[go: up one dir, main page]

JP3867496B2 - Multilayer circuit board and manufacturing method thereof - Google Patents

Multilayer circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP3867496B2
JP3867496B2 JP2000341472A JP2000341472A JP3867496B2 JP 3867496 B2 JP3867496 B2 JP 3867496B2 JP 2000341472 A JP2000341472 A JP 2000341472A JP 2000341472 A JP2000341472 A JP 2000341472A JP 3867496 B2 JP3867496 B2 JP 3867496B2
Authority
JP
Japan
Prior art keywords
hole
circuit board
adhesive film
multilayer circuit
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000341472A
Other languages
Japanese (ja)
Other versions
JP2002151844A (en
Inventor
仁 神崎
靖彦 市野
智弘 関
秀樹 山本
俊和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Nippon Telegraph and Telephone Corp
NTT Inc
Original Assignee
Nippon Pillar Packing Co Ltd
Nippon Telegraph and Telephone Corp
NTT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Nippon Telegraph and Telephone Corp, NTT Inc filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2000341472A priority Critical patent/JP3867496B2/en
Publication of JP2002151844A publication Critical patent/JP2002151844A/en
Application granted granted Critical
Publication of JP3867496B2 publication Critical patent/JP3867496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素樹脂絶縁層を備えるプリプレグを用いて製造される多層回路基板およびその製造法に関するものである。
【0002】
【従来の技術】
上記のようにフッ素樹脂を用いて製造された回路基板は、誘電率や誘電正接が小さいために、高周波用基板や超高速コンピュータ用基板等として使用されている。このような回路基板の製造法の一例が特開平7-323501号公報に記載されている。その製造法においては、図4(a)に示すように、まずガラスクロス基材41に例えばPTFE等のフッ素樹脂42を含浸保持させてプリプレグ43を作製し、このプリプレグ43を、同図(b)に示すように複数枚重ね合わせ、さらに少なくとも片面に銅箔等の金属箔44を重ねて加熱圧着することによってコア材45が作製される。その後、金属箔44が所定の配線パターンにエッチングされて、金属配線層が形成されている。
【0003】
なお上下両面に金属箔44が設けられる場合には、さらに厚さ方向に貫通するビアホール(図示せず)が穿設され、このビアホールに例えば銀ペーストなどの導電材を充填して、上下の金属配線層を相互に導通させるようになっている。
【0004】
さらに、上記のようなコア材45を複数積層して多層回路基板を作製する場合には、図5に示すように、各コア材45間に接着用フィルム46を介装して加熱圧着し、一体化する方法が上記公報に開示されている。このときの接着用フィルム46は、例えばコア材45におけるフッ素樹脂がPTFEの場合には、これよりも融点の低いフッ素樹脂、例えばPFAを用いて作製され、これの融点(300℃〜310℃)よりも高温に加熱して圧着される。これにより、各コア材45がフッ素樹脂を用いて作製されたもの(以下、フッ素樹脂基板という)であっても、これらが接着用フィルム46を介して相互に接合一体化した多層回路基板が作製される。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のようなフッ素樹脂基板を用いて製造される多層回路基板においては、図6に示すように、前記したビアホールに充填した導電材51による金属配線層52・52間の導通は、各コア材45内でしか取ることができず、接着用フィルム46を挟んで隣接するコア材45間では金属配線層52間の導通が取れないために、各金属配線層での回路設計の自由度が制限されるという問題を生じている。
【0006】
つまり、接着用フィルム46を通して導通を取るためには、例えば、導電材51の端部をコア材45の表面から突起状に突出した形状とし、この突起部が加熱圧着時に接着用フィルム46を突き破って、対面する金属配線層52の接続電極面に接するようにすることが考えられる。
【0007】
しかしながら、前記のようにフッ素樹脂から成る接着用フィルム46は、その融点以上に加熱しても溶融粘度が非常に高く、例えば前記PFAは380℃で105〜106ポアズである。このため、導電材51の端部に上記のような突起部を設けても、接着用フィルム46を完全には突き破らせ難い。したがって、導電材51と金属配線層52との接着面積が充分に確保されず、良好な電気導通性を得ることができない。
【0008】
しかもこの場合は、電気的接触が不十分となるだけでなく、接着用フィルム46における導電材51に対応する部分の周辺が、上記のような突起部の形状に応じて当初に変形隆起し、このため、導電材51の外周付近の層間接着が確実になされずに層間隙間が発生し易いという問題も生じる。このような層間隙間が発生すると、層間接着強度の低下はもちろん、このような隙間部分にメッキ液や雰囲気水が浸透して吸水率が上昇したり、はんだ耐熱性が低下する。
【0009】
本発明は、上記した問題点に鑑みなされたものであって、その目的は、接着用フィルムを挟んでフッ素樹脂基板(コア材)を積層して形成される多層回路基板であっても、隣接するコア材の各金属配線層間の導通をより確実に取ることが可能であり、これによって回路設計の自由度を向上し得ると共に、さらに、より信頼性の高い多層回路基板およびその製造法を提供することにある。
【0010】
【課題を解決するための手段】
そこで本発明の請求項1の多層回路基板は、フッ素樹脂絶縁層を備えるプリプレグをそれぞれ複数積層して形成された複数のコア材が、接着用フィルムを介して相互に積層された多層回路基板であって、各コア材を厚さ方向に貫通するビアホールに充填された導電材の端面が、接着用フィルムに予め形成された貫通穴を通して対面するコア材表面の接続用電極面に密着すると共に、上記貫通穴の内周が導電材の先端側外周に隙間なく密着した状態に形成されていることを特徴としている。
【0011】
この構成によれば、ビアホールに充填された導電材の端部が、接着用フィルムに予め形成された貫通穴を通して、対面するコア材表面の接続用電極面に密着するので、導電材と接続用電極面との確実な電気的導通状態が得られる。したがって、接着用フィルムを挟んで隣接するコア材間でも導通が取られるので、各コア材の表面に設けられる金属配線層の回路設計の自由度が向上する。
【0012】
しかも上記では、接着用フィルムに予め形成された貫通穴の内周と導電材の先端側外周との間に隙間がない密着状態となっているので、メッキ液や雰囲気水の浸透がなく、したがってはんだ耐熱性等が向上して、より信頼性の高い多層回路基板として提供することができる。
【0013】
なお、本明細書での「接続用電極面」については、これを、対面するコア材表面の金属配線層に設けられている接続用導電パターン(ランド)とした構成に限定されるものではなく、例えば対面するコア材の同軸箇所にビアホールが形成されている場合には、このビアホールに充填されている導電材の端面を接続用電極面として、両コア材の各導電材の端面同士が接着用フィルムの貫通穴を通して相互に接続された構成としても良い。
【0014】
一方、本発明の請求項2の多層回路基板は、請求項1の回路基板における接着用フィルムがフッ素樹脂から成ることを特徴としており、このような構成であれば誘電特性が損なわれず、したがってより好適な高周波特性が維持される。また請求項3のように、プリプレグにおけるフッ素樹脂中に誘電率6以上の無機フィラーが分散された構成であれば、全体的な誘電率が適度に大きくなって、より小型の機器に好適な多層回路基板として提供することができる。
【0015】
また請求項4のように、フッ素樹脂よりも熱伝導率が大きな材質特性を有するセラミック材料が含まれた熱伝導層をさらに積層した構成とすれば放熱効果も改善されるので、この多層回路基板に組付けられる電気部品の過熱が抑えられて、全体的な信頼性がさらに高くなる。
【0016】
一方、本発明の請求項5の多層回路基板の製造法は、フッ素樹脂絶縁層を備えるプリプレグをそれぞれ複数積層して複数のコア材を作製し、これらコア材を、接着用フィルムを介して相互に積層し加熱圧着して一体化する多層回路基板の製造法であって、コア材を厚さ方向に貫通するビアホールに導電材を充填すると共に導電材の先端にコア材表面からの高さが接着用フィルムの厚さ寸法よりも大きく突出する膨出部を設ける一方、接着用フィルムにおける各ビアホールに対応する箇所に貫通穴を形成し、貫通穴に導電材の膨出部を挿入させて各コア材を積層し加熱圧着することを特徴としている。
【0017】
このような製造法によれば、複数のコア材を積層して加熱圧着する際に、導電材先端の膨出部は、その高さが接着用フィルムの厚さよりも大きいことから、加圧方向に押し潰されて径方向への拡がり変形を生じる。これにより、この変形した膨出部の外周が、予め形成されている貫通穴の内面に隙間なく密着するようにすることができる。この結果、導電材と、その端部が対面するコア材表面の接続用電極面との電気的導通状態がより確実に得られ、これによって、金属配線層の回路設計の自由度が向上する。また、貫通穴の内周と導電材の先端側外周との間に隙間がない密着状態となるので、より信頼性の高い多層回路基板として製造することができる。
【0018】
この場合、請求項6のように、貫通穴の穴径をD、ビアホールの穴径をdとするとき、0.5<D/d<1.0となるようにすることが好ましい。このように貫通穴の穴径Dを小さくしておくことにより、導電材の膨出部が拡径変形する際に、その外周が貫通穴の内面に接してさらに拡がる状態になって、膨出部と貫通穴との間に隙間の無い密着状態をより確実に得ることができる。
【0019】
一方、請求項7のように、導電材の膨出部をテーパ状に形成しておけば、コア材間に接着用フィルムを介装して積層配置する際に、上記のテーパ部を貫通穴に容易に挿入させて所定の位置決め状態とすることができ、これによって製造が容易になる。
【0020】
【発明の実施の形態】
次に、本発明の一実施形態における多層回路基板について、図面を参照しつつ詳細に説明する。本実施形態に係る多層回路基板は、図2に示すように、後述するコア材1を複数枚、図の場合には3枚積層した構造に形成されている。各コア材1の図において上方側の面には、例えば銅箔を用いて形成された金属配線層2がそれぞれ設けられている。なお、図において最下層のコア材1には、図において下面にも金属配線層2が設けられている。
【0021】
各コア材1は、間に配置された接着用フィルム3を介して相互に接合一体化されている。そして各コア材1には、銀ペースト等から成る導電材4が充填されたビアホール8が設けられ、各導電材4によって、各上下の金属配線層2間の電気的接続が与えられている。
【0022】
次に、上記構成の多層回路基板の製造法について説明する。コア材1は、図3(a)に示すようなプリプレグ5を複数積層して形成される。このプリプレグ5は、フッ素樹脂粒子、例えば平均粒径0.2〜0.5μmのPTFE粒子を分散させた水性ディスパージョンにガラスクロス基材6を浸漬し、このガラスクロス基材6にPTFE樹脂を含浸させて、樹脂の融点よりも低い温度、例えばPTFEの場合には、その融点327℃よりも低い300℃程度で乾燥する処理を繰返して形成される。このような処理により、未シンター状態のフッ素樹脂7の保持量が60〜96vol %、例えば76vol %で、厚さが40μm程度のプリプレグ5が形成される。
【0023】
次に、同図(b)に示すように、上記のプリプレグ5を複数枚、例えば3枚重ね合わせ、さらに上面(前記図2における最下層のコア材1の場合には上下両面)に、厚さが例えば18μm程度の電解銅箔2'を配置し、加熱圧着することにより、少なくとも片面に銅箔2'を備えるコア材1が形成される。なお、このときの圧着は、例えばフッ素樹脂7が前記のようにPTFEの場合、その融点327℃よりも高温の380℃に加熱し、面圧50kgf/cm2で1時間程度加圧することによって行われ、これによって厚さが100μm程度のコア材1が作製される。
【0024】
次いで、同図(c)に示すように、コア材1の所定の箇所に、厚さ方向に貫通するビアホール8が形成される。このビアホール8の形成は、ドリルによる穿孔や、レーザビームによる孔加工によって行われる。そして、各ビアホール8に、同図(d)に示すように、例えば銀粉を樹脂に分散させた銀ペースト等を印刷法等によって埋め込んで硬化させた導電材4が充填される。
【0025】
その後、コア材1表面の電解銅箔2'に対する回路形成が行われる。この回路形成には公知の方法、例えばフォトレジストを銅箔2'上に塗工して回路パターンの露光、現像、エッチングを行う方法などが採用されて、前記した金属配線層2が形成される。
【0026】
次いで、各ビアホール8に埋め込まれた導電材4に対し、金属配線層2が設けられていない側の端部に、図1(a)に示すように、コア材1の裏面から突出する形状の膨出部4aが銀ペースト7を後付けして形成される。この膨出部4aは、例えば、先端側に向かうほど径小となるテーパ状の外周面を備え、かつ、先端面がほぼ平坦とされた円錐台形状に形成されている。また、その突出高さhを、後述する接着用フィルム3の厚さ寸法よりも大きくした形状として、この膨出部4aが形成される。
【0027】
このような膨出部4aを端部に有する導電材4が埋め込まれた複数のコア材1が、厚さ40μm程度のPFA等のフッ素樹脂から成る接着用フィルム3をそれぞれ間に挟んで積み重ねられ、例えば350℃の加熱温度、面圧30kgf/cm2、加圧時間30分程度の条件で加熱圧着される。
【0028】
このとき、接着用フィルム3には、上層のコア材1の各ビアホール8に対応する位置にそれぞれ貫通穴9が形成されている。この貫通穴9は、その穴径をDとし、ビアホール8の穴径をdとするとき、0.5<D/d<1.0、より好ましくは0.7<D/d<0.9の関係を満たす寸法で形成されている。なお、貫通穴9の上端エッジ部側は、上方に向かうほど径大となるテーパ部9aを有する形状に形成されている。
【0029】
このような接着用フィルム3を間に挟んで各コア材1が加圧成形される際には、まず、同図(b)に示すように、各ビアホール8に充填されている導電材4の膨出部4aの下端側が、接着用フィルム3の貫通穴9に挿入された状態に位置決めされる。そして、上下からの加圧が進行するのに伴って、膨出部4aの下端面が下側のコア材1上面の金属配線層2、さらに詳しくは、上記ビアホール8に対応する箇所に形成されている接続用導電パターン(ランド)から成る接続用電極面に当接し、以降は、この導電材4に対して上下方向の圧縮力が作用する。
【0030】
このような圧縮力によって膨出部4aは拡径状に変形し、これに伴って、同図(c)に示すように、膨出部4aの外周面が貫通穴9の内周面に密着した状態となり、以降は、この密着状態で、貫通穴9の径も膨出部4aによって押し拡げられながら、この部位の変形が進行する。
【0031】
なお、このときの圧着成形は、フッ素樹脂から成る接着用フィルム3の融点以上、例えばPFAの場合には、350℃程度に加熱して行われる。このときの加熱熱量は、熱伝導率も大きな導電材4を通して内部へと好適に伝達され、したがって、導電材4の膨出部4a周辺の接着用フィルム3も充分に高温に加熱されて、膨出部4aの変形に伴う貫通穴9の拡径変形がスムーズに進行する。
【0032】
上記のように加圧成形が進行し、同図(d)に示すように、接着用フィルム3と上下の各コア材1との間の層間隙間がなくなった状態になると、以降は、接着用フィルム3は、その全体にわたって上下のコア材1によって上下に挟み込まれ、これによって拡径方向への流動が拘束される。したがって、貫通穴9の周辺も移動が拘束されて、それ以上の拡径変形を生じ難くなり、以降は、導電材4はビアホール8内およびこれに連なる貫通穴9内で上下に押し固められる。これによって導電材4の密度が上昇し、この結果、ビアホール8を通して、より抵抗率の小さな層間導電路が形成される。
【0033】
こうして、所定温度−時間の加熱圧着成形を行うことによって、前記図2に示した多層回路基板が作製される。したがって、この多層回路基板では、ビアホール8に充填された導電材4の端部が、接着用フィルム3に予め形成された貫通穴9を通して、対面するコア材1表面の接続用電極面に確実に密着する。これによって、接着用フィルム3を挟んで上下の金属配線層2間の導通も得られる構造になっているので、各金属配線層2での回路設計の自由度が向上する。また、回路基板自体もより小型化することができる。
【0034】
しかも上記では、接着用フィルム3に予め形成された貫通穴9の内周と導電材4の先端側外周との間に隙間がない密着状態となっているので、メッキ液や雰囲気水の浸透がなく、したがってはんだ耐熱性等が向上して、より信頼性の高い多層回路基板となっている。
【0035】
以上の説明のように、本実施形態においては、接着用フィルム3を用いてフッ素樹脂基板を多層化する場合でも、ビアホール8に埋め込まれた導電材4と金属配線層2の接続電極面との接触面積を接着用フィルム3を通して充分に確保することができ、これによって、所望の導電特性を得ることができる。
【0036】
特に、ビアホール8の穴径、すなわち、これに充填された導電材4およびその端部の膨出部4aの外径dと、接着用フィルム3の貫通穴9の穴径Dとの関係が0.5<D/d<1.0に設定されているので、膨出部4aがフィルム貫通穴を楔の原理により押し拡げながら加熱圧着が行われことになる。これにより、導電材4の膨出部4a外周とフィルム貫通穴内周との間に隙間が生じることがない。この結果、当該隙間にメッキ液や雰囲気水が入り込むことによる吸水率上昇が可及的に生じることがなく、はんだ耐熱性に優れた多層回路基板とすることができる。また、金属配線層2とコア材1との間にも層間隙間が生じることがないため、剥離強度にも優れたものとなる。
【0037】
なお、ビアホール8の穴径dよりもフィルム貫通穴の穴径Dが大きい(D/d>1.0)と、熱圧着時に、導電材4の膨出部4aが押しつぶされる際、フィルム貫通穴の内周面に達するまで膨出部4aが流動して拡径する。このため、この膨出部4aに適切な加圧力が発生せず、導電特性が低下する場合がある。一方、ビアホール8の穴径dよりもフィルム貫通穴の穴径Dが小さすぎる(0.5>D/d)と、接続電極面への導電材4の接触面積を充分に確保できない場合がある。
【0038】
さらに上記実施形態では、導電材4の膨出部4aは少なくとも先端側がテーパ状に形成され、また、接着用理フィルム3の貫通穴9の上端エッジ部もテーパ状に形成されていることから、コア材1間に接着用フィルム3を介装して積層配置する際に、上記のテーパ部を貫通穴9に容易に挿入させて所定の位置決め状態とすることができ、これによって製造が容易になる。
【0039】
以上に、本発明の一実施形態について説明したが、本発明は上記形態に限定されるものではなく、この発明の範囲内で種々変更することが可能である。例えば上記では、プリプレグ5を形成する際のフッ素樹脂7としてPTFEを用いた例を示したが、PTFE以外にも、例えばPFAやPCTFE、FEP、PVdF、PVF、ETFE、ECTFEなどを用いることも可能であり、また、これらを組み合わせて用いることも可能である。特に、PTFEをガラスクロス基材6に保持させた後、その表面側にさらにPFA層を設けてプリプレグ5を形成すれば、各プリプレグ5間、さらに各コア1間の接着強度がさらに優れた多層回路基板を作製することができる。
【0040】
また、上記ではPFAから成る接着フィルム3を用いた例を挙げたが、この接着フィルム3としても、上記した他のフッ素樹脂やこれらを組み合わせた材料、さらにはフッ素樹脂以外の材料を用いて作製することも可能である。また、ビアホール8に埋め込む導電材4としては、前記した銀ペーストの他、例えば銅ペーストなどのその他の導電ペーストを用いて形成しても良い。
【0041】
一方、プリプレグ5を形成する際のフッ素樹脂7中に、誘電率6以上の無機フィラーが分散された構成としても良い。これにより、全体的な誘電率が適度に大きくなって、移動体通信機器などの携帯用機器に好適な多層回路基板として提供することができる。
【0042】
すなわち、高周波を利用した通信機器に組込まれる回路基板としては、通常、低誘電率の基板が使用されるが、小型化のためには、適度に誘電率の高い回路基板が要望されている。なぜなら、回路素子は概して使用電磁波(伝播電磁波)の波長が長いほど大きくなり、また比誘電率εrの誘電体中を伝播する電磁波の波長λは、λ=λ0/(εr)0.5(但し、λ0:真空中の伝播波長)となるため、回路基板の誘電率が大きいほど回路の小型化を図ることが可能となる。
【0043】
そこで、上記のような無機フィラーをフッ素樹脂7中に含ませることで、より小型の機器に好適な多層回路基板として提供することができる。このような無機フィラーとして、例えば二酸化チタンやチタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム等を使用することができる。
【0044】
さらに、回路基板全体の放熱効果を改善するために、フッ素樹脂よりも熱伝導率が大きなセラミック材料、例えば上記した二酸化チタン等を所望の熱伝導率が得られるように含有させて形成した熱伝導層をさらに積層して構成することも可能である。このような層を設けずに形成したフッ素樹脂基板での熱伝導率は0.4〜0.5W/m/K程度であるが、上記のようなセラミック材料を含ませることにより、熱伝導率を0.8〜1.0W/m/Kまで大きくすることができる。
【0045】
このような熱伝導層を設けることによって、例えばこの回路基板に発熱量が大きな電気部品が取付けられた場合でも、その周辺に熱が蓄熱されることなく回路基板全体を通して放熱される。このような放熱効果が得られることによって、この多層回路基板に組付けられる電気部品の過熱が抑えられ、これら電気部品を含む全体的な信頼性をさらに向上することができる。
【0046】
一方、上記実施形態においては、導電材4の膨出部4aを円錐台形状に形成した例を示したが、この膨出部4aの形状は、例えば外周が回転放物面となるようなその他の形状とすることも可能である。さらに上記実施形態においては、ガラスクロス基材6にフッ素樹脂7を含浸保持させて形成されたプリプレグ5を用いたが、このようなプリプレグとして例えばフッ素樹脂シートを用いることも可能である。
【0047】
また上記実施形態においては、図1に、対面するコア材表面の金属配線層2に設けられた接続用導電パターン(ランド)を接続用電極面とした図を示して、この接続用電極面への導電材4の接続過程を説明したが、例えば、図2中の左側部分に示されているように、各コア材1間で同軸上にビアホール8が形成されている場合には、金属配線層2を介することなく、各下側のコア材1のビアホール8に充填されている導電材4の上端面を接続用電極面とみなして、上下の各導電材4の端面同士が接着用フィルム3の貫通穴を通して相互に接続された構成とすることも可能である。
【0048】
【実施例】
以下、実施例を挙げて本発明を説明するが、本発明はこれら実施例に限定されるものでもない。
【0049】
実施例1
純水にPTFEを60wt%分散させた三井デュポンフロロケミカル(株)製のPTFEディスパージョン(品名:3443J)に、質量48g/m2のEガラスクロスを含浸し、ドクターバーにて最適量を塗布し、100℃にて水分を乾燥させた後、300℃でベーキングして界面活性剤を揮発させ、Eガラスクロス上に未シンター状態のPTFE層を形成した。この工程を3回繰り返すことによって、樹脂量73wt%のPTFE未シンタープリプレグを得た。
【0050】
このプリプレグを2枚重ねてその上下に福田金属箔粉工業(株)製厚さ18μmの電解銅箔(品名:CF-T9ST)を配置し、その上下をSUS304の鏡板、さらにクッション材ではさみ、真空プレスにて380℃−1時間加熱圧着して、多層板用コア材を得た。
【0051】
このようなコア材を4枚作製し、それぞれマイクロドリルでφ0.6mmの穴(ビアホール)を開け、その穴に、銀粉を熱硬化性樹脂に分散させた銀ペーストを印刷法にて埋め込んだ。その後、4枚のコア材中の2枚については、片方の銅箔をエッチングにより全面除去し、他方の銅箔は全面残して外層側コア材とし、残りの2枚については、片方の銅箔をエッチングにより全面除去し、他方の銅箔はそれぞれ所望のパターンをエッチングして内層側コア材とした。
【0052】
そして、各コア材中に埋め込んだ銀ペーストにおける銅箔を全面除去した側の端部に、さらに銀ペーストを円錐台状に付けた。次いで、2枚の内層側コア材の上下にそれぞれ外層側コア材を配置し、また、各コア材間に厚さ40μmのETFEフィルム(三フッ化フィルム)を介装して積み重ね、210℃−30kgf/cm2で30分加熱圧着して多層回路基板を作製した。
【0053】
このときのETFEフィルムとして、各上層側のコア材における銀ペーストを埋め込んだ穴位置と同じ位置に、φ0.5mmの穴を予め開けたものを用いた。
【0054】
実施例2
実施例1において、ETFEフィルムに予め開ける穴の径をφ0.35mmとした以外は実施例1と同様にして、多層回路基板を作製した。
【0055】
実施例3
平均粒径1.0μm、比重4.9のTiO2粒子を適量の界面活性剤の存在下で、平均粒径0.2〜0.5μm、比重2.13−2.22、比誘電率2.1のPTFE中に配合比約50 vol%で均一に混合して水性ディスパージョンを得た。
この水性デスパージョンを用いてプリプレグを作製した以外は実施例1と同様にして、多層回路基板を作製した。
【0056】
比較例1
実施例1におけるETFEフィルムとして穴開けを行っていないものを用いた以外は実施例1と同様にして、多層回路基板を作製した。
【0057】
比較例2
実施例1において、ETFEフィルムに予め開ける穴の径をφ0.2mmとした以外は実施例1と同様にして、多層回路基板を作製した。
【0058】
比較例3
実施例1において、ETFEフィルムに予め開ける穴の径をφ0.8mmとした以外は実施例1と同様にして、多層回路基板を作製した。
【0059】
実施例1〜3および比較例1〜3で得られた各多層回路基板の誘電率、誘電正接、吸水率、はんだ耐熱性、およびビアホールに埋め込んだ銀ペーストと金属配線パターンとの導通抵抗を以下の測定法に従って測定した。結果を表1に示している。
【0060】
測定方法
(1) 誘電率および誘電正接
誘電率および誘電正接はJIS C 6481の試験方法5.12に従って測定した。
(2) 吸水率(wt%)
吸水率はJIS C 6481の試験方法5.14に従って測定した。
(3) はんだ耐熱性
ハンダ耐熱性はJIS C 6481(5.5 はんだ耐熱性)に基づく試料を作製し、その試料をプレッシャークッカ処理後、260℃のはんだ槽に1分間浸漬して引き上げた後の試料について、その表面状態を観察しながら白点を計数した。ここで、白点が0〜5個の場合を良とし、6〜10個は可、11個以上は不可とした。
(4) 導通抵抗
導通抵抗は、各多層回路基板における表裏面に各々全面残されている銅箔のセンター同士にミリΩメータのメータ端子を当て、これら表裏の銅箔間の抵抗値を測定した。一方、ビアホールに銀ペーストを埋め込む替わりに、スルーホールメッキを施して各層間を電気的に接続させた多層板を上記同様に作製し、この多層板について上記同様の抵抗値を測定して、基準抵抗値とした。各実施例1〜3・比較例1〜3について、基準抵抗値を100としたときに100〜110の場合を○、110〜150の場合を△、150を超える場合を×とした。
【0061】
【表1】

Figure 0003867496
【0062】
上記表に示されているように、実施例1〜3では、はんだ耐熱性と導通抵抗とのいずれの特性も良好であるのに対し、比較例1〜3では、両特性とも劣った結果となっている。さらに比較例1の多層回路基板について、ビアホール内の導電ペーストと下層の銅箔パターンとの接続領域の断面を顕微鏡で観察したところ、導電ペーストが接着用フィルムを殆ど貫通しておらず、また、導電ペースト先端が押しつけられた部分周辺の接着用フィルムが変形隆起して、隙間が生じているのが認められた。このため、この比較例1は、上記表中に示されているように、はんだ耐熱性と導通抵抗とのいずれも劣ったものになっている。
【0063】
また、比較例2についても上記同様の断面観察を行ったところ、接着用フィルムに形成した穴径が小さいために、接着用フィルムに上記同様の変形隆起に伴う隙間が少なからず生じているのが認められた。このため、この比較例2も充分なはんだ耐熱性が得られず、さらに、導電ペーストと下層の銅箔パターンとの接合面積が小さいために、導通抵抗も比較的大きなものとなっている。
【0064】
一方、比較例3においては、接着用フィルムに形成した穴径が大きく、このため、この穴内で押し潰された導電ペースト先端部外周と、穴の内周との間に隙間が生じているのが認められた。このため、上記表中に記載のようにはんだ耐熱性に劣ったものとなっており、またこの場合には、加熱圧着時に導電ペースト先端側に上記穴内で拡がり変形を生じるだけで、この部分が充分に押し固められてはいないため、導通抵抗特性も良好なものとはなっていない。
【0065】
これに対し、接着用フィルムの穴径Dを0.5<D/d<1.0に設定して作製した実施例1〜3では、それぞれ、導電ペースト先端側が、接着用フィルムの穴内に隙間無く充填されて下層の銅箔パターンに接合していることが認められ、また、層間隙間の生じておらず、これによって、はんだ耐熱性と導通抵抗とのいずれの特性にも優れた多層回路基板となっている。
【0066】
【発明の効果】
以上のように、本発明によれば、フッ素樹脂基板を用いて多層化する場合でも、ビアホールに充填された導電材と金属配線層とが、接着用フィルムを通して確実に導通接続され、また、この接続部周辺に隙間の無い構成となっているので、金属配線層での回路設計の自由度が向上し、また、信頼性の向上した多層回路基板として提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における多層回路基板の製造過程におけるコア材と接着用フィルムとの関係を示すもので、同図(a)は、コア材のビアホールに設けられた導電材と接着用フィルムとの関係を示す要部断面模式図、同図(b)は、熱圧着時の初期状態を示す要部断面模式図、同図(c)は、同図(b)の後の状態を示す要部断面模式図、同図(d)は熱圧着時の最終的な状態を示す要部断面模式図である。
【図2】上記多層回路基板の断面模式図である。
【図3】上記多層回路基板の製造過程を示すもので、同図(a)は当初に作製されるプリプレグの断面模式図、同図(b)は上記プリプレグを積層して形成されるコア材の断面模式図、同図(c)はコア材にビアホールを形成した状態を示す断面模式図、同図(d)はビアホールに導電材を埋め込んだ状態を示す断面模式図である。
【図4】従来の回路基板の製造過程を示すもので、同図(a)は当初に作製されるプリプレグの断面模式図、同図(b)は上記プリプレグを積層して形成される回路基板の断面模式図である。
【図5】従来の多層回路基板の製造法を示す断面模式図である。
【図6】従来のビアホールを通して層間接続を行った多層回路基板の断面模式図である。
【符号の説明】
1 コア材
2 金属配線層
3 接着用フィルム
4 導電材
4a 膨出部
5 プリプレグ
6 ガラスクロス基材
7 フッ素樹脂
8 ビアホール
9 貫通穴[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer circuit board manufactured using a prepreg having a fluororesin insulating layer and a method for manufacturing the same.
[0002]
[Prior art]
Circuit boards manufactured using fluororesins as described above are used as high-frequency boards, ultrahigh-speed computer boards, and the like because of their low dielectric constant and dielectric loss tangent. An example of a method for manufacturing such a circuit board is described in JP-A-7-323501. In the manufacturing method, as shown in FIG. 4A, first, a glass cloth base material 41 is impregnated and held with a fluororesin 42 such as PTFE to prepare a prepreg 43. The core material 45 is produced by stacking a plurality of sheets as shown in FIG. 3 and further stacking a metal foil 44 such as a copper foil on at least one surface and press-bonding them. Thereafter, the metal foil 44 is etched into a predetermined wiring pattern to form a metal wiring layer.
[0003]
When the metal foils 44 are provided on the upper and lower surfaces, a via hole (not shown) penetrating in the thickness direction is further drilled, and a conductive material such as silver paste is filled in the via hole to The wiring layers are connected to each other.
[0004]
Further, when a multilayer circuit board is produced by laminating a plurality of core materials 45 as described above, as shown in FIG. A method for integration is disclosed in the above publication. For example, when the fluororesin in the core material 45 is PTFE, the adhesive film 46 is produced using a fluororesin having a lower melting point, such as PFA, and has a melting point (300 ° C. to 310 ° C.). It is heated and heated to a higher temperature than that. As a result, even if each core material 45 is made of a fluororesin (hereinafter referred to as a fluororesin substrate), a multilayer circuit board in which these are bonded and integrated with each other via the adhesive film 46 is produced. Is done.
[0005]
[Problems to be solved by the invention]
However, in the multilayer circuit board manufactured using the fluororesin substrate as described above, as shown in FIG. 6, the conduction between the metal wiring layers 52 and 52 by the conductive material 51 filled in the via hole is as follows. The degree of freedom of circuit design in each metal wiring layer can be obtained only in the core material 45, and conduction between the metal wiring layers 52 cannot be obtained between the adjacent core materials 45 across the adhesive film 46. Is causing the problem of being restricted.
[0006]
That is, in order to conduct electricity through the adhesive film 46, for example, the end portion of the conductive material 51 is formed in a protruding shape from the surface of the core material 45, and the protruding portion breaks through the adhesive film 46 during thermocompression bonding. Thus, it is conceivable to contact the connection electrode surface of the metal wiring layer 52 facing each other.
[0007]
However, as described above, the adhesive film 46 made of a fluororesin has a very high melt viscosity even when heated above its melting point. For example, the PFA is 10% at 380 ° C. Five -10 6 Pois. For this reason, even if the projections as described above are provided at the end of the conductive material 51, it is difficult to completely break through the adhesive film 46. Therefore, a sufficient bonding area between the conductive material 51 and the metal wiring layer 52 is not ensured, and good electrical conductivity cannot be obtained.
[0008]
In addition, in this case, not only the electrical contact becomes insufficient, but the periphery of the portion corresponding to the conductive material 51 in the adhesive film 46 is initially deformed and raised according to the shape of the projection as described above. For this reason, there is a problem in that interlayer adhesion near the outer periphery of the conductive material 51 is not ensured and an interlayer gap is likely to occur. When such an interlayer gap is generated, not only the interlayer adhesive strength is lowered, but also the plating solution or ambient water penetrates into such a gap portion and the water absorption rate is increased or the solder heat resistance is lowered.
[0009]
The present invention has been made in view of the above-described problems, and the object thereof is to provide a multilayer circuit board formed by laminating a fluororesin substrate (core material) with an adhesive film interposed therebetween. It is possible to more reliably establish conduction between the metal wiring layers of the core material to be processed, thereby improving the degree of freedom in circuit design and providing a more reliable multilayer circuit board and a method for manufacturing the same. There is to do.
[0010]
[Means for Solving the Problems]
Accordingly, the multilayer circuit board according to claim 1 of the present invention is a multilayer circuit board in which a plurality of core materials formed by laminating a plurality of prepregs each having a fluororesin insulating layer are laminated to each other via an adhesive film. In addition, the end face of the conductive material filled in the via hole penetrating each core material in the thickness direction is in close contact with the connection electrode surface of the core material surface facing through the through hole previously formed in the adhesive film, It is characterized in that the inner periphery of the through hole is formed in close contact with the outer periphery on the front end side of the conductive material without any gap.
[0011]
According to this configuration, the end portion of the conductive material filled in the via hole is in close contact with the connection electrode surface of the facing core material through the through-hole formed in the adhesive film in advance. A reliable electrical continuity with the electrode surface is obtained. Therefore, since electrical continuity is established between the core materials adjacent to each other with the adhesive film interposed therebetween, the degree of freedom in circuit design of the metal wiring layer provided on the surface of each core material is improved.
[0012]
Moreover, in the above, since there is no gap between the inner periphery of the through hole formed in advance in the adhesive film and the outer periphery on the front end side of the conductive material, there is no permeation of plating solution or atmospheric water, and therefore Solder heat resistance etc. improve and it can provide as a more reliable multilayer circuit board.
[0013]
Note that the “connection electrode surface” in this specification is not limited to the configuration in which the connection conductive pattern (land) is provided in the metal wiring layer on the surface of the facing core material. For example, when a via hole is formed in the coaxial portion of the core material facing each other, the end surfaces of the conductive material filled in the via hole are used as connection electrode surfaces, and the end surfaces of the conductive materials of both core materials are bonded to each other. It is good also as a structure mutually connected through the through-hole of the film for use.
[0014]
On the other hand, the multilayer circuit board according to claim 2 of the present invention is characterized in that the adhesive film in the circuit board according to claim 1 is made of a fluororesin. With such a configuration, the dielectric characteristics are not impaired, and therefore more Suitable high frequency characteristics are maintained. Further, if the inorganic filler having a dielectric constant of 6 or more is dispersed in the fluororesin in the prepreg as in claim 3, the overall dielectric constant becomes moderately large, and the multilayer is suitable for a smaller device. It can be provided as a circuit board.
[0015]
In addition, since the heat radiation effect is improved if the heat conduction layer containing a ceramic material having a material characteristic having a larger heat conductivity than that of the fluororesin is further laminated as in claim 4, the multilayer circuit board is improved. As a result, overheating of the electrical components assembled in the housing is suppressed, and the overall reliability is further increased.
[0016]
On the other hand, in the method for producing a multilayer circuit board according to claim 5 of the present invention, a plurality of prepregs each having a fluororesin insulating layer are laminated to produce a plurality of core materials, and these core materials are mutually connected via an adhesive film. Is a method of manufacturing a multilayer circuit board that is laminated by thermocompression bonding and is filled with a conductive material in a via hole that penetrates the core material in the thickness direction, and the height from the surface of the core material is at the tip of the conductive material. While providing a bulging portion that protrudes larger than the thickness dimension of the adhesive film, a through hole is formed at a location corresponding to each via hole in the adhesive film, and the bulging portion of the conductive material is inserted into the through hole to each It is characterized by laminating core materials and thermocompression bonding.
[0017]
According to such a manufacturing method, when a plurality of core materials are stacked and thermocompression bonded, the bulging portion at the tip of the conductive material has a height greater than the thickness of the adhesive film, so that the pressing direction And squeezed to cause expansion in the radial direction. Thereby, the outer periphery of the deformed bulging portion can be brought into close contact with the inner surface of the through hole formed in advance without any gap. As a result, an electrical conduction state between the conductive material and the connecting electrode surface of the core material surface facing the end portion can be more reliably obtained, thereby improving the degree of freedom in circuit design of the metal wiring layer. In addition, since there is a close contact state between the inner periphery of the through hole and the outer periphery on the front end side of the conductive material, it can be manufactured as a more reliable multilayer circuit board.
[0018]
In this case, as in claim 6, it is preferable that 0.5 <D / d <1.0 when the hole diameter of the through hole is D and the hole diameter of the via hole is d. By reducing the hole diameter D of the through hole in this way, when the bulge portion of the conductive material undergoes a diameter expansion deformation, the outer periphery thereof comes into contact with the inner surface of the through hole and further expands. A close contact state without a gap between the portion and the through hole can be obtained more reliably.
[0019]
On the other hand, if the bulging portion of the conductive material is formed in a taper shape as in claim 7, the taper portion is formed as a through-hole when laminating and arranging the adhesive film between the core materials. Can be easily inserted into a predetermined positioning state, which facilitates manufacture.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, a multilayer circuit board according to an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 2, the multilayer circuit board according to the present embodiment is formed in a structure in which a plurality of core materials 1 to be described later are stacked, in the case of the figure, three. In the figure of each core material 1, metal wiring layers 2 formed using, for example, copper foil are provided on the upper surface. In the drawing, the lowermost core material 1 is provided with a metal wiring layer 2 on the lower surface in the drawing.
[0021]
Each core material 1 is bonded and integrated with each other via an adhesive film 3 disposed therebetween. Each core material 1 is provided with a via hole 8 filled with a conductive material 4 made of silver paste or the like, and each conductive material 4 provides an electrical connection between the upper and lower metal wiring layers 2.
[0022]
Next, a method for manufacturing the multilayer circuit board having the above configuration will be described. The core material 1 is formed by laminating a plurality of prepregs 5 as shown in FIG. This prepreg 5 is obtained by immersing a glass cloth substrate 6 in an aqueous dispersion in which fluororesin particles, for example, PTFE particles having an average particle diameter of 0.2 to 0.5 μm are dispersed, and PTFE resin is coated on the glass cloth substrate 6. It is formed by repeatedly impregnating and drying at a temperature lower than the melting point of the resin, for example, PTFE, for example, about 300 ° C. lower than the melting point 327 ° C. By such a treatment, the prepreg 5 having a retention amount of the unsintered fluororesin 7 of 60 to 96 vol%, for example, 76 vol%, and a thickness of about 40 μm is formed.
[0023]
Next, as shown in FIG. 2B, a plurality of, for example, three of the above prepregs 5 are overlapped, and further thickened on the upper surface (upper and lower surfaces in the case of the lowermost core material 1 in FIG. 2). The core material 1 provided with the copper foil 2 'on at least one side is formed by disposing an electrolytic copper foil 2' having a thickness of, for example, about 18 μm and heat-pressing it. In this case, for example, when the fluororesin 7 is PTFE as described above, the surface pressure is 50 kgf / cm by heating to 380 ° C. higher than the melting point 327 ° C. 2 The core material 1 having a thickness of about 100 μm is manufactured.
[0024]
Next, as shown in FIG. 2C, a via hole 8 penetrating in the thickness direction is formed at a predetermined location of the core material 1. The via hole 8 is formed by drilling with a drill or drilling with a laser beam. Then, as shown in FIG. 4D, each via hole 8 is filled with, for example, a conductive material 4 in which a silver paste or the like in which silver powder is dispersed in a resin is embedded and cured by a printing method or the like.
[0025]
Thereafter, circuit formation is performed on the electrolytic copper foil 2 ′ on the surface of the core material 1. For this circuit formation, a known method, for example, a method of applying a photoresist on the copper foil 2 ′ and exposing, developing, and etching the circuit pattern is employed to form the metal wiring layer 2 described above. .
[0026]
Next, the conductive material 4 embedded in each via hole 8 has a shape protruding from the back surface of the core material 1 at the end on the side where the metal wiring layer 2 is not provided, as shown in FIG. The bulging portion 4 a is formed by retrofitting the silver paste 7. The bulging portion 4a has, for example, a tapered outer peripheral surface having a tapered outer diameter that decreases in diameter toward the distal end side, and has a distal end surface that is substantially flat. Moreover, this bulging part 4a is formed in the shape which made the protrusion height h larger than the thickness dimension of the film 3 for adhesion mentioned later.
[0027]
A plurality of core materials 1 embedded with the conductive material 4 having the bulging portion 4a at the end are stacked with an adhesive film 3 made of fluororesin such as PFA having a thickness of about 40 μm interposed therebetween. For example, heating temperature of 350 ° C., surface pressure of 30 kgf / cm 2 The heat pressing is performed under the condition of a pressing time of about 30 minutes.
[0028]
At this time, through holes 9 are formed in the adhesive film 3 at positions corresponding to the respective via holes 8 of the upper core material 1. The through hole 9 has a diameter D of 0.5 and a diameter of the via hole 8 d of 0.5 <D / d <1.0, more preferably 0.7 <D / d <0.9. It is formed with a dimension that satisfies the relationship. In addition, the upper end edge part side of the through-hole 9 is formed in the shape which has the taper part 9a which becomes large diameter as it goes upwards.
[0029]
When each core material 1 is pressure-molded with such an adhesive film 3 sandwiched therebetween, first, as shown in FIG. 5B, the conductive material 4 filled in each via hole 8 is formed. The lower end side of the bulging portion 4 a is positioned in a state where it is inserted into the through hole 9 of the adhesive film 3. As the pressurization from above and below proceeds, the lower end surface of the bulging portion 4 a is formed at the metal wiring layer 2 on the upper surface of the lower core material 1, more specifically at a location corresponding to the via hole 8. The contact force is applied to the connecting electrode surface formed of the connecting conductive pattern (land), and thereafter, a compressive force in the vertical direction acts on the conductive material 4.
[0030]
Due to such a compressive force, the bulging portion 4a is deformed into an enlarged diameter, and as a result, the outer peripheral surface of the bulging portion 4a is in close contact with the inner peripheral surface of the through hole 9 as shown in FIG. Thereafter, in this close contact state, the diameter of the through hole 9 is also expanded by the bulging portion 4a, and the deformation of this portion proceeds.
[0031]
Note that the pressure forming at this time is performed by heating to the melting point of the adhesive film 3 made of a fluororesin or higher, for example, about 350 ° C. in the case of PFA. The amount of heating heat at this time is suitably transmitted to the inside through the conductive material 4 having a large thermal conductivity. Therefore, the adhesive film 3 around the bulging portion 4a of the conductive material 4 is also heated to a sufficiently high temperature to be expanded. The diameter expansion deformation of the through hole 9 accompanying the deformation of the protruding portion 4a proceeds smoothly.
[0032]
When the pressure molding proceeds as described above and the interlayer gaps between the adhesive film 3 and the upper and lower core materials 1 are eliminated as shown in FIG. The film 3 is sandwiched up and down by the upper and lower core members 1 over the whole, thereby restricting the flow in the diameter expanding direction. Therefore, the movement of the periphery of the through hole 9 is also constrained, and it is difficult to cause further diameter expansion deformation, and thereafter, the conductive material 4 is pressed up and down in the via hole 8 and the through hole 9 connected thereto. As a result, the density of the conductive material 4 increases, and as a result, an interlayer conductive path having a lower resistivity is formed through the via hole 8.
[0033]
In this way, the multilayer circuit board shown in FIG. 2 is manufactured by performing thermocompression bonding at a predetermined temperature and time. Therefore, in this multilayer circuit board, the end portion of the conductive material 4 filled in the via hole 8 is surely connected to the connecting electrode surface on the surface of the core material 1 facing through the through hole 9 formed in advance in the adhesive film 3. In close contact. Thereby, since the connection between the upper and lower metal wiring layers 2 is obtained with the adhesive film 3 interposed therebetween, the degree of freedom of circuit design in each metal wiring layer 2 is improved. Further, the circuit board itself can be further downsized.
[0034]
In addition, in the above, since there is no gap between the inner periphery of the through-hole 9 formed in advance in the adhesive film 3 and the outer periphery on the front end side of the conductive material 4, the penetration of the plating solution and atmospheric water is prevented. Therefore, the solder heat resistance and the like are improved, and the multilayer circuit board is more reliable.
[0035]
As described above, in this embodiment, the conductive material 4 embedded in the via hole 8 and the connection electrode surface of the metal wiring layer 2 are formed even when the fluororesin substrate is multilayered using the adhesive film 3. A sufficient contact area can be ensured through the adhesive film 3, whereby desired conductive characteristics can be obtained.
[0036]
In particular, the relationship between the hole diameter of the via hole 8, that is, the outer diameter d of the conductive material 4 filled therein and the bulged portion 4a at the end thereof, and the hole diameter D of the through hole 9 of the adhesive film 3 is 0. Since .5 <D / d <1.0, the bulging portion 4a is thermocompression-bonded while expanding the film through-hole by the wedge principle. Thereby, a clearance gap does not arise between the bulging part 4a outer periphery of the electrically conductive material 4, and a film through-hole inner periphery. As a result, the water absorption rate is not increased as much as possible due to the plating solution or ambient water entering the gap, and a multilayer circuit board having excellent solder heat resistance can be obtained. In addition, since no interlayer gap is generated between the metal wiring layer 2 and the core material 1, the peel strength is excellent.
[0037]
If the hole diameter D of the film through hole is larger than the hole diameter d of the via hole 8 (D / d> 1.0), the film through hole is formed when the bulging portion 4a of the conductive material 4 is crushed during thermocompression bonding. The bulging portion 4a flows and expands until it reaches the inner peripheral surface. For this reason, an appropriate pressurizing force is not generated in the bulging portion 4a, and the conductive characteristics may be deteriorated. On the other hand, if the hole diameter D of the film through hole is too small (0.5> D / d) than the hole diameter d of the via hole 8, the contact area of the conductive material 4 to the connection electrode surface may not be sufficiently secured. .
[0038]
Furthermore, in the said embodiment, since the bulging part 4a of the electrically-conductive material 4 is formed in the taper shape at least at the front end side, and since the upper end edge part of the through-hole 9 of the adhesive film 3 is also formed in a taper shape, When laminating and arranging the adhesive film 3 between the core materials 1, the taper portion can be easily inserted into the through hole 9 to be in a predetermined positioning state, which facilitates manufacture. Become.
[0039]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said form, A various change is possible within the scope of this invention. For example, in the above, an example in which PTFE is used as the fluororesin 7 when forming the prepreg 5 is shown. However, other than PTFE, for example, PFA, PCTFE, FEP, PVdF, PVF, ETFFE, ECTFE, or the like can also be used. These can also be used in combination. In particular, if PTFE is held on the glass cloth base 6 and then a prepreg 5 is formed by further providing a PFA layer on the surface side thereof, a multi-layer having further excellent adhesive strength between the prepregs 5 and between the cores 1. A circuit board can be produced.
[0040]
Moreover, although the example which used the adhesive film 3 which consists of PFA was given above, as this adhesive film 3, it produced using the above-mentioned other fluororesin, the material which combined these, and also materials other than a fluororesin It is also possible to do. Further, the conductive material 4 embedded in the via hole 8 may be formed using other conductive paste such as copper paste in addition to the silver paste described above.
[0041]
On the other hand, an inorganic filler having a dielectric constant of 6 or more may be dispersed in the fluororesin 7 when forming the prepreg 5. As a result, the overall dielectric constant becomes moderately large, and can be provided as a multilayer circuit board suitable for portable equipment such as mobile communication equipment.
[0042]
That is, a circuit board having a low dielectric constant is usually used as a circuit board incorporated in a communication device using a high frequency. However, a circuit board having a moderately high dielectric constant is desired for miniaturization. This is because circuit elements generally become larger as the wavelength of electromagnetic waves used (propagating electromagnetic waves) becomes longer, and the relative dielectric constant ε r The wavelength λ of the electromagnetic wave propagating in the dielectric is λ = λ 0 / (Ε r ) 0.5 (However, λ 0 : Propagation wavelength in vacuum), the smaller the circuit substrate, the smaller the circuit.
[0043]
Therefore, by including the inorganic filler as described above in the fluororesin 7, it can be provided as a multilayer circuit board suitable for a smaller device. As such an inorganic filler, for example, titanium dioxide, barium titanate, strontium titanate, calcium titanate and the like can be used.
[0044]
Furthermore, in order to improve the heat dissipation effect of the entire circuit board, a heat conduction formed by including a ceramic material having a thermal conductivity higher than that of the fluororesin, for example, titanium dioxide as described above so as to obtain a desired thermal conductivity. It is also possible to further stack layers. The thermal conductivity of a fluororesin substrate formed without providing such a layer is about 0.4 to 0.5 W / m / K. By including the ceramic material as described above, the thermal conductivity is Can be increased from 0.8 to 1.0 W / m / K.
[0045]
By providing such a heat conductive layer, even when an electrical component having a large calorific value is attached to the circuit board, for example, heat is dissipated through the entire circuit board without being accumulated in the periphery. By obtaining such a heat dissipation effect, overheating of the electrical components assembled to the multilayer circuit board can be suppressed, and the overall reliability including these electrical components can be further improved.
[0046]
On the other hand, in the said embodiment, although the example which formed the bulging part 4a of the electrically-conductive material 4 in the shape of a truncated cone was shown, the shape of this bulging part 4a is other, for example, an outer periphery turns into a paraboloid of revolution. It is also possible to have a shape of Furthermore, in the said embodiment, although the prepreg 5 formed by making the glass cloth base material 6 impregnate and hold | maintain the fluororesin 7 was used, it is also possible to use a fluororesin sheet | seat as such a prepreg, for example.
[0047]
Moreover, in the said embodiment, the figure which used the conductive pattern for connection (land) provided in the metal wiring layer 2 of the core material surface which faces in FIG. 1 as a connection electrode surface is shown, and to this connection electrode surface However, for example, when via holes 8 are formed coaxially between the core materials 1 as shown in the left part of FIG. Regardless of the layer 2, the upper end surface of the conductive material 4 filled in the via hole 8 of each lower core material 1 is regarded as a connection electrode surface, and the end surfaces of the upper and lower conductive materials 4 are adhesive films. It is also possible to adopt a configuration in which they are connected to each other through three through holes.
[0048]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.
[0049]
Example 1
Mass of 48 g / m in PTFE dispersion (product name: 3443J) manufactured by Mitsui DuPont Fluorochemical Co., Ltd., in which 60% by weight of PTFE is dispersed in pure water. 2 After impregnating the E glass cloth, apply the optimal amount with a doctor bar, dry the moisture at 100 ° C, and bake at 300 ° C to volatilize the surfactant and unsintered on the E glass cloth. A PTFE layer was formed. By repeating this step three times, a PTFE unsintered prepreg having a resin amount of 73 wt% was obtained.
[0050]
Two prepregs are stacked, and an electrolytic copper foil (product name: CF-T9ST) made by Fukuda Metal Foil Powder Industry Co., Ltd. is placed on the top and bottom of the prepreg. A core material for a multilayer board was obtained by thermocompression bonding with a vacuum press at 380 ° C. for 1 hour.
[0051]
Four such core materials were prepared, and a φ0.6 mm hole (via hole) was made with each micro drill, and a silver paste in which silver powder was dispersed in a thermosetting resin was embedded in the hole by a printing method. After that, for two of the four core materials, one copper foil is entirely removed by etching, and the other copper foil is left as an outer layer side core material, and for the remaining two sheets, one copper foil is used. Was removed by etching, and the other copper foil was etched into a desired pattern to form an inner layer side core material.
[0052]
And silver paste was further attached to the edge part of the side which removed the copper foil in the silver paste embedded in each core material in the shape of a truncated cone. Subsequently, outer layer side core materials are respectively arranged on the upper and lower sides of the two inner layer side core materials, and are stacked with an ETFE film (trifluoride film) having a thickness of 40 μm interposed between the core materials. 30kgf / cm 2 A multilayer circuit board was produced by thermocompression bonding for 30 minutes.
[0053]
As the ETFE film at this time, a film in which a hole of φ0.5 mm was previously formed at the same position as the hole position where the silver paste was embedded in the core material on each upper layer side was used.
[0054]
Example 2
A multilayer circuit board was produced in the same manner as in Example 1 except that the diameter of the hole previously drilled in the ETFE film was changed to φ0.35 mm.
[0055]
Example 3
TiO with average particle size of 1.0μm and specific gravity of 4.9 2 In the presence of an appropriate amount of surfactant, the particles are uniformly mixed in PTFE having an average particle diameter of 0.2 to 0.5 μm, a specific gravity of 2.13 to 2.22, and a relative dielectric constant of 2.1 at a mixing ratio of about 50 vol%. To obtain an aqueous dispersion.
A multilayer circuit board was produced in the same manner as in Example 1 except that a prepreg was produced using this aqueous dispersion.
[0056]
Comparative Example 1
A multilayer circuit board was produced in the same manner as in Example 1 except that the ETFE film in Example 1 that had not been punched was used.
[0057]
Comparative Example 2
In Example 1, a multilayer circuit board was produced in the same manner as in Example 1 except that the diameter of the hole previously drilled in the ETFE film was changed to φ0.2 mm.
[0058]
Comparative Example 3
In Example 1, a multilayer circuit board was produced in the same manner as in Example 1 except that the diameter of the hole previously formed in the ETFE film was changed to φ0.8 mm.
[0059]
The dielectric constant, dielectric loss tangent, water absorption, solder heat resistance, and conduction resistance between the silver paste embedded in the via hole and the metal wiring pattern of each multilayer circuit board obtained in Examples 1 to 3 and Comparative Examples 1 to 3 are as follows: It measured according to the measuring method of. The results are shown in Table 1.
[0060]
Measuring method
(1) Dielectric constant and dielectric loss tangent
The dielectric constant and dielectric loss tangent were measured in accordance with JIS C 6481 test method 5.12.
(2) Water absorption (wt%)
The water absorption was measured according to JIS C 6481 test method 5.14.
(3) Solder heat resistance
Solder heat resistance is based on JIS C 6481 (5.5 solder heat resistance). After the sample is pressure cooked, the sample is immersed in a solder bath at 260 ° C for 1 minute and pulled up. White spots were counted while observing. Here, the case where the number of white spots was 0 to 5 was judged good, 6 to 10 was acceptable, and 11 or more were impossible.
(4) Conduction resistance
The conduction resistance was measured by measuring the resistance value between the copper foils on the front and back sides by applying meter terminals of milliohm meters to the centers of the copper foils remaining on the front and back surfaces of each multilayer circuit board. On the other hand, instead of embedding the silver paste in the via hole, a multilayer board in which through-hole plating was applied to electrically connect the respective layers was produced in the same manner as described above, and the same resistance value was measured for the multilayer board as Resistance value was used. For each of Examples 1 to 3 and Comparative Examples 1 to 3, the case of 100 to 110 when the reference resistance value was 100 was evaluated as ◯, the case of 110 to 150 as Δ, and the case of exceeding 150 as ×.
[0061]
[Table 1]
Figure 0003867496
[0062]
As shown in the above table, in Examples 1 to 3, both the solder heat resistance and the conduction resistance are good, whereas in Comparative Examples 1 to 3, both characteristics are inferior. It has become. Further, for the multilayer circuit board of Comparative Example 1, when the cross section of the connection region between the conductive paste in the via hole and the lower copper foil pattern was observed with a microscope, the conductive paste hardly penetrates the adhesive film, It was recognized that the adhesive film around the portion where the tip of the conductive paste was pressed was deformed and raised, and a gap was formed. For this reason, this comparative example 1 is inferior in both solder heat resistance and conduction resistance, as shown in the above table.
[0063]
Further, when the same cross-sectional observation was performed for Comparative Example 2 as well, since the hole diameter formed in the adhesive film was small, not a few gaps were generated in the adhesive film due to the same deformation as described above. Admitted. For this reason, this comparative example 2 also cannot obtain sufficient solder heat resistance, and furthermore, since the bonding area between the conductive paste and the lower copper foil pattern is small, the conduction resistance is relatively large.
[0064]
On the other hand, in Comparative Example 3, the diameter of the hole formed in the adhesive film is large, and therefore there is a gap between the outer periphery of the conductive paste tip that is crushed in this hole and the inner periphery of the hole. Was recognized. For this reason, as described in the above table, the solder heat resistance is inferior, and in this case, only the expansion and deformation occurs in the hole at the tip of the conductive paste at the time of thermocompression bonding. Since it is not sufficiently compacted, the conduction resistance characteristics are not good.
[0065]
On the other hand, in Examples 1 to 3 manufactured by setting the hole diameter D of the adhesive film to 0.5 <D / d <1.0, each of the conductive paste tip side is not a gap in the hole of the adhesive film. It is recognized that it is filled and bonded to the underlying copper foil pattern, and there is no gap between the layers, which makes the multilayer circuit board excellent in both solder heat resistance and conduction resistance. It has become.
[0066]
【The invention's effect】
As described above, according to the present invention, the conductive material filled in the via hole and the metal wiring layer are securely connected through the adhesive film even when the multi-layered structure is formed using the fluororesin substrate. Since there is no gap around the connection portion, the degree of freedom in circuit design in the metal wiring layer is improved, and a multilayer circuit board with improved reliability can be provided.
[Brief description of the drawings]
FIG. 1 shows a relationship between a core material and an adhesive film in a manufacturing process of a multilayer circuit board according to an embodiment of the present invention. FIG. 1 (a) shows a conductive material provided in a via hole of the core material; The principal part cross-sectional schematic diagram which shows the relationship with the adhesive film, the same figure (b) is the principal part cross-sectional schematic diagram which shows the initial state at the time of thermocompression bonding, and the same figure (c) is after the same figure (b). The principal part cross-sectional schematic diagram which shows a state, The figure (d) is a principal part cross-sectional schematic diagram which shows the final state at the time of thermocompression bonding.
FIG. 2 is a schematic cross-sectional view of the multilayer circuit board.
FIGS. 3A and 3B show a manufacturing process of the multilayer circuit board, in which FIG. 3A is a schematic cross-sectional view of a prepreg manufactured initially, and FIG. 3B is a core material formed by stacking the prepregs. FIG. 4C is a schematic cross-sectional view showing a state in which a via hole is formed in a core material, and FIG. 4D is a schematic cross-sectional view showing a state in which a conductive material is embedded in the via hole.
4A and 4B show a manufacturing process of a conventional circuit board, in which FIG. 4A is a schematic cross-sectional view of a prepreg manufactured initially, and FIG. 4B is a circuit board formed by stacking the prepregs. FIG.
FIG. 5 is a schematic cross-sectional view showing a conventional method for manufacturing a multilayer circuit board.
FIG. 6 is a schematic cross-sectional view of a multilayer circuit board in which interlayer connection is made through a conventional via hole.
[Explanation of symbols]
1 Core material
2 Metal wiring layer
3 Adhesive film
4 Conductive material
4a bulge
5 prepreg
6 Glass cloth substrate
7 Fluororesin
8 Beer hall
9 Through hole

Claims (5)

フッ素樹脂絶縁層を備えるプリプレグをそれぞれ複数積層して形成された複数のコア材が、接着用フィルムを介して相互に積層された多層回路基板であって、各コア材を厚さ方向に貫通するビアホールに充填された導電材の先端にコア材表面からの高さが接着用フィルムの厚さ寸法よりも大きく突出させてテーパ状に形成された膨出部が設けられ、導電材の端面が、接着用フィルムに予め形成された貫通穴を通して対面するコア材表面の接続用電極面に密着すると共に、上記貫通穴の内周が導電材の先端側外周に隙間なく密着した状態に形成されており、貫通穴の穴径をD、ビアホールの穴径をdとするとき、0.5<D/d<1.0であることを特徴とする多層回路基板。A plurality of core materials formed by laminating a plurality of prepregs each having a fluororesin insulating layer are multilayer circuit boards laminated to each other via an adhesive film, and penetrate each core material in the thickness direction. The tip of the conductive material filled in the via hole is provided with a bulging portion that is formed in a tapered shape with the height from the surface of the core material protruding larger than the thickness dimension of the adhesive film, and the end surface of the conductive material is together in close contact with the connecting electrode surface of the core material surface which faces through preformed through holes in the adhesive film is formed in a state of close contact without a gap with the inner periphery of the conductive material leading end side outer circumference of the through hole A multilayer circuit board wherein 0.5 <D / d <1.0, where D is the diameter of the through hole and d is the diameter of the via hole . 上記接着用フィルムがフッ素樹脂から成ることを特徴とする請求項1の多層回路基板。 2. The multilayer circuit board according to claim 1, wherein the adhesive film is made of a fluororesin. 上記プリプレグにおけるフッ素樹脂中に誘電率6以上の無機フィラーが分散されていることを特徴とする請求項1又は2の多層回路基板。 3. The multilayer circuit board according to claim 1, wherein an inorganic filler having a dielectric constant of 6 or more is dispersed in the fluororesin in the prepreg. フッ素樹脂よりも熱伝導率が大きな材質特性を有するセラミック材料が含まれた熱伝導層がさらに積層されていることを特徴とする請求項1、2又は3の多層回路基板。 4. The multilayer circuit board according to claim 1, wherein a heat conductive layer containing a ceramic material having a material characteristic having a higher thermal conductivity than that of a fluororesin is further laminated. フッ素樹脂絶縁層を備えるプリプレグをそれぞれ複数積層して複数のコア材を作製し、これらコア材を、接着用フィルムを介して相互に積層し加熱圧着して一体化する多層回路基板の製造法であって、コア材を厚さ方向に貫通するビアホールに導電材を充填すると共に導電材の先端にコア材表面からの高さが接着用フィルムの厚さ寸法よりも大きく突出させてテーパ状に形成する膨出部を設ける一方、接着用フィルムにおける各ビアホールに対応する箇所に貫通穴を形成し、貫通穴の穴径をD、ビアホールの穴径をdとするとき、0.5<D/d<1.0として、貫通穴に導電材の膨出部を挿入させて各コア材を積層し加熱圧着することを特徴とする多層回路基板の製造法。A method for producing a multilayer circuit board in which a plurality of core materials are produced by laminating a plurality of prepregs each having a fluororesin insulating layer, and these core materials are laminated with each other through an adhesive film and integrated by thermocompression bonding. In addition, a conductive material is filled in the via hole that penetrates the core material in the thickness direction, and the tip from the surface of the core material is projected to be larger than the thickness dimension of the adhesive film at the tip of the conductive material, and is formed into a taper while providing the bulging portion of the through hole is formed at positions corresponding to the via holes in the adhesive film, the hole diameter of the through hole when D, and hole diameter of the via hole and d, 0.5 <D / d <1.0, a method for producing a multilayer circuit board, wherein the core material is laminated and thermocompression bonded by inserting a bulging portion of a conductive material into a through hole.
JP2000341472A 2000-11-09 2000-11-09 Multilayer circuit board and manufacturing method thereof Expired - Lifetime JP3867496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341472A JP3867496B2 (en) 2000-11-09 2000-11-09 Multilayer circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341472A JP3867496B2 (en) 2000-11-09 2000-11-09 Multilayer circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002151844A JP2002151844A (en) 2002-05-24
JP3867496B2 true JP3867496B2 (en) 2007-01-10

Family

ID=18816207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341472A Expired - Lifetime JP3867496B2 (en) 2000-11-09 2000-11-09 Multilayer circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3867496B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431833B2 (en) 2008-12-29 2013-04-30 Ibiden Co., Ltd. Printed wiring board and method for manufacturing the same
TWI864310B (en) 2020-07-28 2024-12-01 愛爾蘭商范斯福複合材料有限公司 Dielectric substrate and copper clad laminate and printed circuit board comprising the same
TWI833095B (en) 2020-07-28 2024-02-21 美商聖高拜塑膠製品公司 Copper-clad laminate, printed circuit board comprising the same, and method of forming the same
EP4265075A4 (en) 2020-12-16 2024-11-27 Saint-Gobain Performance Plastics Corporation COPPER LAMINATE AND ITS FORMING METHOD
TWI811882B (en) * 2020-12-16 2023-08-11 美商聖高拜塑膠製品公司 Dielectric substrate and method of forming the same
WO2022133402A1 (en) * 2020-12-16 2022-06-23 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
CN114867195B (en) * 2022-06-15 2024-11-15 深圳市纽菲斯新材料科技有限公司 A multilayer circuit board and its preparation process and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536274B2 (en) * 1990-10-25 1996-09-18 日本電気株式会社 Method for manufacturing polyimide multilayer wiring board
JPH0818403B2 (en) * 1993-06-03 1996-02-28 日本ピラー工業株式会社 Laminates and green composite films for laminates
JPH1051139A (en) * 1996-07-30 1998-02-20 Ibiden Co Ltd Single-sided circuit board for multilayer printed-wiring board and its manufacture as well as multilayer printed-wiring board
JPH10178249A (en) * 1996-12-18 1998-06-30 Kyocera Corp Wiring board and method of manufacturing the same
JP3726391B2 (en) * 1996-12-25 2005-12-14 Jsr株式会社 Method for manufacturing multilayer connector and method for manufacturing adapter device for circuit board inspection
JPH11112149A (en) * 1997-09-30 1999-04-23 Elna Co Ltd Multilayered printed wiring board

Also Published As

Publication number Publication date
JP2002151844A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
JP4597631B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
US9066419B2 (en) Multilayer wiring substrate
WO2006118141A1 (en) Multilayer wiring board and method for producing same
JP3867496B2 (en) Multilayer circuit board and manufacturing method thereof
JP4378511B2 (en) Electronic component built-in wiring board
JP2000312063A (en) Wiring board and method of manufacturing the same
JP2006294725A (en) Wiring board, multilayered wiring board, and manufacturing method of these
JPH09162553A (en) Manufacture of multilayer printed wiring board
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2004311720A (en) Multilayer wiring board, base material for multilayer wiring board, and method of manufacturing the same
JP3956087B2 (en) Method for manufacturing printed circuit board
JP4012022B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JPH1070363A (en) Method for manufacturing printed wiring board
JP4144933B2 (en) Multilayer circuit board and manufacturing method thereof
JPH08264939A (en) Manufacture of printed wiring board
JPH06209148A (en) Double-sided printed board and manufacture thereof
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP2008016651A (en) Component built-in wiring board and its manufacturing method
JP4657870B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2004327744A (en) Multilayer wiring board and manufacturing method thereof
JPH118472A (en) Multilayer wiring board
JP7128857B2 (en) CIRCUIT BOARD, CIRCUIT BOARD MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
JP5556984B2 (en) Multilayer wiring board and manufacturing method thereof
JP4774606B2 (en) Method for manufacturing circuit-formed substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3867496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141020

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term