[go: up one dir, main page]

JP3718313B2 - Porous plastic filter - Google Patents

Porous plastic filter Download PDF

Info

Publication number
JP3718313B2
JP3718313B2 JP03411197A JP3411197A JP3718313B2 JP 3718313 B2 JP3718313 B2 JP 3718313B2 JP 03411197 A JP03411197 A JP 03411197A JP 3411197 A JP3411197 A JP 3411197A JP 3718313 B2 JP3718313 B2 JP 3718313B2
Authority
JP
Japan
Prior art keywords
filter
porous plastic
average particle
molecular weight
plastic filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03411197A
Other languages
Japanese (ja)
Other versions
JPH10230113A (en
Inventor
洋介 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP03411197A priority Critical patent/JP3718313B2/en
Publication of JPH10230113A publication Critical patent/JPH10230113A/en
Application granted granted Critical
Publication of JP3718313B2 publication Critical patent/JP3718313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体や気体などの流体中に含まれる微粒子を分離濾過するための多孔質プラスチックフィルタに関する。
【0002】
【従来の技術】
従来、液体や気体などの流体中に含まれる塵芥等の微粒子を分離濾過するための多孔質プラスチックフィルタは多数知られている。中でも、液体の流入側と流出側とで孔径の異なるプラスチックフィルタ、例えば流入側あるいは流出側のどちらか一方を、平均粒径が比較的大きなプラスチック材料の粒子から形成して大きな孔径とし、他方を平均粒径が比較的小さなプラスチック材料の粒子から形成して小さな孔径とした多孔質複層フィルタは、濾過精度の向上、微粒子の高捕集効率および低圧力損失の点から望ましく、このようなものとして、平均粒径が比較的大きな熱可塑性プラスチック材料、例えばポリエチレン、ポリプロピレン、ポリサルホン、ポリエーテルスルホン、ポリフェニレンサルファイドなどを焼結成形した多孔質プラスチック基材の表面に、そのプラスチック材料よりも平均粒径が比較的小さなポリテトラフロオロエチレン(以下「PTFE」と記す)を、接着剤と共に、直接的に被着することで、多孔質プラスチックフィルタ基材の外表面とその内表面とで、多孔層の孔径に差異を持たせた多孔質フィルタが提案されている。
【0003】
また、出願人は、多孔質プラスチックフィルタを複数の熱可塑性プラスチック材料で構成し、その中の少なくとも1種類をふっ素系樹脂材料としたもの(特願平7−214808号)や多孔質プラスチックフィルタを比較的平均粒径が小さな熱可塑性プラスチック材料単体で構成したもの(特願平7−241862号)を提案している。
【0004】
【発明が解決しようとする課題】
しかしながら、前者の多孔質複層フィルタでは、使用するΡTFEが粘着特牲に劣るため、上記多孔質プラスチック基材とPTFEとの界面での接着性が不十分となり、濾過や逆洗の際に多孔質プラスチック基材からPTFE粒子が脱落し、結果として孔径に差異がなくなったり、あるいは部分的に差異を生じ、フィルタの捕集性能の低下を招いたり、あるいは脱落したPTFE粒子が捕集した微粒子中に混入するなどの問題があった。
【0005】
後者の内、複数の熱可塑性プラスチック材料で構成しその中の少なくとも1種類をふっ素系樹脂材料とした多孔質フィルタは、粉体払い落し性能が優れており、また比較的平均粒径が小さな熱可塑性プラスチック材料単体で構成した多孔質フィルタは、粒子脱落性、微粒子捕集性、粉体払い落し性、圧力損失などの特性がバランス良く保有しており、各々多孔質フィルタとして優れているが、圧力損失のコントロールに今一つ難しい面がある。
【0006】
【課題を解決するための手段】
本発明は、上記の問題点を解消できる多孔質プラスチックフィルタであって、その要旨とするところは、
熱可塑性プラスチック材料の粒子を焼結成形して得られる多孔質プラスチックフィルタであって、多孔質プラスチックフィルタは、少なくとも平均粒径が5μm以上90μm以下の範囲と平均粒径が90μmを超え1,000μm以下の範囲の複数の熱可塑性プラスチック材料で構成してあると共に、そのフィルタの少なくとも一つの表面の水に対する接触角が60度以上である多孔質プラスチックフィルタにおいて、熱可塑性プラスチック材料が、超高分子量ポリエチレンである多孔質プラスチックフィルタにある。
【0007】
【発明の実施の形態】
本発明の多孔質プラスチックフィルタは、その中になくとも平均粒径が5μm以上90μm以下の範囲と、平均粒径が90μmを越え1,000μm以下の範囲の超高分子量ポリエチレンで構成してあると共に、表面の水に対する接触角が60度以上である。
【0008】
ここで、水に対する接触角が、60度未満の表面を有するプラスチックフィルタでは、表面の自由エネルギーが大きいため、逆洗を行ってもフィルタ表面に付着した微粒子の払い落としが十分に行われず、目詰まりなどが発生するため、実用上問題がある。
【0009】
本発明の多孔質プラスチックフィルタは、超高分子量ポリエチレンの内、平均粒径が5μm以上90μm以下の範囲のものと、平均粒径が90μmを越え1,000μm以下の範囲のものとが少なくとも混合して構成してある。
【0010】
両者の混合割合は、平均粒径が5μm以上90μm以下の範囲のものが、全体に対し20重量%でよく、好ましくは40重量%以上が好適である。
【0011】
特に超高分子量ポリエチレンのメルトフローレイト(以下「MFR」と略す)は他の熱可塑性プラスチックに比べ低く、具体的には0.01以下で、これは均質な孔径を有する多孔質プラスチックフィルタを得る上では好適である。
【0012】
なお、多孔質プラスチックフィルタに帯電防止性能を付与させるために、多孔質プラスチックフィルタに、例えば、カーボンブラックやカーボンファイバー、金属粉、表面に金属などが塗布してあるチタン酸カリウムなどの導電剤を、目的にあわせて1〜5重量%の範囲、通常は1〜2%の範囲の量で添加してあってもよい。
【0013】
本発明の多孔質プラスチックフィルタを成形するには、好ましくは平均粒径が30μm以上50μm以下の粘度平均分子量が200万以上の超高分子量ポリエチレンに、平均粒径120μm以上180μm以下の粘度平均分子量が400万以上の超高分子量ポリエチレンとを混合し、焼結成形して得られる。
【0014】
特に、MFRの小さなもの、具体的にはMFRが0.01以下の超高分子量ポリエチレンを使用する方が均一な孔径を有する多孔質プラスチックフィルタを得る上では好適であり、例えば平均粒径が100μm以上200μm以下で、かつ嵩密度が0.35〜0.45g/cmの、ぶどう房形状の超高分子量ポリエチレンが、機械的強度などにより好適である。
【0015】
本発明の多孔質プラスチックフィルタの最終的な形状は、断面が円形、楕円形、長方形、多角形、星形などの中空筒状体、板状体、棒状体、有底筒状体あるいは皿状体など、その用途によって適宜選択される。
【0016】
また、その長さは、長形・短形のいずれであってもよく、後記する分離装置に合わせて成形される。
【0017】
このフィルタの形状として、中でも、中空筒状体の壁の少なくともその一部にひだ部を形成したフィルタは、垂直あるいは水平に対する自立性を有すと共に、濾過面積の増大を図ることができるので好適である。
【0018】
そのひだ部は、その筒状体の外周端に位置する外側屈曲部と、筒状体の内周側屈曲部とを交互にあるいは適宜間隔を置いて設けることにより形成される。
【0019】
そのひだ部の形成は、その筒状体の外側屈曲部の外形、内側屈曲部の内径、厚み、ひだの数などによって決まるが、外形が20〜150mm、内径が12〜120mm、厚みが1〜5mm、ひだの数が5〜25個好ましくは6〜12個の中より、フィルタの機械的強度、要求される容積当たりの濾過面積、分離装置の設置面積などを考慮して選択される。
【0020】
このひだ部は、筒状体の全周にまたはほぼ半周にわたり形成するのが好ましく、ひだ部を全周に形成したものは分離装置内に垂直に配設した場合にフィルタに方向性が生ずることが無く、またひだ部をほぼ半周にわたり形成したものは分離装置内にひだ部を下側にして水平に配設した場合に除去すべき微粒子の滞積が無く好適である。
【0021】
本発明の多孔質プラスチックフィルタは、超高分子量ポリエチレンの所定の平均粒径を有する粒子を、静的成形法や動的成形法によって焼結成形することで行われる。
【0022】
前者の静的成形法は、いわゆる型内焼結法であって、例えば筒状などの内表面形状を有する外型とその内部に挿入した同様の外表面形状を有する内とよりなる成形金型を用い、外型内表面と内型外表面の間隙部に形成されるキャビテイ内に熱可塑性プラスチック材料の粒子を充填した後、成形金型共々これを加熱する方法である。
【0023】
後者の動的成形法は、(1) 先端部に成形型を有する温度調整が可能なシリンダ内に往復運動をするピストン(プランジャーともいう)を内蔵したラム式押出機を用いて行うラム押出法、(2) 先端部に成形型を有する温度調整が可能なシリンダ内にスクリュウを内蔵した射出成形機を用いて行う射出成形法、(3) 先端部に成形型を有する温度調整が可能なシリンダ内にスクリュウを内蔵した押出成形機を用いて行う押出成形法、(4)雌型とその内径部に挿人される雄型よりなる成形金型を用い、雌型の内部に形成されるキャビテイ内に原料を充填した後、成形金型を加熱する圧縮成形機を用いて行う圧縮成形法、(5) 先端部に上下方一対の移動式ベルトあるいは下方の移動式ベルトで構成される成形型を有する温度調整が可能なシリンダでこの成形型内に原料を押出しする連続式プレス機を用いて行う連続式プレス法などである。
【0024】
これら静的成形法や動的成形法などの方法から、本発明の多孔質プラスチックフィルタの最終的形状などの要求品質に応じて、適宜選択することができる。
【0025】
なお、導電性の付与は、多孔質プラスチックフィルタの成形時に、前記した導電剤、例えばカーボンブラックやカーボンファイバー、金属粉等を超高分子量ポリエチレン原料中に混入させる方法や、成形後の多孔質プラスチックフィルタの表面に、界面活性剤等を塗布する方法などであるが、少なくとも多孔質プラスチックフィルタ表面に導電性を付与できるものであれば、特に限定されない。
【0026】
上記のようにして得られる多孔質プラスチックフィルタは、通常、複数本を組合せてフィルタユニットとし、これを所定の形状の分離装置用容器内に垂直または水平に懸架などの手段により取り付けて分離装置として使用される。
【0027】
フィルタユニットは、多孔質プラスチックフィルタを略板状の支持体に取付けたものであって、プラスチックフィルタの一方の端部を孔の開いた支持体に嵌着などの手段により固定し、他方の端部の開口部を蓋体で閉塞したものである。
【0028】
この支持体および蓋体は、金属や各種の合成樹脂例えば硬質のポリオレフィン樹脂、ポリ塩化ビニルなどの熱可塑性樹脂や反応型の熱硬化性樹脂などが使用されるが、反応型の液状ポリウレタン樹脂が成形加工性や寸法安定性から好ましい。
【0029】
そして、このフィルタユニットに導電性を付与する必要がある場合には、多孔質プラスチックフィルタを焼結成形する際に前記した導電剤を添加してフィルタに導電性を付与させると共に、支持体および蓋体にも同様にカーボンブラックなどの導電剤を添加して導電性を付与させた材料を使用すればよいなお、反応型の液状ポリウレタン樹脂を使用する場合主剤のポリオールおよび硬化剤に平均糸長0.1〜1.0mmの炭素繊維を3〜10重量%添加したものが、残留歪みが小さく高い寸法精度と帯電防止性能を兼ね備えたものとなり、好適である。
【0030】
【実施例】
以下、本発明を実施例により詳細に説明する。
【0031】
[実施例1〜5]以下の内容にて製造して得られた、多孔質プラスチックフィルタの性能は、下記に示す方法により評価または測定し、その結果を表1に表示した。
【0032】
成形用金型として、円筒状の外表面を有する内型1個と、円筒状の内表面を有する外型1個を準備する。その内型の外径は、外型の内径より2mm小さいものとする。先ず、内型を外型内に挿入し、外型と内型との間に均一に2mmの間隙が形成されるように設置する。次いで、その間隙内に、平均粒径が40μmで、分子量200万の超高分子量ポリエチレン(MFR=0.01以下)と、平均粒径が150μmで、分子量400万の超高分子量ポリエチレン(MFR=0.01以下)とを、表1に表示した割合(重量%)で混合した組成物を、充填し、これを160〜220℃の温度の加熱炉内で30〜90分間加熱して焼結成形して、肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0033】
「粒子脱落の有無」逆洗による払い落しの際に、フィルタ粒子の脱落の有無を目視により評価した。すなわち、フィルタ粒子の脱落がなく良好なものを(○)、フィルタ粒子の脱落が多少認められるものを(Δ)、フィルタ粒子の脱落が相当認められるものを(×)とした。
【0034】
ただし、ここでフィルタ粒子には、脱落源が2次的に被覆溶着して一体化した他材料よりなる多孔質層を含めてフィルタを構成する粒子の全て、である。
【0035】
「微粒子捕集性能」逆洗による払い落しの際に、払い落された微粒子の流体流出側への混入の有無を目視により評価した。すなわち、微粒子の混入が認められないものを(○)、微粒子の混入が多少認められるものを(Δ)、微粒子の混入が相当認められるものを(×)とした。
【0036】
「粉体払い落し性」逆洗による払い落しの際に、流体流出側のフィルタ表面に付着した微粒子(粉体)の払い落しの良否を目視により評価した。すなわち、微粒子(粉体)の払い落しが良好なものを(○)、微粒子(粉体)の払い落しが多少悪いものを(Δ)、微粒子(粉体)の払い落しが相当悪いものを(×)とした。
【0037】
「圧力損失/mmAq」微粒子を含まない空気を1m/minで吸引した時の、流入側と流出側の圧力損失を測定し、水柱mmで表示した値である。
【0038】
「対水接触角/度」ゴニオメーター式接触角測定器(エルマ社製G−1型)を用い、マイクロシリンジでイオン交換水20μlを流入側焼結プラスチックの表面に滴下し、その接触角を測定し、度で表示した値である。
【0039】

Figure 0003718313
表1に示したように、実施例1〜5のいずれも粒子の脱落および粉体払い落し性について問題なく良好である。また、圧力損失についても実施例1が若干高いがいずれも実用上は問題がない。
【0040】
しかも、平均粒径の比較的小さなものと比較的大きなもの混合割合を替えることにより、性能の異なる多孔質プラスチックフィルタを容易に得ることができる。
【0041】
なお、平均粒径が小さいプラスチック材料の割合が低い実施例5は、流体流出側への微粒子の混入が多少認められ、好ましくない。
【0042】
[比較例1〜4]以下の内容にて製造して得られた多孔質プラスチックフィルタの性能は、下記に示す方法により評価または測定し、その結果を表2に表示した。
【0043】
[比較例1]実施例1と同一の成形用金型を使用して、その成形用金型の間隙内に、平均粒径が30μm で、分子量200万の超高分子量ポリエチレン(MFR=0.01以下)を充填し、これを160〜220℃の温度の加熱炉内で30〜90分間加熱して焼結成形して、肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0044】
[比較例2]比較例1と同一の成形用金型を使用して、その成形用金型の間隙内に、平均粒径が170μmで、分子量200万の超高分子量ポリエチレン(MFR=0.01以下)を充填し、これを150〜200℃の温度の加熱炉内で60分間加熱して焼結成形して、肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0045】
[比較例3]比較例1と同一の成形用金型を使用して、その成形用金型の間隙内に、平均粒径が30μmで、分子量200万の超高分子量ポリエチレン(MFR=0.01以下)を充填し、これを160〜220℃の温度の加熱炉内で30〜90分間加熱して焼結成形し、焼結成形した多孔質プラスチック円筒体を成形用金型より取出した後、その円筒体の表面に界面活性剤を塗布して肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0046】
[比較例4]比較例1と同一の成形用金型を使用して、その成形用金型の間隙内に、平均粒径が170μmで、分子量400万の超高分子量ポリエチレン(MFR=0.01以下)を充填し、これを160〜220℃の温度の加熱炉内で30〜90分間加熱して焼結成形し、焼結成形した多孔質プラスチック円筒体を成形用金型より取出した後、その円筒体の表面に平均粒径が0.1μmのPTFE微粒子をバインダーと共に、スプレーして吹き付けて10〜20μmの厚さに被着積層し、肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0047】
Figure 0003718313
表2に示したように、比較例1は、平均粒径が30μmで分子量200万の超高分子量ポリエチレンで構成したもので、粒子の脱落や流体流出側への微粒子の混入、粉体の払い落し性、さらには圧力損失についても問題なく良好のものであるが、前記した実施例1〜4特に実施例1は、比較例1と遜色ないことがわかる。
【0048】
しかし、比較例2は、平均粒径が170μmで分子量200万の超高分子量ポリエチレンで構成したもので、特に流体流出側への微粒子の混入について難があり実用上問題がある。また比較例3においては、粉体の払い落し性に間題があり、比較例4においては、基材からPTFE粒子の脱落、流体流出側への微粒子の混入などに問題がある。
【0049】
[実施例6〜10]以下の内容にて製造して得られた、多孔質プラスチックフィルタの性能は、下記に示す方法により評価または測定し、その結果を表1に表示した。
【0050】
成形用金型として、壁の全周に8個のひだ部を有する星型状の外表面を有する内型1個と、星型状の内表面を有する外型1個を準備する。その内型の外径は、外型の内径より2mm小さいものとする。先ず、内型を外型内に挿入し、外型と内型との間に均一に2mmの間隙が形成されるように設置する。次いで、その間隙内 に、平均粒径が40μmで、分子量200万の超高分子量ポリエチレン(MFR=0.01以下)と、平均粒径が150μmで、分子量400万の超高分子量ポリエチレン(MFR=0.01以下)とを、表3に表示した割合(重量%)で混合した組成物を、充填し、これを160〜220℃の温度の加熱炉内で30〜90分間加熱して焼結成形して、肉厚2mmの中空円筒体形の多孔質プラスチックフィルタを得た。
【0051】
Figure 0003718313
表3に示したように、実施例6〜10のいずれも粒子の脱落および粉体払い落し性について問題なく良好である。また、圧力損失についても実施例6が若干高いがいずれも実用上は問題がない。
【0052】
しかし、平均粒径が小さいプラスチック材料の割合が低い実施例11は、流体流出側への微粒子の混入が多少認められ、好ましくない。
【0053】
【発明の効果】
以上説明したように、本発明の多孔質プラスチックフィルタは、少なくとも平均粒径が5μm以上90μm以下の範囲と平均粒径が90μmを越え1,000μm以下の範囲の超高分子量ポリエチレンで構成してあると共に、そのフィルタの少なくともーつの表面の水に対する接触角が60度以上としてあるので、良好な払い落し性能、表面捕集性能、圧力損失などを兼備しながらも、従来のようなPTFE粒子が脱落し、捕集された微粒子中に混入するなどの問題のないと共に、プラスチックフィルタとしての性能特に圧力損失をコントロールできものである。
しかも、横断面形状を中空星型体形にした場合は、単位容積当たりの濾過面積が多くなるので、分離装置の濾過容量、装置容量、設置面積などの選択が容易にでき、設計施工上好ましいものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous plastic filter for separating and filtering fine particles contained in a fluid such as liquid or gas.
[0002]
[Prior art]
Conventionally, many porous plastic filters for separating and filtering fine particles such as dust contained in a fluid such as liquid or gas are known. Among them, plastic filters having different pore diameters on the liquid inflow side and the outflow side, for example, one of the inflow side or the outflow side is formed from particles of a plastic material having a relatively large average particle diameter to have a large pore diameter, and the other is A porous multilayer filter formed from plastic material particles having a relatively small average particle size and having a small pore size is desirable from the viewpoints of improved filtration accuracy, high collection efficiency of fine particles, and low pressure loss. As the average particle size of the thermoplastic material having a relatively large average particle size, such as polyethylene, polypropylene, polysulfone, polyethersulfone, polyphenylene sulfide, etc. Is relatively small polytetrafluoroethylene (hereinafter referred to as “PTFE”) The, with adhesive, by direct deposit, a porous plastic filter substrate of the outer surface and its inner surface, a porous filter has been proposed which gave a difference in pore size of the porous layer.
[0003]
Further, the applicant has made a porous plastic filter composed of a plurality of thermoplastic plastic materials, at least one of which is a fluorine-based resin material (Japanese Patent Application No. 7-214808) or a porous plastic filter. A material composed of a single thermoplastic material having a relatively small average particle size (Japanese Patent Application No. 7-241862) has been proposed.
[0004]
[Problems to be solved by the invention]
However, in the former porous multilayer filter, the adhesive TFE used is inferior in adhesive properties, so that the adhesiveness at the interface between the porous plastic substrate and PTFE becomes insufficient, and the porous porous filter is porous during filtration and backwashing. In the fine particles where the PTFE particles fall off from the plastic substrate, resulting in the difference in pore diameters or partial differences, resulting in a decrease in filter collection performance, or the fallen PTFE particles collected There was a problem such as mixing in.
[0005]
Among the latter, a porous filter composed of a plurality of thermoplastic materials and at least one of which is a fluororesin material has excellent powder removal performance and has a relatively small average particle size. A porous filter composed of a single plastic plastic material possesses a good balance of properties such as particle detachment, fine particle collection, powder removal, and pressure loss, and each is excellent as a porous filter. There is another difficulty in controlling pressure loss.
[0006]
[Means for Solving the Problems]
The present invention is a porous plastic filter that can solve the above problems, the gist of which is
A porous plastic filter obtained by sintering and molding particles of thermoplastic material, wherein the porous plastic filter has at least an average particle size in the range of 5 μm to 90 μm and an average particle size of more than 90 μm and 1,000 μm. together they are composed of a plurality of thermoplastic materials in the following ranges, in the porous plastic filter contact angle of 60 degrees or more with respect to water of at least one surface of the filter, thermoplastic plastic material, ultra-high molecular weight It is in a porous plastic filter that is polyethylene.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The porous plastic filter of the present invention is composed of ultra high molecular weight polyethylene having an average particle diameter of 5 μm or more and 90 μm or less and an average particle diameter of more than 90 μm and 1,000 μm or less. The contact angle with respect to water on the surface is 60 degrees or more.
[0008]
Here, in a plastic filter having a surface with a contact angle with respect to water of less than 60 degrees, the surface has a large free energy, so even if backwashing is performed, fine particles adhering to the surface of the filter are not sufficiently removed. Since clogging occurs, there is a practical problem.
[0009]
The porous plastic filter of the present invention comprises at least a mixture of ultra high molecular weight polyethylene having an average particle size in the range of 5 μm to 90 μm and an average particle size in the range of more than 90 μm to 1,000 μm. Configured.
[0010]
The mixing ratio of the two is such that the average particle diameter is in the range of 5 μm or more and 90 μm or less, and may be 20% by weight, preferably 40% by weight or more.
[0011]
In particular, the melt flow rate (hereinafter abbreviated as “MFR”) of ultra-high molecular weight polyethylene is lower than that of other thermoplastics, specifically 0.01 or less, which gives a porous plastic filter having a uniform pore size. Above is preferred.
[0012]
In order to impart antistatic performance to the porous plastic filter, for example, a conductive agent such as carbon black, carbon fiber, metal powder, or potassium titanate coated with metal on the surface is applied to the porous plastic filter. Depending on the purpose, it may be added in an amount in the range of 1 to 5% by weight, usually in the range of 1 to 2%.
[0013]
In order to mold the porous plastic filter of the present invention, preferably, the ultra-high molecular weight polyethylene having an average particle size of 30 μm to 50 μm and a viscosity average molecular weight of 2 million or more has a viscosity average molecular weight of 120 μm to 180 μm. It is obtained by mixing 4 million or more ultrahigh molecular weight polyethylene and sintering.
[0014]
In particular, it is preferable to use a polymer having a small MFR, specifically, an ultrahigh molecular weight polyethylene having an MFR of 0.01 or less in order to obtain a porous plastic filter having a uniform pore diameter. For example, the average particle diameter is 100 μm. The ultrahigh molecular weight polyethylene in the shape of a grape having a bulk density of not more than 200 μm and a bulk density of 0.35 to 0.45 g / cm 3 is preferable due to mechanical strength and the like.
[0015]
The final shape of the porous plastic filter of the present invention is a hollow cylindrical body, plate-shaped body, rod-shaped body, bottomed cylindrical body, or dish-like shape having a circular cross section, an elliptical shape, a rectangular shape, a polygonal shape, a star shape, etc. It is appropriately selected depending on its use such as body.
[0016]
Further, the length may be either a long shape or a short shape, and the length is formed in accordance with a separation apparatus described later.
[0017]
As the shape of this filter, among others, a filter in which a pleat is formed on at least a part of the wall of the hollow cylindrical body is suitable because it has a self-supporting property with respect to vertical or horizontal and can increase the filtration area. It is.
[0018]
The pleat portion is formed by providing an outer bent portion located at the outer peripheral end of the cylindrical body and an inner peripheral bent portion of the cylindrical body alternately or at an appropriate interval.
[0019]
The formation of the pleat portion is determined by the outer shape of the outer bent portion of the cylindrical body, the inner diameter and thickness of the inner bent portion, the number of pleats, etc., but the outer shape is 20 to 150 mm, the inner diameter is 12 to 120 mm, and the thickness is 1 to 1. The thickness is selected from 5 mm and 5 to 25, preferably 6 to 12 in consideration of the mechanical strength of the filter, the required filtration area per volume, the installation area of the separation device, and the like.
[0020]
This pleat is preferably formed over the entire circumference or almost half of the cylindrical body. When the pleat is formed over the entire circumference, the filter will have directionality when placed vertically in the separator. In addition, the pleat portion formed substantially over a half circumference is preferable because there is no accumulation of fine particles to be removed when the pleat portion is horizontally disposed in the separator.
[0021]
The porous plastic filter of the present invention is performed by sintering and molding particles having a predetermined average particle diameter of ultra high molecular weight polyethylene by a static molding method or a dynamic molding method.
[0022]
The former static molding method is a so-called in-mold sintering method, for example, a molding die comprising an outer mold having an inner surface shape such as a cylindrical shape and an inner having a similar outer surface shape inserted therein. Is used to fill the cavities formed in the gap between the inner surface of the outer mold and the outer surface of the inner mold with particles of thermoplastic material, and then heat the molds together.
[0023]
The latter dynamic molding method is as follows: (1) Ram extrusion using a ram-type extruder incorporating a piston (also called a plunger) that reciprocates in a temperature-adjustable cylinder having a mold at the tip. (2) Injection molding method using an injection molding machine with a built-in screw in a cylinder that has a mold at the tip, and (3) Temperature adjustment with a mold at the tip Extrusion method using an extruder with a screw built in the cylinder, (4) Using a molding die consisting of a female mold and a male mold inserted into its inner diameter, formed inside the female mold A compression molding method that uses a compression molding machine that heats a molding die after filling the raw material into the cavity, (5) Molding composed of a pair of upper and lower movable belts or a lower movable belt at the tip This mold with a temperature-adjustable cylinder with mold And the like continuous pressing method carried out using a continuous press for extruding the raw material.
[0024]
From these methods such as the static molding method and the dynamic molding method, it can be appropriately selected according to the required quality such as the final shape of the porous plastic filter of the present invention.
[0025]
In addition, conductivity is imparted by a method in which the conductive agent, for example, carbon black, carbon fiber, metal powder, or the like is mixed into the ultrahigh molecular weight polyethylene raw material when the porous plastic filter is molded, or after the molding of the porous plastic Although there is a method of applying a surfactant or the like to the surface of the filter, it is not particularly limited as long as at least conductivity can be imparted to the surface of the porous plastic filter.
[0026]
The porous plastic filter obtained as described above is usually a filter unit that is a combination of a plurality of filters, and this is attached as a separator by vertically or horizontally suspended in a container for a separator having a predetermined shape. used.
[0027]
In the filter unit, a porous plastic filter is attached to a substantially plate-like support, and one end of the plastic filter is fixed to the support having a hole by means such as fitting, and the other end is fixed. The opening of the part is closed with a lid.
[0028]
The support and lid are made of metal or various synthetic resins such as rigid polyolefin resin, thermoplastic resin such as polyvinyl chloride, or reactive thermosetting resin. It is preferable from the moldability and dimensional stability.
[0029]
When it is necessary to impart conductivity to the filter unit, the conductive agent is added to sinter-mold the porous plastic filter to impart conductivity to the filter. Similarly, it is only necessary to use a material imparted with conductivity by adding a conductive agent such as carbon black to the body. In addition, when a reactive liquid polyurethane resin is used, an average yarn length of 0 is used as the main polyol and curing agent. The addition of 3 to 10% by weight of carbon fiber having a thickness of 1 to 1.0 mm is preferable because it has a small residual strain and has high dimensional accuracy and antistatic performance.
[0030]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
[0031]
[Examples 1 to 5] The performance of the porous plastic filter obtained by manufacturing the following contents was evaluated or measured by the following method, and the results are shown in Table 1.
[0032]
As the molding die, one inner mold having a cylindrical outer surface and one outer mold having a cylindrical inner surface are prepared. The outer diameter of the inner mold is 2 mm smaller than the inner diameter of the outer mold. First, the inner mold is inserted into the outer mold and installed so that a 2 mm gap is uniformly formed between the outer mold and the inner mold. Next, in the gap, an ultra high molecular weight polyethylene (MFR = 0.01 or less) having an average particle diameter of 40 μm and a molecular weight of 2 million and an ultra high molecular weight polyethylene (MFR = MFR = 0.01 or less) having an average particle diameter of 150 μm. 0.01 or less) at a ratio (% by weight) shown in Table 1 is filled, and this is heated in a heating furnace at a temperature of 160 to 220 ° C. for 30 to 90 minutes to sinter. In this way, a porous plastic filter having a hollow cylindrical shape with a thickness of 2 mm was obtained.
[0033]
“Presence / absence of particle dropout” The presence or absence of filter particle dropout was visually evaluated at the time of removal by backwashing. That is, the case where filter particles were not dropped off was good (◯), the case where filter particles were somewhat dropped (Δ), and the case where filter particles were dropped considerably (×).
[0034]
However, here, the filter particles are all particles constituting the filter including a porous layer made of another material in which a drop-off source is secondarily coated and welded.
[0035]
“Particulate collection performance” When the particles were washed off by backwashing, the presence or absence of the fine particles collected on the fluid outflow side was visually evaluated. That is, (◯) indicates that no mixing of fine particles is observed, (Δ) indicates that some mixing of fine particles is recognized, and (×) indicates that considerable mixing of fine particles is recognized.
[0036]
“Powder detachability” When rinsing with backwashing, the quality of fine particles (powder) adhering to the filter surface on the fluid outflow side was evaluated visually. In other words, (○) indicates that the fine particles (powder) have been removed well, (Δ) indicates that the fine particles (powder) are slightly removed (Δ), and X).
[0037]
“Pressure loss / mmAq” is a value expressed in water column mm by measuring the pressure loss on the inflow side and the outflow side when air containing fine particles is sucked at 1 m / min.
[0038]
“Water contact angle / degree” Using a goniometer-type contact angle measuring device (Elma G-1 type), 20 μl of ion-exchanged water is dropped on the surface of the inflow side sintered plastic with a microsyringe, and the contact angle is determined. The value measured and displayed in degrees.
[0039]
Figure 0003718313
As shown in Table 1, all of Examples 1 to 5 are good with no problem with respect to particle falling off and powder falling off. Also, the pressure loss is slightly higher in Example 1, but there is no practical problem.
[0040]
In addition, porous plastic filters having different performances can be easily obtained by changing the mixing ratio of those having a relatively small average particle diameter and those having a relatively large average particle diameter.
[0041]
In addition, Example 5 in which the ratio of the plastic material having a small average particle diameter is low is not preferable because some mixing of fine particles on the fluid outflow side is recognized.
[0042]
[Comparative Examples 1 to 4] The performance of the porous plastic filters obtained by the following contents was evaluated or measured by the method shown below, and the results are shown in Table 2.
[0043]
[Comparative Example 1] Using the same molding die as in Example 1, ultra high molecular weight polyethylene (MFR = 0.0.00) having an average particle size of 30 μm and a molecular weight of 2 million in the gap of the molding die. 01 or less) was heated in a heating furnace at a temperature of 160 to 220 ° C. for 30 to 90 minutes and sintered to obtain a hollow cylindrical porous plastic filter having a thickness of 2 mm.
[0044]
[Comparative Example 2] Using the same molding die as in Comparative Example 1, an ultra high molecular weight polyethylene (MFR = 0.0.2) having an average particle size of 170 μm and a molecular weight of 2 million in the gap of the molding die. 01 or less) was heated in a heating furnace at a temperature of 150 to 200 ° C. for 60 minutes and sintered to obtain a hollow cylindrical porous plastic filter having a thickness of 2 mm.
[0045]
[Comparative Example 3] Using the same molding die as in Comparative Example 1, an ultra high molecular weight polyethylene (MFR = 0.0.2) having an average particle size of 30 μm and a molecular weight of 2 million in the gap of the molding die. 01) or less), and heating and sintering for 30 to 90 minutes in a heating furnace at a temperature of 160 to 220 ° C., and removing the sintered porous plastic cylindrical body from the molding die The surface of the cylindrical body was coated with a surfactant to obtain a hollow cylindrical porous plastic filter having a thickness of 2 mm.
[0046]
[Comparative Example 4] Using the same molding die as in Comparative Example 1, an ultra high molecular weight polyethylene (MFR = 0.0.4) having an average particle size of 170 μm and a molecular weight of 4 million in the gap of the molding die. 01) or less), and heating and sintering for 30 to 90 minutes in a heating furnace at a temperature of 160 to 220 ° C., and removing the sintered porous plastic cylindrical body from the molding die , PTFE fine particles having an average particle diameter of 0.1 μm are sprayed on the surface of the cylindrical body together with a binder, sprayed and laminated to a thickness of 10 to 20 μm, and a hollow plastic cylindrical porous plastic filter having a thickness of 2 mm Got.
[0047]
Figure 0003718313
As shown in Table 2, Comparative Example 1 is composed of ultra high molecular weight polyethylene having an average particle diameter of 30 μm and a molecular weight of 2 million. Although the dropability and the pressure loss are also satisfactory without any problem, it can be seen that Examples 1 to 4, particularly Example 1 described above, are not inferior to Comparative Example 1.
[0048]
However, Comparative Example 2 is composed of ultra high molecular weight polyethylene having an average particle size of 170 μm and a molecular weight of 2 million, and there is a problem in practical use because there is a difficulty in mixing fine particles on the fluid outflow side. Further, in Comparative Example 3, there is a problem in the powder wiping-off property, and in Comparative Example 4, there are problems such as dropping of PTFE particles from the base material, mixing of fine particles on the fluid outflow side, and the like.
[0049]
[Examples 6 to 10] The performance of the porous plastic filter obtained by manufacturing the following contents was evaluated or measured by the following method, and the results are shown in Table 1.
[0050]
As a molding die, one inner mold having a star-shaped outer surface having eight pleats on the entire circumference of the wall and one outer mold having a star-shaped inner surface are prepared. The outer diameter of the inner mold is 2 mm smaller than the inner diameter of the outer mold. First, the inner mold is inserted into the outer mold and installed so that a 2 mm gap is uniformly formed between the outer mold and the inner mold. Next, in the gap, an ultra high molecular weight polyethylene (MFR = 0.01 or less) having an average particle diameter of 40 μm and a molecular weight of 2 million and an ultra high molecular weight polyethylene having an average particle diameter of 150 μm and a molecular weight of 4 million (MFR = 0.01 or less) at a ratio (% by weight) shown in Table 3 is filled, and this is heated in a heating furnace at a temperature of 160 to 220 ° C. for 30 to 90 minutes for sintering. In this way, a porous plastic filter having a hollow cylindrical shape with a thickness of 2 mm was obtained.
[0051]
Figure 0003718313
As shown in Table 3, all of Examples 6 to 10 are good with no problem in terms of particle dropping and powder falling off. Also, the pressure loss is slightly higher in Example 6, but there is no problem in practical use.
[0052]
However, Example 11 in which the ratio of the plastic material having a small average particle diameter is low is not preferable because some contamination of fine particles on the fluid outflow side is recognized.
[0053]
【The invention's effect】
As described above, the porous plastic filter of the present invention is composed of at least an ultra-high molecular weight polyethylene having an average particle diameter of 5 μm or more and 90 μm or less and an average particle diameter of more than 90 μm and 1,000 μm or less. At the same time, since the contact angle of at least one surface of the filter with respect to water is 60 degrees or more, PTFE particles like conventional ones fall off while combining good removal performance, surface collection performance, pressure loss, etc. In addition, there is no problem of mixing in the collected fine particles, and the performance as a plastic filter, particularly the pressure loss can be controlled.
Moreover, when the cross-sectional shape is a hollow star shape, the filtration area per unit volume increases, so the filtration capacity, equipment capacity, installation area, etc. of the separation device can be easily selected, which is preferable for design and construction. It is.

Claims (1)

熱可塑性プラスチック材料の粒子を焼結成形して得られる多孔質プラスチックフィルタであって、多孔質プラスチックフィルタは、少なくとも平均粒径が5μm以上90μm以下の範囲と平均粒径が90μmを超え1,000μm以下の範囲の複数の熱可塑性プラスチック材料で構成してあると共に、そのフィルタの少なくとも一つの表面の水に対する接触角が60度以上である多孔質プラスチックフィルタにおいて、熱可塑性プラスチック材料が、超高分子量ポリエチレンであることを特徴とする多孔質プラスチックフィルタ。A porous plastic filter obtained by sintering and molding particles of thermoplastic material, wherein the porous plastic filter has at least an average particle size in the range of 5 μm to 90 μm and an average particle size of more than 90 μm and 1,000 μm. In the porous plastic filter which is composed of a plurality of thermoplastic materials in the following range and has a contact angle with water of at least one surface of the filter of 60 degrees or more, the thermoplastic material has an ultra high molecular weight. A porous plastic filter characterized by being polyethylene .
JP03411197A 1997-02-18 1997-02-18 Porous plastic filter Expired - Lifetime JP3718313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03411197A JP3718313B2 (en) 1997-02-18 1997-02-18 Porous plastic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03411197A JP3718313B2 (en) 1997-02-18 1997-02-18 Porous plastic filter

Publications (2)

Publication Number Publication Date
JPH10230113A JPH10230113A (en) 1998-09-02
JP3718313B2 true JP3718313B2 (en) 2005-11-24

Family

ID=12405171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03411197A Expired - Lifetime JP3718313B2 (en) 1997-02-18 1997-02-18 Porous plastic filter

Country Status (1)

Country Link
JP (1) JP3718313B2 (en)

Also Published As

Publication number Publication date
JPH10230113A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
KR100423586B1 (en) Porous plastic filter and process for its production
KR100245912B1 (en) Filter elements with invariant permeable porous plastic moldings
JP4731642B2 (en) Porous structure and manufacturing method thereof
EP0977663A1 (en) Sintered porous plastic products and method of making same
EP0393374A2 (en) Manufacturing method of filter element for dust collector
JP3718313B2 (en) Porous plastic filter
JP3725614B2 (en) Porous plastic filter for fine particle separation
JP3645051B2 (en) Porous multilayer plastic filter and manufacturing method thereof
JP3990498B2 (en) Method for manufacturing sintered filter
CN106693519A (en) Filter element and method for the production thereof
JP3727729B2 (en) Porous multilayer plastic filter and manufacturing method thereof
CN221479608U (en) Manufacturing device for negative pressure vacuum forming active carbon filter element
JP2008006435A (en) Manufacturing method of filter molding
JP3638794B2 (en) Porous plastic filter
JPH1190136A (en) Combined porous plastics filter
US20210316240A1 (en) Laser-sintered filter, method for producing the filter, and method for ensuring fluid flow
JPH0339727B2 (en)
JPH10151311A (en) Porous plastic filter and filter unit
WO2024048781A1 (en) Method to form a dust collecting layer on a porous body without using a binder
JP2000325715A (en) Porous plastic filter
JP3559109B2 (en) Method for producing porous body made of ultra-high molecular weight polyethylene
JP7624036B2 (en) Method for forming dust-collecting layer on porous body without using binder
KR20150065294A (en) Method for manufacturing carbon block of water purifying filter
RU2024403C1 (en) Method for making filter cartridges from fluoroplastic powders
JP3312863B2 (en) Porous plastic filter for fine particle separation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term