[go: up one dir, main page]

JP3776984B2 - Bath pot with automatic hot water filling function - Google Patents

Bath pot with automatic hot water filling function Download PDF

Info

Publication number
JP3776984B2
JP3776984B2 JP21196296A JP21196296A JP3776984B2 JP 3776984 B2 JP3776984 B2 JP 3776984B2 JP 21196296 A JP21196296 A JP 21196296A JP 21196296 A JP21196296 A JP 21196296A JP 3776984 B2 JP3776984 B2 JP 3776984B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
target
passage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21196296A
Other languages
Japanese (ja)
Other versions
JPH1038368A (en
Inventor
修一 小野寺
久恭 渡辺
徹哉 佐藤
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP21196296A priority Critical patent/JP3776984B2/en
Publication of JPH1038368A publication Critical patent/JPH1038368A/en
Application granted granted Critical
Publication of JP3776984B2 publication Critical patent/JP3776984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は給湯熱交換器で作り出した湯をバイパス通路の水で混合して浴槽へ落とし込むタイプの自動湯張り機能付風呂釜に関するものである。
【0002】
【従来の技術】
図4には本出願人が開発している自動湯張り機能付風呂釜のシステム構成が示されている。同図において、給湯熱交換器1の入側には給水通路2が接続され、この給水通路2には給水温度を検出する給水温度センサ3と給水流量(湯張り時には湯張り流量)を検出する流量センサ4が介設されている。
【0003】
給湯熱交換器1の出側には給湯通路5が接続され、この給湯通路5と前記給水通路2間は電磁弁等のバイパス弁6の付いたバイパス通路7およびバイパス弁を持たない常時バイパス通路8によってそれぞれ連通接続されている。給湯通路5とそれぞれのバイパス通路7,8との合流点よりも下流側位置の給湯通路5には水量制御弁10と湯張り温度(給湯時には給湯温度)を検出する湯張り温度センサ(給湯温度センサ)11とが設けられ、その下流側の位置から湯張り管12が分岐されている。
【0004】
この湯張り管12の分岐接続部よりもさらに下流側の給湯通路5は給湯確認スイッチ28を介し外部配管を経由して台所等の所望の給湯場所に導かれている。前記給湯熱交換器1の出側には該給湯熱交換器1から出る湯温を検出する熱交湯温センサ13が設けられている。なお、給湯熱交換器1はバーナの燃焼火力でもって加熱されるがこれらの燃焼系の機構は周知であるのでその図示を省略してある。
【0005】
浴槽14には浴槽湯水を戻り管15、循環ポンプ16、追い焚き熱交換器17、往管18を経て浴槽14に循環する追い焚き循環通路20が接続されており、この追い焚き循環通路20には循環湯水を浴槽湯水温度として検出する風呂温度センサ21と、循環湯水の水流を検出する流水スイッチ22とが設けられている。追い焚き循環通路20と前記給湯通路5は湯張り管12で接続されており、給湯通路5側から前記湯張り管12と追い焚き循環通路20を介して浴槽14に至る経路は湯張り通路を形成している。前記湯張り管12には電磁弁等の注湯弁26が介設されている。なお、図中、23は浴槽水位を水圧によって検出する圧力センサ等からなる水位センサを示し、19は給湯栓を示す。
【0006】
この器具の運転は制御装置24により行われており、制御装置24には温度設定器として機能するリモコン25が接続され、このリモコンには運転ボタン、給湯温度を設定する給湯温度設定部、湯張り温度(風呂温度)を設定する湯張り温度設定部等の操作部や、温度等の表示手段が設けられている。
【0007】
次に、制御装置24による給湯運転と湯張り運転の動作を簡単に説明する。給湯運転は給湯栓19を開けることにより開始する。給湯栓19が開かれて流量センサ4により流量が検出されると、図示されていないバーナを燃焼し、その火力によって給湯熱交換器1を通る水を加熱して湯にし、この湯と常時バイパス通路8の水を混合して設定温度の湯を所望の給湯場所ヘ供給する。この給湯時には給湯温度センサ(湯張り温度センサ)11により給湯温度が検出され、この給湯温度が設定温度の湯になるように給湯熱交換器1の燃焼熱量が制御されるので、設定温度の安定した湯の供給が可能となる。なお、バイパス弁6は給湯の続使用等において給湯燃焼停止直後の後沸きの高温の湯が再出湯開始時に出るときに一次的に開いて混合する水の量を増加し、再出湯開始時の高温出湯を防止する。
【0008】
湯張り運転はリモコン25の湯張り運転スイッチをオンすることにより開始する。すなわち、湯張り運転スイッチのオン信号を受けて、注湯弁26を開け、前記給湯運転と同様に給湯熱交換器1から出る湯と常時バイパス通路8を通る水とを混合した湯を湯張り管12から追い焚き循環通路20を介して浴槽14に落とし込む。そして、浴槽14の水位が設定水位に達したとき、あるいは湯張りの総落とし込み水量が設定水位に対応する水量に達したときに、注湯弁26を閉じ、湯張り動作を停止する。なお、この湯張り運転においても、湯張り温度センサ11で検出される湯張り温度が湯張り設定温度(目標湯張り温度)となるように給湯熱交換器1の燃焼量制御が行われるので、目標湯張り温度の安定した湯が浴槽14に落とし込まれて湯張りが行われる。
【0009】
【発明が解決しようとする課題】
前記の如く、湯張りの定常運転においては、給湯熱交換器1の燃焼熱量の制御が行われてリモコン25で設定した湯張り設定温度の湯が浴槽14に張られるが、例えば、湯張り中に給湯運転指令が割り込んで、給湯運転が行われた後に、再び湯張りを再開する場合には、給湯燃焼停止直後に給湯熱交換器1の保有熱量が給湯熱交換器1内の滞留している湯に伝わり、給湯熱交換器1内の湯が後沸きによって高温になるという現象が生じる。この後沸きの直後に中断していた湯張りが開始されると、この給湯熱交換器1内の後沸きの高温の湯が浴槽に落とし込まれることになる。
【0010】
また、給湯運転を行った後、その給湯燃焼停止後、僅かの時間の経過後に湯張り運転が開始された場合も、給湯運転直後の後沸きの高温の湯が浴槽14に落とし込まれる。さらに、所定量の湯が浴槽14へ落とし込まれた後、所定の短時間給湯熱交換器1の燃焼を停止して湯の落とし込みを中断し、次に再び湯の落とし込みを行うという如く、湯の落とし込みを断続的に行う場合にも、給湯熱交換器1の燃焼を停止する毎に、給湯熱交換器1内の湯が後沸きにより上昇することとなり、湯張りの開始時毎に高温の湯が浴槽14に落とし込まれることになる。
【0011】
さらに、浴槽14への湯張りを行っているとき、一旦その湯張りを停止して湯張り設定温度が例えば低めに変更された場合も、湯張りを再開するときに、後沸きにより変更後の湯張り設定温度よりもかなり高い温度の湯が浴槽14に落とし込まれることになる。
【0012】
このように、給湯熱交換器1の短時間の燃焼停止後再び浴槽14への湯張りが行われるときには浴槽14に高温の湯が入り込むこととなり、浴槽14に人が入浴しているときや、浴槽が空の状態で幼児等が浴槽に入って遊んでいる場合等に、浴槽14に高温の湯が落とし込まれると、その高温に触れる虞れがあり、危険である。
【0013】
また、浴槽14への湯張りが断続的に行われると、その断続湯張り開始時毎に後沸きの高温の湯が落とし込まれることとなるので、浴槽14に湯張り設定温度よりも高めの湯が張られてしまうという問題が生じる。この場合、浴槽14内の湯温を湯張り設定温度(風呂設定温度)にキープする機能を持った器具では、ぬるめる余分の注水動作が行われることになり、風呂設定温度に沸き上がるまでに時間が長くかかってしまうという問題がある。
【0014】
本発明は上記課題を解決するためになされたものであり、その目的は、給湯熱交換器側から後沸きの湯が落とし込まれるときには、給湯熱交換器から出る湯に混合するバイパス通路側の水の量を増加制御し、後沸きを解消した湯を浴槽へ落とし込むことによって、高温湯張りの危険を防止するとともに、湯張り温度の制御精度を高めることが可能な自動湯張り機能付風呂釜を提供することにある。
【0015】
また、他の目的は、給湯熱交換器側から浴槽に達する経路上での湯の放熱による低下分を補償し、より湯張り温度の制御精度を改善した自動湯張り機能付風呂釜を提供することにある。
【0016】
【課題を解決するための手段】
本発明は上記目的を達成するために、次のような手段を講じている。すなわち、第1の発明は、給湯熱交換器入側の給水通路と給湯熱交換器出側の給湯通路を連通するバイパス通路が設けられ、このバイパス通路にバイパス弁が介設され、前記給湯通路とバイパス通路の合流位置の下流側からは浴槽に通じる湯張り通路が分岐形成され、この湯張り通路には注湯弁が介設され、この注湯弁と前記バイパス弁を開け、湯張り通路を通して給湯熱交換器から出る湯とバイパス通路から出る水を混合して温度設定器で設定される湯張り温度の湯を浴槽へ落とし込むタイプの自動湯張り機能付風呂釜において、給湯熱交換器の出側には該給湯熱交換器から出る湯温を検出する熱交湯温センサが設けられるとともに、給水通路には給水温を検出する給水温度センサが設けられており、湯張り開始時に予め与えられている全給水流量に対する給湯熱交換器の通水流量比のデータと前記給水温度センサによって検出される給水温度 IN の情報に基づき目標湯張り温度 st に対応する給湯熱交換器出側の目標熱交出側温度 th を求めてこの目標熱交出側温度 th と前記熱交湯温センサによって検出される給湯熱交換器出側の実測湯温と比較し目標熱交出側温度よりも実測湯温が高いときには実測湯温が目標熱交出側温度まで低下する間バイパス通路側の水量を増加方向にバイパス弁を開制御する初期高温湯張り防止手段が設けられており、前記初期高温湯張り防止手段はデータメモリと目標熱交出側温度演算部とを有し、前記データメモリには目標熱交出側温度T th を求める演算式がT th =(1/a){T st −T IN (1−a)}として与えられており、前記目標熱交出側温度演算部は前記演算式を用いて目標熱交出側温度T th を求める構成としたことをもって課題を解決する手段としている。
【0017】
また、第2の発明は、前記第1の発明の構成を備えたものにおいて、給湯熱交換器入側の給水通路と給湯熱交換器出側の給湯通路間にはバイパス弁を持たない常時バイパス通路が別途設けられている構成をもって課題を解決する手段としている。
【0018】
さらに、第3の発明は、前記第1又は第2の発明の構成を備えたものにおいて、浴槽湯温を検出する風呂温度センサを備え、温度設定器で設定される目標湯張り温度の湯が浴槽に落とし込まれた後に前記風呂温度センサで検出される浴槽湯温と前記湯張り温度とを比較して湯張り通路を通って浴槽に至る経路上での放熱により湯温低下量を求め、この湯温低下量を補償する分だけ給湯熱交換器出側の目標熱交出側温度を高めに補正する放熱温度補正部を有する構成をもって課題を解決する手段としている。
【0019】
上記構成の発明において、湯張り開始時に、入水温度の情報と、全給水流量に対する給湯熱交換器を通る通水流量の割合(流量比)のデータに基づき、給湯熱交換器の湯とバイパス通路側の水とが混合して目標湯張り温度になるための給湯熱交換器出側の目標温度、つまり目標熱交出側温度が演算により求められ、この目標熱交出側温度と給湯熱交換器の出側の実測湯温とが比較される。
【0020】
湯張り開始直前まで給湯熱交換器側が給湯燃焼をしていたような場合には、湯張り開始時に後沸きによる高温の湯が実測湯温として検出されるが、実測湯温が目標熱交出側温度よりも高いときにはバイパス弁が水量増加方向に開くことで、後沸きの高温の湯が埋められて目標湯張り温度に近い湯温となって浴槽に落とし込まれることとなり、これにより、後沸きの高温の湯が浴槽に落とし込まれることがなくなり、高温の湯が浴槽に落とし込まれることによる危険を防止できると共に、後沸きの湯の落とし込みによって浴槽湯温が目標湯張り温度よりも高めに張られることも防止でき、湯張り湯温制御の信頼性が高められる。
【0021】
また、放熱温度補正部を設けた発明にあっては、給湯通路側から浴槽までの湯張り通路の経路で放熱される湯温低下分が目標湯張り温度と実際の浴槽湯温の検出温度との差によって検出され、この放熱による湯温低下量を補償する分だけ目標熱交出側温度が高めに補正される結果、後沸きを消して給湯通路から湯張り通路に入るときには目標湯張り温度よりも高めとなるが、湯張り通路を通っていくうちに、放熱されて、浴槽に入り込むときには、ちょうど目標湯張り温度の湯温に達することから、湯張り湯温制御の精度が格段にアップし、湯張り湯温制御の信頼性を大幅に向上させることが可能となる。
【0022】
このように、本発明は、給湯熱交換器側から後沸きによる高温の湯の落とし込みが防止されると共に、湯張り湯温制御の精度および信頼性が高められることで、本発明の目的とする課題解決が達成される。
【0023】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づいて説明する。なお、本実施形態例の自動湯張り機能付風呂釜のシステム構成は前記図4に示したシステムと同様であり、そのシステムの重複説明は省略する。図1は第1実施形態例の要部構成を示すブロック図である。本実施形態例において特徴的なことは、給湯熱交換器1の後沸きによる高温の湯が浴槽14側に落とし込まれるのを防止する初期高温湯張り防止手段27を制御装置24に設けたことであり、この初期高温湯張り防止手段27は、目標熱交出側温度演算部28と、データメモリ30と、温度比較部31と、バイパス弁制御部32とを有して構成されている。
【0024】
データメモリ30には、全給水流量に対する給湯熱交換器1側を通る通水流量の割合、つまり、全給水流量に対する給湯熱交換器1の通水流量比aのデータと、給水温度と前記通水流量比のデータを用いて、目標湯張り温度(リモコン25により設定される湯張り設定温度(風呂設定温度))のデータに基づき、給湯熱交換器1の出側の湯とバイパス通路7,8側の水とが混合されて目標湯張り温度の湯となるための給湯熱交換器1の出側の目標熱交出側温度Tthを求めるTth演算式とが格納されている。
【0025】
前記給湯熱交換器1側の通水流量比aは、バイパス弁6の開度によって異なる。バイパス弁6は弁の開度が可変の流量制御式の弁としてもよいが、この実施形態例では、バイパス弁6は通路の開閉のみを行う構成としており、データメモリ30に与える通水流量比aの値はバイパス弁6を閉じた状態の値で与えてある。もちろん、バイパス弁6を流量制御タイプの弁で構成した場合には、バイパス弁6の各弁開度に応じた通水流量比aの値がそれぞれ与えられて格納されることになる。
【0026】
また、データメモリ30に与えられるTth演算式は次の(1)式によって与えられている。この(1)式は(2)式をTthを求める式に変換することにより得られる。
【0027】
th=(1/a){Tst−TIN(1−a)}・・・・・(1)
【0028】
st=aTth+TIN(1−a)・・・・・(2)
【0029】
なお、上記式で、Tstは目標湯張り温度、TINは入水温度(給水温度)、aは前記した如く、総入水流量に対する給湯熱交換器1の通水流量比である。
【0030】
目標熱交出側温度演算部28は、湯張りが開始(この湯張りの開始は注湯弁26の開動作信号を検出することによって分かる)されたときに、給水温度センサ3から得られる給水温度TINと、リモコン25により入力設定される目標湯張り温度Tstの情報と、前記データメモリ30に格納されている給湯熱交換器1側の通水流量比aのデータを用い、データメモリ30に格納されている前記(1)式を用いて目標湯張り温度の湯を供給するための給湯熱交換器1側の出側の目標熱交出側温度Tthを演算により求める。
【0031】
温度比較部31は、前記目標熱交出側温度演算部28で算出された目標熱交出側温度Tthと実際に熱交湯温センサ13で検出される給湯熱交換器1の出側の湯温検出値TM とを比較し、その比較結果をバイパス弁制御部32に加える。バイパス弁制御部32は、温度比較部31の比較結果に基づき、給湯熱交換器1の出側湯温の実測値TM が目標熱交出側温度Tthよりも大きい(高い)ときには、給湯熱交換器1の後沸き等の湯が出て温度の高い湯が浴槽14に落とし込まれると判断し、バイパス弁6を開け、給湯熱交換器1から出る湯に混合する水の量を増加する。なお、バイパス弁制御部32は給湯熱交換器1の出側の実測湯温TM が目標熱交出側温度Tth以下の場合には、高温湯張りの虞れが生じないので、バイパス弁6を閉状態に維持する。
【0032】
この実施形態例によれば、湯張りの途中に給湯運転が割り込み、その直後に湯張り運転を再開する場合や、湯張りの落とし込みを断続的に行う場合や、給湯運転の停止後短時間の間に湯張りを開始する等、湯張り開始時に給湯熱交換器1の後沸きによる高温の湯が給湯熱交換器1から出る場合には、この給湯熱交換器1から出る高温の後沸き湯温が熱交湯温センサ13により実測されて、バイパス弁6が開けられ、混合する水の量が増加制御されて後沸きが解消されて浴槽14側に落とし込まれるので、高温湯張りの危険を防止することができる。
【0033】
このように、後沸きの解消が行われると共に、熱交湯温センサ13で検出される実測湯温が目標熱交出側温度Tth以下になったときにはバイパス弁6が閉じられて余分の水が給湯熱交換器1から出る湯にミキシングするということがない。そして、後沸きの湯温が解消された後は、給湯熱交換器1から出る湯に常時バイパス通路の水がミキシングし、湯張り温度センサ11で検出される湯温が目標湯張り湯温となるように給湯熱交換器1のバーナの燃焼熱量が制御されるので、安定した目標湯張り温度の湯を浴槽14に落とし込むことが可能となり、浴槽14に目標湯張り温度の湯を正確に張ることができる。
【0034】
また、湯張りしている途中で、湯張り目標温度が低めに変更された場合には、その目標湯張り温度の変更直後には、変更前の高めの湯が給湯熱交換器1側から出ることになるが、この場合も、熱交湯温センサ13で検出される実測湯温は目標湯張り温度の変更後の目標熱交出側温度Tthよりも高くなるので、実測湯温が目標熱交出側温度Tthに下がるまでバイパス弁6が開けられるので、目標湯張り温度の変更直後に高めの湯が浴槽14側に落とし込まれることも抑制でき、湯張り湯温の変更に際してもその影響を抑制した湯張りができるという効果が得られる。
【0035】
このように、本実施形態例においては、頻繁に浴槽14への断続湯張りが行われた場合にも、前記の如く、ほぼ目標湯張り温度の湯を落とし込むことができるので、浴槽湯温が高めになってそれを埋める注水動作を行う無駄もなくなり、浴槽14に設定温度の湯を張る時間を短くすることができる。
【0036】
図2には本発明の第2実施形態例のブロック構成が示されている。この実施形態例において特徴的なことは、給湯通路5側から浴槽14に至る湯張り通路上での湯張り湯温の放熱による降下分を補償してより精度のよい湯張り湯温の制御を行う構成を前記第1実施形態例の構成に付加したものである。
【0037】
図2において、第2実施形態例において特徴的な構成は、前記第1実施形態例の構成部分に放熱温度補正部33が付加されていることである。なお、前記第1実施形態例と同一の構成部分はその重複説明を省略する。放熱温度補正部33は、放熱湯温演算部35と、放熱温度補正値算出部36とを有して構成されている。放熱湯温演算部35は、浴槽14が空の状態で湯張りが開始されたとき、通常の湯張り動作において行われると同様に、目標湯張り温度の湯が追い焚き循環通路20の循環口の上側の水位まで落とされたときに、そのことを確認するために、循環ポンプ16を駆動して浴槽湯水が追い焚き循環通路20を通して循環されるときに、風呂温度センサ21で浴槽湯温を検出し、その浴槽湯温を取り込む。
【0038】
放熱湯温演算部35は、風呂温度センサ21で検出される浴槽湯水温度と、リモコン25で設定された目標湯張り温度又は湯張り温度センサ11で検出される浴槽14への落とし込み温度とを比較し、その落とし込み温度と実際に浴槽14に落とし込まれた浴槽水湯温との差から湯張りの湯が湯張り管12および追い焚き循環通路20を経て浴槽14に達するまでの放熱による温度降下量を求め、その演算結果を放熱温度補正値算出部36へ加える。
【0039】
放熱温度補正値算出部36は、放熱湯温演算部35から加えられる湯張り通路上での放熱による温度降下分を補償する目標熱交出側温度Tthの補正値を算出する。具体的には、目標湯張り温度に放熱による温度低下分だけ上乗せし、この上乗せした目標湯張り温度から、前記(1)式を用いて温度降下分を上乗せした目標湯張り温度に対応する目標熱交出側温度Tth′を求め、補正値βをβ=Tth−Tth′の演算により求め、この補正値βを目標熱交出側温度演算部28へ加える。目標熱交出側温度演算部28は目標熱交出側温度Tthを該目標熱交出側温度Tthに補正βを加えたTth+βに変更補正する。
【0040】
このように、放熱温度補正値算出部33は、湯張りを行う毎に、目標湯張り温度に対応する目標熱交出側温度Tthの補正値βを湯張り通路上での放熱温度降下量に応じて次々に更新していく。
【0041】
この第2実施形態例では、目標熱交出側温度演算部28は、前記(1)式で求められる目標熱交出側温度Tthに放熱温度補正値算出部36から加えられる補正値βを加えた値を目標熱交出側温度の確定値とし、前記第1実施形態例の場合と同様に温度比較部31およびバイパス弁制御部32の動作を行わせる。
【0042】
この結果、第2実施形態例では、湯張り通路の放熱による温度降下分だけ上乗せして目標熱交出側温度が高めに補正設定されるので、湯張りの湯が湯張り通路を経て浴槽14に達するときに、ちょうど目標湯張り温度の湯となって浴槽14に入り込むこととなり、湯張り温度の制御精度を格段にアップすることが可能となる。
【0043】
この実施形態例の放熱温度補正部33の動作を具体的に説明すると次のようになる。例えば、給湯熱交換器1側の通水流量比aを0.25、入水温度TINを20℃、目標湯張り温度、つまり湯張り温度センサ11で検出される目標湯張り温度Tstが40℃のとき、前記(1)式で求められる目標熱交出側温度Tthは46.7℃となる。この目標湯張り温度で湯を浴槽に落とし込んで浴槽湯温を検出したところ、39℃とすれば、湯張り通路を通る間に放熱により1℃の湯温降下があったことになる。
【0044】
もし、湯張り通路上で湯温の降下がないものと仮定すれば、浴槽湯温が39℃が検出されるということは、目標湯張り温度が39℃で落とし込まれたことになり、この目標湯張り温度39℃に対応する仮想の目標熱交出側温度Tth′は(1)式により45.3℃として求められる。つまり、β=Tth−Tth′=46.7−45.3=1.4 ℃が得られる。そこで、湯張り通路上での放熱分の1.4 ℃を高めに見積もっておき、目標熱交出側温度を、46.7+1.4 =48.1℃に補正するのである。
【0045】
このように、目標熱交出側温度Tthを46.7℃から48.1℃に補正した場合、給湯熱交換器出側から48.1℃の湯が出湯したとき、この湯と常時バイパス通路8を通る水のミキシングによって作り出される湯張りの温度は前記(2)式により、Tst=48.1×0.75+20×0.25=41.1℃となる。この温度は、リモコン25で設定される目標湯張り温度の40℃よりも高くなるが、湯張り通路上での湯温低下を1℃とすると、浴槽に落とし込まれる湯温TF はTF =41.1−1=40.1℃となり、リモコンで設定されている目標湯張り温度40℃にほぼ一致する湯温となり、目標湯張り温度でもって正確に湯を張れることが実証される。
【0046】
次に、第2実施形態例の湯張り動作を図3のフローチャートに基づき説明する。まず、リモコン25の湯張りスイッチがオンされることによりスタート状態となり、風呂釜が設置施工されて最初の運転時には補正値βは0の状態となる。ステップ101 で注湯弁26が開けられて湯張りが開始される。ステップ102 ではリモコン25によって設定される目標湯張り温度Tthに補正値データを加えた温度と、給湯熱交換器1の出側の実測湯温TM との比較が行われ、実測湯温が目標熱交出側温度の補正値(この場合は補正値βは0)よりも高いときは、後沸きの湯が生じるものと判断し、ステップ103 でバイパス弁6を開けてミキシングする水の量を増加し、後沸きによる影響を消す。
【0047】
前記ステップ102 において、補正された目標熱交出側温度が実測湯温TM 以上のときは後沸きが生じていないものと判断し、バイパス弁6を開けることなく、給湯熱交換器1の湯と常時バイパス通路8の水をミキシングして給湯熱交換器1の燃焼制御により目標湯張り温度の湯を浴槽14に落とし込む。ステップ104 では追い焚き循環通路15の循環口が水没する量の水量、つまり、追い焚き循環通路20の循環口よりも上側の水位に対応する水量が落とし込まれたか否かを判断する。その水量が落とし込まれたときには、ステップ105 で湯張りの注湯を停止する。
【0048】
次にステップ106 で循環ポンプ16を駆動して浴槽湯水を追い焚き循環通路20を通して循環し、浴槽湯水の温度を風呂温度センサ21で検出する。次にステップ108 で湯張り中に湯張り温度センサ11で検出された温度(又はリモコン25で設定された目標湯張り温度)と浴槽湯水の実測温度とを比較し、湯張り通路を通って浴槽に達するまでの放熱による湯温低下分を演算し、この湯温低下量の値に基づき、その湯温降下量を補償する補正値βを演算により算出する。
【0049】
そして、ステップ109 で設定水位までの残量の湯を落とし込む。この落とし込み開始時に、ステップ110 で給湯熱交換器1側の出側の実測温度TM と前記ステップ109 で求められた補正値βで補正された目標熱交出側温度とを比較し、実測湯温TM が補正された目標熱交出側温度よりも高いときにはその影響を解消するためにバイパス弁6を開けて高温を埋める。その一方、給湯熱交換器1の出側の実測湯温TM が補正された目標熱交出側温度以下のときにはバイパス弁6は閉じたまま湯張りを行う。そして、ステップ112 で設定水位までの湯量が落とし込まれたときに、湯張りの注湯を停止する。そして、ステップ114 で沸き上がり湯温を調節し、湯張り動作を完了する。
【0050】
なお、この実施形態例では、湯張りが完了したときには、浴槽湯温はほぼ目標湯張りの湯温に一致するので、沸き上がり湯温の調節は殆ど必要ないが、例えば、湯張り中に、入浴する者により、浴槽14に水が入れられた場合等には、沸き上がり湯温の調節が必要となる。
【0051】
この第2実施形態例は、前記第1実施形態例と同様に給湯熱交換器1側の後沸きによる湯の高温湯張り注湯の危険を防止できることに加え、湯張り通路上での放熱による湯温低下を補償する方向に目標熱交出側温度の補正が行われるので、湯張り開始時に落とし込む湯温を湯張り通路上での湯温降下を見込んでその分高めにして落とし込むことができるので、湯張り湯温制御の精度を大幅にアップすることができる。
【0052】
なお、本発明は上記各実施形態例に限定されることはなく、様々な実施の形態を採り得る。例えば、上記実施形態例では、追い焚き機能を備えた風呂釜を対象にして説明したが、本発明は追い焚き機能を有しない風呂釜についても適用されるものである。この場合は、図4における追い焚き熱交換器17を省略したものや、追い焚き循環通路20を省略し、湯張り管12を延長して浴槽14に直接接続したシステム構成となる。なお、追い焚き循環通路20を省略したときは、風呂温度センサ21は浴槽14内に設けることになる。
【0053】
さらに、第2実施形態例では、湯張り通路での放熱による温度低下の影響を目標熱交出側温度を補正することにより解消するように構成したが、目標湯張り温度を補正するようにしてもよい。このように、目標湯張り温度を湯張り通路の温度低下分を見越して高めに補正することにより、湯張りの初期注湯時ばかりでなく、その後の定常湯張り運転においても、リモコン25で設定した目標湯張り温度を放熱による温度低下分を見越して高めに補正されるので、浴槽14への湯張り湯温の制御精度はアップし、正確に目標湯張り温度の湯を張ることができるという画期的な効果を奏することができる。
【0054】
さらに、上記実施形態例では、常時バイパス通路8を設けたが、この常時バイパス通路8は省略してもよい。また、本実施形態例では、バイパス弁6をもつバイパス通路7を1本だけ設けたが、これを2本以上設けたものでもよい。
【0055】
【発明の効果】
本発明は目標湯張り温度に対応する給湯熱交換器出側の目標熱交出側温度と給湯熱交換器出側の実測湯温とを比較し、実測湯温の方が高い場合には、湯張り開始時に、バイパス弁を開けて水のミキシング量を増加する方向に制御するものであるから、後沸き等の高温の湯が給湯熱交換器から出ても、この後沸きの湯を解消して浴槽側に落とし込むことができるので、後沸きの湯の高温湯張りの危険を確実に防止することができる。また、湯張り中に、湯張り目標温度が低めに設定変更された場合においても、給湯熱交換器出側の実測湯温が変更後の目標湯張り温度に対応する目標熱交出側温度よりも高くなるので、直ちにバイパス弁が開方向に制御されて水のミキシング量を増加させて変更後の目標湯張り温度の湯に近づけて湯を落とし込むことができるという効果が得られる。
【0056】
このように、本発明では、後沸きの湯が落とし込まれる場合や、目標湯張り温度の変更により変更後の湯張り温度よりも高めの湯が落とし込まれる場合には、ミキシングする水の量が増加制御されて目標湯張り温度よりも高めの湯が落とし込まれることを防止するので、湯張り湯温の制御精度が高まり、高めの湯が浴槽に落とし込まれてそれを埋める注水動作を行うという無駄な動作からも解放され、湯張り運転の効率化を達成することが可能となる。
【0057】
さらに、湯張り通路上での放熱による温度降下分を考慮して目標熱交出側温度を補正する構成の発明にあっては、その湯張り通路の放熱による温度低下量を見越してその分だけ高めの湯が湯張り通路に供給されることになるので、浴槽に達したときには、丁度目標湯張り温度の湯になって浴槽に入り込む結果、湯張り湯温の制御精度がさらにアップし、目標湯張り温度の湯を正確に張ることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例のブロック構成図である。
【図2】本発明の第2実施形態例のブロック構成図である。
【図3】第2実施形態例の動作を示すフローチャートである。
【図4】自動湯張り機能付風呂釜のシステム構成図である。
【符号の説明】
6 バイパス弁
7 バイパス通路
13 熱交湯温センサ
27 初期高温湯張り防止手段
28 目標熱交出側温度演算部
31 温度比較部
32 バイパス弁制御部
33 放熱温度補正部
35 放熱湯温演算部
36 放熱温度補正値算出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bath tub with an automatic hot water filling function in which hot water produced by a hot water supply heat exchanger is mixed with water in a bypass passage and dropped into a bathtub.
[0002]
[Prior art]
FIG. 4 shows a system configuration of a bath with an automatic hot water filling function developed by the present applicant. In the figure, a water supply passage 2 is connected to the inlet side of the hot water supply heat exchanger 1, and a water supply temperature sensor 3 for detecting the water supply temperature and a water supply flow rate (a water supply flow rate at the time of hot water filling) are detected in the water supply passage 2. A flow sensor 4 is interposed.
[0003]
A hot water supply passage 5 is connected to the outlet side of the hot water supply heat exchanger 1, and a bypass passage 7 with a bypass valve 6 such as an electromagnetic valve is provided between the hot water supply passage 5 and the water supply passage 2 and a normal bypass passage without a bypass valve. 8 are connected in communication. A hot water temperature sensor (hot water temperature) for detecting a water amount control valve 10 and a hot water temperature (hot water temperature at the time of hot water) is provided in the hot water supply passage 5 at a position downstream of the junction of the hot water supply passage 5 and the respective bypass passages 7 and 8. Sensor) 11, and a hot water filling pipe 12 is branched from a position downstream thereof.
[0004]
The hot water supply passage 5 further downstream than the branch connection portion of the hot water filling pipe 12 is led to a desired hot water supply place such as a kitchen via a hot water supply confirmation switch 28 via an external pipe. On the outlet side of the hot water supply heat exchanger 1, a hot water temperature sensor 13 for detecting the temperature of the hot water discharged from the hot water supply heat exchanger 1 is provided. The hot water supply heat exchanger 1 is heated by the combustion thermal power of the burner, but the mechanism of these combustion systems is well known and is not shown.
[0005]
The bathtub 14 is connected with a recirculation passage 20 through which the hot water from the bathtub is circulated to the bathtub 14 via the return pipe 15, the circulation pump 16, the reheating heat exchanger 17, and the outbound pipe 18. Is provided with a bath temperature sensor 21 for detecting the circulating hot water as the bath water temperature and a flowing water switch 22 for detecting the water flow of the circulating hot water. The recirculation circulation passage 20 and the hot water supply passage 5 are connected by a hot water filling pipe 12, and the route from the hot water supply passage 5 side to the bathtub 14 via the hot water filling pipe 12 and the reheating circulation passage 20 is a hot water filling passage. Forming. A pouring valve 26 such as an electromagnetic valve is interposed in the hot water filling pipe 12. In the figure, reference numeral 23 denotes a water level sensor composed of a pressure sensor or the like for detecting the bathtub water level by water pressure, and 19 denotes a hot water tap.
[0006]
The appliance is operated by a control device 24, and a remote control 25 that functions as a temperature setting device is connected to the control device 24. The remote control is connected to the operation button, a hot water supply temperature setting unit for setting a hot water supply temperature, and a hot water filling. An operation unit such as a hot water temperature setting unit for setting the temperature (bath temperature) and a display unit for the temperature and the like are provided.
[0007]
  Next, operations of the hot water supply operation and the hot water filling operation by the control device 24 will be briefly described. The hot water supply operation is started by opening the hot water tap 19. When the hot water tap 19 is opened and the flow rate is detected by the flow rate sensor 4, the burner (not shown) is burned, and the water passing through the hot water heat exchanger 1 is heated by the thermal power to make hot water. The water in the passage 8 is mixed and hot water having a set temperature is supplied to a desired hot water supply place. During this hot water supply, the hot water supply temperature sensor (hot water temperature sensor) 11 detects the hot water supply temperature, and the amount of combustion heat in the hot water supply heat exchanger 1 is controlled so that the hot water supply temperature becomes hot water at the set temperature. It is possible to supply hot water. The bypass valve 6 is for hot water supply.RefusalIn the subsequent use, etc., when the hot water after boiling immediately after the hot water supply combustion stops, the amount of water which is temporarily opened and mixed when it comes out at the start of the re-water discharge is increased, thereby preventing the high-temperature hot water at the start of the re-water discharge.
[0008]
The filling operation is started by turning on the filling operation switch of the remote controller 25. That is, in response to the ON signal of the hot water filling operation switch, the pouring valve 26 is opened, and hot water filled with hot water coming out of the hot water heat exchanger 1 and water passing through the bypass passage 8 is filled like the hot water supply operation. It drops from the pipe 12 into the bathtub 14 through the circulation passage 20. When the water level of the bathtub 14 reaches the set water level, or when the total amount of dropped water reaches the amount of water corresponding to the set water level, the pouring valve 26 is closed and the hot water filling operation is stopped. Even in this hot water filling operation, the combustion amount control of the hot water supply heat exchanger 1 is performed so that the hot water temperature detected by the hot water temperature sensor 11 becomes the hot water filling temperature (target hot water temperature). Hot water with a stable target hot water temperature is dropped into the bathtub 14 and hot water filling is performed.
[0009]
[Problems to be solved by the invention]
As described above, in the hot water filling steady operation, the amount of combustion heat of the hot water supply heat exchanger 1 is controlled and hot water at the hot water set temperature set by the remote controller 25 is drawn in the bathtub 14. When the hot water supply operation is interrupted and the hot water supply operation is resumed, the hot water refilling is resumed, and the retained heat amount of the hot water heat exchanger 1 stays in the hot water heat exchanger 1 immediately after the hot water supply combustion is stopped. The hot water in the hot water supply heat exchanger 1 is heated to a high temperature due to post-boiling. If hot water filling interrupted immediately after boiling thereafter is started, the hot water in the hot water supply heat exchanger 1 is dropped into the bathtub.
[0010]
Also, after the hot water supply operation is performed, when hot water filling operation is started after a lapse of a short time after the hot water supply combustion is stopped, hot water having a high boiling point immediately after the hot water supply operation is dropped into the bathtub 14. Furthermore, after a predetermined amount of hot water has been dropped into the bathtub 14, the hot water supply heat exchanger 1 is stopped for a predetermined short time, the hot water dropping is interrupted, and then the hot water is dropped again. Even when the dropping of the hot water is intermittently performed, the hot water in the hot water supply heat exchanger 1 rises after boiling every time the combustion of the hot water supply heat exchanger 1 is stopped. Hot water is dropped into the bathtub 14.
[0011]
Furthermore, even when the hot water filling to the bathtub 14 is stopped and the hot water filling set temperature is changed to a lower temperature, for example, when the hot water filling is resumed, the post-boiling change Hot water having a temperature considerably higher than the hot water setting temperature is dropped into the bathtub 14.
[0012]
Thus, when hot water filling to the bathtub 14 is performed again after the short time combustion stop of the hot water supply heat exchanger 1, hot water enters the bathtub 14, and when a person is taking a bath in the bathtub 14, When hot water is dropped into the bathtub 14 when an infant or the like is playing while the bathtub is empty, there is a risk that the hot water may be touched, which is dangerous.
[0013]
In addition, if the hot water filling to the bathtub 14 is intermittently performed, hot water having a high boiling point is dropped at every start of the intermittent hot water filling. There arises a problem that the hot water is filled. In this case, if the appliance has a function to keep the hot water temperature in the bathtub 14 at the hot water set temperature (bath set temperature), an extra water pouring operation will be performed, and it will take some time before the water reaches the bath set temperature. There is a problem that it takes a long time.
[0014]
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a bypass passage side that mixes with hot water coming out of a hot water supply heat exchanger when hot water from the hot water supply heat exchanger is dropped. An automatic hot water bath with an automatic hot water filling function that prevents the danger of hot water filling and increases the control accuracy of the hot water temperature by dropping the hot water that has been removed from boiling after being controlled by increasing the amount of water. Is to provide.
[0015]
Another object is to provide a bath with an automatic hot water filling function that compensates for the decrease due to heat dissipation of hot water on the path from the hot water supply heat exchanger side to the bathtub and further improves the control accuracy of the hot water filling temperature. There is.
[0016]
[Means for Solving the Problems]
  In order to achieve the above object, the present invention takes the following measures. That is, the first invention is provided with a bypass passage that connects a hot water supply passage on the hot water supply heat exchanger inlet side and a hot water supply passage on the hot water supply heat exchanger outlet side, and a bypass valve is provided in the bypass passage, and the hot water supply passage is provided. A hot water filling passage leading to the bathtub is branched from the downstream side of the merging position of the bypass passage, and a hot water filling valve is interposed in the hot water filling passage, and the hot water filling valve and the bypass valve are opened, The hot water supply heat exchanger is a type of hot water bath with an automatic hot water filling function that mixes the hot water coming out of the hot water heat exchanger through the water from the bypass passage and drops the hot water temperature set by the temperature setting device into the bathtub. On the outlet side, a hot water temperature sensor for detecting the temperature of the hot water discharged from the hot water supply heat exchanger is provided, and a water supply temperature sensor for detecting the temperature of the water supply is provided in the water supply passage, All Passing water flow rate of the hot water supply heat exchanger for water flowaData and the feed water temperature detected by the feed water temperature sensorT IN Target hot water temperature based on informationT st Target heat exchange side temperature on the outlet side of the hot water heat exchanger corresponding toT th Seeking this target heat exchange side temperatureT th Compared with the measured hot water temperature on the outlet side of the hot water supply heat exchanger detected by the heat exchanger temperature sensor, when the measured hot water temperature is higher than the target heat exchanger temperature, the measured hot water temperature decreases to the target heat exchanger temperature. In the meantime, there is provided an initial high temperature hot water prevention means for controlling the opening of the bypass valve in the direction of increasing the amount of water on the bypass passage sideThe initial high temperature hot water prevention means includes a data memory and a target heat exchange side temperature calculation unit, and the data memory has a target heat exchange side temperature T. th T th = (1 / a) {T st -T IN (1-a)}, and the target heat exchange side temperature calculation unit uses the calculation formula to calculate the target heat exchange side temperature T. th To have a configuration that requiresAs a means to solve the problem.
[0017]
Further, the second invention is the one having the configuration of the first invention, wherein the bypass is not always provided between the water supply passage on the hot water supply heat exchanger inlet side and the hot water supply passage on the outlet side of the hot water heat exchanger. A configuration in which a passage is provided separately serves as means for solving the problem.
[0018]
Furthermore, the third invention includes a bath temperature sensor that detects the bath water temperature, and that has the configuration of the first or second invention, and a hot water having a target hot water temperature set by a temperature setting device is provided. Comparing the bath water temperature detected by the bath temperature sensor after being dropped into the bathtub and the hot water temperature, the amount of decrease in hot water temperature is determined by heat dissipation on the path leading to the bathtub through the hot water passage. A structure having a heat radiation temperature correction unit that corrects the target heat exchange side temperature on the outlet side of the hot water supply heat exchanger to a higher level by the amount that compensates for the amount of decrease in the hot water temperature is used as means for solving the problem.
[0019]
In the invention with the above configuration, at the start of hot water filling, the hot water of the hot water heat exchanger and the bypass passage based on the information on the incoming water temperature and the data of the flow rate (flow rate ratio) of the water flow rate through the hot water heat exchanger with respect to the total water flow rate The target temperature on the outlet side of the hot water supply heat exchanger, that is, the target heat exchange side temperature for mixing with the water on the side to reach the target hot water filling temperature, is calculated by calculation, and this target heat exchange side temperature and hot water heat exchange The measured hot water temperature on the outlet side of the vessel is compared.
[0020]
When the hot water supply heat exchanger side is burning hot water until just before the start of hot water filling, hot water due to after boiling is detected as the measured hot water temperature at the start of hot water filling, but the measured hot water temperature is the target heat exchange. When the temperature is higher than the side temperature, the bypass valve opens in the direction of increasing the water volume, so that the hot water of the back-boiling is filled and the hot water temperature close to the target hot water temperature is dropped into the bathtub. Boiling hot water is no longer dropped into the tub, preventing the danger of hot hot water being dropped into the tub, and dropping the boiling water increases the bath water temperature above the target hot water temperature. It is also possible to prevent stretching, and the reliability of hot water temperature control is improved.
[0021]
Further, in the invention provided with the heat dissipation temperature correction unit, the amount of decrease in hot water radiated through the hot water passage from the hot water supply passage to the bathtub is calculated as the target hot water temperature and the detected temperature of the hot water bath. As a result of the target heat exchange side temperature being corrected to be higher by an amount that compensates for the amount of decrease in hot water temperature due to heat dissipation, the target hot water temperature is set when the hot water passage is turned off and the hot water supply passage is entered. Although it is higher than that, it will reach the target hot water temperature when it is radiated and enters the bathtub while passing through the hot water passage, so the accuracy of hot water temperature control is greatly improved. In addition, the reliability of hot water temperature control can be greatly improved.
[0022]
As described above, the present invention prevents the dropping of high-temperature hot water due to post-boiling from the hot water supply heat exchanger side, and improves the accuracy and reliability of the hot water temperature control. Problem solving is achieved.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. Note that the system configuration of the bath with automatic hot water filling function according to the present embodiment is the same as that of the system shown in FIG. FIG. 1 is a block diagram showing a main configuration of the first embodiment. What is characteristic in the present embodiment is that the control device 24 is provided with an initial high temperature hot water preventing means 27 for preventing high temperature hot water caused by the subsequent boiling of the hot water supply heat exchanger 1 from being dropped into the bathtub 14 side. The initial high temperature hot water filling prevention means 27 includes a target heat exchange side temperature calculation unit 28, a data memory 30, a temperature comparison unit 31, and a bypass valve control unit 32.
[0024]
In the data memory 30, the ratio of the water flow rate passing through the hot water supply heat exchanger 1 with respect to the total water supply flow rate, that is, the data of the water flow rate ratio a of the hot water heat exchanger 1 with respect to the total water supply flow rate, Using the data of the water flow rate ratio, the hot water on the outlet side of the hot water supply heat exchanger 1 and the bypass passage 7 based on the data of the target hot water filling temperature (hot water filling temperature set by the remote controller 25 (bath setting temperature)), The target heat exchange side temperature T on the outlet side of the hot water supply heat exchanger 1 for mixing with the water on the eight side to become hot water with the target hot water temperature.thT forthAn arithmetic expression is stored.
[0025]
The water flow rate ratio a on the hot water supply heat exchanger 1 side varies depending on the opening degree of the bypass valve 6. The bypass valve 6 may be a flow control type valve having a variable valve opening degree. However, in this embodiment, the bypass valve 6 is configured to only open and close the passage, and the water flow rate ratio given to the data memory 30 The value a is given as a value when the bypass valve 6 is closed. Of course, when the bypass valve 6 is constituted by a flow rate control type valve, the value of the water flow rate ratio a corresponding to each valve opening degree of the bypass valve 6 is given and stored.
[0026]
In addition, T given to the data memory 30thThe arithmetic expression is given by the following expression (1). This equation (1) replaces equation (2) with TthCan be obtained by converting into
[0027]
Tth= (1 / a) {Tst-TIN(1-a)} (1)
[0028]
Tst= ATth+ TIN(1-a) (2)
[0029]
  In the above formula, TstIs the target hot water temperature, TINIs the water temperature(Water supply temperature), A is a flow rate ratio of the hot water supply heat exchanger 1 to the total incoming water flow rate as described above.
[0030]
The target heat exchange side temperature calculation unit 28 supplies water supplied from the water supply temperature sensor 3 when hot water filling is started (the start of this hot water filling is detected by detecting an opening operation signal of the pouring valve 26). Temperature TINAnd the target hot water temperature T set by the remote controller 25stAnd the data of the water flow rate ratio a on the hot water supply heat exchanger 1 side stored in the data memory 30, and the target hot water temperature using the equation (1) stored in the data memory 30 Target heat exchange temperature T on the outlet side of the hot water supply heat exchanger 1 for supplying hot waterthIs obtained by calculation.
[0031]
The temperature comparison unit 31 includes a target heat exchange side temperature T calculated by the target heat exchange side temperature calculation unit 28.thAnd the detected hot water temperature T on the outlet side of the hot water supply heat exchanger 1 which is actually detected by the hot water temperature sensor 13.MAnd the comparison result is added to the bypass valve control unit 32. Based on the comparison result of the temperature comparison unit 31, the bypass valve control unit 32 measures the actual measured value T of the outlet side hot water temperature of the hot water supply heat exchanger 1.MIs the target heat exchange temperature TthIs larger (higher), it is determined that hot water such as the post-boiling of the hot water heat exchanger 1 is discharged and hot water is dropped into the bathtub 14, the bypass valve 6 is opened, and the hot water heat exchanger 1 is discharged. Increase the amount of water mixed with hot water. The bypass valve control unit 32 is configured to measure the measured hot water temperature T on the outlet side of the hot water supply heat exchanger 1.MIs the target heat exchange temperature TthIn the following cases, there is no fear of hot water filling, so the bypass valve 6 is kept closed.
[0032]
According to this embodiment example, the hot water supply operation is interrupted in the middle of the hot water filling, the hot water filling operation is resumed immediately after that, the dropping of the hot water filling is performed intermittently, or a short time after the hot water supply operation is stopped. When hot water is heated from the hot water supply heat exchanger 1 at the start of hot water filling, such as when hot water filling is started, the hot hot water boiling from the hot water heat exchanger 1 The temperature is actually measured by the hot water temperature sensor 13, the bypass valve 6 is opened, the amount of water to be mixed is controlled to increase, the post-boiling is eliminated, and the water is dropped into the bathtub 14, so there is a danger of hot water filling Can be prevented.
[0033]
Thus, after boiling is eliminated, the measured hot water temperature detected by the hot water temperature sensor 13 is equal to the target heat exchange side temperature T.thWhen the following occurs, the bypass valve 6 is not closed and excess water does not mix with the hot water discharged from the hot water supply heat exchanger 1. And after the hot water temperature of the post-boiling is eliminated, the water in the bypass passage is always mixed with the hot water coming out of the hot water supply heat exchanger 1, and the hot water temperature detected by the hot water temperature sensor 11 becomes the target hot water temperature. Since the amount of combustion heat of the burner of the hot water supply heat exchanger 1 is controlled so that hot water having a stable target hot water temperature can be dropped into the bathtub 14, hot water having the target hot water temperature can be accurately applied to the bathtub 14. be able to.
[0034]
In addition, when the hot water filling target temperature is changed to a lower temperature during hot water filling, immediately after the change of the target hot water filling temperature, the hot water before the change comes out from the hot water supply heat exchanger 1 side. In this case as well, the actual hot water temperature detected by the hot water temperature sensor 13 is the target heat exchange side temperature T after the change of the target hot water temperature.thThe measured hot water temperature is the target heat exchange side temperature T.thSince the bypass valve 6 can be opened until the temperature drops, the hot water can be prevented from dropping into the tub 14 immediately after the target hot water temperature is changed, and the hot water temperature is suppressed even when the hot water temperature is changed. The effect of being able to be obtained.
[0035]
Thus, in the present embodiment, even when intermittent hot water filling is performed on the bathtub 14, as described above, hot water having a target hot water temperature can be dropped, so There is no need to perform a water injection operation to fill the tub with a higher temperature, and the time for applying hot water at a set temperature to the bathtub 14 can be shortened.
[0036]
FIG. 2 shows a block configuration of a second embodiment of the present invention. What is characteristic in this embodiment is that more accurate control of the hot water temperature can be achieved by compensating for the drop due to the heat dissipation of the hot water temperature on the hot water passage from the hot water supply passage 5 to the bathtub 14. The configuration to be performed is added to the configuration of the first embodiment.
[0037]
In FIG. 2, the characteristic configuration of the second embodiment is that a heat radiation temperature correction unit 33 is added to the components of the first embodiment. Note that the description of the same components as those in the first embodiment is omitted. The heat radiation temperature correction unit 33 includes a heat radiation hot water temperature calculation unit 35 and a heat radiation temperature correction value calculation unit 36. When the hot water filling starts when the bathtub 14 is empty, the radiant hot water temperature calculation unit 35 recirculates the hot water at the target hot water temperature in the recirculation passage 20 in the same manner as is performed in the normal hot water filling operation. When the water level is dropped to the upper water level, the circulating water pump 16 is driven to check the temperature of the bath water when it is circulated through the circulation passage 20 and the bath temperature sensor 21 adjusts the bath water temperature. Detect and take in the bath water temperature.
[0038]
The radiant hot water temperature calculation unit 35 compares the bath water temperature detected by the bath temperature sensor 21 with the target hot water temperature set by the remote controller 25 or the drop temperature to the bathtub 14 detected by the hot water temperature sensor 11. The temperature drop due to heat dissipation from the difference between the drop temperature and the bath water temperature actually dropped into the bathtub 14 until the hot water reaches the bathtub 14 through the hot water pipe 12 and the recirculation circulation passage 20 The amount is obtained, and the calculation result is added to the heat radiation temperature correction value calculation unit 36.
[0039]
The heat radiation temperature correction value calculation unit 36 compensates for a temperature drop due to heat radiation on the hot water passage, which is applied from the heat radiation hot water temperature calculation unit 35, and a target heat exchange side temperature TthThe correction value is calculated. Specifically, the target hot water temperature is added by the temperature drop due to heat dissipation, and the target corresponding to the target hot water temperature obtained by adding the temperature drop using the above equation (1) from the added target hot water temperature. Heat exchange temperature Tth′ And the correction value β is set to β = Tth-TthAnd the correction value β is added to the target heat exchange side temperature calculation unit 28. The target heat exchanging side temperature calculation unit 28 is configured to output the target heat exchanging side temperature T.thThe target heat exchange temperature TthT with correction β added tothChange correction to + β.
[0040]
As described above, the heat radiation temperature correction value calculation unit 33 performs the target heat exchange side temperature T corresponding to the target hot water temperature every time hot water is filled.thThe correction value β is updated one after another according to the amount of heat radiation temperature drop in the hot water passage.
[0041]
In the second embodiment, the target heat exchange side temperature calculation unit 28 calculates the target heat exchange side temperature T obtained by the above equation (1).thThe value obtained by adding the correction value β added from the heat radiation temperature correction value calculation unit 36 is set as the final value of the target heat exchange side temperature, and the temperature comparison unit 31 and the bypass valve control unit as in the case of the first embodiment. Perform 32 actions.
[0042]
As a result, in the second embodiment, since the target heat exchange side temperature is corrected and set higher by the temperature drop due to the heat radiation of the hot water passage, the hot water of the hot water passes through the hot water passage and the bathtub 14 When it reaches, the hot water of the target hot water temperature becomes hot water and enters the bathtub 14, so that the control accuracy of the hot water temperature can be remarkably improved.
[0043]
The operation of the heat radiation temperature correction unit 33 of this embodiment will be specifically described as follows. For example, the water flow rate ratio a on the hot water supply heat exchanger 1 side is 0.25, the incoming water temperature TIN20 ° C., the target hot water temperature, that is, the target hot water temperature T detected by the hot water temperature sensor 11stWhen the temperature is 40 ° C., the target heat exchange side temperature T obtained by the above equation (1)thIs 46.7 ° C. When hot water was dropped into the bathtub at this target hot water temperature and the hot water temperature of the bathtub was detected, if it was set to 39 ° C., there was a drop in hot water temperature of 1 ° C. due to heat radiation while passing through the hot water passage.
[0044]
If it is assumed that there is no drop in the hot water temperature on the hot water passage, the fact that the bath water temperature is detected as 39 ° C means that the target hot water temperature has been dropped at 39 ° C. Virtual target heat exchange temperature T corresponding to the target hot water temperature 39 ° Cth′ Is obtained as 45.3 ° C. according to equation (1). That is, β = Tth-Tth′ = 46.7−45.3 = 1.4 ° C. is obtained. Therefore, the heat dissipation side of the hot water passage is estimated to be higher by 1.4 ° C, and the target heat exchange side temperature is corrected to 46.7 + 1.4 = 48.1 ° C.
[0045]
Thus, the target heat exchange side temperature TthWhen 48.1 ° C is corrected from 46.7 ° C to 48.1 ° C, when hot water of 48.1 ° C is discharged from the outlet side of the hot water supply heat exchanger, the temperature of the hot water created by mixing the hot water and the water always passing through the bypass passage 8 is (2 ), Tst= 48.1 x 0.75 + 20 x 0.25 = 41.1 ° C. This temperature is higher than the target hot water temperature set by the remote controller 25 of 40 ° C. However, if the hot water temperature drop on the hot water passage is 1 ° C, the hot water temperature T dropped into the bathtubFIs TF= 41.1-1 = 40.1 ° C., the hot water temperature almost matches the target hot water temperature 40 ° C. set by the remote controller, and it is proved that the hot water can be accurately filled with the target hot water temperature.
[0046]
Next, the hot water filling operation of the second embodiment will be described based on the flowchart of FIG. First, when the hot water filling switch of the remote controller 25 is turned on, the start state is set, and the correction value β is set to 0 in the first operation after the installation of the bath tub. In step 101, the pouring valve 26 is opened and filling is started. In step 102, the target hot water temperature T set by the remote controller 25 is set.thThe correction value data added to the temperature and the measured hot water temperature T on the outlet side of the hot water supply heat exchanger 1MIf the measured hot water temperature is higher than the correction value of the target heat exchange side temperature (in this case, the correction value β is 0), it is determined that post-boiling hot water is generated. The amount of water to be mixed is increased by opening the bypass valve 6 to eliminate the influence of post-boiling.
[0047]
In step 102, the corrected target heat exchanging side temperature is the measured hot water temperature T.MIn the above case, it is determined that no post-boiling has occurred, and the hot water in the hot water heat exchanger 1 and the water in the bypass passage 8 are always mixed and the combustion control of the hot water heat exchanger 1 is performed without opening the bypass valve 6. Drop the hot water at the target hot water temperature into the bathtub 14. In step 104, it is determined whether or not the amount of water in which the circulation port of the recirculation circulation passage 15 is submerged, that is, the amount of water corresponding to the water level above the circulation opening of the recirculation circulation passage 20 has been dropped. When the amount of water is dropped, in step 105, the pouring of hot water is stopped.
[0048]
Next, at step 106, the circulation pump 16 is driven to recirculate the bath water and circulate it through the circulation passage 20, and the bath temperature sensor 21 detects the temperature of the bath water. Next, in step 108, the temperature detected by the hot water temperature sensor 11 during hot water filling (or the target hot water temperature set by the remote controller 25) is compared with the actually measured temperature of the hot water in the bathtub, and the bathtub is passed through the hot water passage. The amount of decrease in hot water temperature due to heat radiation until the temperature reaches is calculated, and a correction value β for compensating the amount of decrease in hot water temperature is calculated based on the value of the decrease in hot water temperature.
[0049]
In step 109, the remaining amount of hot water up to the set water level is dropped. At the start of dropping, in step 110, the measured temperature T on the outlet side of the hot water heat exchanger 1 side.MIs compared with the target heat exchange side temperature corrected with the correction value β obtained in step 109, and the measured hot water temperature TMIs higher than the corrected target heat exchange side temperature, the bypass valve 6 is opened to fill the high temperature in order to eliminate the influence. On the other hand, the measured hot water temperature T on the outlet side of the hot water supply heat exchanger 1MWhen the temperature is equal to or lower than the corrected target heat exchange side temperature, hot water filling is performed with the bypass valve 6 closed. Then, when the amount of hot water up to the set water level is dropped in step 112, pouring of hot water filling is stopped. In step 114, the boiling water temperature is adjusted and the filling operation is completed.
[0050]
In this embodiment, when the hot water filling is completed, the bath water temperature substantially matches the hot water temperature of the target hot water bath, so that adjustment of the boiling hot water temperature is almost unnecessary. When water is put into the bathtub 14 by a person who performs, it is necessary to adjust the boiling water temperature.
[0051]
As in the first embodiment, the second embodiment can prevent the danger of hot pouring of hot water due to hot water boiling after the hot water supply heat exchanger 1 side, and also by heat radiation on the hot water passage. Since the target heat exchange side temperature is corrected in the direction to compensate for the decrease in hot water temperature, the hot water temperature to be dropped at the start of hot water filling can be lowered by expecting the hot water temperature drop on the hot water filling passage. Therefore, the accuracy of hot water temperature control can be greatly improved.
[0052]
The present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the above-described embodiment, the description has been given with respect to a bathtub having a reheating function, but the present invention is also applicable to a bathroom having no reheating function. In this case, a system configuration in which the reheating heat exchanger 17 in FIG. 4 is omitted or the recirculation circulation path 20 is omitted, and the hot water pipe 12 is extended and directly connected to the bathtub 14 is obtained. When the recirculation circulation path 20 is omitted, the bath temperature sensor 21 is provided in the bathtub 14.
[0053]
Further, in the second embodiment, the temperature reduction due to heat radiation in the hot water filling passage is eliminated by correcting the target heat exchange side temperature, but the target hot water temperature is corrected. Also good. In this way, by correcting the target hot water temperature to be higher in anticipation of the temperature drop in the hot water passage, it is set with the remote controller 25 not only during the initial hot water pouring but also in the subsequent steady hot water operation. Because the target hot water temperature is corrected to be higher in anticipation of the temperature drop due to heat dissipation, the control accuracy of the hot water temperature to the bathtub 14 is improved, and the hot water at the target hot water temperature can be accurately filled. There is an epoch-making effect.
[0054]
Furthermore, in the above embodiment, the bypass passage 8 is always provided, but the constant bypass passage 8 may be omitted. In this embodiment, only one bypass passage 7 having the bypass valve 6 is provided, but two or more bypass passages 7 may be provided.
[0055]
【The invention's effect】
The present invention compares the target heat exchange side temperature on the outlet side of the hot water supply heat exchanger corresponding to the target hot water filling temperature and the measured hot water temperature on the outlet side of the hot water heat exchanger, and if the measured hot water temperature is higher, At the start of hot water filling, the bypass valve is opened to control the amount of water mixing, so even if hot water such as post-boiling comes out of the hot water supply heat exchanger, this hot water is eliminated. Since it can be dropped to the bathtub side, it is possible to reliably prevent the danger of hot water filling of the post-boiling hot water. Also, even if the hot water filling target temperature is changed to a lower setting during hot water filling, the actual hot water temperature at the outlet side of the hot water supply heat exchanger is higher than the target heat exchange side temperature corresponding to the changed hot water filling temperature. As a result, the bypass valve is immediately controlled in the opening direction to increase the amount of water mixing, so that the hot water can be dropped close to the hot water at the target hot water temperature after the change.
[0056]
As described above, in the present invention, when post-boiling hot water is dropped, or when hot water higher than the hot water temperature after change is dropped due to a change in the target hot water temperature, the amount of water to be mixed Is controlled so that hot water higher than the target hot water temperature is not dropped, so the accuracy of hot water hot water temperature control is improved, and the hot water is dropped into the bathtub to fill it. It is also freed from a wasteful operation of performing, and it is possible to achieve the efficiency of the hot water filling operation.
[0057]
Furthermore, in the invention of the configuration that corrects the target heat exchange side temperature in consideration of the temperature drop due to heat dissipation in the hot water passage, in anticipation of the temperature decrease due to heat dissipation in the hot water passage, only that much Higher hot water will be supplied to the hot water passage, so when it reaches the bathtub, it becomes exactly hot water at the target hot water temperature and enters the bathtub. The effect that hot water having a hot water temperature can be accurately stretched is obtained.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram of a first embodiment of the present invention.
FIG. 2 is a block configuration diagram of a second embodiment of the present invention.
FIG. 3 is a flowchart showing the operation of the second embodiment.
FIG. 4 is a system configuration diagram of a bath with an automatic hot water filling function.
[Explanation of symbols]
6 Bypass valve
7 Bypass passage
13 Hot water temperature sensor
27 Means to prevent initial hot water filling
28 Target heat exchanger temperature calculator
31 Temperature comparison section
32 Bypass valve controller
33 Heat dissipation temperature correction section
35 Radiant hot water temperature calculator
36 Radiation temperature correction value calculator

Claims (3)

給湯熱交換器入側の給水通路と給湯熱交換器出側の給湯通路を連通するバイパス通路が設けられ、このバイパス通路にバイパス弁が介設され、前記給湯通路とバイパス通路の合流位置の下流側からは浴槽に通じる湯張り通路が分岐形成され、この湯張り通路には注湯弁が介設され、この注湯弁と前記バイパス弁を開け、湯張り通路を通して給湯熱交換器から出る湯とバイパス通路から出る水を混合して温度設定器で設定される湯張り温度の湯を浴槽へ落とし込むタイプの自動湯張り機能付風呂釜において、給湯熱交換器の出側には該給湯熱交換器から出る湯温を検出する熱交湯温センサが設けられるとともに、給水通路には給水温を検出する給水温度センサが設けられており、湯張り開始時に予め与えられている全給水流量に対する給湯熱交換器の通水流量比のデータと前記給水温度センサによって検出される給水温度 IN の情報に基づき目標湯張り温度 st に対応する給湯熱交換器出側の目標熱交出側温度 th を求めてこの目標熱交出側温度 th と前記熱交湯温センサによって検出される給湯熱交換器出側の実測湯温と比較し目標熱交出側温度よりも実測湯温が高いときには実測湯温が目標熱交出側温度まで低下する間バイパス通路側の水量を増加方向にバイパス弁を開制御する初期高温湯張り防止手段が設けられており、前記初期高温湯張り防止手段はデータメモリと目標熱交出側温度演算部とを有し、前記データメモリには目標熱交出側温度T th を求める演算式がT th =(1/a){T st −T IN (1−a)}として与えられており、前記目標熱交出側温度演算部は前記演算式を用いて目標熱交出側温度T th を求める構成とした自動湯張り機能付風呂釜。A bypass passage is provided to connect a hot water supply passage on the inlet side of the hot water supply heat exchanger and a hot water supply passage on the outlet side of the hot water supply heat exchanger, and a bypass valve is provided in the bypass passage, downstream of the joining position of the hot water supply passage and the bypass passage. A hot water filling passage leading to the bathtub is branched from the side, and a pouring valve is interposed in the hot water filling passage, and the hot water and the bypass valve are opened, and the hot water discharged from the hot water heat exchanger through the hot water filling passage is opened. In a bath tank with an automatic hot water filling function that mixes the water coming out of the bypass passage and the water set by the temperature setting device and drops the hot water temperature set by the temperature setting device into the bathtub, the hot water supply heat exchange is on the outlet side of the hot water heat exchanger A hot water temperature sensor that detects the temperature of the hot water coming out of the water heater is provided, and a water temperature sensor that detects the temperature of the water supply is provided in the water supply passage. Heat exchange Vessels of passing water flow rate ratio a data and feedwater temperature T IN target heat交出side temperature T th of the hot water supply heat exchanger outlet side corresponding to the target hot water filling temperature T st based on information of said detected by water temperature sensor when the target heat交出side temperature T th and the heat交湯than compared to target heat交出side temperature measured water temperature of the hot water supply heat exchanger outlet side and which is detected by the temperature sensor measured water temperature is higher asked for Found water temperature has an initial hot water filling preventing means for opening control of the bypass valve in the increasing direction of the water between the bypass passage side drop to target heat交出side temperature is provided, the initial hot water filling means for preventing data A memory and a target heat exchange side temperature calculation unit, and the data memory has an equation for obtaining the target heat exchange side temperature T th as follows: T th = (1 / a) {T st −T IN (1− a)}, the target heat exchange The side temperature calculation unit is a bath tank with an automatic hot water filling function configured to obtain the target heat exchange side temperature T th by using the calculation formula . 給湯熱交換器入側の給水通路と給湯熱交換器出側の給湯通路間にはバイパス弁を持たない常時バイパス通路が別途設けられている請求項1記載の自動湯張り機能付風呂釜。  The bath tank with an automatic hot water filling function according to claim 1, wherein a separate bypass passage having no bypass valve is separately provided between a hot water supply passage on the inlet side of the hot water supply heat exchanger and a hot water supply passage on the outlet side of the hot water supply heat exchanger. 浴槽湯温を検出する風呂温度センサを備え、温度設定器で設定される目標湯張り温度の湯が浴槽に落とし込まれた後に前記風呂温度センサで検出される浴槽湯温と前記湯張り温度とを比較して湯張り通路を通って浴槽に至る経路上での放熱により湯温低下量を求め、この湯温低下量を補償する分だけ給湯熱交換器出側の目標熱交出側温度を高めに補正する放熱温度補正部を有する請求項1又は請求項2記載の自動湯張り機能付風呂釜。  A bath temperature sensor for detecting the bath water temperature is provided, and the bath water temperature detected by the bath temperature sensor after the hot water at the target bath temperature set by the temperature setting device is dropped into the bathtub, and the bath temperature. The amount of decrease in hot water temperature is obtained by heat radiation on the path leading to the bathtub through the hot water passage, and the target heat exchange side temperature on the outlet side of the hot water heat exchanger is compensated by the amount to compensate for this amount of decrease in hot water temperature. The bath tub with an automatic hot water filling function according to claim 1 or 2, further comprising a heat radiation temperature correction section for correcting the temperature higher.
JP21196296A 1996-07-23 1996-07-23 Bath pot with automatic hot water filling function Expired - Fee Related JP3776984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21196296A JP3776984B2 (en) 1996-07-23 1996-07-23 Bath pot with automatic hot water filling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21196296A JP3776984B2 (en) 1996-07-23 1996-07-23 Bath pot with automatic hot water filling function

Publications (2)

Publication Number Publication Date
JPH1038368A JPH1038368A (en) 1998-02-13
JP3776984B2 true JP3776984B2 (en) 2006-05-24

Family

ID=16614595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21196296A Expired - Fee Related JP3776984B2 (en) 1996-07-23 1996-07-23 Bath pot with automatic hot water filling function

Country Status (1)

Country Link
JP (1) JP3776984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942282B2 (en) * 2012-05-31 2016-06-29 リンナイ株式会社 Water heater
JP6154286B2 (en) * 2013-10-29 2017-06-28 株式会社コロナ Hot water bath equipment
JP7195749B2 (en) * 2018-03-29 2022-12-26 株式会社ガスター bath system

Also Published As

Publication number Publication date
JPH1038368A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US12031729B2 (en) Apparatus and method for supplying hot water
JP3776984B2 (en) Bath pot with automatic hot water filling function
JP3970209B2 (en) Hot water heater / heat source device and control method thereof
JPH08166163A (en) Bath boiler with hot water heater
JP2021032487A (en) Hot water supply device
JP3776975B2 (en) Combustion equipment
JP3628871B2 (en) Water heater
JP3859830B2 (en) Water heater with hot water filling function
JP3952485B2 (en) Bath water heater
JP3091808B2 (en) Bath kettle with water heater
JP3117593B2 (en) Bath kettle with water heater
JP2867758B2 (en) Operation control method of bath kettle with water heater
JP2920619B2 (en) Hot water controller
JP4254046B2 (en) Bath pot device with hot water supply function
JP2914857B2 (en) Hot water supply temperature control device for fully automatic bath equipment
JP2000274810A (en) Fully automatic bath water heater
JP2946862B2 (en) Operation control method of bath kettle with water heater
JP2005345075A (en) Hot water storage type water heater
JP3691534B2 (en) Hot water filling pouring control method for bath equipment
JP3859822B2 (en) 1 can 2 water channel type water heater
JP3844584B2 (en) Bath equipment with hot water filling function
JPH1096554A (en) Hot water supply heater with higher temperature hot water adding function
JPH09126546A (en) One-boiler/two-path type hot water supply system
JPH06159798A (en) Two-water-line type hot water supply bath boiler
JPH09303872A (en) Combustion device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees