[go: up one dir, main page]

JP3934290B2 - 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置 - Google Patents

離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置 Download PDF

Info

Publication number
JP3934290B2
JP3934290B2 JP28067399A JP28067399A JP3934290B2 JP 3934290 B2 JP3934290 B2 JP 3934290B2 JP 28067399 A JP28067399 A JP 28067399A JP 28067399 A JP28067399 A JP 28067399A JP 3934290 B2 JP3934290 B2 JP 3934290B2
Authority
JP
Japan
Prior art keywords
discrete cosine
input
cosine transform
output
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28067399A
Other languages
English (en)
Other versions
JP2001102934A (ja
Inventor
義治 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28067399A priority Critical patent/JP3934290B2/ja
Priority to US09/664,573 priority patent/US6732131B1/en
Publication of JP2001102934A publication Critical patent/JP2001102934A/ja
Priority to US10/676,051 priority patent/US20050114419A1/en
Application granted granted Critical
Publication of JP3934290B2 publication Critical patent/JP3934290B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/147Discrete orthonormal transforms, e.g. discrete cosine transform, discrete sine transform, and variations therefrom, e.g. modified discrete cosine transform, integer transforms approximating the discrete cosine transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/007Transform coding, e.g. discrete cosine transform

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Discrete Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Multimedia (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像データの圧縮や伸張でよく使われる離散コサイン変換(DCT)装置及び逆離散コサイン変換(IDCT)装置に関し、特に1次元分の変換処理回路で2次元の変換処理を行なう離散コサイン変換処理装置や逆離散コサイン変換装置に関する。
【0002】
【従来の技術】
デジタルTV放送等の画像圧縮では離散コサイン変換(DCT)が使用される。従来は、高い動作クロック周波数の使用が困難であったが、LSIの動作クロックの高周波数化が進み、ハイビジョンの画像圧縮伸張においても、1次元分のDCTやIDCT演算の単一回路を2回使用して2次元変換処理が可能になってきた。この様な回路構成で回路規模を削減する事で、LSIの小型化による低価格化が可能になる。
【0003】
しかし、1点(画素または係数)単位や2点単位等の様に8点未満のデータ入力毎に、1次元目の処理と2次元目の処理を切り換えると、1次元目と2次元目の両方の途中演算結果を保持するレジスタが1次元分の変換処理回路の中に必要となり、必要なレジスタの規模は2次元分の変換回路を持つ場合と大差無く、回路規模の削減効果が小さい。
【0004】
また、図18は、1クロック毎に2データずつ入力され、8点変換処理したデータを1クロック毎に2データずつ出力する8点変換処理回路を用いて、1ブロック単位で1次元目の処理と2次元目の処理を切り換える例であるが、演算による出力遅延として7クロック程度必要であり、転置出力が可能になるのは1次元目のデータ入力が完了して4クロック程度後になる。即ち、1ブロックの変換処理を行なう度に4クロックの無効動作期間が生じる。また、転置用メモリの書き込み(1次元変換出力)と読み出し動作(2次元変換入力)が4クロック程度同時に発生する為に、転置用メモリとして2ポートのRAM(ランダムアクセスメモリ)を使用する必要があり、転置メモリの面積が小さくならない。また、この場合の入出力は1ブロック単位で間欠的になるが、入出力が1クロック毎に1データとなる様に平滑化する為には、入出力にそれぞれ32係数分のメモリが必要である。
【0005】
図19は、1ブロック単位で1次元目の処理と2次元目の処理を切り換えて、転置メモリとして1ポートのRAMの使用を可能にしてRAM面積を半減する例である。ここでは転置メモリの書き込みと読み出しが同時に発生しない様に、転置メモリの読み出し開始を図18の例に比べてさらに4クロック遅らせており、1ブロック毎に必要な無効動作期間が8クロックになり、動作効率の低下を生じる。また、図18の例と同様に、入出力が1ブロック単位で間欠的になるが、入出力が1クロック毎に1データとなる様に平滑化する為には、入出力にそれぞれ32係数分のメモリが必要である。
【0006】
図20は、2ブロック単位で1次元目の処理と2次元目の処理を切り換えて、1ブロックの処理毎に生じる無効動作期間を無くす例である。しかしこの場合は、2ブロック毎に1次元目と2次元目の処理を切り換える為に転置メモリとして2ブロック分のデータ容量が必要であると共に、図18の例と同様に読み出し動作と書き込み動作が同時に発生する為に転置メモリとして2ポートのRAMを使用する必要があり、転置メモリ面積が図19の例の4倍程度になる。この場合、入出力が2ブロック単位で間欠的になるが、入出力が1クロック毎に1データとなる様に平滑化する為には、入出力にそれぞれ64係数分のメモリが必要である。
【0007】
この様に1ブロック単位や2ブロック単位で1次元目の処理と2次元目の処理を切り換える場合には、書き込みと読み出しを同時に行なう為に転置RAMの面積が削減できなかったり、動作効率が低下したり、入出力が定常的に間欠的にならない様にする為に入出力に多くのデータメモリが必要であった。即ち、1次元分の変換処理回路は大きくならないが、転置用RAM等の規模が増大したり、動作効率が低下すると言う問題があった。
【0008】
【発明が解決しようとする課題】
本発明は、離散コサイン変換処理装置または逆離散コサイン変換処理装置等の直交変換処理装置において、ブロックデータを所定間隔で入力できない場合においても動作効率の低下が少なく、2次元の直交変換処理を小規模な回路で実現可能にする事を目的とする。
【0009】
【課題を解決するための手段】
本発明は、1次元目と2次元目の処理を8点単位で交互に切り換えて、8×8点の離散コサイン変換処理または逆離散コサイン変換処理を行なう事により、単一の変換処理回路の規模増大を抑え、転置用RAM等の回路規模の半減も可能にする。
【0010】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0011】
図1は、本発明の一実施形態を示すブロック図で、8×8点DCT処理と8×8点IDCT処理を同一の8点変換処理回路で実現する2次元直交変換処理装置である。また、図2は、この制御方法による動作の概要を示すものである。
【表1】
Figure 0003934290
【表2】
Figure 0003934290
表1は、 DCT処理時にこの装置に入力される8×8点の画素配列の入力順序を示す表であり、{x0, x1,・・・, x6, x7}は水平方向の画素位置を示し、{y0, y1,・・・, y6, y7}は垂直方向の画素位置を示し、表2は、この装置によりDCT処理して出力される変換結果(8×8点のDCT係数)の出力順序を示す表であり、{f0, f1,・・・, f6,f7}は水平方向の周波数成分を示し、{g0, g1,・・・, g6, g7}は垂直方向の周波数成分を示す。尚、f0成分及びg0成分は水平及び垂直方向のDC成分を意味し、f7成分及びg7成分は水平及び垂直方向の8点DCTの最高周波数成分を意味する。また、表3は、 IDCT処理時にこの装置に入力される8×8点のDCT係数の入力順序を示す表であり、表4は、この装置によりIDCT処理して出力される変換結果(8×8点の画素配列)の出力順序を示す表である。
【表3】
Figure 0003934290
【表4】
Figure 0003934290
この2次元直交変換処理装置の入力端子100には、DCT処理の場合には画素配列が表1に示す様な順序で1クロック毎に1データずつ入力され、IDCT処理の場合にはDCT係数が表3に示す順序で1クロック毎に1データずつ入力される。入力処理部1は、図2に示す様に入力端子100から1データずつ入力されるデータdti[11:0]を1クロック毎に2データずつ(ido[31:0]として)4クロック期間連続して出力し、次の4クロック期間は転置処理部4から1クロック毎に2データずつ(rdo[31:0]として)出力されるデータを選択してido[31:0]として出力する。
【0012】
この例の8点変換処理回路2は、1クロック毎に2データずつ入力されると、8点変換処理したデータを1クロック毎に2データずつ出力するもので、図2の例ではこの部分での入出力遅延(idoとodiの入出力遅延差)を7クロックとしている。
【0013】
出力処理部3は、8点変換処理回路2から1クロック毎に2データずつ連続して入力される1次元変換処理後のデータ(odi[31:0])を、転置処理部4に対して1クロック毎に2データずつ(rdi[31:0]として)4クロック期間毎に連続出力すると共に、次の4クロック期間に連続して2データずつ8点変換処理回路2から入力される2次元処理後の8データに対して四捨五入処理し、出力端子305から1クロック毎に1データずつ(dto[11:0]として)8クロック期間で出力する。
【0014】
転置処理部4は、1クロック毎に2データずつ(rdi[31:0]として)4クロック期間毎に連続して書き込まれた64個のデータを転置処理して、1クロック毎に2データずつ4クロック期間毎に連続して読み出す。図2の例では、ここで使用される転置用メモリの読み出しデータは読み出し制御信号に対して1クロック遅延するものであり、メモリ制御としてrdi[31:0]の書き込み動作とrdo[31:0]の読み出し動作は同時に発生していない。
【0015】
制御処理部5は、入力処理部1,8点直交変換処理部2,出力処理部3,転置処理部4の制御を行うと共に、この2次元直交変換処理装置の入出力インタフェース制御信号を生成する。この入出力インタフェース制御信号には、8点直交変換処理部に1次元変換処理された全てのデータが入力完了した時に入力端子100に入力されるデータの取り込み開始タイミングに制限をつけず、8点直交変換処理部に1次元変換処理された全てのデータが入力完了していない時に入力端子100に入力されるデータの取り込み開始タイミングを8クロック単位で制限する為の信号dtack(出力端子501)と、出力ブロックデータの先頭を示す信号dtosync(出力端子502)が含まれる。
【0016】
上述の様にこの実施形態では、転置処理部4における転置メモリの書き込みと読み出しは同時に発生しない為に、転置処理用メモリとして、64データの記憶容量の1ポートRAM(ランダムアクセスメモリ)を使用して構成でき、メモリ回路規模が半減する。また、ブロックデータを連続的に入力できる場合は8点直交変換処理部2において無効動作期間を生じない。ブロックデータを連続的に入力できず、ブロックデータ間に64クロック未満の空きを生じる場合は、入力開始タイミングが8クロック単位に制限を生じるが、その場合に生じる無効動作期間の増加は8クロック未満である事と、通常の画像圧縮伸張においては6ブロック程度の単位で連続処理が普通である事から、実質的な性能低下は無い。
【0017】
次に各処理部の構成例について説明する。
【0018】
図3は入力処理部1の構成例を示すブロック図であり、図4は入力処理部1のDCT処理時の動作タイミング例を示す図で、図5は入力処理部1のIDCT処理時の動作タイミング例を示す図である。図3において、入力レジスタ11(dfa)は、入力端子100から入力されるデータdti[11:0]を1クロック毎に取り込むレジスタで、シフタ12(sft)は、入力端子101から入力される制御信号(dct)により、DCT処理の場合は入力データの下位9bitのみ有効である為に、レジスタ11の出力を3ビット左シフト(下位3ビットは零)して出力し、IDCT処理の場合にはレジスタ11の出力をビットシフトせずにそのまま出力するセレクタである。レジスタ群13a, 13b, 13c, 13dは、入力端子102から入力される制御信号(idfena)により、1クロック毎にそれぞれのレジスタ出力を更新したり、5クロック期間データを保持したりするレジスタ(図4及び図5のdfb,dfc,dfd,dfe)であり、セレクタ14(sela)は、入力端子103から入力される制御信号(isela)により、レジスタ群13a, 13b, 13c, 13dに保持されたデータを入力順序と逆順で出力するセレクタ(図4及び図5のsela)である。
【0019】
セレクタ15a及び15bは、入力端子102から入力される制御信号(idfena)により、前述のシフタ12の出力とセレクタ14の出力を4クロック毎に選択する事で、入力端子100から1クロック毎に1データずつ入力された8データを4クロック期間で連続して1クロック毎に2データずつ出力し、次の4クロック期間は、入力端子104a及び104bから入力される転置処理部出力データ(rdo[31:0])を1クロック毎に2データずつ出力する(図4及び図5のselb[31:16]とselb[15:0])。尚、これらのセレクタ15 a及び15bは、前述のシフタ12の出力とセレクタ14の出力を選択する場合に、それらの出力をそれぞれ3ビット左シフト(下位3ビットは零)し、1ビット符号拡張して、それぞれ16ビットのデータとして出力する。セレクタ16a及び16bは、入力端子105から入力される制御信号(iselc)により、8点直交変換処理回路の演算処理に適した入力順序となる様に、セレクタ16a及び16bの出力を入れ替えてido[31:0]として出力する為のもので、図4及び図5や表5及び表6に示す様に、転置処理部からの入力を選択出力する時の制御は、DCT処理とIDCT処理で同じであるが、入力端子100からの入力を選択出力する時の制御は、DCT処理とIDCT処理で異なる。
【表5】
Figure 0003934290
【表6】
Figure 0003934290
図6は、8点直交変換処理部2の構成例を示すブロック図であり、DCT用加減算処理部21と固定乗算(16ビット入力, 21ビット出力)結果の積和処理部22とIDCT用加減算処理部23により構成される。ここで使用される固定乗算器は、表7に示すような6種類であるが、DCT処理とIDCT処理の機能を持たせる為に、c2及びc6の乗算器を2個ずつ使用し、合計8個となっている。また、図7〜図13は8×8点のDCT処理及びIDCT処理をブロック単位で切り換えて処理させる場合の動作の概要を示す図である。
【表7】
Figure 0003934290
【表8】
Figure 0003934290
【表9】
Figure 0003934290
【表10】
Figure 0003934290
DCT用加減算部21は、DCT処理の場合には入力端子200a及び200bから入力される画素データx(0),x(1),…x(7)に対して表8に示す演算式に従ったDCT中間信号z(0),z(1),…,z(7)を生成し、表9に示す様な順序で出力するが、IDCT処理の場合には加算器の一方の入力を零に制御して、入力端子200 a及び200bから入力されるDCT係数f(0),f(1),…f(7)をそのまま表10に示す様な順序で出力する。図7は、このDCT用加減算部21の動作タイミング例を示す図である。
【表11】
Figure 0003934290
【表12】
Figure 0003934290
【表13】
Figure 0003934290
【表14】
Figure 0003934290
DCT処理時の積和処理部22は、入力されるDCT中間信号z(0),z(1),…,z(7)に対して表11に示す積和処理を行なう事で変換処理結果f(0),f(1),…f(7)を出力するのであるが、この構成例では各乗算器における乗算係数が固定されている為に、入力されるDCT中間結果を表12に示す様に対応する乗算器に入力する事で変換結果を出力する。表13は、この時のレジスタ選択制御例である。IDCT処理時の積和処理部22は、入力されるDCT係数f(0),f(1),…f(7)に対して表14 に示す積和処理を行なう事で変換処理中間信号z(0),z(1),…,z(7)を出力するのであるが、この構成例では各乗算器における乗算係数が固定されている為に、入力されるDCT係数f(0),f(1),…f(7)を表15に示す様に対応する乗算器に入力する事で変換処理中間信号を出力する。
【表15】
Figure 0003934290
【表16】
Figure 0003934290
表16は、この時のレジスタ選択制御例である。尚、ここでの固定乗算器として16ビット入力で21ビット出力のものを使用しており、固定乗算器の入力と出力を選択出力するセレクタ222a,222b,222c,222dは、固定乗算器入力を選択出力する場合は4ビット左シフト(下位4ビットは零)し、1ビット符号拡張して出力する。
【表17】
Figure 0003934290
【表18】
Figure 0003934290
【表19】
Figure 0003934290
【表20】
Figure 0003934290
【表21】
Figure 0003934290
表17は、各レジスタの選択制御信号の定義例であり、表18と表19にこの定義に従ったDCT及びIDCT処理におけるレジスタ選択制御例を示し、表20にDCT及びIDCT処理における4クロック期間のレジスタ選択制御信号パターンを示す。また、表21はDCT及びIDCT処理における4クロック期間の加減算及びビットシフト制御信号パターンを示し、ビットシフタ226a及び226bは、DCT処理の時には加算器出力の下位6ビットを切り捨てた16ビットのデータを1ビット符号拡張して出力し、IDCT処理のときには加算器出力の上位2ビットと下位3ビットを切り捨てた17ビットを出力する。また、加算器226c及び226dは、ビットシフタ226a及び226bから入力される17ビットデータを正方向の四捨五入をして下位1ビットを切り捨てた16ビットデータとして出力する四捨五入回路である。図8から図12は、この積和処理部22の動作タイミング例を示す図である。
【表22】
Figure 0003934290
【表23】
Figure 0003934290
【表24】
Figure 0003934290
IDCT用加減算処理部23は、IDCT処理の場合に表22に示す演算式に従ってIDCT中間信号z(0),z(1),…,z(7)から変換処理結果となる実信号(画素データ) x(0),x(1),…x(7)を生成し、表24に示す様な順序で出力するが、DCT処理の場合には加算器の一方の入力を零に制御して、この場合の入力データf(0),f(1),…f(7)をそのまま表23に示す様な順序で出力する。図13は、この IDCT用加減算処理部23の動作タイミング例を示す図である。
【0020】
図14は、出力処理部3の構成例を示すブロック図であり、図16はこの出力処理部3の動作タイミング例を示す図である。
【0021】
図14において、セレクタ31a及び31bは、入力端子300a及び300bから1クロック毎に2データずつ入力されるデータの1次元目の処理結果になる4クロック期間に対しては転置処理前処理の為のデータ入れ替えを行って出力端子306a及び306bにrdi[15:0]及びrdi[31:16]として出力し、2次元目の処理結果になる4クロック期間については出力順序の調整の為のデータ入れ替えを行なってレジスタ32a及び32bに出力する。
【0022】
四捨五入・最大値制限処理部33a及び33bは、レジスタ32a及び32bを介して1クロック毎に入力される2次元目の処理結果に対して、正負対称の四捨五入と最大値制限を行い、odo[11:0]及びodo[23:12]として出力する。
【0023】
図15は、四捨五入・最大値制限処理部33a及び33bの回路例であり、四捨五入処理部331は、入力端子302から入力される制御信号(dct81d)により、DCT処理の場合は、入力端子33iから2の補数形式で入力される入力データの下位3ビット以下を四捨五入して、IDCT処理の場合は下位6ビットを四捨五入して、上位13bitをb[12:0]として出力する。即ち、ここでの四捨五入用の加算器は、DCT処理時とIDCT処理時で上位ビット詰めで共用して加算器の演算ビット数を有効利用しており、DCT処理の場合は13ビットの整数で出力され、IDCT処理の場合は下位3ビット(b[2:0])が小数点以下の無効データとして出力される。最大値制限処理部332は、四捨五入処理部331から入力されるデータb[12:0]が、16進数表現で1800hより小さな負の値の場合は800hとして、07ffhより大きな正の値の場合は7ffhとして12ビットのデータとして出力する。尚、四捨五入処理部で、上位ビット詰めで出力されている為に、この最大値制限処理部は、DCT処理時とIDCT処理時で同一の処理となっている。ビットシフト処理部333は、入力端子302から入力される制御信号(dct81d)により、DCT処理の場合は、最大値制限処理出力のデータをそのままの状態で、IDCT処理の場合は、最大値制限処理出力のデータを3bit右シフト(上位3ビットは符号拡張)して、出力端子33oから出力する。
【0024】
レジスタ群34a, 34b, 34c, 34dは、四捨五入・最大値制限処理部33bの出力を受け、入力端子303から入力される制御信号(odfena)により、1クロック毎にそれぞれのレジスタ出力を更新したり、5クロック期間データを保持したりするレジスタ(図16のdfb,dfc,dfd,dfe)であり、セレクタ35(selb)は、入力端子304から入力される制御信号(oselb)により、レジスタ群34a, 34b, 34c, 34dに保持されたデータを入力順序と逆順で出力するセレクタ(図16のselb)である。
【表25】
Figure 0003934290
【表26】
Figure 0003934290
セレクタ36は、入力端子303から入力される制御信号(odfena)により、前述の四捨五入・最大値制限処理部33aの出力とセレクタ35の出力を4クロック毎に切換え選択する事で、表25や表26に示す様に、レジスタ32a及び32bを介して4クロック期間連続して1クロック毎に2データずつ入力された8データを、出力レジスタ37を介して出力端子305から1クロック毎に1データずつ8クロック期間で出力する(図16のselc[11:0])。
【0025】
ここでは、四捨五入・最大値制限処理を出力の平滑化(データ出力が1クロック毎に1データずつの出力)前に実行している為、出力の平滑化後に四捨五入・最大値制限処理をする場合に比べ、必要なレジスタのビット数を小さくし、回路規模が小さくなる。
【0026】
図17は、転置処理部4の構成例を示すブロック図である。ここでは、1クロック毎に2データずつ入力されるデータを転置処理して2データずつ読み出す為に、16ビット×32ワードのRAMを2個使用して、2つのRAMのアドレス制御(adra[4:0], adrb[4:0])を異ならせているが、書込み動作と読み出し動作が同時に発生せず、4クロック毎に書込み動作と読み出し動作が切換えられる為に、それぞれのRAMは1ポートのRAMが使用され、2つのRAMの書込み制御信号wenan及び読み出し制御信号renanは共通である。
【表27】
Figure 0003934290
【表28】
Figure 0003934290
【表29】
Figure 0003934290
【表30】
Figure 0003934290
【表31】
Figure 0003934290
出力処理部3から入力されるデータ(rdi[31:0])の転置RAMへの書き込みアドレス順序は、DCT処理時とIDCT処理時で同じで、表27と表28に示すアドレス順序を1ブロック毎に交互に使用する。また、この転置RAMからのデータ読み出しアドレス順序も同様で、表29と表30に示すアドレス順序を1ブロック毎に交互に使用する。即ち、アドレス制御パターンは表31の様になる。
【0027】
【発明の効果】
以上説明したように本発明によれば、演算回路が半減するだけで無く、1ブロック分の転置RAM容量で、転置RAMの書込みタイミングと読み出しタイミングが排他的になり、転置RAM面積も半減する。入出力の平滑化を行なう場合も、入出力に4wordのレジスタを使用する事で実現でき、回路規模の増加も小さい。単一の8点変換処理回路が2画素/clockで演算処理する場合、ブロックデータの入力間隔を空ける時は、その間隔が1ブロック期間内の場合は8clock単位で、1ブロック期間以上の場合は1clock単位で空ける事ができ、動作効率の低下も非常に小さい。
【0028】
なお、ここでは、8点直交変換処理部2の1クロック毎の入出力が2データである場合について説明したが、8点直交変換処理部2の1クロック毎の入出力が4データである場合は、2クロック単位で1次元目の処理と2次元目の処理を切り換える事で同様な効果を得られる。
【図面の簡単な説明】
【図1】本発明の実施形態の回路構成を示す図。
【図2】本発明の実施形態の制御の概要を示す図。
【図3】本発明の実施形態の入力処理部1の回路構成を示す図。
【図4】本発明の実施形態の入力処理部1のDCT処理時の動作の概要を示す図。
【図5】本発明の実施形態の入力処理部1のIDCT処理時の動作の概要を示す図。
【図6】本発明の実施形態の8点直交変換処理部2の回路構成を示す図。
【図7】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図8】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図9】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図10】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図11】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図12】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図13】本発明の実施形態の8点直交変換処理部2の動作の概要を示す図。
【図14】本発明の実施形態の出力処理部3の回路構成を示す図。
【図15】本発明の実施形態の四捨五入・最大値制限処理部33a及び33bの回路構成を示す図。
【図16】本発明の実施形態の四捨五入・最大値制限処理部33a及び33bの動作の概要を示す図。
【図17】本発明の実施形態の転置処理部4の回路構成を示す図。
【図18】従来の第1の処理タイミングを示す図。
【図19】従来の第2の処理タイミングを示す図。
【図20】従来の第3の処理タイミングを示す図。
【符号の説明】
1 ・・・ 入力処理部,
2 ・・・ 8点直交変換処理部,
3 ・・・ 出力処理部,
4 ・・・ 転置処理部,
5 ・・・ 制御部

Claims (3)

  1. 入力された8×8画素の画像信号に対する1次元目の離散コサイン変換処理結果を転置して8画素単位で出力する転置手段と、
    前記入力された8×8画素の画像信号と前記転置手段の出力とを8画素単位で切り替えて、8画素分の1次元の離散コサイン変換処理を行う一つの離散コサイン変換処理手段と、
    前記離散コサイン変換処理手段による1次元目の変換結果を前記転置手段に出力する出力手段と、
    を備える離散コサイン変換処理装置。
  2. 入力された8×8画素の画像信号の2次元離散コサイン変換係数に対する1次元目の逆離散コサイン変換処理結果を転置して8画素単位で出力する転置手段と、
    入力された前記2次元離散コサイン変換係数と前記転置手段の出力とを8画素単位で切り替えて、8画素分の1次元の逆離散コサイン変換処理を行う一つの逆離散コサイン変換処理手段と、
    前記逆離散コサイン変換処理手段による1次元目の変換結果を前記転置手段に出力する出力手段と、
    を備える逆離散コサイン変換処理装置。
  3. 1次元目と2次元目の処理を8画素単位で交互に切り換えながら8画素単位で1次元の離散コサイン変換または1次元の逆離散コサイン変換を行う単一の8点変換処理回路により、8×8画素の2次元離散コサイン変換または逆離散コサイン変換の処理を行なう事を特徴とする離散コサイン変換処理装置・逆離散コサイン変換処理装置。
JP28067399A 1999-09-30 1999-09-30 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置 Expired - Fee Related JP3934290B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28067399A JP3934290B2 (ja) 1999-09-30 1999-09-30 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置
US09/664,573 US6732131B1 (en) 1999-09-30 2000-09-18 Discrete cosine transformation apparatus, inverse discrete cosine transformation apparatus, and orthogonal transformation apparatus
US10/676,051 US20050114419A1 (en) 1999-09-30 2003-10-02 Discrete cosine transformation apparatus, inverse discrete cosine transformation apparatus, and orthogonal transformation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28067399A JP3934290B2 (ja) 1999-09-30 1999-09-30 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置

Publications (2)

Publication Number Publication Date
JP2001102934A JP2001102934A (ja) 2001-04-13
JP3934290B2 true JP3934290B2 (ja) 2007-06-20

Family

ID=17628345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28067399A Expired - Fee Related JP3934290B2 (ja) 1999-09-30 1999-09-30 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置

Country Status (2)

Country Link
US (2) US6732131B1 (ja)
JP (1) JP3934290B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054897B2 (en) * 2001-10-03 2006-05-30 Dsp Group, Ltd. Transposable register file
US20030126171A1 (en) * 2001-12-13 2003-07-03 Yan Hou Temporal order independent numerical computations
TWI224931B (en) * 2003-07-04 2004-12-01 Mediatek Inc Scalable system for inverse discrete cosine transform and method thereof
US20070009166A1 (en) * 2005-07-05 2007-01-11 Ju Chi-Cheng Scalable system for discrete cosine transform and method thereof
JP5097138B2 (ja) * 2009-01-15 2012-12-12 シャープ株式会社 モンゴメリ乗算のための演算回路及び暗号回路

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1207346B (it) * 1987-01-20 1989-05-17 Cselt Centro Studi Lab Telecom Sformata coseno discreta a coeffi circuito per il calcolo della tra cienti quantizzati di campioni di segnale numerico
FR2649226B1 (fr) * 1989-07-03 1995-07-13 Sgs Thomson Microelectronics Circuit de brassage de donnees
JP2866754B2 (ja) * 1991-03-27 1999-03-08 三菱電機株式会社 演算処理装置
JP3697717B2 (ja) * 1993-09-24 2005-09-21 ソニー株式会社 2次元離散コサイン変換装置および2次元逆離散コサイン変換装置
US5471412A (en) * 1993-10-27 1995-11-28 Winbond Electronic Corp. Recycling and parallel processing method and apparatus for performing discrete cosine transform and its inverse
US5583803A (en) * 1993-12-27 1996-12-10 Matsushita Electric Industrial Co., Ltd. Two-dimensional orthogonal transform processor
US5550765A (en) * 1994-05-13 1996-08-27 Lucent Technologies Inc. Method and apparatus for transforming a multi-dimensional matrix of coefficents representative of a signal
JP4035789B2 (ja) * 1994-10-13 2008-01-23 富士通株式会社 逆離散コサイン変換装置
US5668748A (en) * 1995-04-15 1997-09-16 United Microelectronics Corporation Apparatus for two-dimensional discrete cosine transform
US5610849A (en) * 1995-06-23 1997-03-11 United Microelectronics Corporation Real time two-dimensional discrete cosine transform/inverse discrete cosine transform circuit
US5805482A (en) * 1995-10-20 1998-09-08 Matsushita Electric Corporation Of America Inverse discrete cosine transform processor having optimum input structure
KR0182511B1 (ko) 1996-02-24 1999-05-01 김광호 2차원 역이산 코사인 변환장치
US5894430A (en) * 1996-05-20 1999-04-13 Matsushita Electric Industrial Co., Ltd. Orthogonal transform processor
US6507898B1 (en) * 1997-04-30 2003-01-14 Canon Kabushiki Kaisha Reconfigurable data cache controller
JPH11143860A (ja) * 1997-11-07 1999-05-28 Matsushita Electric Ind Co Ltd 直交変換装置
US6295320B1 (en) * 1997-12-31 2001-09-25 Lg Electronics Inc. Inverse discrete cosine transforming system for digital television receiver
KR100275933B1 (ko) * 1998-07-14 2000-12-15 구자홍 엠펙디코더의 역이산여현변환장치

Also Published As

Publication number Publication date
JP2001102934A (ja) 2001-04-13
US20050114419A1 (en) 2005-05-26
US6732131B1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
JP7074363B2 (ja) 準同型暗号下での安全な計算を加速するための準同型処理ユニット(hpu)
Shams et al. NEDA: A low-power high-performance DCT architecture
JP2962970B2 (ja) 周波数から時間領域への変換方法及び装置
US6105114A (en) Two-dimensional array transposition circuit reading two-dimensional array in an order different from that for writing
JPH04313157A (ja) 演算処理装置
JP3228927B2 (ja) プロセッサエレメント、プロセッシングユニット、プロセッサ、及びその演算処理方法
Toivonen et al. Video filtering with Fermat number theoretic transforms using residue number system
US5452466A (en) Method and apparatus for preforming DCT and IDCT transforms on data signals with a preprocessor, a post-processor, and a controllable shuffle-exchange unit connected between the pre-processor and post-processor
JPH08235159A (ja) 逆コサイン変換装置
CN110933445B (zh) 一种基于系数矩阵变换的dct运算方法及其变换装置
CN103369326A (zh) 适于高性能视频编码标准hevc的变换编码器
JP3934290B2 (ja) 離散コサイン変換処理装置、逆離散コサイン変換処理装置及び離散コサイン変換処理装置・逆離散コサイン変換処理装置
US9378186B2 (en) Data processing apparatus and method for performing a transform between spatial and frequency domains when processing video data
JP3857308B2 (ja) 逆離散余弦変換を実行する装置および方法
JPH09212484A (ja) 離散コサイン変換方法
US20010054051A1 (en) Discrete cosine transform system and discrete cosine transform method
US5748514A (en) Forward and inverse discrete cosine transform circuits
JP3046115B2 (ja) 離散コサイン変換器
CN112449199B (zh) 一种并行位矢量变换部分积相加的一维dct/idct变换器
JP3781476B2 (ja) 信号処理装置
JP3046116B2 (ja) 離散コサイン変換器
JP3575991B2 (ja) 直交変換回路
JP3396818B2 (ja) Dct演算回路及びidct演算回路
JP2004234407A (ja) データ処理装置
JPH0540776A (ja) 二次元dctマトリクス演算回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070315

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees