー | |
KR102756173B1 (ko) | 고내구성을 갖는 연료전지용 전극, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리 | |
CN1697221A (zh) | 燃料电池的催化剂及包含它的燃料电池 | |
JP2005135671A (ja) | 燃料電池用電極 | |
KR100599815B1 (ko) | 연료 전지용 촉매, 그의 제조 방법, 및 그를 포함하는 연료 전지 시스템 | |
US11715833B2 (en) | Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080221 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4087651 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |