[go: up one dir, main page]

JP3776975B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP3776975B2
JP3776975B2 JP13946296A JP13946296A JP3776975B2 JP 3776975 B2 JP3776975 B2 JP 3776975B2 JP 13946296 A JP13946296 A JP 13946296A JP 13946296 A JP13946296 A JP 13946296A JP 3776975 B2 JP3776975 B2 JP 3776975B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
passage
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13946296A
Other languages
Japanese (ja)
Other versions
JPH09303870A (en
Inventor
寿久 斉藤
久恭 渡辺
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP13946296A priority Critical patent/JP3776975B2/en
Publication of JPH09303870A publication Critical patent/JPH09303870A/en
Application granted granted Critical
Publication of JP3776975B2 publication Critical patent/JP3776975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給水通路より導かれる水を給湯バーナ燃焼により加熱して給湯通路へ流出する給湯熱交換器を備えた燃焼機器に関するものである。
【0002】
【従来の技術】
燃焼機器として代表的な給湯器には、周知のように、給湯熱交換器と給湯バーナが設けられ、給湯熱交換器の入側には給水通路が、出側には給湯通路がそれぞれ接続され、給湯通路は台所等の給湯栓へ導かれている。給湯熱交換器は、給湯栓が開けられると、水供給源から給水通路を介して導かれた水を給湯バーナの給湯燃焼の熱を利用して加熱し、この加熱した湯を給湯通路を通し給湯栓を介して出湯する。
【0003】
【発明が解決しようとする課題】
ところで、周知のように、給湯栓の閉栓後つまり給湯停止後(止湯後)、給湯熱交換器内に滞留した湯は、図3の実線カーブAに示すように、給湯停止後すぐに後沸き(給湯熱交換器の保有熱量が給湯熱交換器の滞留湯に伝わって滞留湯温が上昇する現象)によって止湯前の給湯熱交換器湯温より高い湯温(オーバーシュート)の湯となる。このオーバーシュートの湯が給湯栓が開けられて給湯熱交換器から流れ出ると、湯の利用者が定めた給湯設定温度より高めの湯が出湯し湯の利用者に不快感を与えてしまうという問題が生じる。
【0004】
上記問題を解決するために、様々な手段が提案されているが、簡単な構成でもって出湯時の高温出湯を防止することができる満足すべき燃焼機器は未だ得られていない。
【0005】
本発明は上記課題を解決するためになされたものであり、その目的は、簡単な構成で、出湯開始時の高温出湯を確実に防止して再出湯時の湯温安定化を図ることができる燃焼機器を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給水通路の水の流量を検出する流量検出センサと、給湯通路に設けられて給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯バーナの給湯燃焼停止時に給湯熱交換器出側湯温センサが検出する給湯熱交換器の燃焼停止時実測出側湯温に基づいてこの燃焼停止時実測出側湯温よりも高いバイパス通路開閉弁開弁温度と、該バイパス通路開閉弁開弁温度以下であって燃焼停止時実測出側湯温よりは高いバイパス通路開閉弁閉弁温度を設定するバイパス開閉温度設定部と、前記給湯熱交換器から給湯通路へ流出される湯が前記給湯熱交換器出側湯温センサの配設部位から給湯通路と前記バイパス通路との合流部位まで達するまでの湯の流れ時間を求めるセンサ部合流部間流れ時間検出部と、給湯バーナの給湯燃焼停止以降の再出湯時に前記給湯熱交換器出側湯温センサによって検出される給湯熱交換器の再出湯時実測出側湯温が前記バイパス通路開閉弁開弁温度以上であると判断したときにはこの判断時から前記センサ部交流部間流れ時間検出部で求めた湯の流れ時間だけ経過したときに前記バイパス通路開閉弁を開弁させ、前記再出湯時実測出側湯温が前記バイパス通路開閉弁閉弁温度以下であると判断したときにはこの判断時から前記湯の流れ時間だけ経過したときに前記バイパス通路開閉弁を閉弁させるバイパス通路開閉弁開閉制御部が設けられており、前記センサ部合流部間流れ時間検出部は、前記流量検出センサの検出流量と、給湯通路の給湯熱交換器出側湯温センサの配設部位から給湯通路とバイパス通路との合流部位までの接続通路の太さと、該接続通路の長さと、トータル給水量に対する給湯熱交換器を通る水量の熱交側流量比の1つ以上のパラメータを含む予め与えられた解法データに基づき前記接続通路の湯の流れ時間を求める構成としたことを特徴として構成されている。
【0007】
また、前記バイパス通路を通る水量および給湯熱交換器を通る水量を調節する水量制御弁がバイパス通路の下流側の給湯通路に設けられており、センサ部合流部間流れ時間検出部には予め与えられた解法データと、給水通路の水の最大流量と、給湯通路の給湯熱交換器出側湯温センサの配設部位から給湯通路とバイパス通路との合流部位までの接続通路の太さと、該接続通路の長さと、トータル給水量に対する給湯熱交換器を通る水量の熱交側流量比の最大値とによって決定される前記接続通路の最小流れ時間が与えられており、該センサ部合流部間流れ時間検出部には再出湯時の流量検出センサの検出流量と再出湯時の熱交側流量比の少なくとも一方が小さくなるにつれて前記最小流れ時間を大きくする方向に補正する流れ時間補正手段が設けられていることも本発明の特徴的な構成とされている。
【0008】
さらに、前記給湯熱交換器の給水通路と給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が、給湯熱交換器とバイパス通路開閉弁を備えたバイパス通路との並列回路の間に並列に設けられていることも本発明の特徴的な構成とされている。
【0009】
上記構成の本発明において、給湯バーナの給湯燃焼停止時に給湯熱交換器出側湯温センサが検出する給湯熱交換器の燃焼停止時実測湯温に基づいて、この燃焼停止時実測出側湯温よりも高いバイパス通路開閉弁開弁温度と、この開弁温度以下であって燃焼停止時実測出側湯温よりは高いバイパス通路開閉弁閉弁温度とが、バイパス開閉温度設定部により設定される。
【0010】
また、給湯熱交換器から給湯通路へ流出される湯が、給湯熱交換器出側湯温センサの配設部位から給湯通路とバイパス通路との合流部位まで達するまでの湯の流れ時間が、センサ部合流部間流れ時間検出部によって、流量検出センサの検出流量等のパラメータを含む予め与えられた解法データに基づいて求められる。
【0011】
そして、バイパス通路開閉弁開閉制御部により、給湯バーナの給湯燃焼停止以降の再出湯時に給湯熱交換器出側湯温センサによって検出される再出湯時実測出側湯温が前記バイパス通路開閉弁開弁温度以上と判断されたときには、この判断時からセンサ部合流部間流れ時間検出部で求めた湯の流れ時間だけ経過したときに、バイパス通路開閉弁が開弁され、再出湯時実測出側湯温がバイパス通路開閉弁閉弁温度以下であると判断されたときには、この判断時から前記湯の流れ時間だけ経過したときにバイパス通路開閉弁が閉弁される。
【0012】
このように、本発明においては、給湯熱交換器の再出湯時実測出側湯温がバイパス通路開閉弁開弁温度以上となって高温出湯の虞れがあると判断されるときには、給湯熱交換器から流出される高温の湯が給湯通路とバイパス通路との合流部位に達したときにバイパス通路開閉弁が開弁されて、バイパス通路からの水が適切なタイミングでミキシングされることにより、高温の湯の湯温が下げられ、高温出湯が防止される。また、再出湯時実測出側湯温がバイパス通路開閉弁閉弁以下であり、バイパス通路からの水のミキシングがなくても高温出湯の虞れがないと判断されたときには、この高温出湯の虞れがない湯温の湯が給湯熱交換器から前記合流部位に達したときにバイパス通路開閉弁が閉弁され、バイパス通路からの水のミキシングが停止されるために、高温出湯の虞れがなくなったときに的確に水のミキシング停止が行われ、高温出湯が確実に防止され、さらに、水のミキシング停止を適切なタイミングで行うことで、バイパス通路からの水のミキシングが行われ続けることによるアンダーシュートの湯の出湯が抑制され、湯温の安定化が図られ、上記課題が解決される。
【0013】
【発明の実施の形態】
以下、本発明に係る実施の形態例を図面に基づき説明する。以下に説明する実施の形態例の燃焼機器は、本発明者らが試作検討している図4の単機能給湯器や、図5の複合給湯器や、図6の多機能給湯器や、図7の一缶二水構成の給湯器を対象にしている。
【0014】
図4の給湯器には給湯熱交換器1と図示されていない給湯バーナが設けられ、この給湯熱交換器1の入側には給水通路3が接続され、出側には給湯通路4が接続されており、給湯通路4は台所等の給湯栓19へ導かれている。前記給湯熱交換器1には入側の給水通路3と出側の給湯通路4を短絡する開閉弁を持たない常時バイパス通路5が並設され、この常時バイパス通路5は給湯熱交換器1側に流れる流量と常時バイパス通路5側に流れる流量の流量比が管路抵抗により予め定めた流量比(例えば7対3〜8対2)となるように形成されている。
【0015】
また、前記常時バイパス通路出側接続部Xより下流側の給湯通路4と、常時バイパス通路入側接続部Yより上流側の給水通路3とを短絡するバイパス通路8が形成されている。このバイパス通路8には該通路の開閉を行うバイパス通路開閉弁であるバイパス弁10が介設されており、バイパス弁10は電磁弁により形成されている。また、この給湯器には該給湯器の運転動作を制御する制御装置20が設けられ、この制御装置20にはリモコン18が接続されている。
【0016】
なお、図中、12は水供給源から給水通路3を介して導かれた入水流量を検出するための流量検出センサを示し、7は上記給湯熱交換器1と常時バイパス通路5およびバイパス通路8を通る水量(流量)を開弁量により調節する水量制御弁を示し、13は給水通路3の入水の温度を検出するためのサーミスタ等の入水温度センサを示し、14は給湯熱交換器1の出側の湯水の温度を検出するためのサーミスタ等の給湯熱交換器出側湯温センサである出側湯温センサを示すものである。
【0017】
図5の複合給湯器は、図4に示す給湯器の構成に、湯張り機能や、高温差し湯機能や、追い焚き機能等の風呂機能を加えた構成を有するものである。図5に示すように、この複合給湯器は、図4に示す給湯システム構成に加えて、図示されていない風呂バーナと、浴槽水を循環ポンプ28の駆動により導入して風呂バーナの燃焼の熱を利用し追い焚き熱交換器26で加熱し浴槽24へ戻す追い焚き循環路27と、この追い焚き循環路27と給湯通路4を接続する湯張り通路30と、該通路の開閉を行う注湯制御弁22とを有しており、例えば、注湯制御弁22を開け、給湯熱交換器1で温められた湯を湯張り通路30と追い焚き循環路27を介して浴槽24へ落とし込み風呂の湯張りを行ったり、同様にして高温差し湯を行ったり、循環ポンプ28を駆動し、浴槽水を追い焚き循環路27で循環させると共に風呂バーナ燃焼の熱を利用して追い焚き熱交換器26で加熱することで風呂の追い焚きを行うことができるものである。
【0018】
図6の多機能給湯器は図4に示す給湯器の構成に風呂の湯張り機能や高温差し湯機能を加えた構成を有するものである。図6に示すように、この給湯器の給湯通路4には通路23の一端側が接続され、この通路23の他端側は電磁弁等の注湯制御弁22を介して浴槽24へ導かれており、例えば、注湯制御弁22を開け、給湯バーナ燃焼により温められた湯を通路23を通して浴槽24へ導くことにより湯張りや高温差し湯が行われる。
【0019】
図7の一缶二水構成の給湯器は、図4に示す給湯器の構成に、湯張り機能や、高温差し湯機能や、追い焚き機能等の風呂機能の構成を加えたものであり、給湯バーナが風呂バーナを兼用し、給湯熱交換器1には給湯用の湯水が流れる給湯用管路47と浴槽循環水が流れる追い焚き用管路48が形成されている。給湯用管路47の入側には給水通路3が、出側には給湯通路4がそれぞれ接続され、前記追い焚き用管路48は浴槽24の湯水を循環するための追い焚き循環路27に介設されている。
【0020】
上記一缶二水構成の給湯器は、例えば、給湯栓19が開けられると、給湯バーナの給湯燃焼を行って、給水通路3より導かれた水を給湯熱交換器1で加熱し、その湯を給湯通路4を通し給湯栓19を介して出湯する給湯運転を行う。また、この給湯器は、例えば、循環ポンプ28を駆動させ、浴槽24の水を追い焚き循環路27で循環させると共に、給湯バーナの追い焚き燃焼を行って加熱し追い焚き単独運転を行う。
【0021】
上記図4〜図7の各給湯器の制御装置20には本発明において特有な高温出湯防止手段が設けられており、図1には、本発明に係る燃焼機器の第1実施形態例における制御装置20の主要構成が示されている。同図に示すように、この制御装置20は、バイパス開閉温度設定部39、流れ時間検出部40、パラメータ格納部41、バイパス弁駆動手段38を有する高温出湯防止手段と、燃焼制御部33とを有して構成されている。燃焼制御部33は、給湯や湯張りや高温差し湯や追い焚き等の運転動作を制御するもので、その制御構成は前述したのでその説明は省略する。なお、本実施形態例において、燃焼制御部33は、給湯バーナの燃焼停止時に給湯燃焼停止信号をバイパス開閉温度設定部39とバイパス弁駆動手段38とに加える。
【0022】
バイパス開閉温度設定部39は、給湯バーナの給湯燃焼停止時に出側湯温センサ14が検出する給湯熱交換器1の燃焼停止時実測出側湯温に基づいて、この燃焼停止時実測出側湯温よりも高いバイパス通路開閉弁開弁温度と、この開弁温度以下であって燃焼停止時実測出側湯温よりは高いバイパス通路開閉弁閉弁温度を設定するものである。バイパス開閉温度設定部39は、燃焼制御部33から燃焼停止信号が加えられたときに、そのときの出側湯温センサ14の検出温度(燃焼停止時実測出側湯温)を出側湯温センサ14から取り込み、例えば、この検出温度に+3℃を加えた温度をバイパス通路開閉弁開弁温度として設定し、出側湯温センサ14の検出温度に+2℃を加えた温度をバイパス通路開閉弁閉弁温度として設定する。
【0023】
なお、これらバイパス通路開閉弁開弁温度および閉弁温度の設定の仕方は特に限定されるものではなく、適宜設定されるものであり、例えば入水温度センサ13によって検出される入水検出温度に基づいて可変設定する等してもよい。バイパス開閉温度設定部39は、設定したバイパス通路開閉弁開弁温度およびバイパス通路開閉弁閉弁温度をバイパス弁駆動手段38に加える。
【0024】
流れ時間検出部40は、給湯熱交換器1から給湯通路4へ流出される湯が、出側温度センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまで達するまでの湯の流れ時間を求める、センサ部合流部間流れ時間検出部として機能するものである。流れ時間検出部40には、この湯の流れ時間を求める解法データとして、次式(1)に示すように、湯の流れ時間Gを求める演算式が予め与えられており、流れ時間検出部40はこの式(1)に基づき、図示されていない演算回路によって、給湯通路4の出側湯温センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまでの接続通路の湯の流れ時間を求めるようになっている。
【0025】
G=[{L・(d/2)・2・π}/R・A]−(t+τ)・・・・・(1)
【0026】
なお、式(1)において、Lは前記接続通路(PQ間)の長さであり、dはその接続通路の太さ(パイプ内径)、Rはトータル給水量に対する給湯熱交換器1を通る水量の熱交側流量比、Aは流量検出センサ12によって検出される検出流量、tはバイパス弁10の開閉遅れ時間、τは出側湯温センサ14の時定数をそれぞれ示している。前記接続通路の長さLおよび太さdの単位は例えばcm、流量検出センサ12の検出流量の単位は例えばcm3 /秒、バイパス弁10の遅れ時間tおよび出側湯温センサ14の時定数τの単位は例えば秒とすることができる。
【0027】
式(1)に用いられている各パラメータのうち、前記接続通路の長さL、およびその太さd、バイパス弁10の遅れ時間t、出側湯温センサ14の時定数τは、一般に、燃焼機器によって予め決められているものであり、本実施形態例では、これらの各パラメータの数値がパラメータ格納部41に格納されている。
【0028】
また、本実施形態例では、バイパス弁10が電磁弁により形成されており、前記トータル給水量に対する給湯熱交換器1を通る水量の熱交側流量比Rは、バイパス弁10が開いているときと閉じているときとで異なり、バイパス弁10が開いているときの熱交側流量比はR1 、バイパス弁10が閉じているときの熱交側流量比はR2 である。したがって、前記式(1)から、バイパス弁10が開いているときの接続通路の流れ時間Gは次式(2)により求められ、バイパス弁10が閉じているときの接続通路の流れ時間Gは次式(3)により求められる。なお、これら熱交側流量比R1 ,R2 の各値も燃焼機器によって決められているものであり、本実施形態例では、これら熱交側流量比R1 ,R2 の値もパラメータ格納部41に格納されている。
【0029】
G=[{L・(d/2)・2・π}/R1 ・A]−(t+τ)・・・・・(2)
【0030】
G=[{L・(d/2)・2・π}/R2 ・A]−(t+τ)・・・・・(3)
【0031】
流れ時間検出部40は、バイパス弁10の開閉信号を取り込み、バイパス弁10が開いているときには前記式(2)を選択し、この式(2)に、パラメータ格納部41に格納されている各パラメータL,d,R1 ,t,τの数値と、流量検出センサ12によって検出される検出流量Aの値を代入して前記接続通路の流れ時間Gを求め、一方、バイパス弁10が閉じているときには、前記式(3)に、パラメータ格納部41に格納されている各パラメータL,d,R2 ,t,τの数値と流量検出センサ12によって検出される検出流量Aの値を代入して前記接続通路の流れ時間Gを求める。流れ時間検出部40は、以上のようにして求められる接続通路の流れ時間をバイパス弁駆動手段38に加える。
【0032】
バイパス弁駆動手段38は、給湯バーナの給湯燃焼停止以降の再出湯時に出側湯温センサ14によって検出される再出湯時実測出側湯温が、前記バイパス通路開閉弁開弁温度以上であると判断したときに、この判断時から流れ時間検出部40で求めた湯の流れ時間だけ経過したときにバイパス弁10を開弁させ、前記再出湯時実測出側湯温が前記バイパス通路開閉弁閉弁温度以下であると判断したときに、この判断時から前記湯の流れ時間だけ経過したときにバイパス弁10を閉弁させるバイパス通路開閉弁開閉制御部として機能するものである。バイパス弁駆動手段38は、この制御に際し、バイパス開閉温度設定部39によって設定したバイパス開閉弁開弁温度(バイパス弁10の開弁温度)とバイパス開閉弁閉弁温度(バイパス弁10の閉弁温度)の各値を取り込む。また、バイパス弁駆動手段38は、流量検出センサ12の検出流量を取り込んで再出湯開始を判断する。
【0033】
さらに、バイパス弁駆動手段38は、流れ時間検出部40で求めた前記接続通路の流れ時間Gの値を取り込むが、バイパス弁10を開弁するときには、バイパス弁10が閉じている状態からバイパス弁10の開弁制御を行うために、前記再出湯時実測出側湯温がバイパス弁10の開弁温度以上であると判断したときから、前記式(3)によって求めた湯の流れ時間だけ経過したときにバイパス弁10を開弁させる。また、バイパス弁10を閉じるときには、バイパス弁10が開いている状態からバイパス弁10の閉制御を行うために、前記給湯熱交換器1の再出湯時実測出側湯温がバイパス弁10の閉弁温度以下であると判断したときから、前記式(2)で求めた湯の流れ時間だけ経過したときにバイパス弁10の閉制御を行う。
【0034】
本実施形態例は以上のように構成されており、バイパス開閉温度設定部39により、給湯バーナの給湯燃焼停止時に出側湯温センサ14によって検出される燃焼停止時実測出側湯温に基づいて、燃焼停止時実測出側湯温よりも例えば+3℃高いバイパス通路開閉弁開弁温度と、燃焼停止時実測出側湯温よりも例えば+2℃高いバイパス通路開閉弁閉弁温度が設定される。また、流れ時間検出部40によって、流量検出センサ12の検出流量と、パラメータ格納部41の各格納データと、バイパス弁10の開閉信号と、前記演算式(1),(2),(3)に基づいて、給湯熱交換器1から給湯通路4へ流出される湯が出側湯温センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまで達するまでの湯の流れ時間が求められる。
【0035】
そして、バイパス弁駆動手段38により、給湯バーナの給湯燃焼停止以降の再出湯時に出側湯温センサ14によって検出される給湯熱交換器1の再出湯時実測出側湯温が、バイパス通路開閉弁開弁温度以上と判断されたときには、この判断時から流れ時間検出部40で求めた湯の流れ時間だけ経過したときにバイパス弁10の開弁が行われ、前記再出湯時実測出側湯温がバイパス通路開閉弁閉弁温度以下であると判断されたときには、この判断時から前記湯の流れ時間だけ経過したときにバイパス通路10を閉弁させる制御が行われる。
【0036】
本実施形態例によれば、上記動作により、給湯熱交換器1の再出湯時実測出側湯温がバイパス通路開閉弁開弁温度以上であり、高温出湯の虞れがあると判断されるときには、この判断時から流れ時間検出部40で求めた湯の流れ時間だけ経過して、給湯熱交換器1から流出した高温の湯が給湯通路4とバイパス通路8との合流部位Qに達したときにバイパス弁10が開弁され、それにより、前記給湯熱交換器1から流出する高温の湯にバイパス通路8からの水が適切なタイミングでミキシングされるために、高温の湯の湯温を適切なタイミングで下げることが可能となり、後沸き等に起因した高温出湯を確実に防止することができる。
【0037】
また、本実施形態例によれば、バイパス弁駆動手段38によって、給湯熱交換器1の再出湯時実測出側湯温がバイパス開閉弁閉弁温度以下であると判断され、バイパス通路8からの水のミキシングが行われなくとも給湯熱交換器1から流出される湯の出湯による高温出湯の虞れがなくなったと判断されたときには、この判断時から流れ時間検出部40で求めた前記接続通路の流れ時間だけ経過して、給湯熱交換器1から流出された高温出湯の虞れのない湯が給湯通路4とバイパス通路8との合流部位Qに達したときにバイパス弁10が閉弁されるために、バイパス通路8からの水のミキシングを適切なタイミングで停止することができる。
【0038】
すなわち、例えばバイパス弁駆動手段38により、出側湯温センサ14によって検出される給湯熱交換器1の再出湯時実測出側湯温がバイパス開閉弁閉弁温度以下であると判断された直後にバイパス弁10の閉弁制御を行い、バイパス通路8からの水のミキシングを停止してしまうと、バイパス通路開閉弁閉弁温度以下となった湯が給湯通路4とバイパス通路8との合流部位Qに達する前に水のミキシングが停止されることになる。言い換えれば、出側湯温センサ14の配設部位Pから前記合流部位Qまでの間に留まっていたバイパス通路開閉弁閉弁温度よりも高い湯温の湯は、バイパス通路8からの水のミキシングが行われないまま、バイパス通路開閉弁閉弁温度を越える湯温の湯が出湯されてしまうことになる。
【0039】
それに対し、本実施形態例のように、バイパス弁駆動手段38によって、給湯熱交換器1の再出湯時実測出側湯温がバイパス通路開閉弁閉弁温度以下であると判断されたときに、この判断時から前記接続通路の流れ時間だけ経過したときにバイパス弁10の閉弁制御を行うことにより、上記のようなバイパス通路開閉弁閉弁温度を越えた湯の出湯を確実に防止し、バイパス通路開閉弁閉弁温度以下の湯の出湯を確実に行うことができる。
【0040】
さらに、以上のようなバイパス弁駆動手段38の制御により、バイパス通路開閉弁閉弁温度以下となった湯が給湯通路4とバイパス通路8との合流部位Qに達したときには、バイパス弁10を閉弁してバイパス通路8からの水のミキシングを停止するために、給湯熱交換器1の出側温度が低くなってもバイパス通路8からの水のミキシングが行われ続けることによる大幅なアンダーシュートの湯の出湯を抑制することが可能となり、給湯設定温度に近い安定した湯温の湯を出湯することができる。
【0041】
図2には、本発明に係る燃焼機器の第2実施形態例における制御装置20の主要構成が示されている。この制御装置20は、上記第1実施形態例における制御装置20とほぼ同様に構成されており、本実施形態例が上記第1実施形態例と異なる特徴的なことは、流れ時間検出部40に、最小流れ時間記憶部42と流れ時間補正手段43を設けたことである。
【0042】
図4〜図7に示したような燃焼機器において、給湯バーナの給湯燃焼中には、一般に、水量制御弁7の開弁量は最大開弁量に設定されることが多いが、例えば、給湯の設定温度が非常に高く、給湯熱交換器1を通る水量を小さく絞らなければ設定温度の湯の出湯を行うことができないような場合には、水量制御弁7の絞り量を大きくして給湯熱交換器1を通る水量(流量)を小さくすることがある。なお、このように、水量制御弁7の絞り量を大きくしたときには、常時バイパス通路5を通る水の流量も小さくされる。
【0043】
そして、水量制御弁7の絞り量が大きくなり、給水通路3の水の流量が小さくなるにつれて、給湯熱交換器1から給湯通路4へ流出される湯が出側湯温センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまで達するまでの湯の流れ時間は遅くなる。
【0044】
また、バイパス通路8のバイパス弁10が開いているときと閉じているときとの前記熱交側流量比を比較すると、バイパス弁10を閉じているときの熱交側流量比の方がバイパス弁10を開いているときの熱交側流量比よりも大きくなるために、バイパス弁10を閉じているときの方が前記湯の流れ時間は短くなる。
【0045】
そこで、本実施形態例では、例えば前記演算式(1)に、給水通路3の水の最大流量(水量制御弁7の開弁量を最大としたときの流量)と、前記接続通路の長さLと、この接続通路の太さdと、前記熱交側流量比の最大値(バイパス弁10を閉じているときの熱交側流量比R2 )を代入して決定される前記接続通路の最小流れ時間を最小流れ時間記憶部42に与え、流れ時間検出部40は、この最小流れ時間記憶部42に記憶した最小流れ時間を流れ時間補正手段43によって補正する構成とした。
【0046】
流れ時間補正手段43は、再出湯時の流量検出センサ12の検出流量と再出湯時の熱交側流量比の少なくとも一方が小さくなるにつれて、最小流れ時間記憶部42に記憶した最小流れ時間を大きくする方向に補正するものである。すなわち、流れ時間補正手段43は、バイパス弁10の開閉信号と流量検出センサ12の検出流量とを取り込み、バイパス弁10が開いているときや、水量制御弁7の制御によって給水通路3を通る水の流量が小さく制御されているときには、バイパス弁10の開閉信号や流量検出センサ12の検出流量に基づいて最小流れ時間を大きくする方向に補正する。
【0047】
本実施形態例の上記以外の構成は上記第1実施形態例と同様に構成されており、本実施形態例でも上記第1実施形態例と同様に、バイパス開閉温度設定部39によってバイパス弁10の開弁温度と閉弁温度とが設定される。そして、本実施形態例では、流れ時間検出部40の流れ時間補正手段43により、流量検出センサ12の検出流量と、バイパス弁10の開閉信号と、パラメータ格納部41の格納データと、前記演算式(1),(2),(3)に基づいて最小流れ時間記憶部42の最小流れ時間の補正が行われ、前記接続通路の湯の流れ時間が求められる。
【0048】
そして、この求められた湯の流れ時間と前記バイパス弁10の開弁温度および閉弁温度に基づいて、バイパス弁駆動手段38によるバイパス弁10の開閉制御が上記第1実施形態例と同様に行われることにより、本実施形態例でも上記第1実施形態例と同様の効果を奏することができる。
【0049】
なお、本発明は、上記実施の形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記実施形態例では、バイパス弁駆動手段38は、流量検出センサ12のセンサ出力を用いて出湯開始を検知していたが、燃焼制御部33の制御動作の情報に基づいて出湯開始を検知するようにしてもよいし、図4〜図7の各給湯器の給湯通路4の給湯栓19側に流水を検出するための流水スイッチ(給湯確認スイッチ)等のセンサを設け、このセンサのセンサ出力を用いて出湯開始を検知するようにしてもよい。
【0050】
また、図4〜図7に示した給湯器には常時バイパス通路5が設けられていたが、前記実施の形態例に示した高温出湯防止手段は常時バイパス通路5を省略した各種の燃焼機器にも適用できるものであり、上記実施の形態例の高温出湯防止手段を設けて高温出湯防止動作を行うことによって、出湯時に給湯設定温度より許容範囲を越えた高温の湯が出湯し湯の利用者に不快感を与えるという問題および高温出湯による危険を回避できるし、再出湯時の湯温安定化も図れる。上記のように常時バイパス通路5を省略した場合にはその分管路構成を簡単にできる。
【0051】
さらに、上記実施形態例では、常時バイパス通路5を1本だけ設けたが、常時バイパス通路5を複数本設けてもよい。この場合にも、前記の如く、給湯熱交換器1の流量とそれら常時バイパス通路の総流量の流量比が管路抵抗により予め定めた流量比となるように複数の常時バイパス通路が形成される。
【0052】
さらに、上記実施形態例では、流れ時間検出部40は、前記式(1)〜(3)やパラメータ格納部41に格納された各パラメータの数値等に基づいて、給湯熱交換器1から給湯通路4へ流出される湯が出側温度センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまで達するまでの湯の流れ時間を求めたが、この湯の流れ時間の求め方は必ずしも上記実施形態例と同様にするとは限らず、流量検出センサ12の検出流量と、PQ間の長さと、その太さと、トータル給水量に対する給湯熱交換器1を通る水量の熱交側流量比の1つ以上のパラメータを含む予め与えられた演算式等の解法データに基づいて前記湯の流れ時間を求めるようにすればよい。
【0053】
また、上記第2実施形態例のように、流れ時間検出部40に流れ時間補正手段43を設ける場合には、最小流れ時間記憶部42に記憶した最小流れ時間の補正式や補正データを予め与えておいてこの補正式や補正データに基づいて最小流れ時間を補正して湯の流れ時間を求めるようにしてもよい。
【0054】
さらに、上記実施形態例では、流れ時間検出部40によって、給湯熱交換器1から給湯通路4へ流出される湯が、出側湯温センサ14の配設部位Pから給湯通路4とバイパス通路8との合流部位Qまで達するまでの湯の流れ時間を求める解法データとして演算式を与え、流れ時間検出部40はこの演算式に基づいて前記湯の流れ時間を求めたが、解法データは必ずしも演算式とは限らず、例えばテーブルデータやグラフデータ等のデータとしてもよく、このように、流れ時間検出部40は様々な与えられた解法データに基づいて湯の流れ時間を求める構成とすることができる。
【0055】
【発明の効果】
本発明によれば、給湯バーナの燃焼停止以降の再出湯時に、給湯熱交換器出側湯温センサによって検出される給湯熱交換器の再出湯時実測出側湯温がバイパス通路開閉弁開弁温度以上であり、高温出湯の虞れがあると判断されたときには、この高温の湯が給湯通路とバイパス通路との合流部位に達したときにバイパス通路開閉弁を開弁させてバイパス通路の水をミキシングし、前記再出湯時実測出側湯温がバイパス通路開閉弁閉弁温度以下となり、高温出湯の虞れがなくなったと判断されたときには、この湯が前記合流部位に達したときにバイパス通路開閉弁を閉弁させてバイパス通路の水のミキシングを停止する構成としたので、バイパス通路の水のミキシングを非常に適切なタイミングで行うことが可能となり、例えば給湯熱交換器の後沸きに起因した高温の湯が再出湯時に出湯するのを確実に防止することができるし、その後の出湯湯温の安定化も図ることができる。
【0056】
しかも、本発明は、バイパス通路を設け、このバイパス通路の開閉を行うバイパス通路開閉弁を上記の如く制御するといった簡単な構成でもって、上記のような高温出湯防止および再出湯湯温安定化といった優れた効果を奏することができる。
【0057】
また、給湯熱交換器から給湯通路へ流出される湯が給湯熱交換器出側湯温センサの配設部位から給湯通路をバイパス通路との合流部位まで達するまでの湯の流れ時間を求めるときに、この湯の流れ時間の最小流れ時間を与えておき、この最小流れ時間を、流れ時間補正手段によって、再出湯時の給水通路の流量とトータル給水量に対する給湯熱交換器を通る水量の熱交側流量比とに基づいて補正する構成とした本発明によれば、湯の流れ時間をより一層容易に求めることができる。
【0058】
さらに、本発明において、給湯熱交換器の給水通路と、給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が給湯熱交換器とバイパス通路開閉弁を備えたバイパス通路との並列回路の間に並列に設けられている構成にあっては、給湯通路の常時バイパス通路出側接続部で、給湯熱交換器で加熱された湯と常時バイパス通路側を通った水がミキシングされることになり、例えば、バイパス通路開閉弁を開弁してバイパス通路を通る水によって給湯熱交換器から流出した湯の温度を下げなければならないにもかかわらず、バイパス通路開閉弁が補償して開弁しないという事態が発生しても、上記の如く、給湯熱交換器の湯は常時バイパス通路の水がミキシングされることによって湯温が下げられることから、高温の湯が出湯し、湯の利用者に火傷を負わせてしまうというような重大な問題は回避することができる。
【0059】
また、この構成の燃焼機器にあっては、給水通路からの水が全て給湯熱交換器側に入り込むことはないため、給湯熱交換器の表面が急激に冷やされて、例えば燃焼排ガス中の水蒸気が給湯熱交換器表面に付着することによる結露の発生も防ぐことができる。
【図面の簡単な説明】
【図1】本発明に係る燃焼機器の第1実施形態例の制御部要部構成を示すブロック構成図である。
【図2】本発明に係る燃焼機器の第2実施形態例の制御部要部構成を示すブロック構成図である。
【図3】給湯熱交換器の滞留湯の温度における時間的変化の一例を示すグラフである。
【図4】本発明の燃焼機器である給湯器の一システム構成例を示すモデル図である。
【図5】本発明の燃焼機器である複合給湯器の一システム構成例を示すモデル図である。
【図6】本発明の燃焼機器である湯張り機能(高温差し湯機能)付き給湯器の一システム構成例を示すモデル図である。
【図7】本発明の燃焼機器である一缶二水構成の給湯器の一システム構成例を示すモデル図である。
【符号の説明】
1 給湯熱交換器
4 給湯通路
5 常時バイパス通路
8 バイパス通路
10 バイパス弁
12 流量検出センサ
14 出側湯温センサ
38 バイパス弁駆動手段
39 バイパス開閉温度設定部
40 流れ時間検出部
43 流れ時間補正手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion apparatus including a hot water supply heat exchanger that heats water guided from a water supply passage by hot water supply burner combustion and flows out into the hot water supply passage.
[0002]
[Prior art]
As is well known, a hot water heater typical as a combustion device is provided with a hot water heat exchanger and a hot water burner, and a hot water passage is connected to the inlet side of the hot water heat exchanger and a hot water passage is connected to the outlet side. The hot water passage is led to a hot water tap such as a kitchen. When the hot water tap is opened, the hot water supply heat exchanger heats the water led from the water supply source through the water supply passage using the heat of the hot water combustion of the hot water burner, and passes the heated hot water through the hot water supply passage. Hot water is discharged through the water tap.
[0003]
[Problems to be solved by the invention]
By the way, as is well known, after the hot water tap is closed, that is, after the hot water supply is stopped (after the hot water is stopped), the hot water staying in the hot water heat exchanger is immediately after the hot water supply is stopped as shown by a solid curve A in FIG. Boiling (a phenomenon in which the amount of heat stored in the hot water heat exchanger is transferred to the hot water in the hot water heat exchanger and the hot water temperature rises) results in a hot water (overshoot) hot water higher than the hot water heat exchanger water temperature before the hot water stops. . When this overshoot hot water is opened and flows out of the hot water heat exchanger, hot water that is higher than the hot water set temperature determined by the hot water user will cause hot water users to feel uncomfortable Occurs.
[0004]
In order to solve the above problems, various means have been proposed, but a satisfactory combustion device that can prevent high-temperature hot water at the time of hot water with a simple configuration has not yet been obtained.
[0005]
The present invention has been made in order to solve the above-described problems, and the object thereof is to make it possible to stabilize hot water temperature at the time of re-bathing with a simple configuration by reliably preventing high-temperature hot water at the start of the hot water. It is to provide combustion equipment.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the first aspect of the present invention is to provide a hot water heat exchanger that heats water guided from the water supply passage using the heat of hot water burner combustion and flows out to the hot water passage, and a water supply passage and an outlet on the inlet side of the hot water heat exchanger. A bypass passage that short-circuits the hot water supply passage on the side, a bypass passage on-off valve that opens and closes the bypass passage, a flow rate detection sensor that detects the flow rate of water in the water supply passage, and a hot water supply heat exchanger provided in the hot water passage. In a combustion device having a hot water supply heat exchanger outlet side hot water temperature sensor for detecting the hot water temperature of the hot water supply side, when the hot water supply heat exchanger detected by the hot water supply heat exchanger outlet side hot water temperature sensor is stopped when the hot water supply combustion of the hot water burner is stopped Based on the measured outlet side hot water temperature, the bypass passage opening / closing valve opening temperature higher than the actual measured outlet side hot water temperature at the time of combustion stop, and below the bypass passage opening / closing valve opening temperature and lower than the measured outlet side hot water temperature at the time of combustion stop. Is a high bypass passage on-off valve closing A bypass opening / closing temperature setting unit for setting the degree of hot water flowing out from the hot water supply heat exchanger to the hot water supply passage from a location where the hot water supply heat exchanger outlet-side hot water temperature sensor is arranged to join the hot water supply passage and the bypass passage The flow time detection unit between the sensor unit and the joining unit to obtain the hot water flow time until reaching the hot water supply temperature, and the hot water supply heat exchanger detected by the hot water supply heat exchanger outlet side hot water temperature sensor at the time of re-heating after the hot water supply combustion of the hot water supply burner When it is determined that the measured outlet side hot water temperature at the time of re-heating of the hot water is equal to or higher than the bypass passage opening / closing valve opening temperature, the hot water flow time determined by the flow time detection unit between the sensor unit AC units has elapsed since this determination. The bypass passage on-off valve is opened, and when it is determined that the actually measured hot water temperature at the time of re-draining is equal to or lower than the bypass passage on-off valve closing temperature, the hot water flow time has elapsed since this determination. A bypass passage opening / closing valve opening / closing controller for closing the bypass passage opening / closing valve is provided, and the flow time detection unit between the sensor unit merging units exchanges the detected flow rate of the flow rate detection sensor and hot water supply heat in the hot water supply channel. The heat exchange side of the amount of water passing through the hot water supply heat exchanger with respect to the thickness of the connecting passage from the arrangement site of the hot water outlet temperature sensor to the junction of the hot water supply passage and the bypass passage, the length of the connection passage The hot water flow time in the connecting passage is determined based on solution data given in advance including one or more parameters of the flow rate ratio.
[0007]
Further, a water amount control valve for adjusting the amount of water passing through the bypass passage and the amount of water passing through the hot water supply heat exchanger is provided in the hot water supply passage on the downstream side of the bypass passage, and is provided in advance to the flow time detection unit between the sensor unit merging units. The obtained solution data, the maximum flow rate of the water in the water supply passage, the thickness of the connection passage from the location where the hot water supply heat exchanger outlet side hot water temperature sensor in the hot water supply passage is located to the junction of the hot water supply passage and the bypass passage, The minimum flow time of the connection passage determined by the length of the connection passage and the maximum value of the heat exchange side flow rate ratio of the amount of water passing through the hot water heat exchanger with respect to the total water supply amount is given, The flow time detection unit includes flow time correction means for correcting the minimum flow time in a direction to increase as at least one of the detected flow rate of the flow rate detection sensor at the time of re-heating and the heat exchange side flow rate ratio at the time of re-heating is reduced. It is kicked is also a characteristic structure of the present invention.
[0008]
Further, a constant bypass passage having no open / close valve for short-circuiting the hot water supply heat exchanger and the hot water supply heat exchanger is a parallel circuit of a hot water heat exchanger and a bypass passage having a bypass passage open / close valve. It is also a characteristic configuration of the present invention that they are provided in parallel.
[0009]
In the present invention having the above-described configuration, based on the measured hot water temperature at the time of combustion stop of the hot water heat exchanger detected by the hot water supply heat exchanger outlet temperature sensor when the hot water supply combustion of the hot water burner is stopped, this measured hot water temperature at the time of combustion stop is measured. The bypass passage opening / closing valve opening temperature higher than the valve opening temperature and the bypass passage opening / closing valve closing temperature lower than the valve opening temperature and higher than the actually measured hot water temperature at the time of combustion stop are set by the bypass opening / closing temperature setting unit. .
[0010]
In addition, the hot water flowing from the hot water supply heat exchanger to the hot water supply passage until the hot water flows from the location where the hot water supply heat exchanger outlet-side hot water temperature sensor is located to the junction of the hot water supply passage and the bypass passage, It is calculated | required based on the solution data given beforehand including parameters, such as the detection flow volume of a flow volume detection sensor, by the flow time detection part between part merge parts.
[0011]
Then, the bypass passage opening / closing valve opening / closing control unit opens the bypass passage opening / closing valve to determine whether the measured hot water temperature at the re-heating time detected by the hot water heat exchanger outlet temperature sensor at the time of re-heating after the hot water combustion of the hot water burner is stopped. When it is determined that the valve temperature is equal to or higher than this value, the bypass passage opening / closing valve is opened when the hot water flow time determined by the flow time detection unit between the sensor unit merging units has elapsed since this determination, and the actual discharge side during re-heating When it is determined that the hot water temperature is equal to or lower than the bypass passage opening / closing valve closing temperature, the bypass passage opening / closing valve is closed when the hot water flow time has elapsed since this determination.
[0012]
As described above, in the present invention, when it is determined that there is a risk of high temperature hot water when the hot water temperature measured at the time of re-heating the hot water supply heat exchanger is higher than the bypass passage opening / closing valve opening temperature, When the hot water flowing out of the vessel reaches the junction of the hot water supply passage and the bypass passage, the bypass passage opening / closing valve is opened, and the water from the bypass passage is mixed at an appropriate timing, The temperature of the hot water is lowered and hot hot water is prevented. In addition, if the actual hot water temperature at the time of re-draining is less than or equal to the bypass passage opening / closing valve closing, and it is determined that there is no possibility of hot hot water without mixing water from the bypass passage, When hot water with no temperature has reached the junction from the hot water supply heat exchanger, the bypass passage opening / closing valve is closed and mixing of water from the bypass passage is stopped. When it stops running, water mixing is stopped accurately, hot hot water is reliably prevented, and water mixing is stopped at an appropriate timing to continue mixing water from the bypass passage. The outflow of the undershoot hot water is suppressed, the hot water temperature is stabilized, and the above problem is solved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. The combustion apparatus of the embodiment described below includes the single-function water heater shown in FIG. 4, the composite water heater shown in FIG. 5, the multi-function water heater shown in FIG. 7 water heaters with a single can / two water configuration are targeted.
[0014]
4 is provided with a hot water supply heat exchanger 1 and a hot water supply burner (not shown). A hot water supply passage 3 is connected to the inlet side of the hot water heat exchanger 1, and a hot water supply passage 4 is connected to the outlet side. The hot water supply passage 4 is led to a hot water tap 19 such as a kitchen. The hot water supply heat exchanger 1 is provided with a constant bypass passage 5 that does not have an on-off valve that short-circuits the inlet side water supply passage 3 and the outlet side hot water supply passage 4, and this constant bypass passage 5 is provided on the hot water supply heat exchanger 1 side. The flow rate ratio between the flow rate flowing to the bypass passage 5 and the flow rate always flowing to the bypass passage 5 side is set to a flow rate ratio (for example, 7 to 3 to 8 to 2) determined in advance by the pipe resistance.
[0015]
Further, a bypass passage 8 is formed which short-circuits the hot water supply passage 4 downstream from the constant bypass passage outlet connection portion X and the water supply passage 3 upstream from the constant bypass passage inlet connection portion Y. The bypass passage 8 is provided with a bypass valve 10 which is a bypass passage opening / closing valve for opening and closing the passage, and the bypass valve 10 is formed of an electromagnetic valve. The water heater is provided with a control device 20 for controlling the operation of the water heater, and a remote controller 18 is connected to the control device 20.
[0016]
In the figure, reference numeral 12 denotes a flow rate detection sensor for detecting the incoming water flow rate introduced from the water supply source through the water supply passage 3, and 7 denotes the hot water supply heat exchanger 1, the constant bypass passage 5, and the bypass passage 8. A water amount control valve that adjusts the amount (flow rate) of water passing through the valve by the valve opening amount, 13 indicates a water temperature sensor such as a thermistor for detecting the temperature of water entering the water supply passage 3, and 14 indicates the temperature of the hot water heat exchanger 1. 1 shows an outlet-side hot water temperature sensor which is a hot water supply heat exchanger outlet-side hot water temperature sensor such as a thermistor for detecting the temperature of outlet-side hot water.
[0017]
The composite water heater shown in FIG. 5 has a structure in which a hot water filling function, a hot water hot water function, a bath function such as a reheating function are added to the structure of the water heater shown in FIG. As shown in FIG. 5, in addition to the hot water supply system configuration shown in FIG. 4, this combined water heater introduces a bath burner (not shown) and bath water by driving the circulation pump 28 to heat the combustion of the bath burner. The recirculation circuit 27 that is heated by the reheating heat exchanger 26 and returned to the bathtub 24 using the water, the hot water filling passage 30 that connects the reheating circulation path 27 and the hot water supply passage 4, and the pouring that opens and closes the passage For example, the hot water control valve 22 is opened, the hot water heated by the hot water supply heat exchanger 1 is dropped into the bathtub 24 through the hot water filling passage 30 and the recirculation circuit 27, and the bath Hot water filling, hot water supply in the same way, driving the circulation pump 28, reheating the bath water and circulating it in the circulation path 27, and using the heat of the bath burner combustion, the reheating heat exchanger 26 The bath can be reheated by heating at
[0018]
The multi-function water heater shown in FIG. 6 has a structure in which a hot water filling function and a hot water hot water function are added to the structure of the water heater shown in FIG. As shown in FIG. 6, one end side of the passage 23 is connected to the hot water supply passage 4 of this water heater, and the other end side of the passage 23 is led to the bathtub 24 via a pouring control valve 22 such as an electromagnetic valve. For example, the hot water filling control valve 22 is opened, and hot water heated by hot water supply burner combustion is guided to the bathtub 24 through the passage 23, so that hot water filling or hot water pouring is performed.
[0019]
The water heater having a single can / two water configuration in FIG. 7 is obtained by adding a hot water filling function, a hot water hot water function, a bath function such as a reheating function to the configuration of the water heater shown in FIG. The hot water supply burner also serves as a bath burner, and the hot water supply heat exchanger 1 is formed with a hot water supply pipe 47 through which hot water for hot water supply flows and a reheating pipe 48 through which bathtub circulating water flows. A hot water supply passage 3 is connected to the inlet side of the hot water supply pipe 47 and a hot water supply passage 4 is connected to the outlet side. The reheating pipe line 48 is connected to a reheating circulation path 27 for circulating hot water in the bathtub 24. It is installed.
[0020]
For example, when the hot water tap 19 is opened, the hot water heater having the single can and two water configuration performs hot water combustion of the hot water burner and heats the water guided from the water supply passage 3 by the hot water heat exchanger 1. The hot water supply operation of discharging hot water through the hot water supply passage 4 and the hot water tap 19 is performed. In addition, this water heater, for example, drives the circulation pump 28 to circulate the water in the bathtub 24 in the recirculation circulation path 27 and performs reheating combustion by heating the hot water supply burner to perform the reheating independent operation.
[0021]
The control device 20 for each water heater shown in FIGS. 4 to 7 is provided with a high temperature hot water prevention means unique to the present invention. FIG. 1 shows the control in the first embodiment of the combustion apparatus according to the present invention. The main configuration of the device 20 is shown. As shown in the figure, the control device 20 includes a bypass hot / cold temperature setting unit 39, a flow time detection unit 40, a parameter storage unit 41, a high temperature hot water prevention means having a bypass valve drive means 38, and a combustion control unit 33. It is configured. The combustion control unit 33 controls operation operations such as hot water supply, hot water filling, high-temperature hot water supply, reheating, etc., and since the control configuration has been described above, the description thereof is omitted. In this embodiment, the combustion control unit 33 applies a hot water combustion stop signal to the bypass opening / closing temperature setting unit 39 and the bypass valve driving means 38 when the hot water burner is stopped.
[0022]
The bypass opening / closing temperature setting unit 39 measures the measured outlet hot water at the time of combustion stop based on the measured hot water temperature at the time of combustion stop of the hot water supply heat exchanger 1 detected by the outlet hot water temperature sensor 14 when the hot water supply burner of the hot water supply burner is stopped. The bypass passage opening / closing valve opening temperature higher than the temperature, and the bypass passage opening / closing valve closing temperature lower than the valve opening temperature and higher than the actually measured outlet side hot water temperature at the time of combustion stop are set. When a combustion stop signal is applied from the combustion control unit 33, the bypass open / close temperature setting unit 39 determines the detected temperature of the outlet side hot water temperature sensor 14 (measured outlet side hot water temperature when combustion is stopped) at that time. For example, a temperature obtained by adding + 3 ° C. to the detected temperature is set as a bypass passage opening / closing valve opening temperature, and a temperature obtained by adding + 2 ° C. to the detection temperature of the outlet side hot water temperature sensor 14 is set as a bypass passage opening / closing valve. Set as valve closing temperature.
[0023]
The way of setting the bypass passage opening / closing valve opening temperature and valve closing temperature is not particularly limited, and is set as appropriate. For example, based on the detected water temperature detected by the water temperature sensor 13. It may be variably set. The bypass opening / closing temperature setting unit 39 adds the set bypass passage opening / closing valve opening temperature and bypass passage opening / closing valve closing temperature to the bypass valve driving means 38.
[0024]
The flow time detection unit 40 is configured so that the hot water flowing out from the hot water supply heat exchanger 1 to the hot water supply passage 4 reaches the joining portion Q of the hot water supply passage 4 and the bypass passage 8 from the arrangement portion P of the outlet temperature sensor 14. It functions as a flow time detection unit between the sensor unit merging units for obtaining the hot water flow time. As the solution data for obtaining the hot water flow time, the flow time detecting unit 40 is given in advance an arithmetic expression for obtaining the hot water flow time G as shown in the following equation (1). On the basis of this equation (1), the connection path from the arrangement site P of the outlet hot water temperature sensor 14 of the hot water supply passage 4 to the junction portion Q of the hot water supply passage 4 and the bypass passage 8 is calculated by an arithmetic circuit (not shown). The hot water flow time is requested.
[0025]
G = [{L · (d / 2) · 2 · π} / R · A] − (t + τ) (1)
[0026]
In Equation (1), L is the length of the connection passage (between PQ), d is the thickness of the connection passage (inner diameter of the pipe), and R is the amount of water passing through the hot water supply heat exchanger 1 relative to the total amount of water supply. The heat exchange side flow rate ratio, A is the detected flow rate detected by the flow rate detection sensor 12, t is the open / close delay time of the bypass valve 10, and τ is the time constant of the outlet side hot water temperature sensor 14. The unit of length L and thickness d of the connecting passage is, for example, cm, and the unit of detected flow rate of the flow rate detection sensor 12 is, for example, cm. Three / Sec, the delay time t of the bypass valve 10 and the unit of the time constant τ of the outlet side hot water temperature sensor 14 may be, for example, seconds.
[0027]
Of the parameters used in equation (1), the length L of the connecting passage and its thickness d, the delay time t of the bypass valve 10 and the time constant τ of the outlet side hot water temperature sensor 14 are generally expressed as follows: The numerical value of each parameter is stored in the parameter storage unit 41 in this embodiment.
[0028]
Further, in this embodiment, the bypass valve 10 is formed by an electromagnetic valve, and the heat exchange side flow rate ratio R of the amount of water passing through the hot water supply heat exchanger 1 with respect to the total water supply amount is as follows. The heat exchange side flow ratio when the bypass valve 10 is open is R 1 The heat exchange side flow ratio when the bypass valve 10 is closed is R 2 It is. Therefore, from the above equation (1), the flow time G of the connection passage when the bypass valve 10 is open is obtained by the following equation (2), and the flow time G of the connection passage when the bypass valve 10 is closed is It calculates | requires by following Formula (3). In addition, these heat exchange side flow ratio R 1 , R 2 These values are also determined by the combustion equipment, and in this embodiment, these heat exchange side flow rate ratios R 1 , R 2 Is also stored in the parameter storage unit 41.
[0029]
G = [{L · (d / 2) · 2 · π} / R 1 A]-(t + τ) (2)
[0030]
G = [{L · (d / 2) · 2 · π} / R 2 A]-(t + τ) (3)
[0031]
The flow time detection unit 40 takes in the opening / closing signal of the bypass valve 10 and selects the equation (2) when the bypass valve 10 is open, and each equation stored in the parameter storage unit 41 in this equation (2). Parameters L, d, R 1 , T, τ and the value of the detected flow rate A detected by the flow rate detection sensor 12 are substituted to obtain the flow time G of the connecting passage. On the other hand, when the bypass valve 10 is closed, the above equation (3 ), The parameters L, d, R stored in the parameter storage unit 41 2 , T, τ and the value of the detected flow rate A detected by the flow rate detection sensor 12 are substituted to determine the flow time G of the connecting passage. The flow time detection unit 40 adds the flow time of the connection passage obtained as described above to the bypass valve driving means 38.
[0032]
The bypass valve drive means 38 is such that the actual hot water temperature at the time of re-heating detected by the hot water temperature sensor 14 at the time of re-heating after the hot water combustion of the hot water burner is equal to or higher than the bypass passage opening / closing valve opening temperature. When the determination is made, the bypass valve 10 is opened when the hot water flow time determined by the flow time detector 40 has elapsed since this determination, and the actually measured hot water temperature at the time of re-heating is such that the bypass passage on-off valve is closed. When it is determined that the temperature is equal to or lower than the valve temperature, it functions as a bypass passage opening / closing valve opening / closing control unit that closes the bypass valve 10 when the hot water flow time has elapsed since this determination. In this control, the bypass valve driving means 38 controls the bypass opening / closing valve opening temperature (opening temperature of the bypass valve 10) and the bypass opening / closing valve closing temperature (the closing temperature of the bypass valve 10) set by the bypass opening / closing temperature setting unit 39. ) Further, the bypass valve driving means 38 takes in the detected flow rate of the flow rate detection sensor 12 and determines the start of re-heating.
[0033]
Further, the bypass valve drive means 38 takes in the value of the flow time G of the connection passage obtained by the flow time detector 40, but when the bypass valve 10 is opened, the bypass valve 10 is closed from the closed state. In order to perform the valve opening control of 10, the hot water flow time determined by the above equation (3) has elapsed since it was determined that the actually measured outlet side hot water temperature during the re-watering is equal to or higher than the valve opening temperature of the bypass valve 10. When this happens, the bypass valve 10 is opened. When the bypass valve 10 is closed, in order to perform the closing control of the bypass valve 10 from the state in which the bypass valve 10 is open, the actually measured hot water temperature at the time of re-heating of the hot water supply heat exchanger 1 is the closing temperature of the bypass valve 10. When it is determined that the temperature is equal to or lower than the valve temperature, the bypass valve 10 is controlled to be closed when the hot water flow time obtained by the equation (2) has elapsed.
[0034]
The present embodiment is configured as described above, and is based on the actually measured outlet side hot water temperature at the time of combustion stop detected by the outlet side hot water temperature sensor 14 when the hot water supply burner of the hot water supply burner is stopped by the bypass open / close temperature setting unit 39. A bypass passage opening / closing valve opening temperature that is, for example, + 3 ° C. higher than the actually measured outlet side hot water temperature when combustion is stopped, and a bypass passage opening / closing valve closing temperature that is, for example, + 2 ° C. higher than the actually measured outlet side hot water temperature, when stopping combustion. Further, the flow time detector 40 detects the detected flow rate of the flow rate sensor 12, the stored data of the parameter storage unit 41, the open / close signal of the bypass valve 10, and the arithmetic expressions (1), (2), (3). On the basis of the above, the flow of hot water from the hot water supply heat exchanger 1 to the hot water supply passage 4 until the hot water flowing from the arrangement portion P of the outlet side hot water temperature sensor 14 to the joining portion Q of the hot water supply passage 4 and the bypass passage 8 Time is required.
[0035]
By the bypass valve driving means 38, the actually measured outlet side hot water temperature at the time of re-heating of the hot water heat exchanger 1 detected by the outlet side hot water temperature sensor 14 at the time of re-heating the hot water after the hot water supply combustion of the hot water supply burner is changed to the bypass passage opening / closing valve. When it is determined that the valve opening temperature is higher than or equal to the valve opening temperature, the bypass valve 10 is opened when the hot water flow time determined by the flow time detection unit 40 has elapsed since this determination, Is determined to be equal to or lower than the bypass passage opening / closing valve closing temperature, control is performed to close the bypass passage 10 when the hot water flow time has elapsed since this determination.
[0036]
According to the present embodiment, when it is determined by the above operation that the measured hot water temperature at the time of re-heating of the hot water supply heat exchanger 1 is equal to or higher than the bypass passage opening / closing valve opening temperature and there is a possibility of hot hot water. When the hot water flow time determined by the flow time detection unit 40 has elapsed from the time of this determination, the hot water that has flowed out of the hot water supply heat exchanger 1 reaches the confluence portion Q between the hot water supply passage 4 and the bypass passage 8. Since the bypass valve 10 is opened, the hot water flowing out of the hot water supply heat exchanger 1 is mixed with the hot water flowing out of the bypass passage 8 at an appropriate timing. It is possible to lower the temperature at a proper timing, and it is possible to reliably prevent high temperature hot water caused by post-boiling.
[0037]
Further, according to the present embodiment example, the bypass valve driving means 38 determines that the measured hot water temperature at the time of re-heating the hot water supply heat exchanger 1 is equal to or lower than the bypass on-off valve closing temperature, If it is determined that there is no risk of high temperature hot water due to the hot water discharged from the hot water supply heat exchanger 1 even if water mixing is not performed, the flow of the connecting passage determined by the flow time detector 40 from this determination time. The bypass valve 10 is closed when the hot water that has flowed out of the hot water supply heat exchanger 1 and has no fear of high temperature hot water reaches the joining portion Q of the hot water supply passage 4 and the bypass passage 8 after a lapse of time. In addition, the mixing of water from the bypass passage 8 can be stopped at an appropriate timing.
[0038]
That is, for example, immediately after it is determined by the bypass valve driving means 38 that the actual hot water temperature at the time of re-heating of the hot water supply heat exchanger 1 detected by the hot water temperature sensor 14 is equal to or lower than the bypass on-off valve closing temperature. When the valve closing control of the bypass valve 10 is performed and mixing of water from the bypass passage 8 is stopped, the hot water having a temperature equal to or lower than the bypass passage opening / closing valve closing temperature is the confluence portion Q between the hot water supply passage 4 and the bypass passage 8. Water mixing will be stopped before reaching. In other words, hot water having a temperature higher than the bypass passage opening / closing valve closing temperature remaining between the arrangement portion P of the outlet side hot water temperature sensor 14 and the joining portion Q is mixed with water from the bypass passage 8. Without this, hot water exceeding the bypass passage opening / closing valve closing temperature is discharged.
[0039]
On the other hand, when it is determined by the bypass valve driving means 38 that the actual hot water temperature at the time of re-heating of the hot water supply heat exchanger 1 is equal to or lower than the bypass passage opening / closing valve closing temperature, as in this embodiment. By performing the valve closing control of the bypass valve 10 when the flow time of the connection passage has elapsed from this determination, hot water discharge exceeding the bypass passage opening / closing valve closing temperature as described above is reliably prevented, and the bypass It is possible to reliably perform hot water discharge at a temperature equal to or lower than the passage opening / closing valve closing temperature.
[0040]
Furthermore, when the hot water having become the temperature equal to or lower than the bypass passage opening / closing valve closing temperature reaches the joining portion Q between the hot water supply passage 4 and the bypass passage 8 by the control of the bypass valve driving means 38 as described above, the bypass valve 10 is closed. In order to stop the mixing of the water from the bypass passage 8, even if the outlet side temperature of the hot water supply heat exchanger 1 is lowered, the mixing of the water from the bypass passage 8 continues to be performed, resulting in a significant undershoot. It becomes possible to suppress hot water from being discharged, and hot water having a stable hot water temperature close to the hot water supply set temperature can be discharged.
[0041]
FIG. 2 shows a main configuration of the control device 20 in the second embodiment of the combustion apparatus according to the present invention. The control device 20 is configured in substantially the same manner as the control device 20 in the first embodiment, and this embodiment is different from the first embodiment in that the flow time detection unit 40 has a characteristic. The minimum flow time storage unit 42 and the flow time correction means 43 are provided.
[0042]
In the combustion equipment as shown in FIGS. 4 to 7, during the hot water combustion of the hot water burner, generally, the valve opening amount of the water amount control valve 7 is often set to the maximum valve opening amount. If the set temperature of the water temperature control valve 7 is very high and the amount of water passing through the hot water supply heat exchanger 1 cannot be reduced unless the amount of water passing through the hot water supply heat exchanger 1 is reduced, the amount of water supply control valve 7 is increased to increase the amount of hot water supply. The amount of water (flow rate) passing through the exchanger 1 may be reduced. As described above, when the throttle amount of the water amount control valve 7 is increased, the flow rate of water that always passes through the bypass passage 5 is also reduced.
[0043]
Then, as the throttle amount of the water amount control valve 7 increases and the flow rate of the water in the water supply passage 3 decreases, the hot water flowing out from the hot water supply heat exchanger 1 to the hot water supply passage 4 is disposed on the outlet side hot water temperature sensor 14. The hot water flow time from P to the junction part Q of the hot water supply passage 4 and the bypass passage 8 is delayed.
[0044]
Further, comparing the heat exchange side flow rate ratio when the bypass valve 10 of the bypass passage 8 is open and closed, the heat exchange side flow rate ratio when the bypass valve 10 is closed is the bypass valve. Since it becomes larger than the heat exchange side flow ratio when 10 is opened, the hot water flow time is shorter when the bypass valve 10 is closed.
[0045]
Therefore, in the present embodiment, for example, the maximum flow rate of water in the water supply passage 3 (the flow rate when the valve opening amount of the water amount control valve 7 is maximized) and the length of the connection passage are added to the arithmetic expression (1). L, the thickness d of this connection passage, and the maximum value of the heat exchange side flow ratio (heat exchange side flow ratio R when the bypass valve 10 is closed) 2 ) Is assigned to the minimum flow time storage unit 42, and the flow time detection unit 40 uses the minimum flow time stored in the minimum flow time storage unit 42 as flow time correction means. It was set as the structure corrected by 43.
[0046]
The flow time correction means 43 increases the minimum flow time stored in the minimum flow time storage unit 42 as at least one of the detected flow rate of the flow rate detection sensor 12 during re-heating and the heat exchange side flow rate ratio during re-heating is reduced. It corrects in the direction to do. In other words, the flow time correction means 43 takes in the opening / closing signal of the bypass valve 10 and the detected flow rate of the flow rate detection sensor 12, and water passing through the water supply passage 3 when the bypass valve 10 is open or under the control of the water amount control valve 7. When the flow rate is controlled to be small, the minimum flow time is corrected to be increased based on the opening / closing signal of the bypass valve 10 and the detected flow rate of the flow rate detection sensor 12.
[0047]
The configuration of the present embodiment other than the above is configured in the same manner as in the first embodiment. In the present embodiment as well, the bypass opening / closing temperature setting unit 39 of the bypass valve 10 is similar to the first embodiment. A valve opening temperature and a valve closing temperature are set. In this embodiment, the flow time correction unit 43 of the flow time detection unit 40 detects the flow rate detected by the flow rate detection sensor 12, the open / close signal of the bypass valve 10, the stored data of the parameter storage unit 41, and the arithmetic expression. Based on (1), (2), and (3), the minimum flow time of the minimum flow time storage unit 42 is corrected, and the hot water flow time in the connection passage is obtained.
[0048]
Based on the obtained hot water flow time and the opening and closing temperatures of the bypass valve 10, the bypass valve driving means 38 controls the opening and closing of the bypass valve 10 in the same manner as in the first embodiment. As a result, the present embodiment can achieve the same effects as the first embodiment.
[0049]
In addition, this invention is not limited to the said embodiment, Various embodiment can be taken. For example, in the above embodiment, the bypass valve driving means 38 detects the start of the hot water using the sensor output of the flow rate detection sensor 12, but detects the start of the hot water based on the information of the control operation of the combustion control unit 33. A sensor such as a running water switch (hot water supply confirmation switch) for detecting running water is provided on the hot water tap 19 side of the hot water supply passage 4 of each water heater shown in FIGS. You may make it detect the start of hot water using an output.
[0050]
The hot water heater shown in FIGS. 4 to 7 is always provided with the bypass passage 5, but the high temperature hot water prevention means shown in the above embodiment is applied to various combustion devices in which the bypass passage 5 is always omitted. By applying the high temperature hot water prevention means of the above embodiment and performing the high temperature hot water prevention operation, high temperature hot water exceeding the allowable range of the hot water supply temperature at the time of hot water is discharged. It is possible to avoid the problem of causing uncomfortable feelings and the danger caused by high temperature hot water, and to stabilize the hot water temperature when re-watering. When the bypass passage 5 is always omitted as described above, the branch pipe configuration can be simplified.
[0051]
Furthermore, in the above embodiment, only one bypass passage 5 is always provided, but a plurality of always bypass passages 5 may be provided. Also in this case, as described above, a plurality of constant bypass passages are formed so that the flow rate ratio between the flow rate of the hot water supply heat exchanger 1 and the total flow rate of these constant bypass passages becomes a flow rate ratio determined in advance by the pipe resistance. .
[0052]
Furthermore, in the above embodiment, the flow time detection unit 40 is connected to the hot water supply passage 1 from the hot water supply heat exchanger 1 based on the equations (1) to (3) and the numerical values of the parameters stored in the parameter storage unit 41. 4, the hot water flow time until the hot water flowing out to the junction portion Q of the hot water supply passage 4 and the bypass passage 8 is obtained from the arrangement portion P of the outlet side temperature sensor 14 is obtained. However, the method is not necessarily the same as in the above embodiment. The heat exchange side of the amount of water passing through the hot water supply heat exchanger 1 with respect to the detected flow rate of the flow rate detection sensor 12, the length between PQs, the thickness thereof, and the total water supply amount. What is necessary is just to obtain | require the flow time of the said hot water based on solution data, such as an arithmetic expression given beforehand including one or more parameters of the flow rate ratio.
[0053]
Further, when the flow time correction means 43 is provided in the flow time detection unit 40 as in the second embodiment, the minimum flow time correction formula and correction data stored in the minimum flow time storage unit 42 are given in advance. The hot water flow time may be obtained by correcting the minimum flow time based on the correction formula and the correction data.
[0054]
Furthermore, in the above embodiment, the hot water flowing out from the hot water supply heat exchanger 1 to the hot water supply passage 4 by the flow time detection unit 40 is transferred from the arrangement site P of the outlet side hot water temperature sensor 14 to the hot water supply passage 4 and the bypass passage 8. An arithmetic expression is given as solution data for obtaining the hot water flow time until reaching the merging site Q, and the flow time detector 40 obtains the hot water flow time based on this arithmetic expression, but the solution data is not necessarily calculated. For example, the data may be table data, graph data, or the like, and the flow time detection unit 40 may be configured to obtain hot water flow time based on various given solution data. it can.
[0055]
【The invention's effect】
According to the present invention, at the time of re-heating after hot water burner combustion is stopped, the measured hot water temperature at the time of re-heating the hot water heat exchanger detected by the hot water heat exchanger outlet-side hot water temperature sensor indicates that the bypass passage opening / closing valve is opened. When the temperature is higher than the temperature and it is determined that there is a risk of hot hot water, when the hot water reaches the junction of the hot water supply passage and the bypass passage, the bypass passage on-off valve is opened to open the water in the bypass passage. When it is determined that the measured hot water temperature at the time of re-draining is equal to or lower than the bypass passage opening / closing valve closing temperature and there is no longer any risk of hot hot water, the bypass passage is used when this hot water reaches the junction. Since the on-off valve is closed to stop water mixing in the bypass passage, it becomes possible to mix the water in the bypass passage at a very appropriate timing, for example after a hot water heat exchanger. High-temperature hot water due to come is to be able to reliably prevented from being tapped upon re tapping, it is possible to also stabilize the subsequent tapping hot water temperature.
[0056]
In addition, the present invention provides a bypass passage and controls the bypass passage on / off valve that opens and closes the bypass passage as described above to prevent high-temperature hot water discharge and stabilize the temperature of the re-drained water as described above. An excellent effect can be achieved.
[0057]
When the hot water flowing from the hot water supply heat exchanger to the hot water supply passage reaches the hot water passage from the location where the hot water supply heat exchanger outlet-side hot water temperature sensor is located to the junction with the bypass passage, the hot water flow time is obtained. The minimum flow time of this hot water flow time is given, and this minimum flow time is converted by the flow time correction means to the heat exchange of the amount of water passing through the hot water supply heat exchanger with respect to the flow rate of the water supply passage at the time of re-heating and the total water supply amount. According to the present invention in which the correction is made based on the side flow rate ratio, the hot water flow time can be determined more easily.
[0058]
Further, in the present invention, the water supply passage of the hot water heat exchanger and the bypass passage having no open / close valve for short-circuiting the hot water supply passage of the hot water heat exchanger are a bypass passage provided with the hot water heat exchanger and the bypass passage on / off valve. In the configuration provided in parallel between the parallel circuits, the hot water heated by the hot water heat exchanger and the water that has always passed through the bypass passage are mixed in the always bypass passage outlet connection portion of the hot water passage. For example, although the bypass passage opening / closing valve must be opened and the temperature of hot water flowing out of the hot water supply heat exchanger must be lowered by the water passing through the bypass passage, the bypass passage opening / closing valve compensates for it. Even if a situation where the valve does not open occurs, the hot water of the hot water supply heat exchanger is always lowered by the mixing of the water in the bypass passage. Hot water of use serious problems that arises in that inflicted burns to the user can be avoided.
[0059]
Further, in the combustion device of this configuration, since all the water from the water supply passage does not enter the hot water supply heat exchanger side, the surface of the hot water supply heat exchanger is rapidly cooled, for example, the water vapor in the combustion exhaust gas Condensation due to adhering to the surface of the hot water heat exchanger can also be prevented.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram showing a main configuration of a control unit of a first embodiment of a combustion apparatus according to the present invention.
FIG. 2 is a block configuration diagram showing a main configuration of a control unit of a second embodiment of a combustion device according to the present invention.
FIG. 3 is a graph showing an example of a temporal change in the temperature of accumulated hot water in a hot water supply heat exchanger.
FIG. 4 is a model diagram showing a system configuration example of a water heater that is a combustion apparatus of the present invention.
FIG. 5 is a model diagram showing a system configuration example of a composite water heater that is a combustion apparatus according to the present invention.
FIG. 6 is a model diagram showing a system configuration example of a water heater with a hot water filling function (high temperature hot water function) that is a combustion apparatus of the present invention.
FIG. 7 is a model diagram showing a system configuration example of a water heater having a single can / two water configuration, which is a combustion device according to the present invention.
[Explanation of symbols]
1 Hot water heat exchanger
4 Hot water passage
5 Always bypass passage
8 Bypass passage
10 Bypass valve
12 Flow rate detection sensor
14 Outlet temperature sensor
38 Bypass valve drive means
39 Bypass switching temperature setting part
40 Flow time detector
43 Flow time correction means

Claims (3)

給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給水通路の水の流量を検出する流量検出センサと、給湯通路に設けられて給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有する燃焼機器において、給湯バーナの給湯燃焼停止時に給湯熱交換器出側湯温センサが検出する給湯熱交換器の燃焼停止時実測出側湯温に基づいてこの燃焼停止時実測出側湯温よりも高いバイパス通路開閉弁開弁温度と、該バイパス通路開閉弁開弁温度以下であって燃焼停止時実測出側湯温よりは高いバイパス通路開閉弁閉弁温度を設定するバイパス開閉温度設定部と、前記給湯熱交換器から給湯通路へ流出される湯が前記給湯熱交換器出側湯温センサの配設部位から給湯通路と前記バイパス通路との合流部位まで達するまでの湯の流れ時間を求めるセンサ部合流部間流れ時間検出部と、給湯バーナの給湯燃焼停止以降の再出湯時に前記給湯熱交換器出側湯温センサによって検出される給湯熱交換器の再出湯時実測出側湯温が前記バイパス通路開閉弁開弁温度以上であると判断したときにはこの判断時から前記センサ部交流部間流れ時間検出部で求めた湯の流れ時間だけ経過したときに前記バイパス通路開閉弁を開弁させ、前記再出湯時実測出側湯温が前記バイパス通路開閉弁閉弁温度以下であると判断したときにはこの判断時から前記湯の流れ時間だけ経過したときに前記バイパス通路開閉弁を閉弁させるバイパス通路開閉弁開閉制御部が設けられており、前記センサ部合流部間流れ時間検出部は、前記流量検出センサの検出流量と、給湯通路の給湯熱交換器出側湯温センサの配設部位から給湯通路とバイパス通路との合流部位までの接続通路の太さと、該接続通路の長さと、トータル給水量に対する給湯熱交換器を通る水量の熱交側流量比の1つ以上のパラメータを含む予め与えられた解法データに基づき前記接続通路の湯の流れ時間を求める構成としたことを特徴とする燃焼機器。A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger A passage, a bypass passage opening / closing valve that opens and closes the bypass passage, a flow rate detection sensor that detects a flow rate of water in the water supply passage, and a hot water supply that is provided in the hot water supply passage and detects the hot water temperature on the outlet side of the hot water heat exchanger In a combustion apparatus having a heat exchanger outlet side hot water temperature sensor, based on the actually measured outlet side hot water temperature at the time of combustion stoppage of the hot water heat exchanger detected by the hot water supply heat exchanger outlet side hot water temperature sensor when the hot water supply burner of the hot water supply burner stops The bypass passage opening / closing valve opening temperature higher than the actually measured outlet side hot water temperature at the time of combustion stop, and the bypass passage opening / closing valve closing temperature that is lower than the bypass passage opening / closing valve opening temperature and higher than the actually measured outlet side hot water temperature at the time of combustion stop. Bypass opening to set temperature The temperature of the hot water until the hot water flowing out from the hot water supply heat exchanger to the hot water supply passage reaches the confluence of the hot water supply passage and the bypass passage from the hot water heat exchanger outlet hot water temperature sensor is arranged. The flow time detection unit between the sensor unit for determining the flow time, and the hot water supply heat exchanger outlet side hot water temperature sensor which is detected by the hot water heat exchanger outlet side hot water temperature sensor at the time of reheating after the hot water combustion of the hot water burner is stopped. When it is determined that the side hot water temperature is equal to or higher than the bypass passage opening / closing valve opening temperature, the bypass passage opening / closing valve is passed when the flow time of hot water determined by the flow time detection unit between the sensor units is changed from this determination time. Is opened, and when it is determined that the actually measured hot water temperature at the time of re-draining is equal to or lower than the bypass passage opening / closing valve closing temperature, the bypass passage opening / closing is performed when the hot water flow time has elapsed since this determination. A bypass passage opening / closing valve opening / closing control unit for closing the valve is provided, and the flow time detecting unit between the sensor unit merging units is a detection flow rate of the flow rate detection sensor and a hot water supply heat exchanger outlet side hot water temperature sensor of the hot water supply passage. One or more of the thickness of the connecting passage from the location where the hot water supply passage and the bypass passage meet, the length of the connecting passage, and the heat exchange side flow ratio of the amount of water passing through the hot water supply heat exchanger to the total amount of water supply A combustion apparatus characterized in that the flow time of hot water in the connecting passage is obtained based on solution data given in advance including the parameters. バイパス通路を通る水量および給湯熱交換器を通る水量を調節する水量制御弁がバイパス通路の下流側の給湯通路に設けられており、センサ部合流部間流れ時間検出部には予め与えられた解法データと、給水通路の水の最大流量と、給湯通路の給湯熱交換器出側湯温センサの配設部位から給湯通路とバイパス通路との合流部位までの接続通路の太さと、該接続通路の長さと、トータル給水量に対する給湯熱交換器を通る水量の熱交側流量比の最大値とによって決定される前記接続通路の最小流れ時間が与えられており、該センサ部合流部間流れ時間検出部には再出湯時の流量検出センサの検出流量と再出湯時の熱交側流量比の少なくとも一方が小さくなるにつれて前記最小流れ時間を大きくする方向に補正する流れ時間補正手段が設けられていることを特徴とする請求項1記載の燃焼機器。A water amount control valve for adjusting the amount of water passing through the bypass passage and the amount of water passing through the hot water heat exchanger is provided in the hot water supply passage on the downstream side of the bypass passage. Data, the maximum flow rate of the water in the water supply passage, the thickness of the connection passage from the location of the hot water supply heat exchanger outlet side hot water temperature sensor in the hot water supply passage to the junction of the hot water supply passage and the bypass passage, The minimum flow time of the connection passage determined by the length and the maximum value of the heat exchange side flow rate ratio of the amount of water passing through the hot water supply heat exchanger with respect to the total water supply amount is given, and detection of the flow time between the sensor unit merging units The section is provided with flow time correction means for correcting the minimum flow time in a direction to increase as at least one of the detected flow rate of the flow rate detection sensor at the time of re-heating and the heat exchange side flow rate ratio at the time of re-heating is reduced. Combustion equipment according to claim 1, wherein Rukoto. 給湯熱交換器の給水通路と給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が、給湯熱交換器とバイパス通路開閉弁を備えたバイパス通路との並列回路の間に並列に設けられていることを特徴とする請求項1又は請求項2記載の燃焼機器A constant bypass passage that does not have an on-off valve that short-circuits the hot water supply heat exchanger and the hot water supply heat exchanger is connected in parallel between the parallel circuit of the hot water heat exchanger and the bypass passage with the bypass passage on / off valve. The combustion device according to claim 1 or 2, wherein the combustion device is provided in
JP13946296A 1996-05-09 1996-05-09 Combustion equipment Expired - Fee Related JP3776975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13946296A JP3776975B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13946296A JP3776975B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Publications (2)

Publication Number Publication Date
JPH09303870A JPH09303870A (en) 1997-11-28
JP3776975B2 true JP3776975B2 (en) 2006-05-24

Family

ID=15245798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13946296A Expired - Fee Related JP3776975B2 (en) 1996-05-09 1996-05-09 Combustion equipment

Country Status (1)

Country Link
JP (1) JP3776975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6390202B2 (en) * 2014-06-24 2018-09-19 株式会社ノーリツ Water heater
CN111692743A (en) * 2019-03-14 2020-09-22 芜湖美的厨卫电器制造有限公司 Combustion heat exchange equipment

Also Published As

Publication number Publication date
JPH09303870A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
JP3776975B2 (en) Combustion equipment
JP3776974B2 (en) Combustion equipment
JP3776985B2 (en) Combustion equipment
JP3252384B2 (en) Water heater control device
JP3776983B2 (en) Combustion equipment
JP3776984B2 (en) Bath pot with automatic hot water filling function
JP3674014B2 (en) Water heater
JP3252879B2 (en) Water heater control device
JP2867758B2 (en) Operation control method of bath kettle with water heater
JP2946862B2 (en) Operation control method of bath kettle with water heater
JP3859811B2 (en) Hot water combustion equipment
JP3792316B2 (en) Combustion equipment
JPH074441Y2 (en) 1 can 2 circuit hot water bath kettle
JP2921177B2 (en) Water heater with bath kettle
JP2861521B2 (en) Operation control method of bath kettle with water heater
JP3756999B2 (en) Combustion equipment
JP2921198B2 (en) Operation control method of bath kettle with water heater
JP3738082B2 (en) Combustion equipment
JP3211517B2 (en) Automatic hot water bath equipment
JP3922795B2 (en) Water heater with hot water filling function
JPH1151463A (en) Water heater with hot water filling function
JPH1096556A (en) Combustion apparatus
JPH0560337A (en) Hot water supply device
JPH09126546A (en) One-boiler/two-path type hot water supply system
JPH1183170A (en) Hot water supply unit having single storage water heater body and two water channels

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees