[go: up one dir, main page]

JP3776985B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP3776985B2
JP3776985B2 JP21196396A JP21196396A JP3776985B2 JP 3776985 B2 JP3776985 B2 JP 3776985B2 JP 21196396 A JP21196396 A JP 21196396A JP 21196396 A JP21196396 A JP 21196396A JP 3776985 B2 JP3776985 B2 JP 3776985B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
heat exchanger
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21196396A
Other languages
Japanese (ja)
Other versions
JPH1038370A (en
Inventor
久恭 渡辺
修一 小野寺
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP21196396A priority Critical patent/JP3776985B2/en
Publication of JPH1038370A publication Critical patent/JPH1038370A/en
Application granted granted Critical
Publication of JP3776985B2 publication Critical patent/JP3776985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給湯機能と風呂の湯張り機能を備えた燃焼機器に関するものである。
【0002】
【従来の技術】
燃焼機器として代表的な給湯器には、周知のように、給湯熱交換器と給湯バーナが設けられ、給湯熱交換器の入側には給水通路が、出側には給湯通路がそれぞれ接続され、給湯通路は台所等の給湯栓へ導かれている。給湯熱交換器は、給湯栓が開けられると、水供給源から給水通路を介して導かれた水を給湯バーナの給湯燃焼の熱を利用して加熱し、この加熱した湯を給湯通路を通し給湯栓を介して給湯する。
【0003】
また、風呂の湯張り機能を備えた給湯器の給湯通路には該給湯通路と風呂(浴槽)を連通する通路が接続されており、風呂の湯張りを行うときには、給湯熱交換器で作られた湯が上記給湯通路と浴槽を連通する通路を介して浴槽に湯張り出湯し、風呂の湯張りが行われる。
【0004】
【発明が解決しようとする課題】
ところで、湯張り機能を備えた給湯器が風呂の湯張り運転を行っているときに、給湯栓が開けられ給湯が開始される給湯割込みが行われる場合がある。この給湯割込みの場合、給湯器は、給湯バーナ燃焼を継続したまま、湯張り運転から給湯運転に切り換え、給湯運転だけを行う。
【0005】
通常、湯張りの湯温と給湯の湯温は別々に設定することができ、湯張りの湯温は給湯のシャワー等の湯温よりも高く設定されることがある。この場合、必然的に、予め設定された湯張りの設定温度の湯を浴槽へ供給するために給湯熱交換器が作り出す湯の湯温(給湯熱交換器の出側の湯温)TY は、予め設定された給湯の設定温度の湯を台所やシャワー等へ給湯するために給湯熱交換器が作り出す湯の湯温TT よりも高くなる。このため、給湯割込みが行われたときには、給湯の設定温度の湯が給湯されるように、給湯熱交換器の出側の湯温を、図6の(a)に示すように、上記湯温TY から湯温TT に下げる方向に給湯バーナ燃焼の制御動作が行われる。
【0006】
しかしながら、給湯割込み時に、給湯熱交換器の出側の湯温が、上記湯温TY からTT まで下がるのには、図6の(a)に示すような過渡期間Xがある。このため、給湯割込み時には、最初、図6の(c)のA点に示す予め定められた湯張りの設定温度の湯が台所やシャワー等へ給湯する。この給湯湯温が湯の利用者が予め定めた給湯の設定温度よりもかなり高めであるときには、この高温給湯により、湯に触れた湯の利用者に高温給湯による不快感を与えてしまうという問題がある。
【0007】
本発明は上記課題を解決するためになされたものであり、その目的は、給湯割込み時の高温給湯を確実に防止することができる給湯機能と湯張り機能を備えた燃焼機器を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって前記課題を解決する手段としている。すなわち、第1の発明は、給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給水通路の水の温度を検出する入水温度検出手段と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有し、給湯運転と風呂の湯張り運転を行うことが可能なタイプの燃焼機器において、燃焼機器が風呂の湯張り運転を行っているときに給湯バーナ燃焼が継続されたまま給湯運転に切り換わる給湯割込みが行われたか否かを監視する給湯割込み監視部と;この給湯割込み監視部の情報により給湯割込みが行われたと検知したときには、予め定められた給湯の設定温度の情報に基づき、バイパス通路開閉弁が閉弁していると仮定したときの給湯湯温が給湯の設定温度になるための給湯熱交換器の出側の湯温を求め、この求めた湯温を基準値として設定する基準値設定部と;給湯割込みが行われたときに前記給湯熱交換器出側湯温センサが検出した湯温を検出熱交出側湯温として取り込み、この検出熱交出側湯温と上記基準値設定部が設定した基準値を比較し、上記検出熱交出側湯温が上記基準値よりも予め定めた許容温度以上に高めであると判断したときにはバイパス通路開閉弁を開弁させるバイパス弁制御部と;を有する構成をもって前記課題を解決する手段としている。
【0009】
第2の発明は、上記第1の発明の構成に加えて、給湯熱交換器の給水通路と給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が別途設けられ、基準値設定部は入水温度検出手段が検出した検出入水温と、予め定められた給湯の設定温度と、燃焼機器への総入水流量に対する予め定まる給湯熱交換器の流量比に基づき、バイパス通路開閉弁が閉弁していると仮定したときの給湯湯温が給湯の設定温度になるための給湯熱交換器の出側の湯温を求め、この求めた湯温を基準値として設定する構成をもって前記課題を解決する手段としている。
【0010】
上記構成の発明において、例えば、バイパス通路開閉弁は通常運転時には閉弁状態の開閉弁と成している。給湯割込み監視部は、燃焼機器が風呂の湯張り運転を行っているときに給湯割込みが行われたか否かを監視する。
【0011】
基準値設定部は、上記給湯割込み監視部の情報により給湯割込みが行われたと検知したときに、予め定められた給湯の設定温度の情報に基づき、バイパス通路開閉弁が閉弁していると仮定したときの給湯湯温が給湯の設定温度になるための給湯熱交換器の出側の湯温を求め、この湯温を基準値として設定する。
【0012】
バイパス弁制御部は、給湯割込み時に、検出熱交出側湯温を取り込み、この検出熱交出側湯温と上記基準値設定部が設定した基準値を比較し、検出熱交出側湯温が基準値よりも予め定めた許容温度以上に高めであると判断したときには、給湯割込みに起因した高温給湯の虞れがあると判断し、バイパス通路開閉弁を開弁させる。
【0013】
そうすることによって、給湯熱交換器から流出した高温の湯にバイパス通路から水がミキシングされ、湯温が下げられる。したがって、給湯割込み時の高温給湯が回避される。
【0014】
【発明の実施の形態】
以下、本発明に係る実施形態例を図面に基づき説明する。
【0015】
この実施形態例の燃焼機器である給湯器は、図3に示すように、給湯熱交換器1と風呂熱交換器26を有すると共に、給湯熱交換器1を燃焼加熱する図示されていない給湯バーナと、風呂熱交換器26を燃焼加熱する図示されていない風呂バーナとを別個に有している。
【0016】
図3に示すように、前記給湯熱交換器1の入側には給水通路3が接続され、出側には給湯通路4が接続されており、給湯通路4は台所やシャワー等の給湯栓19へ導かれている。前記給湯熱交換器1には入側の給水通路3と出側の給湯通路4を短絡する開閉弁を持たない常時バイパス通路5が並設され、この常時バイパス通路5は給湯熱交換器1側に流れる流量と常時バイパス通路5側に流れる流量の流量比が管路抵抗により予め定めた流量比(例えば7対3〜8対2)となるように形成されている。
【0017】
この常時バイパス通路5の出側接続部Xより下流側の給湯通路4と、常時バイパス通路入側接続部Yより上流側の給水通路3とを短絡するバイパス通路8が形成されている。このバイパス通路8には該通路の開閉を行うバイパス通路開閉弁であるバイパス弁10が介設されており、このバイパス弁10は通常の運転時には閉弁状態となっている。上記バイパス通路出側接続部Zより下流側の給湯通路4には流量を開弁量により制御する流量制御弁7が設けられている。
【0018】
また、前記風呂熱交換器26の一端側には管路29の一端側が接続され、この管路29の他端側は浴槽24に接続されている。風呂熱交換器26の他端側には管路31の一端側が接続され、この管路31の他端側はポンプ28の吐出口側に接続されており、ポンプ28の吸込口側には管路32の一端側が接続され、この管路32の他端側は浴槽24に接続されている。
【0019】
上記風呂熱交換器26とポンプ28と管路29,31,32により浴槽24内の浴槽水を循環しながら追い焚きを行う追い焚き循環路27が構成されており、この追い焚き循環路27と、前記流量制御弁7より下流側の給湯通路4とは湯張り通路30により接続され、この湯張り通路30には該通路30の開閉を行う注湯制御弁22が介設されている。この注湯制御弁22が開弁し、給湯熱交換器1で作り出された湯が湯張り通路30と追い焚き循環路27を介して浴槽24へ導かれることによって、風呂の湯張りが行われる。
【0020】
なお、図中、12は水供給源から給水通路3を介して導かれた入水流量を検出するための流量検出センサを示し、13は給水通路3の入水の温度を検出するためのサーミスタ等の入水温度検出手段である入水温度センサを示し、14は給湯熱交換器1の出側の湯水の温度を検出するためのサーミスタ等の給湯熱交換器出側湯温センサである出側湯温センサを示し、15は給湯による通水を検知して給湯が行われていることを検出するための給湯確認スイッチを示すものである。
【0021】
また、この給湯器には該給湯器の運転動作を制御する制御装置20が設けられ、この制御装置20にはリモコン18が接続されており、リモコン18には給湯器の利用者が給湯温度や湯張り温度や追い焚き温度等をそれぞれ別個に設定するための温度設定手段21が形成されている。
【0022】
上記制御装置20には本実施形態例において特有な給湯割込み時の高温給湯防止手段が設けられており、図1にはその高温給湯防止手段の一例が示されている。この制御装置20は高温給湯防止手段25と燃焼制御部36を有して構成されている。上記燃焼制御部36は予め与えられるシーケンスプログラムに従い給湯や湯張りや追い焚き等の運転動作を制御する。
【0023】
高温給湯防止手段25は、サンプリング部35と、基準値設定部37と、データ格納部40と、バイパス弁制御部41と、給湯割込み監視部42とを有して構成されており、この高温給湯防止手段25は給湯割込み時の高温給湯を確実に防止できるように構成されている。
【0024】
サンプリング部35は予め定めたサンプリング時間間隔(例えば、1秒間隔)を設定するタイマ(図示せず)を内蔵しており、このタイマによって設定されたサンプリング時間間隔毎に、出側湯温センサ14等の様々なセンサ出力や、リモコン18の情報(例えば、温度設定手段21に設定されている給湯や湯張りの設定温度の情報)をサンプリングする。
【0025】
給湯割込み監視部42は、前記燃焼制御部36の注湯制御弁開閉制御動作の情報に基づいて、注湯制御弁22の開弁・閉弁動作を検出し、注湯制御弁22が開弁されて湯張り運転が行われているか、注湯制御弁22が閉弁状態で湯張り運転が行われていないかを監視する。
【0026】
同時に、この監視部42は、サンプリング部35を介して流量検出センサ12と給湯確認スイッチ15の各センサ出力を取り込み、湯張り運転が行われているときに、流量検出センサ12が流量を検知している状態のまま、給湯確認スイッチ15が給湯の通水を検知したか否かを監視することによって、湯張り運転が行われているときに給湯バーナ燃焼が継続されたまま給湯運転に切り換わる給湯割込みが行われたか否かを監視する。
【0027】
データ格納部40には次に示すS算出演算式データが予め格納されている。このS算出演算式データはバイパス通路8のバイパス弁10が閉弁している状態で給湯湯温が給湯の設定温度となるための給湯熱交換器1の出側湯温(図3に示す出側湯温センサ14が設けられている配設位置周辺の湯温)Sを演算検出するためのデータであり、本実施形態例では、下記の(1)式がS算出演算式データとしてデータ格納部40に格納されている。
【0028】
S=(Ts −(1−m)・T1 )/m・・・・・(1)
【0029】
上記(1)式に示すTs は給湯の設定温度を表し、T1 は入水温を表し、mは給湯器への総入水流量に対する予め定めた給湯熱交換器1の流量比(0<m<1)を表すもので、上記(1)式は次のようにして導き出された。
【0030】
すなわち、給湯湯温が給湯の設定温度となるためには、給水通路3より導かれた総入水流量Q0 の水を入水温T1 から給湯の設定温度Ts まで上昇させるのに必要な熱量J0 (J0 =(Ts −T1 )・Q0 ・C(ただしCは水の比熱))と、上記総入水流量Q0 のうちの給湯熱交換器1を流れる流量QHE(QHE=m・Q0 )の水を入水温T1 から前記給湯熱交換器1の出側湯温Sまで上昇させるのに必要な熱量JHE(JHE=(S−T1 )・QHE・C=(S−T1 )・m・Q0 ・C)とが等しくなければならないという関係((Ts −T1 )・Q0 ・C=(S−T1 )・m・Q0 ・C)から前記(1)式は導き出された。
【0031】
前記(1)式のTs にリモコン18の温度設定手段21に予め設定されている給湯の設定温度を、T1 に入水温度センサ13が検出した入水温を、mに予め定められている総入水流量に対する給湯熱交換器1の流量比(例えば、バイパス弁10が閉弁している状態では入水は給湯熱交換器1側と常時バイパス通路5側に分岐して流れ、その給湯熱交換器1の流量と常時バイパス通路5の流量の流量比は管路抵抗により予め定まるので、その流量比が、例えば、7対3である場合にはm=0.7 と予め定められる)をそれぞれ代入し(1)式に従って演算を行うことによって、給湯湯温が給湯の設定温度TS になるための給湯熱交換器1の出側湯温Sを算出することができる。
【0032】
基準値設定部37は、前記給湯割込み監視部42の情報に基づき、給湯割込みが行われたと検知したときに、サンプリング部35を介して、入水温度センサ13が検出した入水温T1 と、温度設定手段21に設定されている給湯の設定温度TS とを取り込むと共に、データ格納部40から前記S算出演算式データを読み出す。
【0033】
基準値設定部37は、これら入水温T1 と設定温度TS とS算出演算式データに基づいて、給湯湯温が給湯の設定温度TS になるための給湯熱交換器1の出側湯温Sを算出し、この算出値Sを基準値Sとして設定し、この基準値Sのデータ信号をバイパス弁制御部41へ出力する。
【0034】
バイパス弁制御部41は、上記基準値設定部37から基準値Sのデータ信号を受け取ると、サンプリング部35を介して出側湯温センサ14が検出した給湯熱交換器1の出側の湯温(検出熱交出側湯温)TOUT の取り込みを開始すると同時に、データ格納部40に予め与えられていた許容温度α(例えば、3℃(なお、許容温度αとして0℃を与えてもよい))のデータを読み出す。
【0035】
バイパス制御部41は、前記基準値Sに許容温度αを加えた加算値である開閉弁温度TW (TW =S+α)を算出し、この開閉弁温度TW と上記検出熱交出側湯温TOUT を比較する。この比較により、バイパス弁制御部41は、上記検出熱交出側湯温TOUT が開閉弁温度TW 以上である、つまり、検出熱交出側湯温TOUT が基準値Sよりも許容温度α以上に高めである(TOUT ≧S+α)と判断したときには、バイパス弁駆動手段33へバイパス弁10の開弁信号を出力する。
【0036】
それというのは、検出熱交出側湯温TOUT が基準値Sよりも許容温度α以上に高めであるときには、バイパス弁10を閉弁したままでは、給湯熱交換器1から流れ出た湯にミキシングされる水が、常時バイパス通路5から流出する水だけのため、ミキシングする水量が不足となって給湯の設定温度よりかなり高めの湯が給湯し、この高温給湯により湯の利用者に不快感を与えてしまうという問題が生じると判断し、バイパス弁駆動手段33へ開弁信号を出力し、バイパス弁駆動手段33が図2の(c)に示すバイパス弁開・閉信号の開弁信号(開弁駆動電圧)をバイパス弁10に加えてバイパス弁10を開弁させる。
【0037】
このように、バイパス弁10を開弁することによって、給湯熱交換器1から流れ出た高温の湯に常時バイパス通路5およびバイパス通路8から流出した水がミキシングされ、給湯温が下げられ、図2の(d)に示すように、高温給湯を回避することができる。
【0038】
バイパス弁制御部41は、バイパス弁駆動手段33の動作情報からバイパス弁10が開弁していると検知している間(バイパス弁10の開弁期間中)、出側湯温センサ14の検出熱交出側湯温TOUT の取り込みを継続して行い、取り込んだ検出熱交出側湯温TOUT と前記開閉弁温度TW を比較し、図2の(a)に示すように、給湯熱交換器1から流れ出る湯温が下がり始め、検出熱交出側湯温TOUT が開閉弁温度TW (TW =S+α)未満である(TOUT <(S+α))と判断したときに、高温給湯の虞れがなくなったと判断し、バイパス弁駆動手段33へ閉弁信号を出力し、バイパス弁10を閉弁させる。
【0039】
この実施形態例によれば、バイパス通路8とそのバイパス弁10を設け、給湯割込み時に、出側湯温センサ14の検出熱交出側湯温TOUT が開閉弁温度TW 以上であるとき、つまり、高温給湯の虞れがあるときにバイパス弁10を開弁する構成としたので、給湯割込み時に給湯熱交換器1から流出する湯の湯温が給湯の設定温度の湯を出湯させるための給湯熱交換器1の出側湯温よりもかなり高めであるときには、その高温の湯に、常時バイパス通路5から流出する水だけでなくバイパス通路8から流出する水もミキシングされ、給湯熱交換器1から流出した湯の湯温が下げられ、給湯割込み時の高温給湯を防止することができる。
【0040】
また、必要最低限のバイパス通路8とバイパス弁10を設け、バイパス弁10の開閉制御を行うだけで、上記の如く、給湯割込み時の高温給湯を防止できるので、管路構成および制御構成の簡易化を図ることが容易であるという画期的な効果を奏することができる。
【0041】
なお、本発明は、上記実施形態例に限定されるものではなく、様々な実施の形態を採り得る。例えば、上記実施形態例では、図3に示した給湯器に常時バイパス通路5が設けられていたが、前記実施形態例に示した高温給湯防止手段は常時バイパス通路5が省略され給湯機能と湯張り機能を備えた各種の燃焼機器にも適用できるものであり、上記実施形態例の高温給湯防止手段25を設けて給湯割込み時の高温給湯防止動作を行うことによって、給湯割込み時に給湯の設定温度より許容範囲を越えた高温の湯が給湯し湯の利用者に不快感を与えるという問題を回避できる。上記のように常時バイパス通路5を省略した場合にはその分管路構成を簡単にできる。
【0042】
ただ、常時バイパス通路5を設けることによって、バイパス弁10が閉じている通常運転時に給湯熱交換器1の通水量が減少し給湯熱交換器1の通水温が上昇するために、給湯熱交換器1の通水温の低下(つまり、給湯熱交換器1の水管表面温度の低下)に起因して給湯バーナ燃焼により発生した水蒸気が給湯熱交換器1の水管表面に付着する結露現象を回避することができ、結露現象の多発に起因した給湯熱交換器1の腐食等の弊害の問題を防止することができる。
【0043】
なお、上記のように、常時バイパス通路5を省略した場合には、バイパス弁10が閉弁した状態で給湯器に流れ込んだ流量QV1が全て給湯熱交換器1に流れ込むことになるので、給湯熱交換器1を流れる流量QHE=流量QV1となり、上記実施形態例に示したS算出演算式データ(S=(Ts −(1−m)・T1 )/m)の定数m(m=QHE/QV1)には「1」が予め与えられることになる。
【0044】
また、上記実施形態例では、基準値設定部37はS算出演算式データ(S=(Ts −(1−m)・T1 )/m)に基づいて基準値Sを検出していたが、例えば、給湯の設定温度Ts と入水温T1 の関係から基準値Sを検出するための表データやグラフデータ等を予め求めてS検出データとしてデータ格納部40に格納しておき、このS検出データに基づいて基準値Sを検出するという如く、演算を用いない他の手法により基準値Sを検出設定するようにしてもよい。
【0045】
さらに、上記実施形態例では、バイパス通路8およびそのバイパス弁10は1組しか設けられていなかったが、複数組設けてもよい。この場合には、それらバイパス弁を個々に制御するようにする。例えば、第1のバイパス弁には第1の開閉弁温度が対応し、第2のバイパス弁には上記第1の開閉弁温度より高い第2の開閉弁温度が対応するという如く、給湯熱交換器1の出側湯温が高くなるにしたがって、開弁しているバイパス弁の数が多くなるように、各バイパス弁に対応する開閉弁温度を求めるための許容温度をそれぞれ設定し、それら許容温度と前記基準値設定部37が設定した基準値とにより求まる開閉弁温度に基づいて各バイパス弁を個々に制御するようにしてもよい。この場合には給湯の設定温度に対する湯張りの設定温度のずれの度合に応じて給湯熱交換器1から流出する高温の湯量に対するミキシング水量の割合を可変することが可能となる。
【0046】
また、バイパス通路を複数設けた場合、それらバイパス通路毎の管路抵抗を変えて各バイパス通路毎の流量を変えてもよく、この場合、よりミキシング水量の可変のバリエーションを多くできる。
【0047】
さらに、上記実施形態例では常時バイパス通路5が1本だけ設けられていたが、常時バイパス通路5を複数本設けてもよい。この場合にも、前記の如く、給湯熱交換器1の流量とそれら常時バイパス通路の総流量の流量比が管路抵抗により予め定めた流量比となるように複数の常時バイパス通路5を形成する。
【0048】
さらに、上記実施形態例では、バイパス弁制御部41は、給湯割込み時に、検出熱交出側湯温TOUT が開閉弁温度TW 未満に低下したと判断したときに、バイパス弁10を閉弁させていたが、他の手法によりバイパス弁10を閉弁させてもよい。例えば、バイパス弁制御部41にタイマを内蔵させ、このタイマにバイパス弁10の予め定めた開弁時間(例えば、5秒間)を設定しておき、バイパス弁制御部41は、前記実施形態例同様に、給湯割込み時に高温給湯の虞れがあると判断しバイパス弁10を開弁させたときに上記内蔵のタイマのカウントを開始させる。そして、バイパス弁制御部41は、上記内蔵タイマがカウントアップしたときに、バイパス弁10を閉弁させる。このようにして、バイパス弁制御部41がバイパス弁10を閉弁させるようにしてもよい。
【0049】
さらに、出側湯温センサ14を図3の点線に示す14′のように常時バイパス通路5の出側接続部Xよりも下流側の給湯通路4に設けてもよい。この場合には、バイパス弁10が閉弁していると仮定したときの給湯温度が給湯の設定温度になるための出側湯温センサ14′の設定位置の湯温が基準値Sとして設定されることになる(つまり、給湯の設定温度が基準値Sとして設定されることになる)。
【0050】
さらに、上記実施形態例では、図3に示す給湯器を例にして説明したが、本発明は、給湯熱交換器と給湯熱交換器出側湯温センサと入水温度検出手段とバイパス通路とバイパス通路開閉弁を有して給湯運転と風呂の湯張り運転を行うことが可能な燃焼機器であれば、図4や図5に示すような図3に示す給湯器以外の各種の燃焼機器にも適用するものである。
【0051】
【発明の効果】
この発明によれば、バイパス通路と該通路の開閉弁を設けると共に、給湯割込み監視部と基準値設定部とバイパス弁制御部を設け、給湯割込み時に高温給湯の虞れがあるときには、バイパス通路開閉弁の開弁制御を行う構成にしたので、給湯割込み時に高温給湯の虞れがあるときにバイパス通路開閉弁を開弁して給湯熱交換器から流出した高温の湯にバイパス通路の水をミキシングすることができ、給湯割込みに起因した高温の湯が給湯するのを確実に防止でき、湯の利用者に給湯割込み時の高温給湯により不快感を与えてしまうという問題を回避することができる。
【0052】
また、必要最低限のバイパス通路およびその開閉弁を設け、給湯割込み時にバイパス通路開閉弁の開弁制御を行うだけで、給湯割込み時の高温給湯を防止できるので、管路構成を簡易化することが可能であり、給湯器のコスト低減を図ることができるという画期的な効果を奏する。
【0053】
給湯熱交換器の給水通路と給湯通路を短絡する開閉弁をもたない常時バイパス通路が別途設けられている構成にあっては、給湯通路の常時バイパス通路出側接続部で、給湯熱交換器で加熱された湯と常時バイパス通路側を通った水がミキシングされることになり、例えば、バイパス通路開閉弁を開弁してバイパス通路を通る水によって給湯熱交換器から流出した湯の温度を下げなければならないのにも拘わらず、バイパス通路開閉弁が故障して開弁しないという事態が発生しても、上記の如く、給湯熱交換器の湯は常時バイパス通路の水がミキシングされることによって湯温が下げられることから、給湯割込み時に非常に高温の湯が給湯し湯の利用者に火傷を負わせてしまうというような重大な問題は回避することができる。
【図面の簡単な説明】
【図1】本発明において特有な給湯割込み時の高温給湯防止手段の実施形態例を示すブロック構成図である。
【図2】バイパス弁の開閉制御の動作例を示すタイムチャートである。
【図3】本発明の燃焼機器である給湯器の一システム構成例を示すモデル図である。
【図4】本発明に係る燃焼機器のその他のシステム構成例を示すモデル図である。
【図5】さらに本発明に係る燃焼機器のその他のシステム構成例を示すモデル図である。
【図6】従来の課題を示す説明図である。
【符号の説明】
1 給湯熱交換器
3 給水通路
4 給湯通路
5 常時バイパス
8 バイパス通路
10 バイパス弁
13 入水温度センサ
14 出側湯温センサ
37 基準値設定部
41 バイパス弁制御部
42 給湯割込み監視部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion apparatus having a hot water supply function and a bath filling function.
[0002]
[Prior art]
As is well known, a hot water heater typical as a combustion device is provided with a hot water heat exchanger and a hot water burner, and a hot water passage is connected to the inlet side of the hot water heat exchanger and a hot water passage is connected to the outlet side. The hot water passage is led to a hot water tap such as a kitchen. When the hot water tap is opened, the hot water supply heat exchanger heats the water led from the water supply source through the water supply passage using the heat of the hot water combustion of the hot water burner, and passes the heated hot water through the hot water supply passage. Hot water is supplied through a hot-water tap.
[0003]
In addition, a hot water supply passage having a hot water filling function is connected to a hot water supply passage and a passage that connects the hot water supply passage and the bath (tub). The hot water is poured into the bathtub through the passage connecting the hot water supply passage and the bathtub, and the bath is filled.
[0004]
[Problems to be solved by the invention]
By the way, when a water heater having a hot water filling function is performing a hot water filling operation of a bath, there may be a hot water supply interruption in which a hot water tap is opened and hot water supply is started. In the case of this hot water supply interruption, the water heater switches from the hot water filling operation to the hot water supply operation while continuing the hot water supply burner combustion, and performs only the hot water supply operation.
[0005]
Usually, the hot water temperature of the hot water supply and the hot water temperature of the hot water supply can be set separately, and the hot water temperature of the hot water supply may be set higher than the hot water temperature of a hot water shower or the like. In this case, inevitably, the hot water temperature ( Y on the outlet side of the hot water heat exchanger) T Y created by the hot water heat exchanger to supply hot water having a preset hot water set temperature to the bathtub is: The hot water temperature T T is higher than the hot water temperature T T created by the hot water supply heat exchanger for supplying hot water at a preset temperature of the hot water supply to the kitchen or shower. For this reason, when a hot water supply interruption is performed, the hot water temperature at the outlet side of the hot water heat exchanger is set as shown in FIG. control operation of the hot water supply burner combustion is performed from the T Y for lowering the hot water temperature T T.
[0006]
However, when the hot water supply interruption, the delivery side of the hot water temperature of the hot water supply heat exchanger, to fall from the hot water temperature T Y to T T is the transient period X as shown in FIG. 6 (a). For this reason, at the time of a hot water supply interruption, first, hot water having a predetermined hot water filling temperature shown at point A in FIG. 6C supplies hot water to the kitchen or shower. When this hot water temperature is considerably higher than the preset temperature of the hot water set by the user of the hot water, there is a problem that the hot water hot water user feels uncomfortable due to the hot water supply. There is.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a combustion apparatus having a hot water supply function and a hot water filling function that can reliably prevent high-temperature hot water supply during hot water supply interruption. is there.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the first aspect of the present invention is to provide a hot water heat exchanger that heats water guided from the water supply passage using the heat of hot water burner combustion and flows out to the hot water passage, and a water supply passage and an outlet on the inlet side of the hot water heat exchanger. A bypass passage for short-circuiting the hot water supply passage on the side, a bypass passage on-off valve for opening and closing the bypass passage, an incoming water temperature detecting means for detecting the temperature of water in the water supply passage, and a hot water temperature on the outlet side of the hot water heat exchanger A type of combustion equipment that has a hot water supply heat exchanger outlet temperature sensor to detect and is capable of performing hot water supply operation and bath filling operation when the combustion device is performing bath filling operation. A hot water supply interrupt monitoring unit for monitoring whether or not a hot water supply interrupt for switching to a hot water supply operation is performed while hot water burner combustion is continued; and when detecting that a hot water supply interrupt has been performed based on information of the hot water supply interrupt monitoring unit, Was Based on the information on the set temperature of the hot water, the hot water temperature on the outlet side of the hot water supply heat exchanger is calculated so that the hot water temperature becomes the set temperature of the hot water when it is assumed that the bypass passage on-off valve is closed. A reference value setting unit for setting the obtained hot water temperature as a reference value; taking in the hot water temperature detected by the hot water supply heat exchanger outlet hot water temperature sensor as a detected heat exchanging hot water temperature when a hot water supply interruption is performed; The detected heat exchange side hot water temperature was compared with the reference value set by the reference value setting unit, and it was determined that the detected heat exchange side hot water temperature was higher than a predetermined allowable temperature above the reference value. A bypass valve control unit for opening the bypass passage opening / closing valve is sometimes used as means for solving the problems.
[0009]
In addition to the configuration of the first aspect of the present invention, the second invention is provided with a normal bypass passage that does not have an open / close valve that short-circuits the water supply passage of the hot water heat exchanger and the hot water supply passage of the hot water heat exchanger, Based on the detected incoming water temperature detected by the incoming water temperature detecting means, a preset hot water supply temperature, and a predetermined flow rate ratio of the hot water heat exchanger to the total incoming water flow rate to the combustion equipment, The above-mentioned problem has a configuration in which the hot water temperature at the outlet side of the hot water heat exchanger for the hot water temperature to be the set temperature of the hot water when it is assumed that the valve is closed is obtained and the obtained hot water temperature is set as a reference value. As a means to solve the problem.
[0010]
In the invention having the above-described configuration, for example, the bypass passage on-off valve is formed as an on-off valve in a closed state during normal operation. The hot water supply interrupt monitoring unit monitors whether or not a hot water supply interrupt has been performed when the combustion device is performing a hot water bath operation.
[0011]
When the reference value setting unit detects that a hot water supply interrupt has been performed based on the information of the hot water supply interrupt monitoring unit, it is assumed that the bypass passage opening / closing valve is closed based on information on a preset temperature of the hot water supply. The hot water temperature at the outlet side of the hot water supply heat exchanger for the hot water temperature to become the set temperature of the hot water supply is obtained, and this hot water temperature is set as a reference value.
[0012]
The bypass valve control unit takes in the detected heat exchange side hot water temperature at the time of a hot water supply interruption, compares the detected heat exchange side hot water temperature with the reference value set by the reference value setting unit, and detects the detected heat exchange side hot water temperature. Is determined to be higher than the reference value by a predetermined allowable temperature, it is determined that there is a possibility of hot water supply due to hot water supply interruption, and the bypass passage opening / closing valve is opened.
[0013]
By doing so, water is mixed from the bypass passage to the hot water flowing out of the hot water supply heat exchanger, and the hot water temperature is lowered. Therefore, hot water supply during a hot water supply interruption is avoided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
As shown in FIG. 3, the water heater that is a combustion apparatus of this embodiment includes a hot water supply heat exchanger 1 and a bath heat exchanger 26, and a hot water supply burner (not shown) that burns and heats the hot water supply heat exchanger 1. And a bath burner (not shown) that burns and heats the bath heat exchanger 26.
[0016]
As shown in FIG. 3, a hot water supply passage 3 is connected to the entrance side of the hot water heat exchanger 1, and a hot water supply passage 4 is connected to the exit side. The hot water supply passage 4 is a hot water tap 19 for a kitchen or a shower. Led to. The hot water supply heat exchanger 1 is provided with a constant bypass passage 5 that does not have an on-off valve that short-circuits the inlet side water supply passage 3 and the outlet side hot water supply passage 4, and this constant bypass passage 5 is provided on the hot water supply heat exchanger 1 side. The flow rate ratio between the flow rate flowing to the bypass passage 5 and the flow rate always flowing to the bypass passage 5 side is set to a flow rate ratio (for example, 7 to 3 to 8 to 2) determined in advance by the pipe resistance.
[0017]
A bypass passage 8 that short-circuits the hot water supply passage 4 downstream from the outlet side connection portion X of the constant bypass passage 5 and the water supply passage 3 upstream of the constant bypass passage inlet side connection portion Y is formed. The bypass passage 8 is provided with a bypass valve 10 that is a bypass passage opening / closing valve for opening and closing the passage, and the bypass valve 10 is closed during normal operation. A flow rate control valve 7 for controlling the flow rate by the valve opening amount is provided in the hot water supply passage 4 on the downstream side of the bypass passage outlet side connection portion Z.
[0018]
One end side of the pipe line 29 is connected to one end side of the bath heat exchanger 26, and the other end side of the pipe line 29 is connected to the bathtub 24. One end side of a pipe line 31 is connected to the other end side of the bath heat exchanger 26, the other end side of the pipe line 31 is connected to the discharge port side of the pump 28, and a pipe is connected to the suction port side of the pump 28. One end side of the channel 32 is connected, and the other end side of the channel 32 is connected to the bathtub 24.
[0019]
The bath heat exchanger 26, the pump 28, and the pipelines 29, 31, and 32 constitute a recirculation circuit 27 that performs reheating while circulating the bathtub water in the bathtub 24. The hot water supply passage 4 downstream of the flow rate control valve 7 is connected by a hot water filling passage 30, and a hot water filling control valve 22 for opening and closing the passage 30 is interposed in the hot water filling passage 30. The pouring control valve 22 is opened, and the hot water produced in the hot water supply heat exchanger 1 is led to the bathtub 24 through the hot water filling passage 30 and the recirculation circulation path 27, so that the hot water filling of the bath is performed. .
[0020]
In the figure, reference numeral 12 denotes a flow rate detection sensor for detecting the incoming flow rate introduced from the water supply source through the water supply passage 3, and reference numeral 13 denotes a thermistor for detecting the temperature of the incoming water in the water supply passage 3. Reference numeral 14 denotes an incoming water temperature sensor which is an incoming water temperature detection means, and reference numeral 14 denotes an outgoing hot water temperature sensor which is a hot water supply heat exchanger outlet hot water temperature sensor such as a thermistor for detecting the temperature of hot water on the outlet side of the hot water heat exchanger 1. Reference numeral 15 denotes a hot water supply confirmation switch for detecting the passage of water by hot water supply and detecting that hot water is being supplied.
[0021]
The water heater is provided with a control device 20 for controlling the operation of the water heater. A remote control 18 is connected to the control device 20, and the user of the water heater is connected to A temperature setting means 21 for separately setting the hot water filling temperature and the reheating temperature is formed.
[0022]
The control device 20 is provided with a high temperature hot water supply prevention means at the time of a hot water supply interruption peculiar to the present embodiment, and FIG. 1 shows an example of the high temperature hot water supply prevention means. The control device 20 includes a high temperature hot water supply preventing means 25 and a combustion control unit 36. The combustion control unit 36 controls operation operations such as hot water supply, hot water filling and reheating according to a sequence program given in advance.
[0023]
The high temperature hot water supply preventing means 25 includes a sampling unit 35, a reference value setting unit 37, a data storage unit 40, a bypass valve control unit 41, and a hot water supply interrupt monitoring unit 42. The prevention means 25 is configured to reliably prevent high-temperature hot water supply during hot water supply interruption.
[0024]
The sampling unit 35 has a built-in timer (not shown) for setting a predetermined sampling time interval (for example, one second interval), and the outlet side hot water temperature sensor 14 is set at every sampling time interval set by the timer. And the like, and information on the remote controller 18 (for example, information on the set temperature of hot water supply or hot water set in the temperature setting means 21) are sampled.
[0025]
The hot water supply interrupt monitoring unit 42 detects the opening / closing operation of the pouring control valve 22 based on the information of the pouring control valve opening / closing control operation of the combustion control unit 36, and the pouring control valve 22 is opened. Whether the hot water filling operation is performed or whether the hot water filling control valve 22 is closed and the hot water filling operation is not performed is monitored.
[0026]
At the same time, the monitoring unit 42 takes in the sensor outputs of the flow rate detection sensor 12 and the hot water supply confirmation switch 15 via the sampling unit 35, and the flow rate detection sensor 12 detects the flow rate when the hot water filling operation is performed. When the hot water supply operation is performed, the hot water supply confirmation switch 15 switches to the hot water supply operation while continuing the hot water supply burner combustion. Monitor whether or not a hot water supply interrupt has occurred.
[0027]
The data storage unit 40 stores the following S calculation formula data in advance. This S calculation formula data indicates that the hot water temperature of the hot water supply heat exchanger 1 for the hot water temperature to become the set temperature of the hot water when the bypass valve 10 of the bypass passage 8 is closed (the outlet temperature shown in FIG. 3). This is data for calculating and detecting the hot water temperature S around the installation position where the side hot water temperature sensor 14 is provided. In this embodiment, the following equation (1) is stored as S calculation calculation formula data. Stored in section 40.
[0028]
S = (T s − (1−m) · T 1 ) / m (1)
[0029]
In the above equation (1), T s represents the set temperature of hot water supply, T 1 represents the incoming water temperature, m represents a flow rate ratio of the predetermined hot water supply heat exchanger 1 to the total incoming water flow rate to the hot water heater (0 <m <1) is expressed, and the above formula (1) was derived as follows.
[0030]
That is, in order for the hot water temperature to become the set temperature for hot water, the amount of heat required to raise the water at the total incoming flow rate Q 0 guided from the water supply passage 3 from the incoming water temperature T 1 to the set temperature T s for hot water. J 0 (J 0 = (T s -T 1) · Q 0 · C ( although C is specific heat) of water) and the flow rate Q HE (Q flowing through the hot-water supply heat exchanger 1 of the total incoming water flow rate Q 0 The amount of heat J HE (J HE = (S−T 1 ) · Q HE required for raising the water of HE = m · Q 0 ) from the incoming water temperature T 1 to the outlet hot water temperature S of the hot water heat exchanger 1 C = (S−T 1 ) · m · Q 0 · C) must be equal ((T s −T 1 ) · Q 0 · C = (S−T 1 ) · m · Q 0 -The above formula (1) was derived from C).
[0031]
The preset temperature of hot water supply preset in the temperature setting means 21 of the remote controller 18 is set to T s in the equation (1), and the incoming water temperature detected by the incoming water temperature sensor 13 is set to T 1 . Flow rate ratio of the hot water heat exchanger 1 to the incoming water flow rate (for example, in a state where the bypass valve 10 is closed, the incoming water is branched into the hot water heat exchanger 1 side and the bypass passage 5 side, and the hot water heat exchanger) Since the flow rate ratio between the flow rate of 1 and the flow rate of the constant bypass passage 5 is determined in advance by the pipe resistance, for example, when the flow rate ratio is 7 to 3, it is predetermined as m = 0.7). By performing the calculation according to the equation (1), it is possible to calculate the outlet side hot water temperature S of the hot water supply heat exchanger 1 so that the hot water temperature becomes the set temperature T S of the hot water supply.
[0032]
Based on the information of the hot water supply interrupt monitoring unit 42, the reference value setting unit 37 detects the incoming water temperature T 1 detected by the incoming water temperature sensor 13 via the sampling unit 35 when the hot water supply interrupt is detected, and the temperature fetches the set temperature T S of the hot water supply set in the setting means 21, reading the S calculated arithmetic expression data from the data storage unit 40.
[0033]
Based on these incoming water temperature T 1 , set temperature T S, and S calculation formula data, the reference value setting unit 37 sets the outlet hot water of the hot water supply heat exchanger 1 so that the hot water temperature becomes the set temperature T S for hot water supply. The temperature S is calculated, the calculated value S is set as the reference value S, and a data signal of the reference value S is output to the bypass valve control unit 41.
[0034]
When the bypass valve control unit 41 receives the data signal of the reference value S from the reference value setting unit 37, the hot water temperature on the outlet side of the hot water supply heat exchanger 1 detected by the outlet side hot water temperature sensor 14 via the sampling unit 35. (Detection heat exchange side hot water temperature) At the same time as the start of taking out T OUT , an allowable temperature α (for example, 3 ° C. (0 ° C. may be given as the allowable temperature α) given in advance to the data storage unit 40 )) Data is read.
[0035]
The bypass control unit 41 calculates an on-off valve temperature T W (T W = S + α), which is an added value obtained by adding the allowable temperature α to the reference value S, and the on-off valve temperature T W and the detected heat exchange side hot water. Compare the temperature T OUT . This comparison, the bypass valve controller 41, the detected heat交出side water temperature T OUT is off valve temperature T W or more, that is, detecting heat交出side hot water temperature T OUT allowable temperature than the reference value S When it is determined that the value is higher than α (T OUT ≧ S + α), a valve opening signal for the bypass valve 10 is output to the bypass valve driving means 33.
[0036]
This is because when the detected heat exchange side hot water temperature T OUT is higher than the reference value S by the allowable temperature α or higher, the hot water flowing out of the hot water supply heat exchanger 1 is maintained with the bypass valve 10 closed. Since the water to be mixed is always only water that flows out of the bypass passage 5, the amount of water to be mixed is insufficient, and hot water that is considerably higher than the set temperature of the hot water supply is supplied. The valve opening signal is output to the bypass valve driving means 33, and the bypass valve driving means 33 outputs the valve opening signal (bypass valve opening / closing signal shown in FIG. 2C). The valve opening drive voltage) is applied to the bypass valve 10 to open the bypass valve 10.
[0037]
In this way, by opening the bypass valve 10, the hot water flowing out from the hot water supply heat exchanger 1 is mixed with the water flowing out from the bypass passage 5 and the bypass passage 8 at all times, and the hot water supply temperature is lowered. As shown in (d), high temperature hot water supply can be avoided.
[0038]
While the bypass valve control unit 41 detects that the bypass valve 10 is open from the operation information of the bypass valve drive means 33 (during the valve open period of the bypass valve 10), the bypass side temperature sensor 14 detects continuously performed thermal交出side water temperature T OUT uptake, comparing the on-off valve temperature T W and the detected heat交出side water temperature T OUT captured, as shown in FIG. 2 (a), hot water When the hot water temperature flowing out from the heat exchanger 1 starts to decrease and the detected heat exchange side hot water temperature T OUT is determined to be less than the on-off valve temperature T W (T W = S + α) (T OUT <(S + α)), It is determined that there is no risk of hot water supply, and a valve closing signal is output to the bypass valve drive means 33 to close the bypass valve 10.
[0039]
According to this embodiment, the bypass passage 8 and the bypass valve 10 is provided, at the time of hot-water supply interruption, when the detected heat交出side water temperature T OUT of the output-side hot water temperature sensor 14 is off valve temperature T W or more, That is, since the bypass valve 10 is opened when there is a possibility of high-temperature hot water supply, the temperature of the hot water flowing out of the hot water supply heat exchanger 1 at the time of a hot water supply interruption causes the hot water at the set temperature of the hot water to be discharged. When the hot water temperature of the hot water supply heat exchanger 1 is considerably higher than the outlet side hot water temperature, not only the water flowing out of the bypass passage 5 but also the water flowing out of the bypass passage 8 is mixed with the hot water at all times. The hot water temperature of the hot water flowing out from 1 is lowered, and hot water supply at the time of hot water supply interruption can be prevented.
[0040]
In addition, since the minimum bypass passage 8 and the bypass valve 10 are provided and the opening and closing control of the bypass valve 10 is performed, high temperature hot water supply at the time of hot water supply interruption can be prevented as described above. It is possible to achieve an epoch-making effect that it is easy to achieve the above.
[0041]
In addition, this invention is not limited to the said embodiment example, Various embodiment can be taken. For example, in the above embodiment example, the bypass passage 5 is always provided in the water heater shown in FIG. 3, but the bypass passage 5 is always omitted in the high temperature hot water prevention means shown in the embodiment example, and the hot water supply function and hot water are provided. It can also be applied to various types of combustion equipment having a tension function, and is provided with the hot water supply prevention means 25 of the above-described embodiment example to perform a high temperature hot water prevention operation at the time of hot water supply interruption, so that the set temperature of hot water supply at the time of hot water supply interruption It is possible to avoid the problem that hot water exceeding the allowable range supplies hot water and makes the user of hot water uncomfortable. When the bypass passage 5 is always omitted as described above, the branch pipe configuration can be simplified.
[0042]
However, by always providing the bypass passage 5, the amount of water flow through the hot water supply heat exchanger 1 decreases during normal operation when the bypass valve 10 is closed, and the water flow temperature of the hot water supply heat exchanger 1 rises. 1. Avoiding the dew condensation phenomenon in which water vapor generated by hot water burner combustion due to a decrease in the water flow temperature of 1 (that is, a decrease in the water pipe surface temperature of the hot water heat exchanger 1) adheres to the water pipe surface of the hot water heat exchanger 1 It is possible to prevent problems such as corrosion of the hot water supply heat exchanger 1 due to frequent occurrence of the dew condensation phenomenon.
[0043]
As described above, when the bypass passage 5 is omitted at all times, all the flow rate Q V1 flowing into the hot water heater with the bypass valve 10 closed flows into the hot water supply heat exchanger 1. The flow rate Q HE flowing through the heat exchanger 1 is equal to the flow rate Q V1 , and the constant m (S = (T s − (1−m) · T 1 ) / m) shown in the above embodiment is a constant m ( “1” is given in advance to m = Q HE / Q V1 ).
[0044]
In the above embodiment, the reference value setting unit 37 detects the reference value S based on the S calculation formula data (S = (T s − (1−m) · T 1 ) / m). For example, table data or graph data for detecting the reference value S from the relationship between the set temperature T s of hot water supply and the incoming water temperature T 1 is obtained in advance and stored in the data storage unit 40 as S detection data. The reference value S may be detected and set by another method that does not use calculation, such as detecting the reference value S based on the S detection data.
[0045]
Further, in the above embodiment, only one set of the bypass passage 8 and the bypass valve 10 is provided, but a plurality of sets may be provided. In this case, the bypass valves are individually controlled. For example, the first on-off valve temperature corresponds to the first bypass valve, and the second on-off valve temperature higher than the first on-off valve temperature corresponds to the second bypass valve. As the outlet side hot water temperature of the vessel 1 becomes higher, an allowable temperature for determining the on-off valve temperature corresponding to each bypass valve is set so that the number of bypass valves that are opened increases. Each bypass valve may be individually controlled based on the on-off valve temperature obtained from the temperature and the reference value set by the reference value setting unit 37. In this case, the ratio of the amount of mixing water to the amount of hot water flowing out of the hot water supply heat exchanger 1 can be varied in accordance with the degree of deviation of the set temperature of hot water filling with respect to the set temperature of hot water supply.
[0046]
Further, when a plurality of bypass passages are provided, the pipe resistance for each bypass passage may be changed to change the flow rate for each bypass passage, and in this case, the variation of mixing water amount can be increased.
[0047]
Furthermore, although only one bypass passage 5 is always provided in the above embodiment, a plurality of always bypass passages 5 may be provided. Also in this case, as described above, the plurality of constant bypass passages 5 are formed so that the flow rate ratio between the flow rate of the hot water supply heat exchanger 1 and the total flow rate of these constant bypass passages is a flow rate ratio determined in advance by the pipe resistance. .
[0048]
Furthermore, in the above embodiment, the bypass valve control unit 41 closes the bypass valve 10 when it is determined that the detected heat exchange side hot water temperature T OUT has dropped below the on-off valve temperature T W during hot water supply interruption. However, the bypass valve 10 may be closed by another method. For example, a timer is built in the bypass valve control unit 41, a predetermined valve opening time (for example, 5 seconds) of the bypass valve 10 is set in the timer, and the bypass valve control unit 41 is the same as in the above embodiment. When the bypass valve 10 is opened when it is determined that there is a possibility of hot water supply during a hot water supply interruption, the built-in timer starts counting. The bypass valve control unit 41 closes the bypass valve 10 when the built-in timer counts up. In this way, the bypass valve control unit 41 may close the bypass valve 10.
[0049]
Further, the outlet side hot water temperature sensor 14 may be provided in the hot water supply passage 4 on the downstream side of the outlet side connection portion X of the bypass passage 5 at all times as indicated by 14 'shown by a dotted line in FIG. In this case, the hot water temperature at the set position of the outlet side hot water temperature sensor 14 ′ so that the hot water temperature when the bypass valve 10 is closed is the set hot water temperature is set as the reference value S. (That is, the set temperature of the hot water supply is set as the reference value S).
[0050]
Furthermore, in the above embodiment, the hot water heater shown in FIG. 3 has been described as an example. However, the present invention is not limited to the hot water heat exchanger, the hot water heat exchanger outlet hot water temperature sensor, the incoming water temperature detecting means, the bypass passage, and the bypass. As long as the combustion device has a passage opening / closing valve and can perform hot water supply operation and bath filling operation, it can be applied to various combustion devices other than the water heater shown in FIG. 3 as shown in FIG. 4 or FIG. Applicable.
[0051]
【The invention's effect】
According to the present invention, a bypass passage and an opening / closing valve for the passage are provided, and a hot water supply interrupt monitoring unit, a reference value setting unit, and a bypass valve control unit are provided. Since the valve is controlled to open, when there is a possibility of hot water supply during a hot water supply interruption, the bypass passage opening / closing valve is opened to mix the water in the bypass passage with the hot water flowing out of the hot water heat exchanger. Therefore, it is possible to reliably prevent hot water caused by a hot water supply interruption, and to avoid the problem that the hot water user is uncomfortable due to the high temperature hot water supply at the time of the hot water supply interruption.
[0052]
In addition, it is possible to prevent the hot water supply at the time of hot water supply interruption by simply providing the minimum necessary bypass passage and its opening / closing valve and controlling the opening of the bypass passage opening / closing valve at the time of hot water interruption. It is possible to achieve the epoch-making effect that the cost of the water heater can be reduced.
[0053]
If there is a separate bypass passage that does not have an on-off valve that short-circuits the hot water supply water supply passage and the hot water supply passage, the hot water supply heat exchanger will The hot water heated by the water and the water that has always passed through the bypass passage will be mixed.For example, the temperature of the hot water flowing out of the hot water supply heat exchanger by the water passing through the bypass passage by opening the bypass passage on-off valve is adjusted. Even if the bypass passage opening / closing valve fails and does not open despite the fact that it must be lowered, the hot water in the hot water heat exchanger is always mixed with the water in the bypass passage as described above. Since the hot water temperature is lowered by this, it is possible to avoid a serious problem that a very high temperature hot water supplies hot water at the interruption of hot water supply and burns the hot water user.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of high temperature hot water supply prevention means at the time of a hot water supply interruption peculiar to the present invention.
FIG. 2 is a time chart showing an operation example of bypass valve opening / closing control.
FIG. 3 is a model diagram showing a system configuration example of a water heater that is a combustion apparatus of the present invention.
FIG. 4 is a model diagram showing another system configuration example of the combustion device according to the present invention.
FIG. 5 is a model diagram showing another system configuration example of the combustion device according to the present invention.
FIG. 6 is an explanatory diagram showing a conventional problem.
[Explanation of symbols]
1 Hot Water Heat Exchanger 3 Water Supply Passage 4 Hot Water Supply Passage 5 Always Bypass 8 Bypass Passage
10 Bypass valve
13 Water temperature sensor
14 Outlet temperature sensor
37 Reference value setting section
41 Bypass valve controller
42 Hot water supply interrupt monitoring unit

Claims (2)

給水通路より導かれる水を給湯バーナ燃焼の熱を利用して加熱し給湯通路へ流出する給湯熱交換器と、この給湯熱交換器の入側の給水通路と出側の給湯通路を短絡するバイパス通路と、該バイパス通路の開閉を行うバイパス通路開閉弁と、給水通路の水の温度を検出する入水温度検出手段と、給湯熱交換器の出側の湯水温度を検出する給湯熱交換器出側湯温センサとを有し、給湯運転と風呂の湯張り運転を行うことが可能なタイプの燃焼機器において、燃焼機器が風呂の湯張り運転を行っているときに給湯バーナ燃焼が継続されたまま給湯運転に切り換わる給湯割込みが行われたか否かを監視する給湯割込み監視部と;この給湯割込み監視部の情報により給湯割込みが行われたと検知したときには、予め定められた給湯の設定温度の情報に基づき、バイパス通路開閉弁が閉弁していると仮定したときの給湯湯温が給湯の設定温度になるための給湯熱交換器の出側の湯温を求め、この求めた湯温を基準値として設定する基準値設定部と;給湯割込みが行われたときに前記給湯熱交換器出側湯温センサが検出した湯温を検出熱交出側湯温として取り込み、この検出熱交出側湯温と上記基準値設定部が設定した基準値を比較し、上記検出熱交出側湯温が上記基準値よりも予め定めた許容温度以上に高めであると判断したときにはバイパス通路開閉弁を開弁させるバイパス弁制御部と;を有する構成としたことを特徴とする燃焼機器。A hot water heat exchanger that heats water guided from the hot water supply passage using the heat of hot water burner combustion and flows out to the hot water supply passage, and a bypass that short-circuits the hot water passage on the inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger A passage, a bypass passage opening / closing valve for opening and closing the bypass passage, an incoming water temperature detecting means for detecting the temperature of the water in the water supply passage, and a hot water supply heat exchanger outlet for detecting the hot water temperature on the outlet side of the hot water heat exchanger In a combustion device that has a hot water temperature sensor and can perform hot water supply operation and bath filling operation, hot water supply burner combustion continues while the combustion device performs bath filling operation. A hot water supply interrupt monitoring unit for monitoring whether or not a hot water supply interrupt for switching to a hot water supply operation has been performed; when it is detected that a hot water supply interrupt has been performed based on information from the hot water supply interrupt monitoring unit, information on a preset temperature of the hot water supply set in advance Based on The hot water temperature on the outlet side of the hot water heat exchanger for the hot water temperature to be the set temperature of the hot water when it is assumed that the bypass passage on-off valve is closed is calculated, and the calculated hot water temperature is the reference value. A reference value setting unit that is set as: a hot water temperature detected by the hot water supply heat exchanger outlet hot water temperature sensor when a hot water supply interrupt is made, is taken in as a detected heat exchanger hot water temperature, The temperature is compared with the reference value set by the reference value setting unit, and when it is determined that the detected heat exchange side hot water temperature is higher than a predetermined allowable temperature above the reference value, the bypass passage opening / closing valve is opened. A combustion device characterized by comprising a bypass valve control section for causing the valve to operate. 給湯熱交換器の給水通路と給湯熱交換器の給湯通路を短絡する開閉弁を持たない常時バイパス通路が別途設けられ、基準値設定部は入水温度検出手段が検出した検出入水温と、予め定められた給湯の設定温度と、燃焼機器への総入水流量に対する予め定まる給湯熱交換器の流量比に基づき、バイパス通路開閉弁が閉弁していると仮定したときの給湯湯温が給湯の設定温度になるための給湯熱交換器の出側の湯温を求め、この求めた湯温を基準値として設定する構成としたことを特徴とする請求項1記載の燃焼機器。A separate always-by-pass passage that does not have an on-off valve that short-circuits the hot water supply heat exchanger and the hot water supply heat exchanger is provided separately, and the reference value setting unit determines in advance the detected incoming water temperature detected by the incoming water temperature detecting means. The hot water temperature when the bypass passage on-off valve is assumed to be closed based on the predetermined flow rate ratio of the hot water supply heat exchanger with respect to the total incoming water flow rate to the combustion equipment The combustion apparatus according to claim 1, wherein the temperature of the hot water at the outlet side of the hot water supply heat exchanger for obtaining the temperature is obtained, and the obtained hot water temperature is set as a reference value.
JP21196396A 1996-07-23 1996-07-23 Combustion equipment Expired - Fee Related JP3776985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21196396A JP3776985B2 (en) 1996-07-23 1996-07-23 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21196396A JP3776985B2 (en) 1996-07-23 1996-07-23 Combustion equipment

Publications (2)

Publication Number Publication Date
JPH1038370A JPH1038370A (en) 1998-02-13
JP3776985B2 true JP3776985B2 (en) 2006-05-24

Family

ID=16614611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21196396A Expired - Fee Related JP3776985B2 (en) 1996-07-23 1996-07-23 Combustion equipment

Country Status (1)

Country Link
JP (1) JP3776985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515550B2 (en) * 2015-01-23 2019-05-22 株式会社ノーリツ One can dual channel water heater

Also Published As

Publication number Publication date
JPH1038370A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
JP2003083614A (en) Water heater
JP3776985B2 (en) Combustion equipment
JP4418387B2 (en) Waste heat using hot water supply system
JP3776983B2 (en) Combustion equipment
JP3756988B2 (en) Combustion equipment
JP3756999B2 (en) Combustion equipment
JP3776975B2 (en) Combustion equipment
JP3997920B2 (en) Water heater
JP3834389B2 (en) Bath equipment
JP3610566B2 (en) Water heater
JP3674014B2 (en) Water heater
JP2616436B2 (en) Water heater drainage plug leak detector
JPH1137554A (en) Combustion equipment
JP3738082B2 (en) Combustion equipment
JP3750230B2 (en) Flow drop method
JPH10103777A (en) Combustion equipment
JPH1096555A (en) Combustion apparatus
JP2001108303A (en) Hot-water storage type hot-water supplier
JP3776974B2 (en) Combustion equipment
JPH1151463A (en) Water heater with hot water filling function
JPH11201547A (en) Reheater of bathtub water for bath boiler with water heater
JPH10111010A (en) Unit bath
JPH08219448A (en) Gas boiler with combustion abnormality detecting function
JP2000171095A (en) Water and hot water supply apparatus for bath
JP2004347225A (en) Hot-water supply bath device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees