JP3888150B2 - 変速制御装置 - Google Patents
変速制御装置 Download PDFInfo
- Publication number
- JP3888150B2 JP3888150B2 JP2001380271A JP2001380271A JP3888150B2 JP 3888150 B2 JP3888150 B2 JP 3888150B2 JP 2001380271 A JP2001380271 A JP 2001380271A JP 2001380271 A JP2001380271 A JP 2001380271A JP 3888150 B2 JP3888150 B2 JP 3888150B2
- Authority
- JP
- Japan
- Prior art keywords
- gear
- speed
- shift
- countershaft
- clutch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- Control Of Transmission Device (AREA)
Description
【発明の属する技術分野】
本発明は、機械的なシンクロ機構を有さないノンシンクロギヤ段を備えた変速機の変速を制御する変速制御装置に係り、特に、低速走行時にノンシンクロギヤ段へシフトダウンを行う場合の変速時間を短縮した変速制御装置に関するものである。
【0002】
【従来の技術】
近年、車両用の変速機において、部品数及びコストの低減を図るため、機械的なシンクロ機構を省略し、代わりにシンクロ制御なるものを行ってギヤインの際の同期を図ることが行われている。
【0003】
例えば、主軸(出力側)及び副軸(入力側)を備えた二軸式変速機において、シフトアップ時などのように、変速先のギヤ段において副軸に連動するドグギヤ回転数が主軸側のハブ回転数よりも高い場合には、クラッチを断してギヤ抜きした後、副軸に設けた副軸ブレーキ手段によって副軸を減速制動して変速先のギヤ段におけるドグギヤとハブとをシンクロさせてギヤインを行う。
【0004】
また、シフトダウン時などのように、変速先のギヤ段において副軸に連動するドグギヤ回転数が主軸側のハブ回転数よりも低い場合には、クラッチを断してギヤ抜きする一方で、変速先のギヤ段におけるドグギヤとハブとをシンクロさせるために必要な目標副軸回転数に相当する目標エンジン回転数を算出し、実際のエンジン回転数をその目標エンジン回転数に合わせて制御した後、クラッチを一時的に接とすることで副軸回転数を目標副軸回転数にして、変速先のギヤ段におけるドグギヤとハブとをシンクロさせ、再度クラッチを断としてギヤインを行う、所謂、ダブルクラッチ制御を実行する。
【0005】
【発明が解決しようとする課題】
ところで、停止間際における発進段へのシフトダウンや再加速時のシフトダウン等のように、極低速走行状態でシフトダウンを実行する場合があり、このとき、上記ダブルクラッチ制御が実行される。
【0006】
しかし、このように低速走行時に上記ダブルクラッチ制御を実行すると、目標副軸回転数が低く(目標エンジン回転数にしてエンジンのアイドル回転数を若干上回る程度)なり、その結果、変速(シフトダウン)に要する時間が長くなる問題があった。
【0007】
その理由としては、クラッチを一時的に接続して副軸を一旦目標副軸回転数まで引き上げたとしても、その回転数が低く慣性力が小さいため、その後、ギヤインするためにクラッチを断とすると、副軸の慣性力が各ギヤ間等の摩擦力に負けて回転数が大きく低下してしまい、再度クラッチを接続して副軸の回転数を上昇させる必要がでてしまうのである。即ち、副軸側と主軸側とをシンクロさせてもギヤインを実行する前に副軸の回転数が低下してしまうため、ダブルクラッチ制御を繰り返し実行することになり、変速時間が長期化してしまう。
【0008】
そこで、本発明の目的は、低速走行時にノンシンクロギヤ段へシフトダウンを行う場合に、ダブルクラッチ制御の繰り返しを防止でき、変速時間を短縮できる変速制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明は、主軸及び副軸を備えかつ機械的なシンクロ機構を有さないノンシンクロギヤ段を備えた変速機の変速と、その変速時のエンジン及びクラッチとを制御する変速制御装置であって、上記ノンシンクロギヤ段のギヤインを伴うシフトダウン時に所定のダブルクラッチ制御を実行し、そのダブルクラッチ制御は、上記ノンシンクロギヤ段のギヤイン前に、上記主軸側のハブと上記副軸に連動するドグギヤとをシンクロさせるのに必要な目標副軸回転数に相当する目標エンジン回転数を算出し、目標エンジン回転数が第一設定回転数以上である場合、実際のエンジン回転数が上記目標エンジン回転数となるようにエンジンを制御した後、クラッチを一時的に接、断して上記ノンシンクロギヤ段のギヤインを行い、上記目標エンジン回転数が上記第一設定回転数よりも低い場合、実際のエンジン回転数が、上記目標エンジン回転数よりも高い第二設定回転数となるようにエンジンを制御し、その後クラッチを一時的に接して上記副軸の回転数を上記目標副軸回転数よりも高い回転数とした後、クラッチを断し、この後上記副軸の回転数が上記目標副軸回転数付近まで低下したとき、上記ノンシンクロギヤ段のギヤインを行うことを含むようにしたものである。
【0010】
ここで、上記副軸を減速制動する副軸ブレーキ手段を設け、上記目標エンジン回転数が上記第一設定回転数よりも低い場合、上記副軸の回転数を上記目標副軸回転数よりも高めた後、上記副軸ブレーキ手段により、上記副軸の回転数を低下させることが好ましい。
【0011】
また、上記第一設定回転数は、エンジンのアイドル回転数に50rpm程度を加算した値であっても良い。
【0012】
また、上記第二設定回転数は、上記第一設定回転数に50〜300rpm程度加算した値であっても良い。
【0013】
【発明の実施の形態】
以下、本発明の好適な実施の形態を添付図面に基づいて詳述する。
【0014】
本実施形態は、本出願人が特開2001−263472で開示している自動変速装置に適用したものであり、まず、自動変速装置の概要を説明する。
【0015】
図1に本実施形態に係る車両の自動変速装置を示す。ここでは車両がトレーラを牽引するトラクタであり、エンジンがディーゼルエンジンである。図示するように、エンジン1にクラッチ2を介して変速機3が取り付けられ、変速機3のアウトプットシャフト4(図2参照)が図示しないプロペラシャフトに連結されて後輪(図示せず)を駆動するようになっている。エンジン1はエンジンコントロールユニット(ECU)6によって電子制御される。即ち、ECU6は、エンジン回転センサ7とアクセル開度センサ8との出力から現在のエンジン回転速度及びエンジン負荷を読取り、主にこれらに基づいて燃料噴射ポンプ1aの電子ガバナ1dを制御し、燃料噴射時期及び燃料噴射量を制御する。
【0016】
一方、変速中は、アクセル開度センサ8によって検知される実アクセル開度と無関係にECU6自らが加工した疑似アクセル開度なるものに基づいてエンジン制御を実行する。これは特に後述するダブルクラッチ制御において必要である。
【0017】
図2に示すように、エンジンのクランク軸にフライホイール1bが取り付けられ、フライホイール1bの外周にリングギヤ1cが形成され、リングギヤ1cの歯が通過する度にエンジン回転センサ7がパルスを出力し、ECU6が単位時間当たりのパルス数をカウントしてエンジン回転数を算出する。
【0018】
図1に示すように、ここではクラッチ2と変速機3とがトランスミッションコントロールユニット(TMCU)9の制御信号に基づいて自動制御される。即ちかかる自動変速装置には自動クラッチ装置と自動変速機とが備えられる。ECU6とTMCU9とは互いにバスケーブル等を介して接続され、相互に連絡可能である。
【0019】
図1、図2、図3に示すように、クラッチ2は機械式摩擦クラッチであり、入力側をなすフライホイール1b、出力側をなすドリブンプレート2a、及びドリブンプレート2aをフライホイール1bに摩擦接触或いは離反させるプレッシャプレート2bから構成される。そしてクラッチ2は、クラッチブースタ(クラッチアクチュエータ)10によりプレッシャプレート2bを軸方向に操作し、基本的には自動断接され、ドライバの負担を軽減し得るものとなっている。一方、微低速バックに際しての微妙なクラッチワークや、非常時のクラッチ急断等を可能とするため、ここではクラッチペダル11によるマニュアル断接も可能となっている。所謂セレクティブオートクラッチの構成である。クラッチ位置(即ちプレッシャプレート2bの位置)を検知するためのクラッチストロークセンサ14と、クラッチペダル11の位置を検知するためのクラッチペダルストロークセンサ16とが設けられ、それぞれTMCU9に接続される。
【0020】
図3に分かりやすく示すが、クラッチブースタ10は実線で示す二系統の空圧通路a,bを通じてエアタンク5に接続され、エアタンク5から供給される空圧で作動する。一方の通路aがクラッチ自動断接用、他方の通路bがクラッチマニュアル断接用である。一方の通路aが二股状に分岐され、そのうちの一方に自動断接用の電磁弁MVC1,MVC2が直列に設けられ、他方に非常用の電磁弁MVCEが設けられる。分岐合流部にダブルチェックバルブDCV1が設けられる。他方の通路bに、クラッチブースタ10に付設される油圧作動弁12が設けられる。両通路a,bの合流部にもダブルチェックバルブDCV2が設けられる。ダブルチェックバルブDCV1,DCV2は差圧作動型の三方弁である。
【0021】
上記電磁弁MVC1,MVC2,MVCEはTMCU9によりON/OFF制御され、ONのとき上流側を下流側に連通し、OFFのとき上流側を遮断して下流側を大気開放する。まず自動側を説明すると、電磁弁MVC1は単にイグニッションキーのON/OFFに合わせてON/OFFされるだけである。イグニッションキーOFF、つまり停車中はOFFとなり、エアタンク5からの空圧を遮断する。電磁弁MVC2は比例制御弁で、供給又は排出エア量を自由にコントロールできる。これはクラッチの断接速度制御を行うためである。電磁弁MVC1,MVC2がともにONだとエアタンク5の空圧がダブルチェックバルブDCV1,DCV2をそれぞれ切り換えてクラッチブースタ10に供給される。これによりクラッチが分断される。クラッチを接続するときはMVC2のみがOFFされ、これによりクラッチブースタ10の空圧がMVC2から排出されてクラッチが接続される。
【0022】
ところでもし仮にクラッチ分断中に電磁弁MVC1又はMVC2に異常が生じ、いずれかがOFFとなると、ドライバの意思に反してクラッチが急接されてしまう。そこでこのような異常がTMCU9の異常診断回路で検知されたら、即座に電磁弁MVCEをONする。すると電磁弁MVCEを通過した空圧がダブルチェックバルブDCV1を逆に切り換えてクラッチブースタ10に供給され、クラッチ分断状態が維持され、クラッチ急接が防止される。
【0023】
次にマニュアル側を説明する。クラッチペダル11の踏込み・戻し操作に応じてマスタシリンダ13から油圧が給排され、この油圧が破線で示す油圧通路13aを介して油圧作動弁12に供給される。これによって油圧作動弁12が開閉され、クラッチブースタ10への空圧の給排が行われ、クラッチ2のマニュアル断接が実行される。油圧作動弁12が開くと、これを通過した空圧がダブルチェックバルブDCV2を切り換えてクラッチブースタ10に至る。
【0024】
図2に詳細に示すように、変速機3は基本的に主軸(メインシャフト)33及び副軸(カウンタシャフト)32を備えた常時噛み合い式の多段変速機で、前進16段、後進2段に変速可能である。変速機3はメインギヤ18と、その入力側及び出力側にそれぞれ副変速機としてのスプリッタ17及びレンジギヤ19を備える。そして、インプットシャフト15に伝達されてきたエンジン動力をスプリッタ17、メインギヤ18、レンジギヤ19へと順に送ってアウトプットシャフト4に出力する。
【0025】
変速機3を自動変速すべくギヤシフトユニットGSUが設けられ、これはスプリッタ17、メインギヤ18、レンジギヤ19それぞれの変速を担当するスプリッタアクチュエータ20、メインアクチュエータ21及びレンジアクチュエータ22から構成される。これらアクチュエータもクラッチブースタ10同様空圧作動され、TMCU9によって制御される。各ギヤ17,18,19の現在ポジションはギヤポジションスイッチ23(図1参照)で検知される。副軸32の回転速度が副軸回転センサ26で検知され、アウトプットシャフト4の回転速度がアウトプットシャフト回転センサ28で検知される。これら検知信号はTMCU9に送られる。
【0026】
この自動変速機ではマニュアルモードが設定され、ドライバのシフトチェンジ操作に基づくマニュアル変速が可能である。この場合、図1に示すように、クラッチ2の断接制御及び変速機3の変速制御は運転席に設けられたシフトレバー装置29からの変速指示信号を合図に行われる。即ち、ドライバが、シフトレバー装置29のシフトレバー29aをシフト操作すると、シフトレバー装置29に内蔵されたシフトスイッチが作動(ON)し、変速指示信号がTMCU9に送られ、これを基にTMCU9はクラッチブースタ10、スプリッタアクチュエータ20、メインアクチュエータ21及びレンジアクチュエータ22を適宜作動させ、一連の変速操作(クラッチ断→ギヤ抜き→ギヤ入れ→クラッチ接)を実行する。そしてTMCU9は現在のシフト段をモニター31に表示する。
【0027】
図示するシフトレバー装置29において、Rはリバース、Nはニュートラル、Dはドライブ、UPはシフトアップ、DOWNはシフトダウンをそれぞれ意味する。シフトスイッチはこれら各ポジションに応じた信号を出力する。また運転席に、変速モードを自動とマニュアルに切り換えるモードスイッチ24と、変速を1段ずつ行うか段飛ばしで行うかを切り換えるスキップスイッチ25とが設けられる。
【0028】
自動変速モードのとき、シフトレバー29aをDレンジに入れておけば車速に応じて自動的に変速が行われる。またこの自動変速モードでも、ドライバがシフトレバー29aをUP又はDOWNに操作すれば、マニュアルでのシフトアップ又はシフトダウンが可能である。この自動変速モードにおいて、スキップスイッチ25がOFF(通常モード)なら、シフトレバー29aの1回のUP又はDOWNの操作により、変速は1段ずつ行われる。これはトレーラ牽引時等、積載荷重が比較的大きいときに有効である。またスキップスイッチ25がON(スキップモード)なら変速は1段飛ばしで行われる。これはトレーラを牽引してないときや荷が軽いときなどに有効である。
【0029】
一方、マニュアル変速モードのときは、変速は完全にドライバの意思に従う。シフトレバー29aがDレンジのときは変速は行われず、現在ギヤが保持され、ドライバの積極的な意思でシフトレバー29aをUP又はDOWNに操作したときのみ、シフトアップ又はシフトダウンが可能である。このときも前記同様、スキップスイッチ25がOFFなら1回の操作につき変速は1段ずつ行われ、スキップスイッチ25がONなら変速は1段飛ばしで行われる。このモードではDレンジは現ギヤ段を保持するH(ホールド)レンジとなる。
【0030】
なお、運転席に非常用変速スイッチ27が設けられ、GSUの電磁弁等が故障したときはスイッチ27の手動切換により変速できるようになっている。
【0031】
図2に示すように、変速機3にあっては、インプットシャフト15、主軸33及びアウトプットシャフト4が同軸上に配置され、副軸32がそれらの下方に平行配置される。インプットシャフト15がクラッチ2のドリブンプレート2aに接続され、インプットシャフト15と主軸33とが相対回転可能に支持される。
【0032】
まずスプリッタ17とメインギヤ18の構成を説明する。インプットシャフト15にインプットギヤSHが回転可能に取り付けられる。また主軸33にも前方から順にギヤM4,M3,M2,M1,MRが回転可能に取り付けられる。MRを除くギヤSH,M4,M3,M2,M1は、それぞれ副軸32に固設されたカウンタギヤCH,C4,C3,C2,C1に常時噛合される。ギヤMRはアイドルリバースギヤIRに常時噛合され、アイドルリバースギヤIRは副軸32に固設されたカウンタギヤCRに常時噛合される。
【0033】
インプットシャフト15及び主軸33に取り付けられた各ギヤSH,M4…に、当該ギヤを選択し得るようドグギヤ36が一体的に設けられ、これらドグギヤ36に隣接してインプットシャフト15及び主軸33に第1〜第4ハブ37〜40が固設される。第1〜第4ハブ37〜40には第1〜第4スリーブ42〜45が嵌合される。ドグギヤ36及び第1〜第4ハブ37〜40の外周部と、第1〜第4スリーブ42〜45の内周部とにスプラインが形成されており、第1〜第4スリーブ42〜45は第1〜第4ハブ37〜40に常時係合してインプットシャフト15又は主軸33と同時回転すると共に、前後にスライド移動してドグギヤ36に対し選択的に係合・離脱する。即ち、スプリッタ17におけるハブ37とドグ36、およびメインギヤ18における副軸32側のドグ36と主軸33側のハブ37〜40とをスリーブ42〜45により係合・離脱させることによりギヤイン・ギヤ抜きが行われる。第1スリーブ42の移動をスプリッタアクチュエータ20で行い、第2〜第4スリーブ43〜45の移動をメインアクチュエータ21で行う。
【0034】
このように、スプリッタ17とメインギヤ18とは各アクチュエータ20,21によって自動変速され得る常時噛み合い式の構成とされる。また、スプリッタ17は、そのスプライン部に通常の機械的なシンクロ機構が存在するものであるが、メインギヤ18の各ギヤ段は各スプライン部にシンクロ機構が存在しないノンシンクロギヤ段となっている。このため、メインギヤ18の変速を伴う変速を実行する場合、後述のシンクロ制御なるものを行って副軸32側のドグギヤ回転数と主軸33側のスリーブ回転数とを同期(シンクロ)させ、シンクロ機構なしで変速できるようにしている。ここではメインギヤ18以外にスプリッタ17にもニュートラルポジションが設けられ、所謂ガラ音対策がなされている(特願平11-319915 号参照)。
【0035】
次にレンジギヤ19の構成を説明する。レンジギヤ19は遊星歯車機構34を採用しており、ハイ・ローいずれかのポジションに切り替えることができる。遊星歯車機構34は、主軸33の最後端に固設されたサンギヤ65と、その外周に噛合される複数のプラネタリギヤ66と、プラネタリギヤ66の外周に噛合される内歯を有したリングギヤ67とからなる。各プラネタリギヤ66は共通のキャリア68に回転可能に支持され、キャリア68はアウトプットシャフト4に連結される。リングギヤ67は管部69を一体的に有し、管部69はアウトプットシャフト4の外周に相対回転可能に嵌め込まれてアウトプットシャフト4とともに二重軸を構成する。
【0036】
第5ハブ41が管部69に一体的に設けられる。また第5ハブ41の後方に隣接して、アウトプットシャフト4にアウトプットシャフトドグギヤ70が一体的に設けられる。第5ハブ41の前方に隣接して、ミッションケース側に固定ドグギヤ71が設けられる。第5ハブ41の外周に第5スリーブ46が嵌合される。これら第5ハブ41、アウトプットシャフトドグギヤ70、固定ドグギヤ71及び第5スリーブ46にも前記同様にスプラインが形成され、第5スリーブ46が第5ハブ41に常時係合すると共に、前後にスライド移動してアウトプットシャフトドグギヤ70又は固定ドグギヤ71に対し選択的に係合・離脱する。第5スリーブ46の移動がレンジアクチュエータ22で行われる。レンジギヤ19のスプライン部には機械的なシンクロ機構が存在する。
【0037】
第5スリーブ46が前方に移動するとこれが固定ドグギヤ71に係合し、第5ハブ41と固定ドグギヤ71とが連結される。これによりリングギヤ67がミッションケース側に固定され、アウトプットシャフト4が1より大きい比較的大きな減速比(ここでは4.5)で回転駆動されるようになる。これがローのポジションである。
【0038】
一方、第5スリーブ46が後方に移動するとこれがアウトプットシャフトドグギヤ70に係合し、第5ハブ41とアウトプットシャフトドグギヤ70とが連結される。これによりリングギヤ67とキャリア68とが互いに固定され、アウトプットシャフト4が1の減速比で直結駆動されるようになる。これがハイのポジションである。このようにかかるレンジギヤ19ではハイ・ロー間の減速比が比較的大きく異なる。
【0039】
結局、この変速機3では、前進側において、スプリッタ17でハイ・ローの2段、メインギヤ18で4段、レンジギヤ19でハイ・ローの2段に変速可能であり、計2×4×2=16段に変速することができる。また後進側では、スプリッタ17のみでハイ・ローを切り替えて2段に変速することができる。
【0040】
次に、各アクチュエータ20,21,22について説明する。これらアクチュエータはエアタンク5の空圧で作動する空圧シリンダと、空圧シリンダへの空圧の給排を切り替える電磁弁とで構成される。そしてこれら電磁弁がTMCU9で選択的に切り替えられ、空圧シリンダを選択的に作動させるようになっている。
【0041】
スプリッタアクチュエータ20は、ダブルピストンを有した空圧シリンダ47と三つの電磁弁MVH,MVF,MVGとで構成される。スプリッタ17をニュートラルにするときはMVH/ON,MVF/OFF,MVG/ONとされる。スプリッタ17をハイにするときはMVH/OFF,MVF/OFF,MVG/ONとされる。スプリッタ17をローにするときはMVH/OFF,MVF/ON,MVG/OFFとされる。
【0042】
メインアクチュエータ21は、ダブルピストンを有しセレクト側の動作を担当する空圧シリンダ48と、シングルピストンを有しシフト側の動作を担当する空圧シリンダ49とを備える。空圧シリンダ48には三つの電磁弁MVC,MVD,MVEが設けられ、空圧シリンダ49には二つの電磁弁MVB,MVAが設けられる。
【0043】
セレクト側空圧シリンダ48は、MVC/OFF,MVD/ON,MVE/OFFのとき図の下方に移動し、メインギヤの3rd、4th又はN3を選択可能とし、MVC/ON,MVD/OFF,MVE/ONのとき中立となり、メインギヤの1st、2nd又はN2を選択可能とし、MVC/ON,MVD/OFF,MVE/OFFのとき図の上方に移動し、メインギヤのRev又はN1を選択可能とする。
【0044】
シフト側空圧シリンダ49は、MVA/ON,MVB/ONのとき中立となり、メインギヤのN1、N2又はN3を選択可能とし、MVA/ON,MVB/OFFのとき図の左側に移動し、メインギヤの2nd,4th又はRevを選択可能とし、MVA/OFF,MVB/ONのとき図の右側に移動し、メインギヤの1st又は3rdを選択可能とする。
【0045】
レンジアクチュエータ22は、シングルピストンを有した空圧シリンダ50と二つの電磁弁MVI,MVJとで構成される。空圧シリンダ50は、MVI/ON,MVJ/OFFのとき図の右側に移動し、レンジギヤをハイとし、MVI/OFF,MVJ/ONのとき図の左側に移動し、レンジギヤをローとする。
【0046】
ところで、後述するシンクロ制御に際して副軸32を減速制動するため、副軸32には副軸(カウンタシャフト)ブレーキ手段27が設けられる。副軸ブレーキ手段27は湿式多板ブレーキであって、エアタンク5の空圧で作動する。この空圧の給排を切り替えるため電磁弁MV BRKが設けられる。電磁弁MV BRKがONのとき副軸ブレーキ手段27に空圧が供給され、副軸ブレーキ手段27が作動状態となる。電磁弁MV BRKがOFFのときには副軸ブレーキ手段27から空圧が排出され、副軸ブレーキ手段27が非作動となる。
【0047】
さて、本発明の変速制御装置とは、変速時に変速機3、エンジン1及びクラッチ2を制御するものであり、本実施形態では、ECU6、TMCU9、クラッチブースタ10及びギヤシフトユニットGSU等で構成される。以下、この変速制御装置による制御内容を説明する。
【0048】
TMCU9には図4に示すシフトアップマップと図5に示すシフトダウンマップとがメモリされており、TMCU9は、自動変速モードのとき、これらマップに従って自動変速を実行する。例えば図4のシフトアップマップにおいて、ギヤ段n(nは1から15までの整数)からn+1へのシフトアップ線図がアクセル開度(%)とアウトプットシャフト回転数(rpm)との関数で決められている。そしてマップ上では現在のアクセル開度(%)とアウトプットシャフト回転数(rpm)とからただ1点が定まる。車両加速中は、車輪に連結されたアウトプットシャフト4の回転数が次第に増加していく。そこで通常の自動変速モードでは、現在の1点が各線図を越える度に1段ずつシフトアップを行うこととなる。このときスキップモードであれば線図を交互に1本ずつ飛ばして2段ずつシフトアップを行う。
【0049】
図5のシフトダウンマップにおいても同様に、ギヤ段n+1(nは1から15までの整数)からnへのシフトダウン線図がアクセル開度(%)とアウトプットシャフト回転数(rpm)との関数で決められている。そしてマップ上では現在のアクセル開度(%)とアウトプットシャフト回転数(rpm)とからただ1点が定まる。車両減速中はアウトプットシャフト4の回転数が次第に減少していくので、通常の自動変速モードでは、現在の1点が各線図を越える度に1段ずつシフトダウンを行う。スキップモードであれば線図を交互に1本ずつ飛ばして2段ずつシフトダウンする。
【0050】
一方、マニュアルモードのときは、これらマップと無関係にドライバが自由にシフトアップ・ダウンを行える。通常モードなら1回のシフトチェンジ操作で1段変速でき、スキップモードなら1回のシフトチェンジ操作で2段変速できる。
【0051】
なおTMCU9は、アウトプットシャフト回転センサ28により検知される現在のアウトプットシャフト回転数の値から現在の車速を換算し、これをスピードメータに表示する。つまり車速がアウトプットシャフト回転数から間接的に検知され、アウトプットシャフト回転数と車速とは比例関係にある。
【0052】
次に、ノンシンクロギヤ段であるメインギヤ18の各ギヤ段のギヤインを伴う変速を実行する場合におけるシンクロ制御の内容を説明する。
【0053】
図6、図7に示すように、TMCU9には、スプリッタ17及びメインギヤ18における各ギヤの歯数ZSH,Z1 〜Z4 ,ZR ,ZCH,ZC1〜ZC4,ZCRと、レンジギヤ19におけるハイ・ローの減速比とが予め記憶されている。そこでTMCU9は、メインギヤ18のギヤ歯数と、副軸回転センサ26によって検知される副軸回転数(rpm)とに基づいて、次回変速先となるメインギヤ18のギヤ段(目標メインギヤ段)におけるドグギヤ回転数(rpm)を算出する。また、TMCU9は、次回変速先となるレンジギヤ19のギヤ段(目標レンジギヤ段)の減速比と、アウトプットシャフト回転センサ28によって検知されるアウトプットシャフト回転数(rpm)とに基づき、メインギヤ18におけるスリーブ回転数(rpm)を算出する。ここで、スリーブは主軸のハブに嵌合されているものであるため、当然スリーブ回転数=ハブ回転数となる。
【0054】
図7の表の左欄において、左端に記載された「1st」、「2nd」…「Rev」の語は目標メインギヤ段を示している。また括弧内の「1st」、「2nd」…の語は各目標メインギヤ段が担当する変速機全体としての目標ギヤ段を示している。例えば、メインギヤ18の「1st」(ギヤM1)が担当する変速機全体のギヤ段は「1st」、「2nd」、「9th」、「10th」である。括弧内の語は最初の二つと後の二つとがレンジギヤ19のロー・ハイで切り分けられる。例えばメインギヤ「1st」だと「1st」、「2nd」がレンジギヤロー、「9th」、「10th」がレンジギヤハイである。そして最初の二つ又は後の二つの中において、先と後とがスプリッタ17のロー・ハイで切り分けられる。例えばメインギヤ「1st」でレンジギヤローだと、スプリッタローで変速機は「1st」、スプリッタハイで変速機は「2nd」となる。またメインギヤ「1st」でレンジギヤハイだと、スプリッタローで変速機は「9th」、スプリッタハイで変速機は「10th」となる。目標メインギヤ段の「2nd」、「3rd」、「4th」についても同様である。
【0055】
目標メインギヤ段「Rev」ではレンジギヤ19による切り分けは行われず、スプリッタ17のみで切り分けがなされる。スプリッタハイでリバース「high」、スプリッタローでリバース「low」となる。
【0056】
図7の表の右欄は副軸32側であるドグギヤ回転数(rpm)の算出式を示している。例えば目標メインギヤ段「1st」だと、副軸回転センサ26による検出値(副軸回転数(rpm))に、ギヤ比ZC1/Z1 を乗じた値が、ギヤM1に固設されたドグギヤ36の回転即ちドグギヤ回転数(rpm)となる。目標メインギヤ段「Rev」では、副軸回転数(rpm)に減速比CRev を乗じた値がドグギヤ回転数(rpm)となる。
【0057】
一方、図7の下段は、主軸33側であるスリーブ43、44、45の回転即ちスリーブ回転数(rpm)の算出式を示している。次回変速先の目標レンジギヤ段がHighのときは、減速比が1なので、アウトプットシャフト回転センサ28の検出値(アウトプットシャフト回転数(rpm))がそのままスリーブ回転数(rpm)となる。また目標レンジギヤ段がLowのときは、減速比がCRG=4.5なので、アウトプットシャフト回転数(rpm)に減速比CRGを乗じた値がスリーブ回転数(rpm)となる。
【0058】
シンクロ制御では、これら副軸32に連動するドグギヤ回転数と主軸33側のスリーブ回転数(ハブ回転数)とをギヤイン可能な範囲内に近付ける制御を行う。具体的には回転差Δ=(ドグギヤ回転数−スリーブ回転数)を計算し、この値をギヤイン可能な範囲に入れる制御を行う。例えば、シフトアップ時などのように、変速先のギヤ段においてドグギヤ回転数>スリーブ回転数となっている場合には、クラッチ2を断してギヤ抜きした後、副軸ブレーキ手段(以下CSBという)を作動させて、副軸32を減速制動してドグギヤ回転数を下げてシンクロさせる。他方、シフトダウン時などのように、変速先のギヤ段においてドグギヤ回転数<スリーブ回転数となっている場合、ダブルクラッチ制御を行い、ドグギヤ回転を上げてシンクロさせる。
【0059】
ダブルクラッチ制御は以下の如きである。図8に示すように、時刻t1 で変速指示信号があった場合、まずクラッチ断し、ギヤ抜きを行う。ギヤ抜きは、クラッチが切れ始めた直後の位置、言い換えれば半クラッチ領域に入った直後の位置p1 で開始する。エンジン制御は、クラッチ位置がp1 となった時点から、実アクセル開度から離れた疑似アクセル開度に基づく制御に移行される。このとき、ECU6は変速先のギヤ段における副軸32側のドグギヤ回転数と主軸33側のスリーブ回転数とをシンクロさせるために必要な目標副軸回転数Yに相当する目標エンジン回転数Xを算出し、実際のエンジン回転数を目標エンジン回転数Xまで上昇させて一定に保持する。本実施形態では目標エンジン回転数Xは、現在のアウトプットシャフト回転数に、変速先の目標ギヤ段(変速機全体におけるギヤ段のことで、1〜16速のうちのいずれか一つ)のギヤ比を乗じて目標エンジン回転数Xを算出する。このように、アウトプットシャフト回転数から直接目標エンジン回転数Xを算出するようにすれば計算が容易となり、制御を簡易化できる。
【0060】
ギヤ抜き後、クラッチが一瞬接続され、これにより副軸32の回転数が目標副軸回転数Y付近まで上昇し、ドグギヤ回転数とスリーブ回転数との回転差がギヤイン可能な範囲内となる。この直後クラッチが再び断され、ギヤインが実行される。ギヤインは、クラッチ切り終わり直前となる位置、言い換えれば半クラッチ領域から抜け出る直前の位置p2 から開始される。ギヤイン終了後、直ちにクラッチが再接続され、クラッチが完接されるとダブルクラッチ制御が終了し、エンジン及び副軸回転数が実アクセル開度に従った回転に移行する。
【0061】
ところで、この変速制御装置では、特開2001−263472に示されているように二パターンの変速制御を実行する。一つ目は、レンジギヤのシフトダウンを伴わない変速を行うときに実行する変速Aパターンであり、二つ目は、レンジギヤのシフトダウンとダブルクラッチ制御両方を必要とする変速を行うときに実行する変速Bパターンである。レンジギヤのシフトダウンとダブルクラッチ制御両方を必要とする変速とは、図7の表でいえば9th→7th、9th→8th、10th→8thの場合である。この場合、レンジギヤのハイ・ロー間の減速比が比較的大きく異なりシフトダウンに時間がかかると共に、ダブルクラッチ制御にも比較的時間がかかるためこれらを順番に行っていたのでは全体の変速時間が長くなる。そこで、レンジギヤのシフトダウンを伴う変速機全体のシフトダウンのときには、全体の変速時間を短縮できるような変速制御パターンを行うようにしているのである。
【0062】
以下、二つの変速制御パターンについて説明する。
【0063】
まず、図9を用いて変速パターン判別のためのプログラムを説明する。
【0064】
変速指示があるとTMCU9はまずステップ101でレンジギヤの変速の有無を判断する。レンジギヤ変速無のときはステップ104に進んで変速Aパターンを選択する。変速Aパターンとは図10のチャートに従って変速するパターンのことで、通常の変速パターンである。レンジギヤ変速有のときはステップ102に進んでその変速がシフトダウン(H→L)か否かを判断する。シフトアップならステップ104に進んで変速Aパターンを選択し、シフトダウンならステップ103に進んで変速Bパターンを選択する。変速Bパターンとは図11のチャートに従って変速するパターンのことで、比較的特殊なケースにおいて行われる変速パターンである。
【0065】
図10、図11においては、図の上方から下方に向かう時間軸があり、横並びに示されている項目は同時ないし同時期に行うことを示している。例えば図10でステップ201とステップ202とは同時に行う。
【0066】
レンジギヤのシフトダウンを伴わない変速Aパターンについて。図10に示すように、まず、メインギヤ変速有のときはステップ201に進んでメインギヤ抜きを行う。このときスプリッタの変速も有るときは、ステップ202に進んでスプリッタのギヤ抜き(シフト抜き)を行う。このときの条件はクラッチ位置がp1 より断側にあることである。なおこれを「クラッチ位置>p1 」と表示する。勿論、メインギヤ又はスプリッタの一方しか変速しない場合は両ステップのうち一方が省略される。なおレンジギヤのみの変速の場合は無い。図7の表に示すように、一気に7段飛ばし(ex.2nd→10th)になってしまうからである。
【0067】
次に、ステップ203、204、205を同時に行う。ステップ203では次にギヤインするギヤM1,M2…に合わせてメインギヤのセレクトを行う。条件はメインギヤがニュートラルにあることである。ステップ204では、レンジギヤの変速があるときは、そのギヤ抜きとギヤインとを同時に行う。これは図2に示したようにレンジアクチュエータ22の構造上、抜きとインとが同時に行われてしまうからである。このときの条件はクラッチ位置がp2 より断側にあるか (「クラッチ位置>p2 」と表示する)、又はメインギヤがニュートラルであることである。ステップ205ではスプリッタのギヤイン(シフトイン)を行う。条件はステップ204と同様クラッチ位置>p2 又はメインギヤ=Nである。これによりエンジン動力が副軸32まで伝達可能となり、ダブルクラッチ制御可能となる。なお、スプリッタのみの変速の場合はここで変速完了となる。
【0068】
ステップ206ではシンクロ制御を実行する。ここでの条件はメインギヤがNで、且つスプリッタとレンジギヤとがシフト完了していることである。ドグギヤ回転数−スリーブ回転数>M1 (M1 は正の設定値)のとき、即ちシフトアップのときは、副軸(カウンタシャフト)ブレーキ制御を行い、ドグギヤ回転数をスリーブ回転数付近まで下げる。一方、ドグギヤ回転数−スリーブ回転数<−M2 (M2 は正の設定値)のときは、ダブルクラッチ制御を行い、ドグギヤ回転数をスリーブ回転数付近まで上げる。
【0069】
こうしてメインギヤの同期を終えたらステップ207に進んでメインギヤをギヤインする。ここでの条件は、メインギヤがセレクト完了しており(ステップ203)、目標副軸回転数と現副軸回転数との差の絶対値がギヤイン可能な値α以下であり、且つクラッチ位置>p2 となっていることである。以上により変速Aパターンを終了する。
【0070】
次に、レンジギヤのシフトダウンを伴う変速Bパターンについて。図11に示すように、ここではメインギヤの変速は必須なので(図7参照)、ステップ302に進んでメインギヤ抜きを行う。条件はステップ201同様クラッチ位置>p1 である。このときスプリッタの変速も有るときは、ステップ302に先立ってステップ301でスプリッタをギヤ抜きし、ステップ302と同時にステップ303でスプリッタをギヤインする。ステップ301、303の実行条件はステップ202、205と同じである。
【0071】
次に、ステップ304、305及び306を同時に行う。ステップ304ではステップ203同様メインギヤをセレクトする。ステップ305ではステップ204同様、レンジギヤのギヤ抜き及びギヤイン即ちシフトダウンを行う。ステップ306ではステップ206同様シンクロ制御を行う。
【0072】
こうしてこれらステップを終えたら、ステップ307でステップ207同様メインギヤをギヤインし、変速Bパターンを終了する。
【0073】
このように変速Bパターンでは、比較的長時間を要するレンジギヤのシフトダウンとダブルクラッチ制御とを同時に行ってしまうので、全体の変速時間を短縮することができる。
【0074】
ここで、変速Aパターンでレンジギヤの変速後にシンクロ制御を行うのは以下の理由による。即ち、変速Aパターンではレンジギヤがシフトアップであり、このときは変速機全体で必ずシフトアップとなり、シンクロ制御はCSBとなる。CSBによる同期は極めて短時間で行えるので、このときレンジギヤのシフトアップを同時又は後に行ってしまうと、CSBが先に終了し、レンジギヤのシフト終了までの間に副軸回転が落ち込み、せっかく同期した回転が狂うばかりかダブルクラッチの必要性も生じてくるからである。
【0075】
また、シンクロ制御及びメインギヤのギヤインを行ってからレンジギヤをシフトアップする考え方もあるが、一般的にこれは行えない。レンジギヤが比較的大きな減速比の差を有するため、この順番で行うとレンジギヤのシンクロ出力側からテーパコーンを介して、シンクロ入力側からインプットシャフト15までのギヤ群全体を急加速しなければならず、レンジギヤのシンクロ機構に過負荷を掛け、レンジギヤを入れられないか又は変速機を壊してしまうからである。
【0076】
以上の理由から、変速Aパターンでは先にレンジギヤの変速を行い、この後メインギヤのシンクロ、ギヤインを行うようにしている。
【0077】
さて、以上説明してきたような制御を実行する変速制御装置であるが、本発明では、「発明が解決しようとする課題」の項で説明した問題点を解決すべく変速時のエンジン制御に改良が加えられている。
【0078】
即ち、低速走行時に上述したダブルクラッチ制御を実行する場合、目標副軸回転数Yが極低く(例えば、目標エンジン回転数Xにしてアイドル回転数+50rpm程度)なるため、図8に示した通常のダブルクラッチ制御を実行した場合、クラッチを一瞬接として副軸32の回転数を上昇させても、ギヤインを行うべくクラッチを断とすると、図中点線Aで示すように、副軸32の回転数が低下してしまい再度クラッチを接続する必要が生じてしまうことがあるが、本発明ではこれを防止する。
【0079】
以下、この目的を達成する制御プログラム及び方法について、図12のフローチャートを用いて説明する。このフローチャートはダブルクラッチ制御中における目標エンジン回転数Xの算出に関わるものであり、TMCU9によって所定時間(ex.32msec)毎に繰り返し実行される。
【0080】
まず、ステップS1において、現在変速中であるかどうかを判定する。変速中とは変速指示信号が発生してからクラッチが完接されるまでの間を意味している。変速中でなければ終了する。変速中であると判定された場合、ステップS2に進んでダブルクラッチ制御中であるかどうかを判定する。ダブルクラッチ制御中とは図10及び図11における、ステップ206及びステップ306を実行中であることを意味している。ダブルクラッチ制御中でない場合、上記のような問題が発生することはないので終了する。
【0081】
一方、ダブルクラッチ制御中である場合、ステップS3に進んで、変速先のギヤ段における副軸32に連動するドグギヤ回転数と主軸33側のスリーブ回転数(ハブ回転数)とをシンクロさせるために必要な目標副軸回転数Yに相当する目標エンジン回転数Xを算出する。即ち、本実施形態では、現在のアウトプットシャフト回転数に、変速先の目標ギヤ段のギヤ比を乗じて目標エンジン回転数Xを算出する。
【0082】
次にステップS4に進んで、ステップS3で算出した目標エンジン回転数Xが予め入力された設定値1(第一設定回転数)よりも小さいかどうかを判定する。ここで設定値1(第一設定回転数)とは、通常のダブルクラッチ制御を行った場合、クラッチを断としたときに副軸32の回転数が低下してしまいギヤインを行うことができず再度クラッチを接とする必要が生じるおそれのあるような値であり、例えばエンジンのアイドル回転数+50rpm程度に設定される。本実施形態ではアイドル回転数が500rpmであり、設定値1は550rpmである。目標エンジン回転数X≧設定値1である場合、目標副軸回転数Yが十分高いことを意味しているので、ステップS5に移行して、実際のエンジン回転数を目標エンジン回転数Xに合わせて、図8で説明したような通常のダブルクラッチ制御を実行する。
【0083】
目標エンジン回転数X<設定値1である場合、ステップS6に移行して実際のエンジン回転数を予め入力された設定値2(第二設定回転数)に合わせて制御する。この設定値2(第二設定回転数)とは目標エンジン回転数Xよりも高い値であり、クラッチを接して副軸32の回転数を高めた後にクラッチを断しても、再度クラッチを接とする必要が生じるほどには副軸回転数が低下しないような値に設定される。例えば、設定値1に50〜300rpm程度を加算した値であり、本実施形態では800rpmである。このように、目標エンジン回転数Xが設定値1よりも低い場合には、実際のエンジン回転数を目標エンジン回転数Xよりも高い設定値2に合わせて制御し、その状態でクラッチを一瞬接とする。その結果、副軸32の回転数は目標副軸回転数Yよりも高く上昇する。その後、クラッチを再び断してから、副軸ブレーキ手段27を作動して副軸32を減速制動し、副軸32の回転数が目標副軸回転数Y付近まで低下したらギヤインを実行する。
【0084】
これを、図13を用いて説明すると、時刻t1 で変速指示信号があった場合、まずクラッチ断し、クラッチが半クラッチ領域に入った直後の位置p1 でギヤ抜きを開始する。そして、ECU6は目標副軸回転数Yに相当する目標エンジン回転数Xを算出するのであるが、目標エンジン回転数Xが設定値1よりも低いため、実際のエンジン回転数を設定値2まで上昇させて一定に保持する。
【0085】
ギヤ抜き後、クラッチが一瞬接続され、これにより副軸32の回転数が目標副軸回転数Y以上に上昇する。この直後クラッチが再び断されると副軸ブレーキ手段27が作動して副軸32が減速制動され、副軸32の回転数が目標副軸回転数Y付近まで低下するとギヤインが実行される。ギヤインは、クラッチが半クラッチ領域から抜け出る直前の位置p2 よりも断側に位置したときに開始される。ギヤイン終了後、直ちにクラッチが再接続され、クラッチが完接されるとダブルクラッチ制御が終了し、エンジン及び副軸回転数が実アクセル開度に従った回転に移行する。
【0086】
このように、目標エンジン回転数Xが設定値1より低い場合には、実際のエンジン回転数を目標エンジン回転数Xよりも高めてクラッチを接として副軸32の回転数を目標副軸回転数Yよりも高め、その後副軸ブレーキ手段27により副軸32の回転数を目標副軸回転数Y付近まで低下させてギヤインを行うようにしているため、再度クラッチを接とする必要が生じないのである。従って、低速走行時にノンシンクロギヤ段へシフトダウンを行う場合であっても、ダブルクラッチ制御の繰り返しを防止でき、短時間で変速を行うことができる。
【0087】
また、副軸ブレーキ手段27を作動することで副軸32が目標副軸回転数Y付近まで低下する時間を短くでき、変速全体に要する時間を短縮できる。しかしながら、本発明はこの点において制約されず、副軸ブレーキ手段27を作動しなくても成立するものである。即ち、副軸回転数を目標副軸回転数Yよりも高めた後にクラッチを断すると、各ギヤ間等の摩擦力によって副軸回転数は自然に低下するので、その自然減速により副軸回転数が目標副軸回転数Y付近まで低下してからギヤインを実行しても良い。
【0088】
また、本実施形態では設定値2の値は設定値1よりも大きいとして説明してきたが、本発明はこの点において限定されない。例えば、副軸ブレーキ手段27を作動しないようにした場合、変速時間を短縮するために設定値2は目標エンジン回転数Xよりも僅かに大きい程度に設定することが好ましく、その結果、設定値2が設定値1よりも小さくなることもある。一例を示すと、設定値1を600rpmに設定し、設定値2を目標エンジン回転数X+30rpmと設定した場合において、目標エンジン回転数Xが550rpmであった場合、設定値2は580rpmとなり設定値1よりも小さくなる。
【0089】
以上、本発明の実施形態は上述のものに限られない。例えば本発明を適用する車両はトラクタに限られない。
【0090】
【発明の効果】
本発明によれば、低速走行時にノンシンクロギヤ段へシフトダウンを行う場合であっても、ダブルクラッチ制御の繰り返しを防止でき、変速時間を短縮できるという優れた効果が発揮される。
【図面の簡単な説明】
【図1】一実施形態に係る車両の自動変速装置を示す構成図である。
【図2】自動変速機を示す構成図である。
【図3】自動クラッチ装置を示す構成図である。
【図4】シフトアップマップである。
【図5】シフトダウンマップである。
【図6】変速機内の各ギヤの歯数を示す。
【図7】ドグギヤ回転及びスリーブ回転の算出式を示す。
【図8】ダブルクラッチ制御の内容を示すタイムチャートである。
【図9】変速パターン判別プログラムを示すフローチャートである。
【図10】変速Aパターンの内容を示すフローチャートである。
【図11】変速Bパターンの内容を示すフローチャートである。
【図12】エンジン制御内容を示すフローチャートである。
【図13】目標エンジン回転数が第一設定回転数よりも低い場合におけるダブルクラッチ制御の内容を示すタイムチャートである。
【符号の説明】
3 変速機
6 エンジンコントロールユニット
9 トランスミッションコントロールユニット
10 クラッチブースタ(クラッチアクチュエータ)
17 スプリッタ
18 メインギヤ
19 レンジギヤ
20 スプリッタアクチュエータ
21 メインアクチュエータ
22 レンジアクチュエータ
27 副軸ブレーキ手段
32 副軸
33 主軸
Claims (4)
- 主軸及び副軸を備えかつ機械的なシンクロ機構を有さないノンシンクロギヤ段を備えた変速機の変速と、その変速時のエンジン及びクラッチとを制御する変速制御装置であって、
上記ノンシンクロギヤ段のギヤインを伴うシフトダウン時に所定のダブルクラッチ制御を実行し、
該ダブルクラッチ制御は、上記ノンシンクロギヤ段のギヤイン前に、上記主軸側のハブと上記副軸に連動するドグギヤとをシンクロさせるのに必要な目標副軸回転数に相当する目標エンジン回転数を算出し、
該目標エンジン回転数が第一設定回転数以上である場合、実際のエンジン回転数が上記目標エンジン回転数となるようにエンジンを制御した後、クラッチを一時的に接、断して上記ノンシンクロギヤ段のギヤインを行い、
上記目標エンジン回転数が上記第一設定回転数よりも低い場合、実際のエンジン回転数が、上記目標エンジン回転数よりも高い第二設定回転数となるようにエンジンを制御し、その後クラッチを一時的に接して上記副軸の回転数を上記目標副軸回転数よりも高い回転数とした後、クラッチを断し、この後上記副軸の回転数が上記目標副軸回転数付近まで低下したとき、上記ノンシンクロギヤ段のギヤインを行うことを含むことを特徴とする変速制御装置。 - 上記副軸を減速制動する副軸ブレーキ手段を設け、
上記目標エンジン回転数が上記第一設定回転数よりも低い場合、上記副軸の回転数を上記目標副軸回転数よりも高めた後、上記副軸ブレーキ手段により、上記副軸の回転数を低下させる請求項1記載の変速制御装置。 - 上記第一設定回転数が、エンジンのアイドル回転数に50rpm程度を加算した値である請求項1又は2記載の変速制御装置。
- 上記第二設定回転数が、上記第一設定回転数に50〜300rpm程度加算した値である請求項1〜3いずれかに記載の変速制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380271A JP3888150B2 (ja) | 2001-12-13 | 2001-12-13 | 変速制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001380271A JP3888150B2 (ja) | 2001-12-13 | 2001-12-13 | 変速制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003175750A JP2003175750A (ja) | 2003-06-24 |
JP3888150B2 true JP3888150B2 (ja) | 2007-02-28 |
Family
ID=19187129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001380271A Expired - Fee Related JP3888150B2 (ja) | 2001-12-13 | 2001-12-13 | 変速制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3888150B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7285073B2 (en) | 2003-12-05 | 2007-10-23 | Nissan Motor Co., Ltd. | Engine fuel supply control device |
JP2011094760A (ja) * | 2009-11-02 | 2011-05-12 | Inasaka Gear Mfg Co Ltd | 単車用変速機のシフト補助装置 |
JP6083612B2 (ja) * | 2014-05-30 | 2017-02-22 | 本田技研工業株式会社 | 自動変速機の変速制御装置 |
-
2001
- 2001-12-13 JP JP2001380271A patent/JP3888150B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003175750A (ja) | 2003-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3945118B2 (ja) | セレクティブクラッチの制御装置 | |
JP4092846B2 (ja) | 車両の変速装置 | |
JP4663840B2 (ja) | 自動変速機のエンジンオーバーラン防止装置 | |
JP4515592B2 (ja) | 車両の自動変速装置 | |
JP4483613B2 (ja) | 変速制御装置及び方法 | |
JP4284820B2 (ja) | 車両の自動変速装置 | |
JP4100057B2 (ja) | 変速制御装置 | |
JP4140188B2 (ja) | 車両の自動変速装置 | |
JP3888150B2 (ja) | 変速制御装置 | |
JP4304928B2 (ja) | 変速制御装置及び方法 | |
JP4343415B2 (ja) | 車両の自動変速装置 | |
JP4426051B2 (ja) | 車両の自動変速装置 | |
JP4637996B2 (ja) | 車両の自動変速装置 | |
JP4470272B2 (ja) | 車両の自動変速装置 | |
JP4284825B2 (ja) | 車両の自動変速装置 | |
JP4415291B2 (ja) | 車両の自動変速装置 | |
JP3893842B2 (ja) | 車両のオートクラッチ制御装置 | |
JP4366902B2 (ja) | 変速制御装置 | |
JP4411826B2 (ja) | 変速制御装置 | |
JP4314721B2 (ja) | 車両の自動変速装置 | |
JP4221957B2 (ja) | 変速制御装置 | |
JP4505935B2 (ja) | 車両の自動変速装置 | |
JP4078783B2 (ja) | 車両の自動クラッチ装置 | |
JP4470919B2 (ja) | 車両のオートクラッチ制御装置 | |
JP3888153B2 (ja) | 車両の坂道発進補助装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061120 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111208 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121208 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |