[go: up one dir, main page]

JP3849118B2 - Powder metallurgy and sintered metal bodies - Google Patents

Powder metallurgy and sintered metal bodies Download PDF

Info

Publication number
JP3849118B2
JP3849118B2 JP2001151233A JP2001151233A JP3849118B2 JP 3849118 B2 JP3849118 B2 JP 3849118B2 JP 2001151233 A JP2001151233 A JP 2001151233A JP 2001151233 A JP2001151233 A JP 2001151233A JP 3849118 B2 JP3849118 B2 JP 3849118B2
Authority
JP
Japan
Prior art keywords
powder
copper
iron powder
compact
powder metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001151233A
Other languages
Japanese (ja)
Other versions
JP2002348601A (en
Inventor
英晃 栗原
彰 梅田
淳一 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Soda Co Ltd
Original Assignee
Tsurumi Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Soda Co Ltd filed Critical Tsurumi Soda Co Ltd
Priority to JP2001151233A priority Critical patent/JP3849118B2/en
Publication of JP2002348601A publication Critical patent/JP2002348601A/en
Application granted granted Critical
Publication of JP3849118B2 publication Critical patent/JP3849118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、改良された粉末冶金法と、この冶金法で得られた焼結金属体に関するもので、粉末冶金技術に属するものである。
【0002】
【従来の技術】
粉末冶金法は、金属粉末を加圧成形し、さらに金属の融点以下の高温で加熱焼結して各種金属製品を得る加工法であって、高融点で、高純度の金属製品が得られる、数種の金属あるいは金属と非金属の複合体が得られる、造形が容易で、かつ大量生産にも対応可能である、切削などの加工を大幅に省略でき、材料の節約が図れる、さらには多孔質の金属材料が得られるという数々の特徴を有しているので、種々の用途において幅広く利用されている。
【0003】
すなわち、粉末冶金法で得られた焼結金属体は、以上のような特徴を有するため、超硬工具、ビット、多孔質の含油軸受(オイルレスベアリング)、フィルタ、サーメット、クラッチなどの自動車部品、機械部品あるいは電気接点や摩擦材として広く採用され活用されている。
【0004】
かかる粉末冶金法の一般的な工程は、原料粉末、粉末潤滑剤などを混合する工程粉末を加圧圧縮して成形体(圧粉体)を得る工程得た成形体を主成分の融点以下の温度で加熱(焼結)して、所望の性質を有する固体(焼結体)を得る工程機械加工、熱処理、含油、表面処理などの後処理工程から成り立っている。
【0005】
【発明が解決しようとする課題】
前記した工程中、後処理工程において、切削などの機械的な二次加工が不要であるというのが、本来、粉末冶金法が有する一つの特徴として挙げられるのであるが、最近の製品の形状複雑化に伴い、工業的に、焼結後の後加工、後処理として、焼結体に機械加工を施す機会が増えてきているが、焼結体は、切削加工などの機械加工性の良いものではなく、その改良が強く望まれている。
【0006】
上記の工程全体を考慮すると、焼結体の機械加工に代えて、得られた成形体(圧粉体)を機械加工することも考えられるが、一般的に成形体(圧粉体)の機械的強度は弱く、機械加工に耐えることができないのが現状である。
【0007】
かかる現状に鑑み、発明者らは、成形体(圧粉体)の機械的強度を上げ、機械加工を可能にする成形体(圧粉体)を得るため原料粉末について鋭意検討を行ない、原料粉末として、銅メッキ鉄粉を用いることによって、機械的強度の高い成形体(圧粉体)が得られ、機械加工も充分に行えることを見出し、この発明を完成した。
【0008】
【課題を解決するための手段】
すなわち、この発明の請求項1に記載の発明は、
銅メッキ鉄粉を加圧圧縮し、得た成形体を機械加工したのち焼結すること
を特徴とする粉末冶金法である。
【0009】
また、この発明の請求項2に記載の発明は、
請求項1に記載の粉末冶金法において、
前記銅メッキ鉄粉は、
メッキされた銅を20〜80質量%含有する粉末であること
を特徴とするものである。
【0010】
さらに、この発明の請求項3に記載の発明は、
加圧圧縮して得た銅メッキ鉄粉からなる成形体を、機械加工したのち焼結したものであること
を特徴とする焼結金属体である。
0011
【発明の実施の形態】
この発明の粉末冶金法及び該冶金法で得られる焼結金属体は、それ自体公知である銅メッキ鉄粉を用い、焼結前の加圧圧縮された成形体(圧粉体)を機械加工する以外は、従来と同様な方法で行う粉末冶金法で、また、それにより得られる焼結金属体である。
0012
銅メッキ鉄粉は、焼結金属体の原料粉末として知られているが、この発明においても、それら銅メッキ鉄粉が用いられ、それにより、この発明の目的とする効果が顕著に認められるのである
0013
メッキ量は、粉末全体の20〜80質量%の銅で被覆されているものが好ましく、より好ましくは40〜60質量%の銅で被覆されているものである。
0014
銅メッキ鉄粉は、それ単独で成形主原料として用いられるが、常用されている様に、メッキされていない金属粉末、鉄粉、亜鉛粉末、錫粉末などを、用途に応じて少量併用することもできる。
0015
成形圧力や焼結温度は、原料銅メッキ鉄粉原料鉄粉の種類や銅メッキ量、あるいは潤滑剤の種類や添加量などにより異なるので、条件探索のための試験を行ない、それぞれに最適なものを選択すればよいが、通常、加圧圧縮された成形体(圧粉体)を成形する際の圧力は1〜3t/cm2で、焼結時の温度は、温度700〜1100℃程度である。
0016
また、原料の銅メッキ鉄粉に、必要に応じて、公知のステアリン酸亜鉛末、黒鉛、二硫化モリブデン、鉛、さらには、比重差を小さくして分散性を向上させた銅メッキ黒鉛、銅メッキ二硫化モリブデンなどの潤滑剤成分を配合することができ、潤滑剤の添加量は、通常の0.1〜5質量%の範囲で調整することができる。
0017
【作用】
この発明において、銅メッキ鉄粉からなる原料粉末は、粉末成形性が良好で、圧粉体強度が向上し、複雑な旋削にも対応が可能なもので、焼結による表面の変化も無く、焼結前の圧粉体でも機械加工を施すことが可能である。
0018
これに対し、鉄粉のみのもの又は銅紛を添加した鉄粉からなる圧粉体は、成形圧力を上げることによって旋削性の向上は認められるものの、旋削表面に不良な個所が散在することがあり、当該部位が引っかき傷のようになって問題となるものであったが、これは、工具の刃先に被削材の一部が堆積して加工硬化(地金の数倍の硬さになる)を起こし、それが事実上の切れ刃(構成刃先)を構成し、丸く鈍い刃先は、旋削というよりむしろ被削材を押し分けて進むとともに、構成刃先が成長と脱落を繰返し、形状と大きさが変動し、一部を旋削面においていかれるために、被削材の表面の送り方向とそれと直角方向ともに荒さが桁違いに大きくなる個所が発生するためと思われ、機械加工には向かないものであった。
0019
【実施例】
以下、具体的な実施例に基づいて、この発明を説明する。
0020
<実施例1>原料金属紛として、
・ 40%銅メッキ鉄粉
・ 40%銅粉末配合鉄粉
・ 3%銅粉末配合鉄粉
・ 鉄粉
の4種の金属粉末を用い、ステアリン酸亜鉛のアセトン分散液の塗布された、外径16mm、内径8mmの軸受型の金型を用い、1〜7tの圧力を加え圧粉成形し、得られた試料(圧粉体)について、その密度、ラトラ値、圧環強さを測定した。
0021
得られた試料(圧粉体)を旋削用治具に固定し、回転速度500、1050、1500rpmの3段階、送り速度0.068mm/1回転、切り込み0.2mm(直径)×2の旋削条件で旋削試験を行った。旋削性の判断は、外観(目視)及び表面粗さで行った。
旋削加工の施された試料(圧粉体)は、1273K〜1373K、3.6Ks、水素雰囲気下の条件で焼結し、焼結体の健全性を評価した。
0022
測定した試料(圧粉体)の密度、ラトラ値、圧環強さを、それぞれ図1、図2及び図3に示すとともに、回転速度500、1050、1500rpmの3段階で行った旋削試験による切削後の試料(圧粉体)の表面粗さを、図4、図5及び図6に示すが、図中、◆は40%銅メッキ鉄粉、黒塗りの□は40%銅粉末配合鉄粉、▲は3%銅粉末配合鉄粉、×は鉄粉のデータを示す。
0023
これらの結果及び目視による外観評価から明らかなことは、銅メッキ鉄粉による試料(圧粉体)は、密度が上昇し、ラトラ値、特に圧環強さに優れていることで、さらに、銅メッキ鉄粉以外の各試料とも成形圧力を上げると、それなりの旋削性の向上(表面粗さの減少)が認められるが、その旋削後の表面には、良好な個所以外に不良な個所が散在することがあり、良好な個所は光沢を放つが、不良の個所は引っかき傷のようになっており問題となるものであった。
0024
これに対し、銅メッキ鉄粉は、低い圧力のもとでも優れた旋削性を示すだけでなく、その表面も全体にわたって滑らかであった。なお、いずれの試料も、焼結による表面変化は認められなかった。
0025
【発明の効果】
銅メッキ鉄粉は、粉末成形性が良好で、成形圧力1t程度においても、圧粉体強度が向上し、旋削結果も良好であり、複雑な旋削にも対応可能なもので、焼結による、表面の変化も無く、銅メッキ鉄粉を原料とすることにより、焼結後に苦労して行われていた機械加工を、焼結前の圧粉体に施すことを可能とする。
【図面の簡単な説明】
【図1】 実施例1の試料(圧粉体)の密度を示す図である。
【図2】 実施例1の試料(圧粉体)のラトラ値を示す図である。
【図3】 実施例1の試料(圧粉体)の圧環強さを示す図である。
【図4】 実施例1の試料(圧粉体)を回転速度500の旋削試験による切削後の試料(圧粉体)の表面粗さを示す図である。
【図5】 実施例1の試料(圧粉体)を回転速度1050の旋削試験による切削後の試料(圧粉体)の表面粗さを示す図である。
【図6】 実施例1の試料(圧粉体)を回転速度1500の旋削試験による切削後の試料(圧粉体)の表面粗さを示す図である。
【符号の説明】
なし
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improved powder metallurgy method and a sintered metal body obtained by this metallurgy method, and belongs to the powder metallurgy technology.
[0002]
[Prior art]
The powder metallurgy method is a processing method to obtain various metal products by press-molding metal powder and then heat-sintering at a high temperature below the melting point of the metal, and a high-purity metal product with a high melting point can be obtained. Several types of metals or composites of metals and non-metals can be obtained, shaping is easy, and mass production is possible. Processing such as cutting can be greatly omitted, and material can be saved. Since it has many features that a high quality metal material can be obtained, it is widely used in various applications.
[0003]
That is, the sintered metal body obtained by the powder metallurgy method has the above-described characteristics, and therefore, automobile parts such as carbide tools, bits, porous oil-impregnated bearings (oil-less bearings), filters, cermets, clutches, and the like. Widely used and utilized as mechanical parts or electrical contacts and friction materials.
[0004]
A general process of the powder metallurgy method is a process of mixing raw material powder, powder lubricant, etc., and compressing and compressing the powder to obtain a molded body (a green compact). It consists of post-processing steps such as machining, heat treatment, oil impregnation, and surface treatment to obtain a solid (sintered body) having desired properties by heating (sintering) at a temperature.
[0005]
[Problems to be solved by the invention]
The fact that mechanical secondary processing such as cutting is not necessary in the post-processing step during the above-mentioned process is one of the characteristics inherent in the powder metallurgy method. As a result of industrialization, there are increasing opportunities for machining the sintered body as post-processing and post-processing after sintering, but the sintered body has good machinability such as cutting. Rather, the improvement is strongly desired.
[0006]
Considering the entire process described above, it is conceivable to machine the obtained compact (compact) instead of machining the sintered compact, but generally the compact (compact) machine At present, the mechanical strength is weak and it cannot withstand machining.
[0007]
In view of the current situation, the inventors have conducted intensive studies on raw material powders in order to increase the mechanical strength of the compact (green compact) and obtain a compact (compact) that can be machined. As a result, it was found that by using copper-plated iron powder , a molded article (compact) having high mechanical strength was obtained, and sufficient machining could be performed, thereby completing the present invention.
[0008]
[Means for Solving the Problems]
That is, the invention according to claim 1 of the present invention is
The powder metallurgy method is characterized in that copper-plated iron powder is pressed and compressed, and the resulting molded body is machined and then sintered.
[0009]
The invention according to claim 2 of the present invention is
In the powder metallurgy method according to claim 1,
The copper-plated iron powder is
It is a powder containing 20 to 80% by mass of plated copper .
[0010]
Furthermore, the invention according to claim 3 of the present invention is
It must be sintered after machining the molded body made of copper-plated iron powder obtained by pressure compression
Is a sintered metal body characterized by
[ 0011 ]
DETAILED DESCRIPTION OF THE INVENTION
The powder metallurgy method of the present invention and the sintered metal body obtained by the metallurgical method use a copper-plated iron powder known per se, and machine a pressed and compacted compact (compact) before sintering. Except for this, it is a sintered metal body obtained by a powder metallurgy method carried out in the same manner as in the prior art.
[ 0012 ]
Copper-plated iron powder is known as a raw material powder for sintered metal bodies, but also in this invention, these copper-plated iron powder are used, and thereby the intended effect of this invention is remarkably recognized. There is .
[ 0013 ]
The amount of plating is preferably coated with 20 to 80% by mass of copper, more preferably 40 to 60% by mass of copper.
[ 0014 ]
Copper-plated iron powder is used alone as a main molding material, but as usual, use a small amount of unplated metal powder, iron powder, zinc powder, tin powder, etc. depending on the application. You can also.
[ 0015 ]
The molding pressure and sintering temperature differ depending on the type of raw iron powder and copper plating amount of the raw material copper plating iron powder , or the type and addition amount of lubricant. What is necessary is just to select a thing, Usually , the pressure at the time of shape | molding the press-compressed molded object (green compact) is 1-3 t / cm < 2 >, The temperature at the time of sintering is about 700-1100 degreeC. It is.
[ 0016 ]
In addition, the raw material copper-plated iron powder, if necessary, known zinc stearate powder, graphite, molybdenum disulfide, lead, and further , copper-plated graphite, copper with reduced specific gravity and improved dispersibility Lubricant components such as plated molybdenum disulfide can be blended, and the amount of lubricant added can be adjusted within a range of 0.1 to 5% by mass.
[ 0017 ]
[Action]
In this invention, the raw material powder made of copper-plated iron powder has good powder moldability, improved green compact strength, can cope with complicated turning, and there is no surface change due to sintering, It is possible to machine the green compact before sintering.
[ 0018 ]
On the other hand, a compact made of iron powder containing only iron powder or copper powder added with copper powder can be improved in turning performance by increasing the molding pressure, but there are cases where defective parts are scattered on the turning surface. There is a problem that the part becomes like a scratch, but this is because a part of the work material accumulates on the cutting edge of the tool and is hardened by work (hardness several times that of the metal) It forms a virtual cutting edge (component edge), and a round and blunt edge pushes the work material rather than turning, and the component edge repeatedly grows and drops, resulting in a shape and size It is thought that this is due to the fact that the roughness of the surface of the work material increases in the feed direction and the direction perpendicular to it. It wasn't.
[ 0019 ]
【Example】
Hereinafter, the present invention will be described based on specific examples.
[ 0020 ]
<Example 1> As a raw metal powder,
-40% copper-plated iron powder-40% copper powder-blended iron powder-3% copper powder-blended iron powder-Four metal powders, iron powder, coated with an acetone dispersion of zinc stearate, outer diameter 16mm Using a bearing mold having an inner diameter of 8 mm, a pressure of 1 to 7 t was applied and compacted, and the resulting sample (compact) was measured for density, ratra value, and crushing strength.
[ 0021 ]
The obtained sample (green compact) is fixed to a turning jig, and turning conditions of three stages of rotation speeds of 500, 1050 and 1500 rpm, a feed speed of 0.068 mm / rotation, and a cutting depth of 0.2 mm (diameter) × 2. A lathe test was conducted. Judgment of the turning property was made by appearance (visual observation) and surface roughness.
The sample subjected to the turning process (green compact) was sintered under the conditions of 1273K to 1373K, 3.6Ks, hydrogen atmosphere, and the soundness of the sintered body was evaluated.
[ 0022 ]
The density, rattra value, and crushing strength of the measured sample (green compact) are shown in FIGS. 1, 2, and 3, respectively, and after cutting by a turning test performed at three stages of rotation speeds of 500, 1050, and 1500 rpm. The surface roughness of the sample (green compact) is shown in FIGS. 4, 5, and 6. In FIG. 4, ♦ is 40% copper-plated iron powder, black □ is 40% copper powder-containing iron powder, ▲ indicates iron powder containing 3% copper powder, and × indicates iron powder data.
[ 0023 ]
From these results and visual appearance evaluation, it is clear that the sample (compact) with copper-plated iron powder has an increased density and is excellent in ratra value, especially in crushing strength. When the molding pressure is increased for each sample other than iron powder, a certain improvement in turning performance (decrease in surface roughness) is observed, but on the surface after turning, there are scattered bad places in addition to good places. In some cases, the good parts were glossy, but the bad parts were scratched and became a problem.
[ 0024 ]
On the other hand, the copper-plated iron powder not only showed excellent turning properties even under a low pressure, but also had a smooth surface as a whole. In any sample, no surface change due to sintering was observed.
[ 0025 ]
【The invention's effect】
Copper-plated iron powder has good powder moldability, improves the green compact strength even at a molding pressure of about 1 t, has a good turning result, and can handle complex turning. By using copper-plated iron powder as a raw material without any change in the surface, it is possible to perform machining, which has been difficult after sintering, on the green compact before sintering.
[Brief description of the drawings]
FIG. 1 is a diagram showing the density of a sample (a green compact) of Example 1. FIG.
FIG. 2 is a graph showing a ratra value of a sample (a green compact) of Example 1.
3 is a diagram showing the crushing strength of the sample (green compact) of Example 1. FIG.
FIG. 4 is a diagram showing the surface roughness of a sample (green compact) after cutting the sample (green compact) of Example 1 by a turning test at a rotation speed of 500.
FIG. 5 is a diagram showing the surface roughness of a sample (compact) after cutting by a turning test at a rotational speed of 1050 for the sample (compact) of Example 1.
6 is a diagram showing the surface roughness of a sample (compact) after cutting by a turning test at a rotational speed of 1500 for the sample (compact) of Example 1. FIG.
[Explanation of symbols]
None

Claims (3)

銅メッキ鉄粉を加圧圧縮し、得た成形体を機械加工したのち焼結すること
を特徴とする粉末冶金法。
A powder metallurgy method characterized in that copper-plated iron powder is pressed and compressed, and the resulting compact is machined and then sintered.
前記銅メッキ鉄粉は、
メッキされた銅を20〜80質量%含有する粉末であること
を特徴とする請求項1に記載の粉末冶金法。
The copper-plated iron powder is
The powder metallurgy method according to claim 1, wherein the powder metallurgy is a powder containing 20 to 80% by mass of plated copper.
加圧圧縮して得た銅メッキ鉄粉からなる成形体を、機械加工したのち焼結したものであることIt must be a machined and sintered product of copper-plated iron powder obtained by pressure compression
を特徴とする焼結金属体。A sintered metal body characterized by
JP2001151233A 2001-05-21 2001-05-21 Powder metallurgy and sintered metal bodies Expired - Fee Related JP3849118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151233A JP3849118B2 (en) 2001-05-21 2001-05-21 Powder metallurgy and sintered metal bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151233A JP3849118B2 (en) 2001-05-21 2001-05-21 Powder metallurgy and sintered metal bodies

Publications (2)

Publication Number Publication Date
JP2002348601A JP2002348601A (en) 2002-12-04
JP3849118B2 true JP3849118B2 (en) 2006-11-22

Family

ID=18996121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151233A Expired - Fee Related JP3849118B2 (en) 2001-05-21 2001-05-21 Powder metallurgy and sintered metal bodies

Country Status (1)

Country Link
JP (1) JP3849118B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588441A (en) * 2012-03-09 2012-07-18 重庆合达科技有限公司 High low temperature resistant oil-retaining bearing made of powder metallurgy material and manufacturing method thereof
CN108620592A (en) * 2018-05-03 2018-10-09 朱绘嘉 A method of preparing tungsten copper capillary

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5059022B2 (en) * 2006-11-17 2012-10-24 Jx日鉱日石金属株式会社 Iron-copper composite powder for powder metallurgy and method for producing the same
JP6273869B2 (en) * 2014-01-31 2018-02-07 セイコーエプソン株式会社 Method for manufacturing molded body and method for manufacturing structure
CN105251998A (en) * 2015-11-04 2016-01-20 深圳艾利门特科技有限公司 Sintering method for controlling carbon and oxygen content of powder metallurgy products
WO2018146868A1 (en) * 2017-02-08 2018-08-16 住友電工焼結合金株式会社 Method for producing sintered component, and sintered component
JP6741153B2 (en) 2017-12-05 2020-08-19 Jfeスチール株式会社 Partially diffused alloy steel powder
EP3722022B1 (en) 2017-12-05 2022-11-30 JFE Steel Corporation A pre-alloyed water atomized steel powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588441A (en) * 2012-03-09 2012-07-18 重庆合达科技有限公司 High low temperature resistant oil-retaining bearing made of powder metallurgy material and manufacturing method thereof
CN102588441B (en) * 2012-03-09 2014-06-11 重庆合达科技有限公司 High low temperature resistant oil-retaining bearing made of powder metallurgy material and manufacturing method thereof
CN108620592A (en) * 2018-05-03 2018-10-09 朱绘嘉 A method of preparing tungsten copper capillary
CN108620592B (en) * 2018-05-03 2019-11-19 朱绘嘉 A method of preparing tungsten copper capillary

Also Published As

Publication number Publication date
JP2002348601A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
EP2087250B1 (en) Bearing having improved consume resistivity and manufacturing method thereof
JP5059022B2 (en) Iron-copper composite powder for powder metallurgy and method for producing the same
EP2647858A2 (en) Sintered bearing and preparation method thereof
EP1395383A1 (en) High density stainless steel products and method for the preparation thereof
EP0861698A2 (en) Iron based powder mixture for powder metallurgy
JP3849118B2 (en) Powder metallurgy and sintered metal bodies
JP3613569B2 (en) Composite metal powder for sintered bearing and sintered oil-impregnated bearing
EP0580134B1 (en) Process for preparing a hard sintered alloy having fine pores
CN109692951A (en) The manufacturing method of PM self lubricated bearings
CN105312559A (en) Abrasion resistant oil-containing bearing and manufacturing method thereof
JP2539246B2 (en) Sintered alloy bearing material and manufacturing method thereof
EP3088106A1 (en) Machine component using powder compact and method for producing same
WO2016147796A1 (en) Machine component and production method therefor
JP2001294905A (en) Method for producing micromodule gear
JP2007045918A (en) Raw powder for self-lubricating sintered material, method for producing the same and method for producing self-lubricating sintered material
CN113894280A (en) Powder metallurgy material
JPS6330526B2 (en)
CN1206068C (en) Stainless steel powder hot pressing shaping method
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP5513096B2 (en) Sliding bearing and brass porous body manufacturing method
JP4014936B2 (en) Method for producing composite metal powder for powder metallurgy
JPH1192846A (en) Sintered friction material and manufacturing method thereof
CN102925807A (en) Powder metallurgy iron-based material suitable for high speed boring and preparation method
WO2016148137A1 (en) Machine component and production method therefor
JP6759389B2 (en) Sintered bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees