[go: up one dir, main page]

JP3638794B2 - Porous plastic filter - Google Patents

Porous plastic filter Download PDF

Info

Publication number
JP3638794B2
JP3638794B2 JP19684098A JP19684098A JP3638794B2 JP 3638794 B2 JP3638794 B2 JP 3638794B2 JP 19684098 A JP19684098 A JP 19684098A JP 19684098 A JP19684098 A JP 19684098A JP 3638794 B2 JP3638794 B2 JP 3638794B2
Authority
JP
Japan
Prior art keywords
fine particles
particles
filter
porous
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19684098A
Other languages
Japanese (ja)
Other versions
JP2000024428A (en
Inventor
洋介 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP19684098A priority Critical patent/JP3638794B2/en
Publication of JP2000024428A publication Critical patent/JP2000024428A/en
Application granted granted Critical
Publication of JP3638794B2 publication Critical patent/JP3638794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液体や気体等の流体中に含まれる微粒子を分離ろ過するための多孔質プラスチックフィルタに関する。
【0002】
【従来の技術】
従来、液体や気体等の流体中に含まれるサブミクロン〜10μm程度の微粒子を分離ろ過するための多孔質フィルタが多数知られている。
【0003】
例えば、ポリエチレンやポリプロピレン等のポリオレフィン系材料の微小粒子を、金型内に充填し、材料の融点近傍まで加熱し、粒子表面のみを焼結成形した多孔質フィルタがある。
しかしながら、この種の材料は結晶性樹脂であるため、粘弾性挙動としては、融点以上で急激に弾性率が低下し、しかもゴム状平坦部がほとんど認められないので、フィルタを構成する材料が微小粒子の場合、少しの温度上昇で流動し、ラプラス原理により粒子間空隙の閉塞が起こりやすく、気孔率および気孔径のコントロールが難しくなる。従って、上記多孔質フィルタは、比較的粒径の大きな粒子による焼結成形を余儀なくされ、必然的に気孔径が大きくなり、フィルタとしての用途は自ずと限定される。
【0004】
また、微孔径の多孔質体を成形しにくいという上記課題を解決するために、ポリエチレンの中でも超高分子量ポリエチレンが多孔質フィルタ成形材料として多く用いられている。
超高分子量ポリエチレンは、特異な粘弾性挙動を示し、分子量が数百万と非常に高いため、結晶性高分子材料にも関わらず、融点以上の広い温度範囲でゴム状平坦部が認められる。このゴム状平坦部の温度域で焼結成形を行うと、結晶の融解は起こっているが、材料自体はある程度の弾性率を有しているため、粒子間空隙の閉塞が起こることなく容易に多孔質体の焼結成形が可能である。
ただし、この多孔質フィルタには、60℃程度の雰囲気下までしか連続使用できないという、耐熱性(測定法については後記する)不足の問題がある。
【0005】
一方、耐熱性を改善するために、非晶性樹脂のポリサルホン(ガラス転移温度190℃)やポリエーテルスルホン(ガラス転移温度225℃)の微小粒子を、金型内に充填し、これら材料のガラス転移温度近傍の200〜270℃の温度まで加熱し、焼結成形した多孔質フィルタが提案されている。確かに、耐熱性はポリサルホンで150℃、ポリエーテルスルホンで180℃程度でフィルタ用には十分である。しかし、上記両材料とも、多孔質体を形成するのに有利なゴム状平坦部が、たかだか205〜225℃(PS)および240〜260℃(PES)の範囲と狭いので、比較的粒径の大きな粒子を用いた焼結成形を余儀なくされ、多孔質フィルタとして、細かい塵を分離できるようにし、捕集性能を向上させためには、焼結した基材粒子の表面に、微粒子のポリテトラフロオロエチレン(以下「PTFE」と記す)を、接着剤とともに、直接的に被着して気孔径を小さくする方法が採られていた。
【0006】
このような方法で得られる多孔質フィルタでは、PTFEが粘着性に乏しく、上記多孔質基材と被着されたPTFEとの界面での接着性が不十分で、ろ過や逆洗の際に多孔質基材からPTFE粒子が脱落しやすい。結果として、払い落し性能の低下や、フィルタ表面での捕集性能の低下を招き、また脱落したPTFE粒子が捕集した微粒子中に混入する等の問題があった。
さらに、上記材料はガラス転移点温度が高く、しかも、ガラス転移温度以下では脆いという特性を有し、150℃や180℃というフィルタの使用温度は該ガラス転移温度以下となるため、壊れやすいものとなる。
【0007】
【発明が解決しようとする課題】
本発明は、プラスチック微小粒子を焼結成形した微粒子分離用多孔質フィルタにおける、上記のような問題の解決、すなわち焼結温度付近で弾性率の急激な低下がなく、連続使用に耐える耐熱性を有し、しかも、使用環境下で脆くなったり、壊れやすくなることのない技術の提供を課題とするものである。
【0008】
【課題を解決するための手段】
本発明者は、鋭意検討の結果、多孔質体の成形に有利なゴム状平坦部が広く、使用環境下で柔軟性があり、しかも、例えば硬質相としてポリプロピレンと、軟質相としてエチレン−プロピレンゴムとからなるポリオレフィン系熱可塑性エラストマー等、材料の選択によっては140℃程度の環境下で使用できる、多孔質フィルタ用原料を見いだした。
【0009】
本発明の要旨とするところは、分子中にエントロピー弾性を発現する軟質相と塑性変形を防止するための硬質相とを有し、常温ではエラストマーの性質を示し、かつ高温では塑性変形が可能となり、融点以上の高温域において広い温度範囲にわたるゴム状平坦部を有する粘弾性挙動を示す、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、塩素化ポリエチレン系、ポリ塩化ビニル系及びフッ素系の熱可塑性エラストマーより選ばれた粒子を焼結成形してなることを特徴とする微粒子分離用多孔質プラスチックフィルタに存する。
【0010】
また、本発明の別な要旨は、上記要旨に加え焼結される粒子の平均粒径が10〜120μmである点にある。
【0011】
【発明の実施の形態】
本発明の多孔質プラスチックスフィルタを構成する材料としては、分子中にエントロピー弾性を発現する軟質相と塑性変形を防止するための硬質相とを有し、常温ではエラストマーの性質を示し、かつ高温では塑性変形が可能となり、融点以上の高温域において広い温度範囲にわたるゴム状平坦部を有する粘弾性挙動を示す、熱可塑性エラストマーで、好ましは20℃を超え、特に好ましくは40℃以上の温度範囲にわたるゴム状平坦部を有するものが多孔質フィルタを形成する上で好ましい。
【0012】
ここで、粘弾性挙動は、通常、横軸に温度、縦軸に弾性率をとった図表によって示されるが、図1は後記実施例1に示すポリオレフィン系熱可塑性エラストマー(融点163℃、ガラス転移温度−10℃)の例であり、常温では108 dyne/cm2 のオーダーの弾性率を有し、温度150℃までは昇温により若干低下するが107 dyne/cm2 のオーダーを保つ。弾性率は、温度が150℃を超えると急激に低下するが、融点以上の高温域において160℃あたりから、約2×106 dyne/cm2 で一定となり、この例では、250℃まで約90℃の広い温度範囲にわたるゴム状平坦部を有していることがわかる。なお、一般に、ゴムの粘弾性挙動として、ガラス転移温度以上の高温域に平坦部(ゴム状領域)が認められることから、ゴム状平坦部の名称で呼ばれる。
【0013】
本発明におけるフィルタ構成材料として、具体的にはポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、塩素化ポリエチレン系、ポリ塩化ビニル系、フッ素系等の熱可塑性エラストマーが挙げられ、使用環境等により適宜材料を選択することができる。
【0014】
ポリオレフィン系熱可塑性エラストマーは、ブレンドまたはアロイのポリマー構造を有し、硬質相としてはポリプロピレンやポリエチレン等があり、軟質相としてはエチレン−プロピレンゴム、アクリルゴム、ブチルゴム、天然ゴム等がある。また、ポリウレタン系熱可塑性エラストマーは、ブロックのポリマー構造を有し、硬質ブロックとしては4,4’−ジフェニルメタンジイソシアネートやトルエンジイソシアネート等があり、軟質ブロックとしてはポリカプロラクトングリコール、ポリ(エチレン1,4アジペート)グリコール、(ヘキサンジオール1,6カーボネート)グリコール等がある。
【0015】
ポリエステル系熱可塑性エラストマーは、ブロックのポリマー構成を有し、硬質ブロックとしては、ポリエステル等があり、軟質ブロックとしては、ポリエーテル等がある。ポリアミド系熱可塑性エラストマーは、ブロックのポリマー構造を有し、硬質ブロックとしては、ポリアミド等があり、軟質ブロックとしては、ポリエステル、ポリエーテル等がある。塩素化ポリエチレン系熱可塑性エラストマーは、マルチブロックまたはランダムのポリマー構造を有し、硬質相としては、ポリエチレン等があり、軟質相としては、塩素化ポリエチレン等がある。ポリ塩化ビニル系熱可塑性エラストマーは、ブレンドのポリマー構造を有し、硬質相としては、結晶ポリ塩化ビニル等があり、軟質相としては、ニトリルゴム等がある。また、フッ素系熱可塑性エラストマーは、ブロックまたはグラフトのポリマー構造を有し、硬質相としては、フッ素樹脂等があり、軟質相としては、フッ素ゴム等がある。
【0016】
これら各種の熱可塑性エラストマー材料のなかでは、ゴム状平坦部における弾性率変化が特に少なく平坦性が高いので、安定した品質のものが得られる点から、ポリオレフィン系のものを選択するのが好ましい。特に、硬質相としてポリプロピレンを含むものが好ましい。硬質相由来の融点が150℃以上と比較的高い点が、フィルターの耐熱性向上に好影響を及ぼしていると考えられる。
【0017】
本発明の多孔質プラスチックフィルタにおいて、焼結される微小粒子の粒径としては、平均粒径が10〜120μmのものが好結果をもたらす。平均粒径が10μm未満では、粒子を成形金型内に均一に充填しにくい等、粉体の取扱性に問題があり、粒径が120μmを超えるものでは微粒子分離用フィルタとしての十分な捕集性能を発現できにくい。実際には、分離すべき流体中の微粒子の大きさによって、適切な気孔径となるように、焼結される熱可塑性エラストマー微小粒子の平均粒径が選択される。また、均一な気孔径を必要とする場合は、微小粒子の平均粒径だけでなく、粒径の分布の狭いものがよい。そのような微小粒子を得るためには、例えば粒子の分級や篩分が行われることもある。
【0018】
また、熱可塑性エラストマー微小粒子の焼結は、材料の融点以上の高温域にある弾性率の一定な範囲、すなわちゴム状平坦部内の温度で行われる。好ましくは、このゴム状平坦部における弾性率は、106 〜108 dyne/cm2 の範囲内にあるのがよい。なぜなら、焼結成形時の材料の弾性率が高すぎると、粒子相互間の融着が行われず、また、低すぎると流動して、融着した粒子が気孔を閉塞してしまうからである。
【0019】
本発明の多孔質プラスチックフィルタの焼結成形方法には、特に制限はなく、通常は、いわゆる型内焼結法による。すなわち、筒状等の内表面形状を有する外型とその内部に挿入した同様の外表面形状を有する内型とよりなる成形金型を用い、外型内表面と内型外表面の間隙部に形成されるキャビティ内に、熱可塑性エラストマー微小粒子を充填した後、成形金型ともどもこれを加熱する静的成形法のほか、(1)先端部に成形型を有する温度調整が可能なシリンダ内に往復運動するピストン(プランジャーともいう)を内蔵したラム式押出機を用いて行うラム押出法、(2)先端部に成形型を有する温度調整が可能なシリンダ内にスクリューを内蔵した射出成形機を用いて行う射出成形法、(3)先端部に成形型を有する温度調整が可能なシリンダ内にスクリューを内蔵した押出成形機を用いて行う押出成形法などの動的成形法がある。
【0020】
これら静的成形法や動的成形法等の方法から、最終的な多孔質体の形状など、要求に応じて適宜選択すればよい。
【0021】
【実施例】
以下、本発明を実施例により詳細に説明する。
また、実施例で使用した材料の物性の測定は、次の様にして行った。
【0022】
[実施例]
ポリプロピレン(硬質相)40wt%とエチレンープロピレンゴム(軟質相)25wt%、その他成分(潤滑剤等)35wt%からなるポリオレフィン系熱可塑性エラストマーのペレット(融点163℃、ガラス転移温度−10℃)を機械粉砕し、平均粒径98μmの多孔質フィルター用微小粒子を得た。
金型は筒状表面を有する内型と外型を組み合わせ、両型間の空隙に、上記微小粒子を振動充填し、粒子を充填した金型を160〜200℃の温度で30〜60分加熱し、いわゆる型内焼結法に従って焼結成形を行い、内径50mm、外径56mm、長さ1200mmの筒状の多孔質フィルタを得た。
【0023】
[フィルタの評価]−110℃における耐熱性
上記実施例において得られた筒状多孔質体を集塵装置に設置し、炭酸カルシウム(平均粒径:5μm)を25g/m3 含む110℃の含塵空気を送り込み、ろ過風速1m/minで連続1週間稼働させ、運転時の差圧、多孔質フィルタ通過後の粉塵濃度、およびフィルタの変形状態を観察した。その結果を下の表に示す。
なお、多孔質フィルタ表面に堆積する粉塵を払い落とす方法としては、通常の逆洗方式を用いた。
【0024】

Figure 0003638794
【0025】
上の表に示したとおり、実施例の場合、運転時の差圧が200mmAq以下、粉塵濃度も0.1mg/m3 以下と良好な結果となり、連続運転の間多孔質フィルタの破損トラブル等は発生しなかった。
【0026】
[比較例]
上記実施例において、ポリオレフィン系熱可塑性エラストマーに代えて、超高分子量ポリエチレン(融点140℃)を使用したほかは、実施例と全く同様にして多孔質フィルタを得た。また、実施例と同様に、フィルタの耐熱性を評価したところ、1週間稼働後、大変形を起こして実用性がなかった。
【0027】
【発明の効果】
本発明によれば、成形に有利なゴム状平坦部が広い温度範囲にわたり、材料の選択によっては140℃程度の環境下で連続使用できる、熱可塑性エラストマー材料を使用しているため、焼結される粒子が10〜120μmの微小粒子であっても、容易に所望の気孔径および気孔率を有する多孔質体の焼結成形が可能であり、PTFE微粒子の被着等の後工程がなくても、流体中の微粒子の高捕集性能を有する多孔質プラスチックフィルタを提供することができる。
【図面の簡単な説明】
【図1】 材料の粘弾性挙動を示す図表。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous plastic filter for separating and filtering fine particles contained in a fluid such as liquid or gas.
[0002]
[Prior art]
Conventionally, many porous filters for separating and filtering fine particles of about submicron to 10 μm contained in a fluid such as liquid or gas are known.
[0003]
For example, there is a porous filter in which fine particles of a polyolefin-based material such as polyethylene or polypropylene are filled in a mold, heated to near the melting point of the material, and only the particle surface is sintered.
However, since this type of material is a crystalline resin, the viscoelastic behavior is that the elastic modulus suddenly drops above the melting point and there is almost no rubber-like flat part. In the case of particles, the particles flow with a slight temperature increase, and the interparticle voids are likely to be blocked by the Laplace principle, making it difficult to control the porosity and the pore diameter. Therefore, the porous filter is forced to be sintered and formed with particles having a relatively large particle size, and the pore diameter is inevitably increased, so that the use as a filter is naturally limited.
[0004]
Further, in order to solve the above-mentioned problem that it is difficult to mold a porous body having a micropore diameter, ultra high molecular weight polyethylene is often used as a porous filter molding material among polyethylene.
Ultra high molecular weight polyethylene exhibits a unique viscoelastic behavior and has a very high molecular weight of several millions, so that a rubber-like flat portion is observed in a wide temperature range above the melting point, regardless of the crystalline polymer material. When sintering molding is performed in the temperature range of this rubber-like flat part, the crystals are melted, but the material itself has a certain degree of elastic modulus, so it is easy to block the voids between the particles. A porous body can be sintered.
However, this porous filter has a problem of insufficient heat resistance (the measurement method will be described later) that it can be continuously used only under an atmosphere of about 60 ° C.
[0005]
On the other hand, in order to improve heat resistance, fine particles of amorphous resin such as polysulfone (glass transition temperature 190 ° C.) or polyether sulfone (glass transition temperature 225 ° C.) are filled in a mold, and glass of these materials is used. A porous filter that has been heated to a temperature of 200 to 270 ° C. near the transition temperature and sintered and formed has been proposed. Certainly, heat resistance is about 150 ° C. for polysulfone and about 180 ° C. for polyethersulfone, which is sufficient for filters. However, since both of the above materials have a rubber-like flat portion that is advantageous for forming a porous body, the range of 205-225 ° C. (PS) and 240-260 ° C. (PES) is narrow. In order to sinter molding using large particles and make it possible to separate fine dust as a porous filter and improve the collection performance, the surface of the sintered base particles is coated with fine polytetrafluoroethylene. A method has been adopted in which olefin (hereinafter referred to as “PTFE”) is directly applied together with an adhesive to reduce the pore diameter.
[0006]
In the porous filter obtained by such a method, PTFE has poor adhesiveness, adhesion at the interface between the porous base material and the deposited PTFE is insufficient, and it is porous during filtration and backwashing. PTFE particles easily fall off from the base material. As a result, there has been a problem that the dropping performance is lowered, the collecting performance on the filter surface is lowered, and the dropped PTFE particles are mixed in the collected fine particles.
Furthermore, the material has a high glass transition temperature and is brittle below the glass transition temperature, and the use temperature of the filter at 150 ° C. or 180 ° C. is below the glass transition temperature, so that it is fragile. Become.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-described problems in a fine particle separating porous filter obtained by sintering and molding plastic microparticles, that is, there is no sudden decrease in elastic modulus near the sintering temperature, and the heat resistance to withstand continuous use. Furthermore, it is an object of the present invention to provide a technique that does not become fragile or breakage easily in a use environment.
[0008]
[Means for Solving the Problems]
As a result of intensive studies, the inventor has a wide rubber-like flat portion advantageous for forming a porous body and is flexible in the use environment. For example, polypropylene as a hard phase and ethylene-propylene rubber as a soft phase We have found a raw material for porous filters that can be used in an environment of about 140 ° C. depending on the selection of materials such as a polyolefin-based thermoplastic elastomer.
[0009]
The gist of the present invention is that the molecule has a soft phase that exhibits entropy elasticity and a hard phase for preventing plastic deformation, exhibits elastomeric properties at room temperature, and can be plastically deformed at high temperatures. Thermoplastic properties of polyolefin, polyurethane, polyester, polyamide, chlorinated polyethylene, polyvinyl chloride, and fluorine that show viscoelastic behavior with a rubber-like flat part over a wide temperature range in the high temperature range above the melting point The present invention resides in a porous plastic filter for separating fine particles, which is obtained by sintering and molding particles selected from an elastomer .
[0010]
Another gist of the present invention is that, in addition to the gist, the average particle size of the sintered particles is 10 to 120 μm.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As a material constituting the porous plastic filter of the present invention, the molecule has a soft phase that exhibits entropy elasticity and a hard phase for preventing plastic deformation, exhibits elastomeric properties at room temperature, and has a high temperature. Is a thermoplastic elastomer that can be plastically deformed and exhibits viscoelastic behavior having a rubber-like flat portion over a wide temperature range in a high temperature range above the melting point , preferably over 20 ° C., particularly preferably at a temperature of 40 ° C. or higher. What has a rubber-like flat part over the range is preferable when forming a porous filter.
[0012]
Here, the viscoelastic behavior is usually shown by a chart in which the horizontal axis indicates temperature and the vertical axis indicates elastic modulus. FIG. 1 shows a polyolefin-based thermoplastic elastomer (melting point: 163 ° C., glass transition) shown in Example 1 below. This is an example of a temperature of −10 ° C., and has an elastic modulus of the order of 10 8 dyne / cm 2 at room temperature, and is slightly lowered by a temperature rise up to a temperature of 150 ° C., but maintains the order of 10 7 dyne / cm 2 . The elastic modulus rapidly decreases when the temperature exceeds 150 ° C., but becomes constant at about 2 × 10 6 dyne / cm 2 from around 160 ° C. in the high temperature range above the melting point. It can be seen that it has a rubber-like flat portion over a wide temperature range of ° C. In general, as a viscoelastic behavior of rubber, since a flat portion (rubber-like region) is recognized in a high temperature region higher than the glass transition temperature, it is called by the name of the rubber-like flat portion.
[0013]
Specific examples of the filter constituent material in the present invention include thermoplastic elastomers such as polyolefin-based, polyurethane-based, polyester-based , polyamide-based, chlorinated polyethylene-based, polyvinyl chloride-based, and fluorine-based materials. The material can be selected.
[0014]
The polyolefin-based thermoplastic elastomer has a blend or alloy polymer structure, and the hard phase includes polypropylene and polyethylene, and the soft phase includes ethylene-propylene rubber, acrylic rubber, butyl rubber, and natural rubber. The polyurethane-based thermoplastic elastomer has a block polymer structure, such as 4,4'-diphenylmethane diisocyanate and toluene diisocyanate as the hard block, and polycaprolactone glycol, poly (ethylene 1,4 adipate) as the soft block. ) Glycol, (hexanediol 1,6 carbonate) glycol and the like.
[0015]
The polyester-based thermoplastic elastomer has a polymer structure of a block. Examples of the hard block include polyester, and examples of the soft block include polyether. The polyamide-based thermoplastic elastomer has a polymer structure of a block. Examples of the hard block include polyamide, and examples of the soft block include polyester and polyether. The chlorinated polyethylene-based thermoplastic elastomer has a multi-block or random polymer structure, and the hard phase includes polyethylene and the soft phase includes chlorinated polyethylene. The polyvinyl chloride thermoplastic elastomer has a blended polymer structure, the hard phase includes crystalline polyvinyl chloride and the like, and the soft phase includes nitrile rubber and the like. In addition, the fluorinated thermoplastic elastomer has a block or graft polymer structure, the hard phase includes a fluororesin, and the soft phase includes a fluororubber.
[0016]
Among these various types of thermoplastic elastomer materials, since the change in elastic modulus in the rubber-like flat portion is particularly small and the flatness is high, it is preferable to select a polyolefin-based material from the viewpoint of obtaining a stable quality. Particularly preferred are those containing polypropylene as the hard phase. It is considered that the relatively high melting point derived from the hard phase of 150 ° C. or higher has a positive effect on the heat resistance improvement of the filter.
[0017]
In the porous plastic filter of the present invention, as the particle size of the sintered fine particles, those having an average particle size of 10 to 120 μm give good results. If the average particle size is less than 10 μm, there is a problem with the handleability of the powder, such as it is difficult to uniformly fill the particles in the molding die. If the particle size exceeds 120 μm, sufficient collection as a filter for separating fine particles It is difficult to express performance. Actually, the average particle size of the thermoplastic elastomer fine particles to be sintered is selected so as to obtain an appropriate pore size depending on the size of the fine particles in the fluid to be separated. When a uniform pore size is required, not only the average particle size of fine particles but also a narrow particle size distribution is preferable. In order to obtain such fine particles, for example, particle classification or sieving may be performed.
[0018]
Further, the sintering of the thermoplastic elastomer fine particles is performed within a certain range of the elastic modulus in a high temperature range higher than the melting point of the material, that is, the temperature in the rubber-like flat portion. Preferably, the elastic modulus in the rubber-like flat portion is in the range of 10 6 to 10 8 dyne / cm 2 . This is because if the elastic modulus of the material at the time of sintering is too high, fusion between the particles is not performed, and if it is too low, the material flows and the fused particles close the pores.
[0019]
There is no restriction | limiting in particular in the sintering shaping | molding method of the porous plastic filter of this invention, Usually, it is based on what is called in-mold sintering method. That is, a molding die comprising an outer mold having an inner surface shape such as a cylindrical shape and an inner mold having a similar outer surface shape inserted therein is used, and a gap between the inner surface of the outer mold and the outer surface of the inner mold is used. In addition to the static molding method in which the thermoplastic elastomer fine particles are filled in the cavity to be formed and then heated again with the molding die, (1) In a cylinder having a molding die at the tip and capable of temperature adjustment A ram extrusion method using a ram-type extruder incorporating a reciprocating piston (also referred to as a plunger), (2) an injection molding machine with a screw in a temperature-adjustable cylinder having a mold at the tip. (3) Dynamic molding methods such as an extrusion molding method using an extruder having a screw incorporated in a temperature-adjustable cylinder having a molding die at the tip.
[0020]
What is necessary is just to select suitably from methods, such as these static shaping | molding methods and a dynamic shaping | molding method, according to a request | requirement, such as the shape of a final porous body.
[0021]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
The physical properties of the materials used in the examples were measured as follows.
[0022]
[Example]
Polyolefin thermoplastic elastomer pellets (melting point: 163 ° C., glass transition temperature: −10 ° C.) comprising 40 wt% of polypropylene (hard phase), 25 wt% of ethylene-propylene rubber (soft phase), and 35 wt% of other components (lubricants, etc.) Mechanically pulverized to obtain fine particles for a porous filter having an average particle size of 98 μm.
The mold is a combination of an inner mold and an outer mold having a cylindrical surface, the fine particles are vibrationally filled in the gaps between both molds, and the mold filled with the particles is heated at a temperature of 160 to 200 ° C. for 30 to 60 minutes. Then, sintering was performed according to a so-called in-mold sintering method to obtain a cylindrical porous filter having an inner diameter of 50 mm, an outer diameter of 56 mm, and a length of 1200 mm.
[0023]
[Evaluation of filter] Heat resistance at -110 ° C The cylindrical porous body obtained in the above examples was placed in a dust collector, and contained 110 ° C containing 25 g / m 3 of calcium carbonate (average particle size: 5 µm). Dust air was fed in, and the filter was operated continuously for 1 week at a filtration wind speed of 1 m / min, and the differential pressure during operation, the dust concentration after passing through the porous filter, and the deformation state of the filter were observed. The results are shown in the table below.
In addition, as a method for removing dust accumulated on the surface of the porous filter, a normal back washing method was used.
[0024]
Figure 0003638794
[0025]
As shown in the table above, in the case of the example, the differential pressure during operation was 200 mmAq or less and the dust concentration was 0.1 mg / m 3 or less, and the porous filter was damaged during continuous operation. Did not occur.
[0026]
[Comparative example]
In the above examples, porous filters were obtained in exactly the same manner as in the examples except that ultra high molecular weight polyethylene (melting point 140 ° C.) was used instead of the polyolefin-based thermoplastic elastomer. Moreover, when the heat resistance of the filter was evaluated in the same manner as in the examples, it was not practical due to a large deformation after one week of operation.
[0027]
【The invention's effect】
According to the present invention, a rubber-like flat portion advantageous for molding is sintered over a wide temperature range, and because it uses a thermoplastic elastomer material that can be continuously used in an environment of about 140 ° C. depending on the selection of the material. Even if the particles are fine particles of 10 to 120 μm, it is possible to easily sinter and form a porous body having a desired pore diameter and porosity, and there is no subsequent process such as deposition of PTFE fine particles. It is possible to provide a porous plastic filter having a high collection performance of fine particles in a fluid.
[Brief description of the drawings]
FIG. 1 is a chart showing viscoelastic behavior of materials.

Claims (3)

分子中にエントロピー弾性を発現する軟質相と塑性変形を防止するための硬質相とを有し、常温ではエラストマーの性質を示し、かつ高温では塑性変形が可能となり、融点以上の高温域において広い温度範囲にわたるゴム状平坦部を有する粘弾性挙動を示す、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、塩素化ポリエチレン系、ポリ塩化ビニル系及びフッ素系の熱可塑性エラストマーより選ばれた粒子を焼結成形してなることを特徴とする微粒子分離用多孔質プラスチックフィルタ。It has a soft phase that exhibits entropy elasticity in its molecule and a hard phase to prevent plastic deformation, exhibits elastomeric properties at room temperature, and can be plastically deformed at high temperatures, with a wide temperature range above the melting point. Sintered particles selected from polyolefin-based, polyurethane-based, polyester-based, polyamide-based, chlorinated polyethylene-based, polyvinyl chloride-based, and fluorine-based thermoplastic elastomers exhibiting viscoelastic behavior with a rubbery flat part over a range. A porous plastic filter for separating fine particles, characterized by being formed. 焼結される粒子が、20℃を超える温度範囲にわたるゴム状平坦部を有する熱可塑性エラストマーから構成されたことを特徴とする請求項1記載の微粒子分離用多孔質プラスチックフィルタ。The porous plastic filter for separating fine particles according to claim 1, wherein the particles to be sintered are composed of a thermoplastic elastomer having a rubber-like flat portion over a temperature range exceeding 20 ° C. 焼結される粒子の平均粒径が10〜120μmであることを特徴とする請求項1記載の微粒子分離用多孔質プラスチックフィルタ。  2. The porous plastic filter for separating fine particles according to claim 1, wherein the sintered particles have an average particle size of 10 to 120 [mu] m.
JP19684098A 1998-07-13 1998-07-13 Porous plastic filter Expired - Fee Related JP3638794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19684098A JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19684098A JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Publications (2)

Publication Number Publication Date
JP2000024428A JP2000024428A (en) 2000-01-25
JP3638794B2 true JP3638794B2 (en) 2005-04-13

Family

ID=16364544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19684098A Expired - Fee Related JP3638794B2 (en) 1998-07-13 1998-07-13 Porous plastic filter

Country Status (1)

Country Link
JP (1) JP3638794B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528824B (en) * 2006-08-18 2012-05-09 珀雷克斯公司 Sintered polymeric materials and applications thereof
EP2721103A1 (en) 2011-06-15 2014-04-23 Porex Corporation Sintered porous plastic liquid barrier media and applications thereof

Also Published As

Publication number Publication date
JP2000024428A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
US5804074A (en) Porous plastic filter and process for its production
US20010024940A1 (en) Polishing pads and methods relating thereto
HU213007B (en) Filter element with a dimensionally stable, permeable-porous plastic body
JPH10512620A (en) Co-continuous blend of fluoropolymer and thermoplastic polymer and method of manufacture
JP2016520140A (en) Block product incorporating small particle thermoplastic binder and manufacturing method thereof
TW200946576A (en) Porous polytetrafluoroethylene membrane and method of producing the same, and filter medium
CN110982203B (en) PTFE porous material, preparation method, product and application thereof
KR102031506B1 (en) Asymmetric polytetrafluoroethylene composites with macrotextured surfaces and methods for their preparation
JP2008119662A (en) Filter and manufacturing method thereof
JP3638794B2 (en) Porous plastic filter
JP4663951B2 (en) Rotational molding method using melt-extruded TFE / PAVE copolymer
US20110117348A1 (en) Method for manufacturing resin film for thin film-capacitor and the film therefor
KR102242547B1 (en) Porous fluorine resin film
JP3914302B2 (en) Method for producing porous film made of polytetrafluoroethylene
JP2021014643A (en) Method of producing non-woven fabric made of porous fiber
JPH09313834A (en) Porous plastic filter for separating fine particle
JP3645051B2 (en) Porous multilayer plastic filter and manufacturing method thereof
JP3718313B2 (en) Porous plastic filter
JP2004310943A (en) Sliding member
EP1697448B1 (en) Sintered porous high melt-flow index materials and methods of making same
JPH07171318A (en) Sintered filter made of plastic
JP3727729B2 (en) Porous multilayer plastic filter and manufacturing method thereof
JP2000325715A (en) Porous plastic filter
CN116234675A (en) Method for preparing high-quality immobilized active medium lump material and extruder
JP3330153B2 (en) Plastic filter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees