[go: up one dir, main page]

JP3855327B2 - Polyimide coating material - Google Patents

Polyimide coating material Download PDF

Info

Publication number
JP3855327B2
JP3855327B2 JP32755596A JP32755596A JP3855327B2 JP 3855327 B2 JP3855327 B2 JP 3855327B2 JP 32755596 A JP32755596 A JP 32755596A JP 32755596 A JP32755596 A JP 32755596A JP 3855327 B2 JP3855327 B2 JP 3855327B2
Authority
JP
Japan
Prior art keywords
polyimide
bis
aminophenoxy
coating material
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32755596A
Other languages
Japanese (ja)
Other versions
JPH10152647A (en
Inventor
昌二 前川
国彦 高井
博司 真見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP32755596A priority Critical patent/JP3855327B2/en
Publication of JPH10152647A publication Critical patent/JPH10152647A/en
Application granted granted Critical
Publication of JP3855327B2 publication Critical patent/JP3855327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、新規ポリイミド系コーティング材料に関し、より詳しくは、各種基材への付着性・接着性及び耐熱性の優れた新規な溶剤可溶性ポリイミド樹脂を含有してなる保存安定性の優れたコーティング材料に関するものである。
【0002】
【従来の技術】
高耐熱性及び良好な機械的特性を有する芳香族ポリイミド樹脂は、通常の有機溶剤に不溶性であり、成形加工が困難である。従って、成形加工する方法として、一般には、まず芳香族テトラカルボン酸二無水物と芳香族ジアミンとを特定の極性有機溶剤中、低温下で反応して、可溶性のポリイミド前駆体であるポリアミド酸を合成し、この段階で形状を付与した後、高温下で脱水閉環してポリイミド樹脂を得る方法が実施されている。しかし、この方法は、反応系内の水分を極力下げる操作が必要であり、又、ポリアミド酸溶液の保存安定性が悪く、単に室温で放置するだけでも空気中の水分を吸収し、粘度が変化したり白濁すると共に分子量が低下しポリイミド樹脂本来の物性を発揮しない等の欠点を有している。
【0003】
一方、ここ数年、ポリアミド酸溶液の保存安定性の問題を解消すべく数種の溶剤可溶性のポリイミド樹脂も提案されている(例えば、特開昭61−19634号、特開昭61−141731号、特開昭61−28526号、特公平5−62893号等)。これらの有機溶剤可溶性ポリイミド樹脂は、保存安定性を改良し、製膜時には使用溶剤を除去することにより、高耐熱性を主とする優れた諸物性を有するポリイミド樹脂を得ることを目的としている。
【0004】
しかし、これらの溶剤可溶性ポリイミド樹脂は、熱特性、機械特性、電気特性等に優れるものの、コーティング材料や熱融着フィルムとして使用する際の各種基材(金属、ガラス、プラスチック等)への付着性・接着性に関しては、満足できる水準にない。
【0005】
従って、性能、作業性、コスト等トータル的にみて、ポリイミド系コーティング材料は、技術的に満足される水準に至っていないのが現状である。
【0006】
【発明が解決しようとする課題】
このような状況の中で、本発明は、ポリイミド本来の優れた耐熱性を低下させることなく、優れた保存安定性を有し、かつ付着性・接着性の優れたポリイミド系コーティング材料を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を達成すべく鋭意検討の結果、特定のポリイミド樹脂が所定の効果を奏することを見いだし、かかる知見に基づいて本発明を完成するに至った。
【0008】
即ち、本発明に係わるポリイミド系コーティング材料は、有機溶剤100重量部に対し、一般式(2)で表される芳香族ジアミン類の中から選ばれた1種若しくは2種以上のジアミンと、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸類(以下、「DSDA類」という)及びエチレングリコールビストリメリット酸類(以下、「TMEG類」という)の2種の芳香族テトラカルボン酸類とを有機溶剤存在下で脱水縮合して製造された一般式(1)で表される繰り返し単位を有し、かつ一般式(1a)又は一般式(1b)で表される繰り返し単位を有していないポリイミド共重合体1〜50重量部を溶解してなるポリイミド系コーティング材料であって、DSDA類とTMEG類との使用モル比率(%)がDSDA類:TMEG類=5:95〜95:5の範囲であることを特徴とする。
【0009】
【化6】

Figure 0003855327
[式中、Zは−S−、−SO −、式(a)又は式(b)で示される基を表す。m、n、qは正の整数を表す。]
【0010】
【化7】
Figure 0003855327
【0011】
【化8】
Figure 0003855327
[式中、X1 、X2 は同一又は異なって、−O−又は−S−を表す。Yは単結合又は−O−、−S−、−SO2 −、−C(=O)−NH−、−C(−CH32 −、−C(−CF32 −若しくは−CO−から選ばれる二価の基を表す。]
【化9】
Figure 0003855327
[式中、Zは一般式(1)で記載される通りである。]
【化10】
Figure 0003855327
[式中、Rは炭素数1〜10のアルキレン基、−CH OC −、炭素数1〜10のアルキレン基またはメチレン基がSiに結合している−CH OC −を表す。tは1〜20の整数を表す。]
【0012】
本発明に係る一般式(1)で表されるポリイミド共重合体は、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸類及びエチレングリコールビストリメリット酸類の2種の芳香族テトラカルボン酸類と所定の芳香族ジアミンとを有機溶剤存在下で脱水縮合して製造されるものである。
【0013】
本発明に用いられるジフェニルスルホン−3,3’,4,4’−テトラカルボン酸類(以下、「DSDA類」という)とは当該カルボン酸及びその無水物並びにそれらのハロゲン化物、炭素数1〜4のアルコールとのエステル等のカルボン酸誘導体をいう。低コスト化の点からはジフェニルスルホン−3,3’,4,4’−テトラカルボン酸が好ましく、反応活性の点からは、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸二無水物が好ましい。
【0014】
更に、本発明に用いられるエチレングリコールビストリメリット酸類(以下、「TMEG類」という)とは、当該カルボン酸及びその無水物並びにそれらのハロゲン化物、炭素数1〜4のアルコールとのエステル等のカルボン酸誘導体をいう。低コスト化の点からはエチレングリコールビストリメリット酸が好ましく、反応活性の点からはエチレングリコールビストリメリット酸二無水物が好ましい。
【0015】
エチレングリコールビストリメリット酸類については、その製造プロセス上、未反応のトリメリット酸若しくはその無水物が僅かながら不純物として混入しており、目的の分子量及び性能を有するポリイミド樹脂を得る上では高純度のもの、即ち、トリメリット酸若しくはその無水物の含有量が1%未満のものが好ましい。
【0016】
酸成分として併用するDSDA類とTMEG類との反応仕込み時のモル比率は、DSDA類:TMEG類=5:95〜95:5の範囲であり、好ましくは、DSDA類:TMEG類=20:80〜80:20である。DSDA類がこの範囲より少ない場合は、得られるポリイミド樹脂の耐熱性及び溶液状態での保存安定性が悪くなり、又、TMEG類がこの範囲より少ない場合は、各種基材への付着性・接着性の点で所定の効果が得られにくい。
【0017】
酸成分として上記2種の芳香族テトラカルボン酸類のみを使用することが好ましいが、場合により他の芳香族テトラカルボン酸類を併用することもできる。
【0018】
他の芳香族テトラカルボン酸類としては、4個のカルボキシル基が芳香環に直接結合している芳香族テトラカルボン酸類が例示され、具体的には、ジフェニルスルホン−2,3,3’,4’−テトラカルボン酸、ジフェニルスルホン−2,2’,3,3’−テトラカルボン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ジフェニルエーテルテトラカルボン酸、ナフタリンテトラカルボン酸及び夫々の酸無水物等の各種カルボン酸誘導体が挙げられる。
【0019】
本発明に係るポリイミド共重合体に用いる芳香族ジアミン成分としては、一般式(2)で表される芳香族ジアミンが好ましい。
【0020】
【化11】
Figure 0003855327
[式中、Zは−S−、−SO −、式(a)又は式(b)で示される基を表す。]
【0021】
【化12】
Figure 0003855327
【0022】
【化13】
Figure 0003855327
[式中、X1 、X2 は同一又は異なって、−O−又は−S−を表す。Yは単結合又は−O−、−S−、−SO2 −、−C(=O)−NH−、−C(−CH32 −、−C(−CF32 −若しくは−CO−から選ばれる二価の基を表す。]
【0023】
一般式(2)で表される芳香族ジアミンの具体例としては、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルホン、1,4−ビス(p−アミノフェニルチオエーテル)ベンゼン、1,3−ビス(p−アミノフェニルチオエーテル)ベンゼン、2,2’−ビス〔4−(p−アミノフェノキシ)フェニル〕プロパン、2,2’−ビス〔3−(p−アミノフェノキシ)フェニル〕プロパン、2,2’−ビス〔4−(m−アミノフェノキシ)フェニル〕プロパン、2,2’−ビス〔3−(m−アミノフェノキシ)フェニル〕プロパン、2,2’−ビス〔4−(p−アミノフェニルチオエーテル)フェニル〕プロパン、2,2’−ビス〔3−(p−アミノフェニルチオエーテル)フェニル〕プロパン、4,4’−ビス(p−アミノフェノキシ)ジフェニルスルホン、3,3’−ビス(p−アミノフェノキシ)ジフェニルスルホン、3,4’−ビス(p−アミノフェノキシ)ジフェニルスルホン、4,4’−ビス(m−アミノフェノキシ)ジフェニルスルホン、3,3’−ビス(m−アミノフェノキシ)ジフェニルスルホン、3,4’−ビス(m−アミノフェノキシ)ジフェニルスルホン、4,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルホン、3,3’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルホン、3,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルホン、4,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルホン、3,3’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルホン、3,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルホン、4,4’−ビス(p−アミノフェノキシ)ジフェニルエーテル、3,3’−ビス(p−アミノフェノキシ)ジフェニルエーテル、3,4’−ビス(p−アミノフェノキシ)ジフェニルエーテル、4,4’−ビス(m−アミノフェノキシ)ジフェニルエーテル、3,3’−ビス(m−アミノフェノキシ)ジフェニルエーテル、3,4’−ビス(m−アミノフェノキシ)ジフェニルエーテル、4,4’−ビス(p−アミノフェノキシ)ジフェニルスルフィド、3,3’−ビス(p−アミノフェノキシ)ジフェニルスルフィド、3,4’−ビス(p−アミノフェノキシ)ジフェニルスルフィド、4,4’−ビス(m−アミノフェノキシ)ジフェニルスルフィド、3,3’−ビス(m−アミノフェノキシ)ジフェニルスルフィド、3,4’−ビス(m−アミノフェノキシ)ジフェニルスルフィド、4,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルフィド、3,3’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルフィド、3,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルスルフィド、4,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルフィド、3,3’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルフィド、3,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルスルフィド、4,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルエーテル、3,3’−ビス(p−アミノフェニルチオエーテル)ジフェニルエーテル、3,4’−ビス(p−アミノフェニルチオエーテル)ジフェニルエーテル、4,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルエーテル、3,3’−ビス(m−アミノフェニルチオエーテル)ジフェニルエーテル、3,4’−ビス(m−アミノフェニルチオエーテル)ジフェニルエーテル、4,4’−ビス(p−アミノフェノキシ)ジフェニル、3,3’−ビス(p−アミノフェノキシ)ジフェニル、4,4’−ビス(p−アミノフェノキシ)ベンゾフェノン、3,3’−ビス(p−アミノフェノキシ)ベンゾフェノン、3,4’−ビス(p−アミノフェノキシ)ベンゾフェノン、4,4’−ビス(p−アミノフェニルチオエーテル)ジフェニル、3,3’−ビス(p−アミノフェニルチオエーテル)ジフェニル、3−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルスルホン、3−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルスルフィド、3−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルエーテル、3−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ベンゾフェノン、3−(p−アミノフェニルチオエーテル)−4’−(p−アミノフェノキシ)ジフェニルスルホン、3−(p−アミノフェニルチオエーテル)−4’−(p−アミノフェノキシ)ジフェニルスルフィド、3−(p−アミノフェニルチオエーテル)−4’−(p−アミノフェノキシ)ジフェニルエーテル、3−(p−アミノフェニルチオエーテル)−4’−(p−アミノフェノキシ)ベンゾフェノン、1,4−ビス(p−アミノフェニルチオエーテル)ベンゼン、1,3−ビス(p−アミノフェニルチオエーテル)ベンゼン、4−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルスルホン、4−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルスルフィド、4−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ジフェニルエーテル、4−(p−アミノフェノキシ)−4’−(p−アミノフェニルチオエーテル)ベンゾフェノン等が例示される。
【0024】
ジアミン成分としては、これらの一般式(2)で表される芳香族ジアミンを単独で使用することが好ましいが、2種以上の当該ジアミンを混合して使用できる外、他の芳香族ジアミンを併用することもできる。
【0025】
併用できる芳香族ジアミンとしては、例えば、m−フェニレンジアミン、o−フェニレンジアミン、p−フェニレンジアミン、2,4−トルエンジアミン、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、4,4’−ジアミノベンゾフェノン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、1,3’−ビス(p−アミノフェノキシ)ベンゼン、1,4’−ビス(p−アミノフェノキシ)ベンゼン、1,5−ジアミノナフタレン、2,6−ジアミノナフタレン、2,6−ジアミノピリジン等が挙げられるが、これらのジアミンの配合量は、一般式(2)で表わされるジアミンの特性を損わない範囲に限られ、一般的にはジアミンの全使用量に対して50モル%以下が望ましい。
【0026】
本発明に係るポリイミド系コーティング材料は、一般に以下の方法により製造される。
【0027】
即ち、DSDA類及びTMEG類の2種の芳香族テトラカルボン酸類と芳香族ジアミン類とを酸過剰系にて有機溶剤中に溶解し、従来の様に特別に低温でのアミド化反応操作は行わず、直ちに加熱によるイミド化反応をさせることにより製造する。この場合、2種の酸成分及びジアミン成分の有機溶剤への溶解順序については特に制限するものではない。
【0028】
2種の芳香族テトラカルボン酸類と芳香族ジアミン類との反応仕込み時のモル比率は、付着性・接着性及び溶液状態での保存安定性の良好なポリイミド樹脂を得る上で酸過剰系にする必要があり、特に芳香族テトラカルボン酸類:芳香族ジアミン類=101:100〜120:100の範囲が好ましい。この範囲において得られるポリイミド樹脂の数平均分子量は4,000〜50,000となる。
【0029】
酸過剰率がこの範囲より小さい場合は、得られるポリイミド樹脂の付着性・接着性が不十分であり、この範囲より大きい場合は、得られるポリイミド樹脂の耐熱性および機械強度が不十分となる。一方、ジアミン過剰系となった場合には得られるポリイミド樹脂溶液がゲル状を呈し易く保存安定性が著しく低下する。
【0030】
又、この反応に用いられる有機溶剤としては、非プロトン系極性溶剤及び/又はフェノール系溶剤が一般的に好ましく、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルリン酸トリアミド、γ−ブチロラクトン、フェノール、クレゾール、ジメチルフェノール、クロルフェノール、ブロムフェノール等が挙げられる。これらの溶剤以外に、溶解能は劣るものの、一般的有機溶剤であるケトン類、エステル類、ラクトン類、エーテル類、セロソルブ類、ハロゲン化炭化水素類、炭化水素類、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、マロン酸ジエチル、ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチングリコールジメチルエーテル、テトラヒドロフラン、ジグライム、メチルセロソルブ、エチレングリコールモノメチルエーテル、ジクロルメタン、1,2−ジクロルエタン、1,4−ジクロルブタン、トリクロルエタン、クロルベンゼン、ジクロルベンゼン、ヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等も使用することができる。
【0031】
イミド化反応は、酸成分及びアミン成分を、有機溶剤溶液中にて、通常60〜250℃、特に好ましくは100〜200℃に加熱することにより実施される。60℃以下では経済的な反応速度が得られにくく、250℃以上では反応系の着色、副反応等が生じ易くいずれの場合も不利である。
【0032】
反応時間は、基質の種類、溶剤、諸条件等によって異なるが、通常0.5〜50時間である。
【0033】
有機溶媒中のポリイミド成分の濃度は1〜50重量%、特に5〜40重量%が好ましい。1重量%未満では経済的に不利であり、50重量%を超えると高粘度となり作業性に劣る。
【0034】
【発明の実施の形態】
上記の方法により得られたポリイミド樹脂溶液は、そのまま、ガラス上、金属板上又はトレイ中にキャスティング又はスピンコーティングするか若しくは不織布やカーボンファイバー、ガラス布等に含浸し、加熱等によって有機溶剤等を除去することにより容易にポリイミドコーティング被膜が得られる。
【0035】
又、各種ポリマー、フィラー、顔料、および当該ポリイミド樹脂の末端カルボキシル基と反応可能な化合物等の添加により、目的・用途に応じたポリイミド樹脂組成物を得ることが可能であり、更なる付着性・接着性が要求される場合にはシラン系、チタン系のカップリング剤等の使用が可能である。
【0036】
本発明により得られるポリイミド系コーティング材料は、複合材料、耐熱性塗料、耐熱性接着剤、電機・電子材料等の分野への応用が可能であり、具体的には、プリント配線基盤、フレキシブル配線基盤、テープキャリアー、半導体集積回路素子、エナメル電線、電池等の電子部品の表面保護膜、層間絶縁膜、積層断熱材、接着剤、接着フィルム、カバーレイフィルムとして、又、アルミ、鉄、セラミック、繊維、フィラー等の表面保護膜、接着剤、結束剤等として使用される。
【0037】
【実施例】
以下、本発明を実施例によって更に詳細に説明する。尚、実施例中における物性の測定方法は次の通りである。
【0038】
数平均分子量
ゲルパーミエーションクロマトグラフィーにより数平均分子量(Mn)及び重量平均分子量(Mw)を求めた。装置としては島津製作所製「LC−6A」を使用し、カラムは昭和電工製の「AD-802.5/s」、「AD-803/s」、「AD-804/s」及び「AD-805/s」の4本を連結使用した。溶媒は0.01mol/LのLiBr含有N,N−ジメチルホルムアミド(DMF)溶液を使用し、ポリエチレンオキサイドを標準物質とした。
【0039】
溶液粘度
B型粘度計を用い、30℃にて測定した。
【0040】
溶液の保存安定性試験
40℃にて3カ月間密封保存後の粘度変化により評価した。第1表において、粘度変化が±5%以内の場合「○」、それ以上の場合「×」で表示している。
【0041】
碁盤目テープ試験
各実施例及び比較例にて得られたポリイミド樹脂溶液をアルミ板(JIS H4000 A1050P)及び軟質ソーダガラス板上にそれぞれスピンコーティングし、ファインオーブンにて250℃、15分で脱溶剤することにより、膜厚10〜25μmのポリイミドコーティング皮膜を作製した。得られたポリイミド皮膜のアルミ板及び軟質ソーダガラス板に対する付着性を評価するため、碁盤目テープ試験をJIS K−5400に準拠して実施した。点数は10点満点で、点数が高いほど密着性に優れる。
【0042】
熱分解温度
熱重量分析(TGA)装置を使用し、昇温速度10℃/min、窒素気流下でのポリイミド樹脂の重量が10重量%減少する温度を測定した。
【0043】
実施例1
温度計、攪拌器、冷却管および窒素導入管を備えた1リットルの反応器に4,4’−ビス(p−アミノフェノキシ)ジフェニルスルホン(BAPS)43.25g(0.100mol)、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸二無水物(DSDA)30.43g(0.085mol)、エチレングリコールビストリメリット酸二無水物(TMEG)8.2g(0.02mol)、N−メチル−2−ピロリドン(NMP)310g、およびキシレン16gを仕込み、窒素気流下、170℃で8時間、生成水を除去しながら反応させ、目的とする透明粘稠なポリイミド樹脂溶液を得た。この溶液の粘度は29Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0044】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を評価した。評価結果を第1表に示す。
【0045】
実施例2
DSDAの仕込み量を7.16g(0.02mol)に、TMEGの仕込み量を34.85g(0.085mol)とした他は実施例1と同様の操作を行った。
得られたポリイミド樹脂溶液の粘度は20Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0046】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0047】
実施例3
BAPSの代わりに2,2’−ビス〔4−(p−アミノフェノキシ)フェニル〕プロパン(BAPP)41.05g(0.100mol)を使用した他は実施例1と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は27Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0048】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0049】
実施例4
DSDAの仕込み量を7.16g(0.02mol)に、TMEGの仕込み量を34.85g(0.085mol)に、BAPSの代わりにBAPP41.05g(0.100mol)を使用した他は実施例1と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は21Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0050】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0051】
実施例5
温度計、攪拌器、冷却管および窒素導入管を備えた1リットルの反応器にBAPS43.25g(0.100mol)、DSDA19.69g(0.055mol)、TMEG22.55g(0.055mol)、N−メチル−2−ピロリドン(NMP)310g、およびキシレン16gを仕込み、窒素気流下、170℃で5時間、生成水を除去しながら反応させ、目的とする透明粘稠なポリイミド樹脂溶液を得た。この溶液の粘度は12Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0052】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0053】
実施例6
BAPSの代わりにBAPP41.05g(0.100mol)を使用した他は実施例5と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は11Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0054】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0055】
比較例1
温度計、攪拌器、冷却管および窒素導入管を備えた1リットルの反応器にBAPS 43.25g(0.100mol)、TMEG41.0g(0.100mol)、NMP310g、およびキシレン16gを仕込み、窒素気流下、170℃で8時間、生成水を除去しながら反応させ、透明粘稠なポリイミド樹脂溶液を得た。この溶液の粘度は92Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0056】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0057】
比較例2
BAPSの代わりにBAPP41.05g(0.100mol)を使用した他は比較例1と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は88Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0058】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0059】
比較例1及び2では、酸性分としてTMEGのみを用い、DSDAを使用していないため、ポリイミド樹脂溶液の保存安定性が不良であることがわかる。
【0060】
比較例3
TMEGの代わりにDSDA35.80g(0.100mol)を使用した他は比較例1と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は195Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0061】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0062】
比較例4
BAPSの代わりにBAPP41.05g(0.100mol)を、TMEGの代わりにDSDA35.80g(0.100mol)を使用した他は比較例1と同様の操作を行った。得られたポリイミド樹脂溶液の粘度は179Pであった。又、ポリイミド樹脂溶液の保存安定性及び当該ポリマーの分子量を測定した。その結果を第1表に示す。
【0063】
更に、碁盤目テープ試験に従いポリイミドコーティング皮膜を作成し、この皮膜を用いて熱分解温度及び付着性を測定した。評価した結果を第1表に示す。
【0064】
比較例3及び4では、酸性分としてDSDAのみを用い、TMEGを用いていないため、ポリイミド樹脂溶液の保存安定性には優れるが、接着性の点で劣ることがわかる。
【0065】
【表1】
Figure 0003855327
【0066】
【発明の効果】
本発明により得られるポリイミド系コーティング材料は、各種溶剤に可溶性であり、かつ優れた各種基材への付着性・接着性、耐熱性を有しており、更に、優れた保存安定性を有する。[0001]
[Industrial application fields]
The present invention relates to a novel polyimide-based coating material, and more specifically, a coating material with excellent storage stability comprising a novel solvent-soluble polyimide resin having excellent adhesion, adhesion and heat resistance to various substrates. It is about.
[0002]
[Prior art]
Aromatic polyimide resins having high heat resistance and good mechanical properties are insoluble in ordinary organic solvents and are difficult to mold. Therefore, as a method of molding, generally, an aromatic tetracarboxylic dianhydride and an aromatic diamine are first reacted in a specific polar organic solvent at a low temperature to obtain a polyamic acid which is a soluble polyimide precursor. A method of synthesizing and giving a shape at this stage and then dehydrating and ring-closing at a high temperature to obtain a polyimide resin has been practiced. However, this method requires an operation that lowers the moisture in the reaction system as much as possible, and the storage stability of the polyamic acid solution is poor. Even if it is simply left at room temperature, it absorbs moisture in the air and the viscosity changes. And has a drawback that the molecular weight is lowered and the original physical properties of the polyimide resin are not exhibited.
[0003]
On the other hand, several kinds of solvent-soluble polyimide resins have also been proposed in recent years in order to solve the problem of storage stability of the polyamic acid solution (for example, Japanese Patent Laid-Open Nos. 61-19634 and 61-141731). JP, 61-28526, JP-B-5-62893, etc.). These organic solvent-soluble polyimide resins are intended to obtain a polyimide resin having excellent physical properties, mainly high heat resistance, by improving storage stability and removing the solvent used during film formation.
[0004]
However, these solvent-soluble polyimide resins are excellent in thermal properties, mechanical properties, electrical properties, etc., but adhere to various base materials (metals, glass, plastics, etc.) when used as coating materials or heat fusion films.・ As for adhesiveness, it is not at a satisfactory level.
[0005]
Accordingly, in view of the total performance, workability, cost, etc., the polyimide coating material is not at the level that is technically satisfactory.
[0006]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a polyimide-based coating material having excellent storage stability and excellent adhesion and adhesion without reducing the inherent heat resistance of polyimide. For the purpose.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above problems, the present inventors have found that a specific polyimide resin has a predetermined effect, and have completed the present invention based on such knowledge.
[0008]
That is, the polyimide coating material according to the present invention is based on 100 parts by weight of the organic solvent.One or more diamines selected from the aromatic diamines represented by the general formula (2) and diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acids (hereinafter referred to as “DSDA”). ) And ethylene glycol bistrimellitic acids (hereinafter referred to as “TMEGs”) and two aromatic tetracarboxylic acids in the presence of an organic solvent.Having a repeating unit represented by the general formula (1)And having no repeating unit represented by the general formula (1a) or (1b)Dissolve 1-50 parts by weight of polyimide copolymerIt is a polyimide-based coating material, and the use molar ratio (%) of DSDAs and TMEGs is in the range of DSDAs: TMEGs = 5: 95 to 95: 5.It is characterized by that.
[0009]
[Chemical 6]
Figure 0003855327
[In the formula, Z represents -S-, -SO.2 -Represents a group represented by formula (a) or formula (b). m, n, and q represent a positive integer. ]
[0010]
[Chemical 7]
Figure 0003855327
[0011]
[Chemical 8]
Figure 0003855327
[Where X1 , X2 Are the same or different and represent —O— or —S—. Y is a single bond or -O-, -S-, -SO.2 -, -C (= O) -NH-, -C (-CHThree )2 -, -C (-CFThree )2 Represents a divalent group selected from-or -CO-. ]
[Chemical 9]
Figure 0003855327
[Wherein Z is as described in formula (1). ]
[Chemical Formula 10]
Figure 0003855327
[Wherein, R represents an alkylene group having 1 to 10 carbon atoms, —CH 2 OC 6 H 4 -, A C1-C10 alkylene group or a methylene group bonded to Si 2 OC 6 H 4 -Represents. t represents an integer of 1 to 20. ]
[0012]
The polyimide copolymer represented by the general formula (1) according to the present invention includes two aromatic tetracarboxylic acids, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acids and ethylene glycol bistrimellitic acids. And a predetermined aromatic diamine in the presence of an organic solvent.
[0013]
The diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acids (hereinafter referred to as “DSDAs”) used in the present invention are the carboxylic acids and their anhydrides and their halides, and those having 1 to 4 carbon atoms. A carboxylic acid derivative such as an ester with an alcohol. From the viewpoint of cost reduction, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid is preferable, and from the viewpoint of reaction activity, diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic acid is preferred. Anhydrides are preferred.
[0014]
Furthermore, the ethylene glycol bistrimellitic acids (hereinafter referred to as “TMEGs”) used in the present invention are carboxylic acids such as the carboxylic acids and their anhydrides, their halides, and esters with alcohols having 1 to 4 carbon atoms. Refers to acid derivatives. Ethylene glycol bistrimellitic acid is preferable from the viewpoint of cost reduction, and ethylene glycol bistrimellitic dianhydride is preferable from the viewpoint of reaction activity.
[0015]
For ethylene glycol bistrimellitic acids, unreacted trimellitic acid or its anhydride is mixed as a slight impurity in the production process, and it has high purity to obtain a polyimide resin having the desired molecular weight and performance. That is, the trimellitic acid or its anhydride content is preferably less than 1%.
[0016]
The molar ratio of the DSDAs and TMEGs used in combination as the acid component at the time of reaction charging is in the range of DSDAs: TMEGs = 5: 95 to 95: 5, preferably DSDAs: TMEGs = 20: 80. ~ 80: 20. When the DSDA is less than this range, the heat resistance and storage stability of the resulting polyimide resin are deteriorated. When the TMEG is less than this range, the adhesion / adhesion to various substrates is reduced. It is difficult to obtain a predetermined effect in terms of sex.
[0017]
As the acid component, it is preferable to use only the above-mentioned two kinds of aromatic tetracarboxylic acids, but other aromatic tetracarboxylic acids can be used in combination in some cases.
[0018]
Examples of other aromatic tetracarboxylic acids include aromatic tetracarboxylic acids in which four carboxyl groups are directly bonded to an aromatic ring, and specifically, diphenylsulfone-2,3,3 ′, 4 ′. -Tetracarboxylic acid, diphenylsulfone-2,2 ', 3,3'-tetracarboxylic acid, pyromellitic acid, benzophenone tetracarboxylic acid, biphenyl tetracarboxylic acid, diphenyl ether tetracarboxylic acid, naphthalene tetracarboxylic acid and the respective acid anhydrides And various carboxylic acid derivatives.
[0019]
As an aromatic diamine component used for the polyimide copolymer which concerns on this invention, the aromatic diamine represented by General formula (2) is preferable.
[0020]
Embedded image
Figure 0003855327
[In the formula, Z represents -S-, -SO.2 -Represents a group represented by formula (a) or formula (b). ]
[0021]
Embedded image
Figure 0003855327
[0022]
Embedded image
Figure 0003855327
[Where X1 , X2 Are the same or different and represent —O— or —S—. Y is a single bond or -O-, -S-, -SO.2 -, -C (= O) -NH-, -C (-CHThree )2 -, -C (-CFThree )2 Represents a divalent group selected from-or -CO-. ]
[0023]
Specific examples of the aromatic diamine represented by the general formula (2) include 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfide, and 3,3′-. Diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfone, 1,4-bis (p-aminophenylthioether) benzene, 1,3-bis (p-aminophenylthioether) benzene, 2,2'-bis [4- (p-aminophenoxy) phenyl] propane, 2,2'-bis [3- (p-aminophenoxy) phenyl] propane, 2,2'-bis [4- (m- Aminophenoxy) phenyl] propane, 2,2′-bis [3- (m-aminophenoxy) phenyl] propane, 2,2′- [4- (p-aminophenylthioether) phenyl] propane, 2,2′-bis [3- (p-aminophenylthioether) phenyl] propane, 4,4′-bis (p-aminophenoxy) diphenylsulfone, 3,3′-bis (p-aminophenoxy) diphenyl sulfone, 3,4′-bis (p-aminophenoxy) diphenyl sulfone, 4,4′-bis (m-aminophenoxy) diphenyl sulfone, 3,3′- Bis (m-aminophenoxy) diphenylsulfone, 3,4'-bis (m-aminophenoxy) diphenylsulfone, 4,4'-bis (p-aminophenylthioether) diphenylsulfone, 3,3'-bis (p- Aminophenylthioether) diphenylsulfone, 3,4'-bis (p-aminophenylthioate) ) Diphenylsulfone, 4,4′-bis (m-aminophenylthioether) diphenylsulfone, 3,3′-bis (m-aminophenylthioether) diphenylsulfone, 3,4′-bis (m-aminophenylthioether) diphenyl Sulfone, 4,4′-bis (p-aminophenoxy) diphenyl ether, 3,3′-bis (p-aminophenoxy) diphenyl ether, 3,4′-bis (p-aminophenoxy) diphenyl ether, 4,4′-bis (M-aminophenoxy) diphenyl ether, 3,3′-bis (m-aminophenoxy) diphenyl ether, 3,4′-bis (m-aminophenoxy) diphenyl ether, 4,4′-bis (p-aminophenoxy) diphenyl sulfide 3,3′-bis (p-aminopheno Xyl) diphenyl sulfide, 3,4′-bis (p-aminophenoxy) diphenyl sulfide, 4,4′-bis (m-aminophenoxy) diphenyl sulfide, 3,3′-bis (m-aminophenoxy) diphenyl sulfide, 3,4′-bis (m-aminophenoxy) diphenyl sulfide, 4,4′-bis (p-aminophenylthioether) diphenyl sulfide, 3,3′-bis (p-aminophenylthioether) diphenyl sulfide, 3,4 '-Bis (p-aminophenyl thioether) diphenyl sulfide, 4,4'-bis (m-aminophenyl thioether) diphenyl sulfide, 3,3'-bis (m-aminophenyl thioether) diphenyl sulfide, 3,4'- Bis (m-aminophenylthioether) Phenyl sulfide, 4,4′-bis (p-aminophenyl thioether) diphenyl ether, 3,3′-bis (p-aminophenyl thioether) diphenyl ether, 3,4′-bis (p-aminophenyl thioether) diphenyl ether, 4, 4′-bis (m-aminophenyl thioether) diphenyl ether, 3,3′-bis (m-aminophenyl thioether) diphenyl ether, 3,4′-bis (m-aminophenyl thioether) diphenyl ether, 4,4′-bis ( p-aminophenoxy) diphenyl, 3,3′-bis (p-aminophenoxy) diphenyl, 4,4′-bis (p-aminophenoxy) benzophenone, 3,3′-bis (p-aminophenoxy) benzophenone, 3 , 4'-bis (p-aminophen Noxy) benzophenone, 4,4′-bis (p-aminophenylthioether) diphenyl, 3,3′-bis (p-aminophenylthioether) diphenyl, 3- (p-aminophenoxy) -4 ′-(p-amino) Phenylthioether) diphenylsulfone, 3- (p-aminophenoxy) -4 ′-(p-aminophenylthioether) diphenyl sulfide, 3- (p-aminophenoxy) -4 ′-(p-aminophenylthioether) diphenyl ether, 3 -(P-aminophenoxy) -4 '-(p-aminophenylthioether) benzophenone, 3- (p-aminophenylthioether) -4'-(p-aminophenoxy) diphenylsulfone, 3- (p-aminophenylthioether) ) -4 ′-(p-aminophenoxy) diph Phenyl sulfide, 3- (p-aminophenylthioether) -4 ′-(p-aminophenoxy) diphenyl ether, 3- (p-aminophenylthioether) -4 ′-(p-aminophenoxy) benzophenone, 1,4-bis (P-aminophenylthioether) benzene, 1,3-bis (p-aminophenylthioether) benzene, 4- (p-aminophenoxy) -4 ′-(p-aminophenylthioether) diphenylsulfone, 4- (p- Aminophenoxy) -4 ′-(p-aminophenylthioether) diphenyl sulfide, 4- (p-aminophenoxy) -4 ′-(p-aminophenylthioether) diphenyl ether, 4- (p-aminophenoxy) -4′- (P-aminophenylthioether) benzophenone, etc. It is shown.
[0024]
As the diamine component, it is preferable to use the aromatic diamine represented by the general formula (2) alone, but two or more of the diamines can be mixed and used, and other aromatic diamines are used in combination. You can also
[0025]
Examples of the aromatic diamine that can be used in combination include m-phenylenediamine, o-phenylenediamine, p-phenylenediamine, 2,4-toluenediamine, 4,4′-diaminodiphenyl ether, 3,3′-diaminodiphenyl ether, 4, 4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,3'-bis (p-aminophenoxy) benzene, 1,4'-bis (P-Aminophenoxy) benzene, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,6-diaminopyridine and the like can be mentioned. The blending amount of these diamines is represented by the general formula (2). Limited to a range that does not impair the properties of the diamine, generally all diamine use 50 mol% or less with respect to desirable.
[0026]
The polyimide coating material according to the present invention is generally produced by the following method.
[0027]
That is, two kinds of aromatic tetracarboxylic acids, such as DSDAs and TMEGs, and aromatic diamines are dissolved in an organic solvent in an acid-excess system, and the amidation reaction operation is performed at a particularly low temperature as in the past. First, it is prepared by imidization reaction by heating. In this case, the order of dissolving the two acid components and the diamine component in the organic solvent is not particularly limited.
[0028]
The molar ratio of the two aromatic tetracarboxylic acids and aromatic diamines during the reaction is set to an acid-excess system in order to obtain a polyimide resin having good adhesion / adhesiveness and storage stability in a solution state. In particular, aromatic tetracarboxylic acids: aromatic diamines = 101: 100 to 120: 100 is preferable. The number average molecular weight of the polyimide resin obtained in this range is 4,000 to 50,000.
[0029]
When the acid excess is smaller than this range, the adhesion / adhesiveness of the resulting polyimide resin is insufficient, and when it is larger than this range, the heat resistance and mechanical strength of the resulting polyimide resin are insufficient. On the other hand, when it becomes a diamine excess type | system | group, the polyimide resin solution obtained tends to exhibit a gel form, and storage stability falls remarkably.
[0030]
The organic solvent used in this reaction is generally preferably an aprotic polar solvent and / or a phenol solvent, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N- Examples thereof include dimethylacetamide, dimethylsulfoxide, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, γ-butyrolactone, phenol, cresol, dimethylphenol, chlorophenol, bromophenol and the like. Other than these solvents, ketones, esters, lactones, ethers, cellosolves, halogenated hydrocarbons, hydrocarbons, such as acetone, methyl ethyl ketone, methyl, which are generally organic solvents, are poor in solubility. Isobutyl ketone, cyclohexanone, acetophenone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, diethyl malonate, diethyl ether, ethylene glycol dimethyl ether, dietine glycol dimethyl ether, tetrahydrofuran, diglyme, methyl cellosolve, ethylene glycol monomethyl ether, dichloromethane, 1,2-dichloroethane, 1,4-dichlorobutane, trichloroethane, chlorobenzene, dichlorobenzene, hexane, heptane, octane, benzene, toluene, Shiren the like can also be used.
[0031]
The imidization reaction is usually carried out by heating the acid component and the amine component to 60 to 250 ° C., particularly preferably 100 to 200 ° C. in an organic solvent solution. When the temperature is 60 ° C. or lower, it is difficult to obtain an economical reaction rate, and when the temperature is 250 ° C. or higher, coloring of the reaction system, side reactions and the like are likely to occur, which is disadvantageous in any case.
[0032]
The reaction time varies depending on the type of substrate, solvent, various conditions and the like, but is usually 0.5 to 50 hours.
[0033]
The concentration of the polyimide component in the organic solvent is preferably 1 to 50% by weight, particularly preferably 5 to 40% by weight. If it is less than 1% by weight, it is economically disadvantageous. If it exceeds 50% by weight, the viscosity becomes high and workability is poor.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
The polyimide resin solution obtained by the above method is cast or spin-coated on glass, a metal plate or in a tray as it is, or impregnated into a nonwoven fabric, carbon fiber, glass cloth or the like, and heated with an organic solvent or the like. By removing it, a polyimide coating film can be easily obtained.
[0035]
In addition, by adding various polymers, fillers, pigments, compounds capable of reacting with the terminal carboxyl group of the polyimide resin, etc., it is possible to obtain a polyimide resin composition according to the purpose and application, and further adhesion / When adhesiveness is required, silane-based or titanium-based coupling agents can be used.
[0036]
The polyimide-based coating material obtained by the present invention can be applied to fields such as composite materials, heat-resistant paints, heat-resistant adhesives, electrical and electronic materials, specifically, printed wiring boards, flexible wiring boards. , Tape carriers, semiconductor integrated circuit elements, enameled wires, surface protection films for electronic parts such as batteries, interlayer insulation films, laminated insulation, adhesives, adhesive films, coverlay films, and aluminum, iron, ceramics, fibers It is used as a surface protective film such as a filler, an adhesive, and a binder.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples. In addition, the measuring method of the physical property in an Example is as follows.
[0038]
Number average molecular weight
The number average molecular weight (Mn) and the weight average molecular weight (Mw) were determined by gel permeation chromatography. The device is “LC-6A” manufactured by Shimadzu Corporation, and the columns are “AD-802.5 / s”, “AD-803 / s”, “AD-804 / s” and “AD-805 /” manufactured by Showa Denko. Four of “s” were connected and used. As the solvent, a 0.01 mol / L LiBr-containing N, N-dimethylformamide (DMF) solution was used, and polyethylene oxide was used as a standard substance.
[0039]
Solution viscosity
Measurement was performed at 30 ° C. using a B-type viscometer.
[0040]
Storage stability test of solution
Evaluation was made by the change in viscosity after sealed storage at 40 ° C. for 3 months. In Table 1, “◯” is displayed when the viscosity change is within ± 5%, and “X” is displayed when it is more than ± 5%.
[0041]
Cross cut tape test
By spin-coating the polyimide resin solution obtained in each Example and Comparative Example on an aluminum plate (JIS H4000 A1050P) and a soft soda glass plate, respectively, and removing the solvent in a fine oven at 250 ° C. for 15 minutes, A polyimide coating film having a thickness of 10 to 25 μm was prepared. In order to evaluate the adhesion of the obtained polyimide film to an aluminum plate and a soft soda glass plate, a cross-cut tape test was performed according to JIS K-5400. The score is a maximum of 10, and the higher the score, the better the adhesion.
[0042]
Thermal decomposition temperature
A thermogravimetric analysis (TGA) apparatus was used, and the temperature at which the weight of the polyimide resin was reduced by 10% by weight at a heating rate of 10 ° C./min and a nitrogen stream was measured.
[0043]
Example 1
In a 1 liter reactor equipped with a thermometer, a stirrer, a condenser tube and a nitrogen inlet tube, 43.25 g (0.100 mol) of 4,4′-bis (p-aminophenoxy) diphenylsulfone (BAPS), diphenylsulfone- 3,3 ′, 4,4′-tetracarboxylic dianhydride (DSDA) 30.43 g (0.085 mol), ethylene glycol bistrimellitic dianhydride (TMEG) 8.2 g (0.02 mol), N— Methyl-2-pyrrolidone (NMP) (310 g) and xylene (16 g) were charged, and the reaction was carried out in a nitrogen stream at 170 ° C. for 8 hours while removing generated water, thereby obtaining a desired transparent viscous polyimide resin solution. The viscosity of this solution was 29P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0044]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were evaluated using this film. The evaluation results are shown in Table 1.
[0045]
Example 2
The same operation as in Example 1 was performed except that the amount of DSDA charged was 7.16 g (0.02 mol) and the amount of TMEG was 34.85 g (0.085 mol).
The viscosity of the obtained polyimide resin solution was 20P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0046]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0047]
Example 3
The same operation as in Example 1 was performed except that 41.05 g (0.100 mol) of 2,2'-bis [4- (p-aminophenoxy) phenyl] propane (BAPP) was used instead of BAPS. The viscosity of the obtained polyimide resin solution was 27P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0048]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0049]
Example 4
Example 1 except that the DSDA charge was 7.16 g (0.02 mol), the TMEG charge was 34.85 g (0.085 mol), and BAPP 41.05 g (0.100 mol) was used instead of BAPS. The same operation was performed. The viscosity of the obtained polyimide resin solution was 21P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0050]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0051]
Example 5
BAPS 43.25 g (0.100 mol), DSDA 19.69 g (0.055 mol), TMEG 22.55 g (0.055 mol), N − were added to a 1 liter reactor equipped with a thermometer, a stirrer, a condenser tube and a nitrogen inlet tube. Methyl-2-pyrrolidone (NMP) (310 g) and xylene (16 g) were charged and reacted under nitrogen flow at 170 ° C. for 5 hours while removing generated water to obtain a desired transparent viscous polyimide resin solution. The viscosity of this solution was 12P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0052]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0053]
Example 6
The same operation as in Example 5 was performed except that 41.05 g (0.100 mol) of BAPP was used instead of BAPS. The viscosity of the obtained polyimide resin solution was 11P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0054]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0055]
Comparative Example 1
A 1 liter reactor equipped with a thermometer, a stirrer, a condenser tube and a nitrogen inlet tube was charged with 43.25 g (0.100 mol) of BAPS, 41.0 g (0.100 mol) of TMEG, 310 g of NMP and 16 g of xylene, and a nitrogen stream Then, the reaction was carried out at 170 ° C. for 8 hours while removing the generated water to obtain a transparent viscous polyimide resin solution. The viscosity of this solution was 92P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0056]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0057]
Comparative Example 2
The same operation as in Comparative Example 1 was performed except that 41.05 g (0.100 mol) of BAPP was used instead of BAPS. The viscosity of the obtained polyimide resin solution was 88P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0058]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0059]
In Comparative Examples 1 and 2, since only TMEG is used as the acidic component and DSDA is not used, it can be seen that the storage stability of the polyimide resin solution is poor.
[0060]
Comparative Example 3
The same operation as in Comparative Example 1 was performed except that 35.80 g (0.100 mol) of DSDA was used instead of TMEG. The viscosity of the obtained polyimide resin solution was 195P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0061]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0062]
Comparative Example 4
The same operation as in Comparative Example 1 was performed except that 41.05 g (0.100 mol) of BAPP was used instead of BAPS, and 35.80 g (0.100 mol) of DSDA was used instead of TMEG. The viscosity of the obtained polyimide resin solution was 179P. Further, the storage stability of the polyimide resin solution and the molecular weight of the polymer were measured. The results are shown in Table 1.
[0063]
Furthermore, a polyimide coating film was prepared according to a cross-cut tape test, and the thermal decomposition temperature and adhesion were measured using this film. The evaluation results are shown in Table 1.
[0064]
In Comparative Examples 3 and 4, since only DSDA is used as the acidic component and TMEG is not used, it is found that the storage stability of the polyimide resin solution is excellent, but the adhesiveness is inferior.
[0065]
[Table 1]
Figure 0003855327
[0066]
【The invention's effect】
The polyimide-based coating material obtained by the present invention is soluble in various solvents, has excellent adhesion / adhesion to various substrates, and heat resistance, and further has excellent storage stability.

Claims (2)

有機溶剤100重量部に対し、一般式(2)で表される芳香族ジアミン類の中から選ばれた1種若しくは2種以上のジアミンと、ジフェニルスルホン−3,3’,4,4’−テトラカルボン酸類(以下、「DSDA類」という)及びエチレングリコールビストリメリット酸類(以下、「TMEG類」という)の2種の芳香族テトラカルボン酸類とを有機溶剤存在下で脱水縮合して製造され、且つ、一般式(1)で表される繰り返し単位ポリイミド共重合体1〜50重量部を溶解してなるポリイミド系コーティング材料であって、
上記DSDA類とTMEG類との使用モル比率(%)が、DSDA類:TMEG類=20:85〜85:20の範囲であり、且つ、芳香族テトラカルボン酸類と一般式(2)で示される芳香族ジアミン類との反応モル比が、芳香族テトラカルボン酸:芳香族ジアミン=101:100〜120:100の範囲の酸過剰系であることを特徴とするポリイミド系コーティング材料。
Figure 0003855327
[式中、Zは式(b)で示される基を表す。m、n、qは正の整数を表す。]
Figure 0003855327
式中、Yは単結合又は−O−、−S−、−SO2 −、−C(=O)−NH−、−C(−CH32 −、−C(−CF32 −若しくは−CO−から選ばれる二価の基を表す。]
Figure 0003855327
[式中、Zは一般式(1)で記載される通りである。]
One or more diamines selected from aromatic diamines represented by the general formula (2) and diphenylsulfone-3,3 ′, 4,4′- with respect to 100 parts by weight of the organic solvent. Produced by dehydration condensation of two aromatic tetracarboxylic acids such as tetracarboxylic acids (hereinafter referred to as “DSDAs”) and ethylene glycol bistrimellitic acids (hereinafter referred to as “TMEGs”) in the presence of an organic solvent, And it is the polyimide-type coating material formed by melt | dissolving 1-50 weight part of polyimide copolymers of the repeating unit represented by General formula (1) ,
The use molar ratio (%) of the above-mentioned DSDAs and TMEGs is in the range of DSDAs: TMEGs = 20: 85-85: 20, and is represented by the aromatic tetracarboxylic acids and the general formula (2). A polyimide coating material characterized in that the reaction molar ratio with an aromatic diamine is an acid-excess system in the range of aromatic tetracarboxylic acid: aromatic diamine = 101: 100 to 120: 100 .
Figure 0003855327
[Wherein Z represents a group represented by the formula (b) . m, n, and q represent a positive integer. ]
Figure 0003855327
[Wherein Y represents a single bond or —O—, —S—, —SO 2 —, —C (═O) —NH—, —C (—CH 3 ) 2 —, —C (—CF 3 ) 2 Represents a divalent group selected from-or -CO-. ]
Figure 0003855327
[Wherein Z is as described in formula (1). ]
有機溶剤が、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、テトラメチル尿素、1,3−ジメチル−2−イミダリジノン、ヘキサメチルリン酸トリアミド、γ−ブチロラクトン、フェノール、クレゾール、ジメチルフェノール、クロルフェノール、ブロムフェノールの中から選ばれた1種若しくは2種以上であることを特徴とする請求項1に記載のポリイミド系コーティング材料。The organic solvent is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetramethylurea, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide, γ The polyimide coating material according to claim 1 , wherein the polyimide coating material is one or more selected from butyrolactone, phenol, cresol, dimethylphenol, chlorophenol, and bromophenol.
JP32755596A 1996-11-22 1996-11-22 Polyimide coating material Expired - Fee Related JP3855327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32755596A JP3855327B2 (en) 1996-11-22 1996-11-22 Polyimide coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32755596A JP3855327B2 (en) 1996-11-22 1996-11-22 Polyimide coating material

Publications (2)

Publication Number Publication Date
JPH10152647A JPH10152647A (en) 1998-06-09
JP3855327B2 true JP3855327B2 (en) 2006-12-06

Family

ID=18200382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32755596A Expired - Fee Related JP3855327B2 (en) 1996-11-22 1996-11-22 Polyimide coating material

Country Status (1)

Country Link
JP (1) JP3855327B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5054516B2 (en) * 2005-04-28 2012-10-24 株式会社野田スクリーン Thermosetting resin composition
JP2012046557A (en) * 2010-08-24 2012-03-08 Sumitomo Electric Wintec Inc Polyester imide resin-based varnish for low-permittivity coating
JP5770986B2 (en) * 2010-09-01 2015-08-26 住友電工ウインテック株式会社 Polyesterimide resin varnish for low dielectric constant coating
US20130153262A1 (en) * 2010-08-24 2013-06-20 Sumitomo Electric Industries, Ltd. Polyester imide resin based varnish for low-permittivity coating film
JP2012059588A (en) * 2010-09-10 2012-03-22 Sumitomo Electric Wintec Inc Polyester imide resin varnish for low dielectric constant coating

Also Published As

Publication number Publication date
JPH10152647A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP5010357B2 (en) Novel polyamic acid, polyimide and their uses
US7858734B2 (en) Polyimide material and preparation method thereof
JPH01121A (en) Polyimide resin composition and its manufacturing method
JPH1036506A (en) New polyimide composition and polyimide film
KR20040032779A (en) Transparent Polyimide Silicone Resin Containing Thermosetting Residues
JP3855327B2 (en) Polyimide coating material
JPH10265760A (en) Film adhesive and its production
JP2757588B2 (en) Thermosetting resin composition and film adhesive
JP3233892B2 (en) Resin composition
US6252033B1 (en) Method for the preparation of polyamic acid and polymide useful for adhesives
JP2004285364A (en) Base film for flexible printed circuit board, polyimide film usable for carrier tape for tab
JP3989650B2 (en) Polyimide film
JP3339205B2 (en) Method for producing polyimide copolymer
JP3456256B2 (en) Polyimide copolymer and method for producing the same
JP3578545B2 (en) Soluble polyimide resin
JPS63199239A (en) Novel solvent-soluble polyimide and production thereof
JP4749606B2 (en) Epoxy group-containing polyimide copolymer and cured product thereof
JP3724074B2 (en) Polyimide resin and method for producing the same
JP3596556B2 (en) Flexible printed circuit board materials
JP4017034B2 (en) New polyimide film
JP3299777B2 (en) Polyimide film and method for producing the same
JP4462184B2 (en) Composition, and cured film using the composition
JPH10231426A (en) Polyimide resin composition
JPH07258410A (en) Polyimide siloxane
JP2762744B2 (en) Method for producing polyimide, polyamic acid and polyimide resin

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees