[go: up one dir, main page]

JP3685463B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP3685463B2
JP3685463B2 JP21906295A JP21906295A JP3685463B2 JP 3685463 B2 JP3685463 B2 JP 3685463B2 JP 21906295 A JP21906295 A JP 21906295A JP 21906295 A JP21906295 A JP 21906295A JP 3685463 B2 JP3685463 B2 JP 3685463B2
Authority
JP
Japan
Prior art keywords
catalyst
supported
exhaust gas
porous carrier
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21906295A
Other languages
Japanese (ja)
Other versions
JPH0957098A (en
Inventor
清 山崎
直樹 高橋
直人 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP21906295A priority Critical patent/JP3685463B2/en
Publication of JPH0957098A publication Critical patent/JPH0957098A/en
Application granted granted Critical
Publication of JP3685463B2 publication Critical patent/JP3685463B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関などから排出される排ガスを浄化する排ガス浄化用触媒に関し、さらに詳しくは、酸素過剰の排ガス、すなわち排ガス中に含まれる一酸化炭素(CO)、水素(H2 )及び炭化水素(HC)等の還元性成分を完全に酸化するのに必要な酸素量より過剰の酸素を含む排ガス中の、窒素酸化物(NOx )を効率良く還元浄化できる排ガス浄化用触媒に関する。
【0002】
【従来の技術】
従来より、自動車の排ガス浄化用触媒として、CO及びHCの酸化とNOx の還元とを同時に行って排ガスを浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの触媒貴金属を担持させたものが広く知られている。また、酸素吸蔵能をもつセリア(セリウム酸化物)を併用し、低温活性を高めた三元触媒も知られている。
【0003】
一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃費が向上するために燃料の使用が低減され、その燃焼排ガスであるCO2 の発生を抑制することができる。
【0004】
これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO,HC,NOx を同時に酸化・還元し、浄化するものであって、前記三元触媒はリーンバーン時の排ガスの酸素過剰雰囲気下においてはNOx の還元除去に対して充分な浄化性能を示さない。このため、酸素過剰雰囲気下においてもNOx を浄化しうる触媒及び浄化システムの開発が望まれている。
【0005】
そこで本願出願人は、先にアルカリ土類金属とPtをアルミナなどの多孔質担体に担持した排ガス浄化用触媒(特開平5−317652号公報)や、ランタンとPtを多孔質担体に担持した排ガス浄化用触媒(特開平5−168860号公報)、あるいはアルカリ金属とPtを多孔質担体に担持した排ガス浄化用触媒(特開平6ー31139号公報等)を提案している。
【0006】
これらの排ガス浄化用触媒によれば、リーン側ではNOx がアルカリ土類金属やランタンあるいはアルカリ金属などのNOx 吸蔵材に吸蔵される。そしてリーンバーンエンジンにおいて定期的にストイキ又はリッチ雰囲気の混合気を供給するように制御することにより、ストイキ又はリッチ側では吸蔵されたNOx が放出され、それがHCやCOなどの還元性成分と反応して浄化されるため、NOx の浄化性能に優れている。
【0007】
【発明が解決しようとする課題】
ところで上記のNOx 吸蔵材は、Ptなどの触媒貴金属にとっては好ましいものではなく、その存在によりかえって酸化触媒能が低下する場合がある。そのため耐久後において、ストイキ又はリッチ側でのHC及びCOの浄化能が低下することがあった。
【0008】
一方、触媒貴金属の種類によって触媒活性が異なることが知られ、Ptはリーン雰囲気においてNOx を酸化しNOx 吸蔵材に吸蔵させる能力に優れている。またPt及びRhはNOx をHCなどの還元性成分と反応させる能力に優れている。一方、PdはHCやCOなどの酸化活性に優れるという特性をもっている。そこで種々の車両運転条件においてNOx 、HC、COを十分に除去するために、Pt、Rh及びPdを併用することが想起され、Pdの担持量を増量することによりストイキ又はリッチ側でのHC及びCOの浄化能が向上することが明らかとなった。ところがその反面、Pd担持量を増量するとNOx の浄化能が低下することも明らかとなった。
【0009】
このようにPdによりNOx の浄化能が低下する理由は、酸化雰囲気ではPt又はRhの表面にPdが濃縮され、またPtとPdの合金化も生じて、Ptのリーン側におけるNOを酸化してNOx 吸蔵材に吸蔵させる能力と、Pt及びRhのストイキ又はリッチ側におけるNOx をHCなどの還元性成分と反応させる能力が低下するからと考えられている。
【0010】
本発明はこのような事情に鑑みてなされたものであり、触媒貴金属やNOx 吸蔵材のそれぞれの機能が十分に果たされる構成とすることにより、排ガス中のNOx 、HC及びCOを一層効率よく浄化できる排ガス浄化用触媒の提供を目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決する本発明の排ガス浄化用触媒の特徴は、酸素過剰雰囲気下の排ガス中の炭化水素、一酸化炭素及び窒素酸化物を浄化する排ガス浄化用触媒であって、
第1多孔質担体と第1多孔質担体に担持された白金及びロジウムの少なくとも1種及びアルカリ金属,アルカリ土類金属及びCeを除く希土類元素の中から選ばれる少なくとも一種のNOx 吸蔵材とを含んでなる第1触媒と、
第2多孔質担体と第2多孔質担体に担持されたパラジウム及びアルカリ金属,アルカリ土類金属及びCeを除く希土類元素の中から選ばれる少なくとも一種のNO x 吸蔵材とを含んでなる第2触媒と、を含んで構成されたことにある。
【0012】
第1多孔質担体及び第2多孔質担体は、酸化セリウムを含むことが望ましい。
【0013】
【発明の実施の形態】
本発明の排ガス浄化用触媒では、第1触媒にPt及びRhの少なくとも一方(以下、Pt/Rhという)が担持され、第2触媒にはPdが担持されている。したがってPt/RhとPdとは分離担持されているので、Pt/Rhの触媒活性がPdにより阻害されるのが防止される。これによりPt/RhとPdとは、以下に示すように雰囲気条件の違いによりそれぞれの触媒活性が最大に発現され、NOx とHC及びCOの浄化能に優れる。
[リーン時]
(a)第1触媒上
NOx :Pt/Rhの酸化活性により酸化されてNOx 吸蔵材に吸蔵される。また一部はHCと反応して還元浄化される。
【0014】
HC・CO:低温域ではさほど活発ではないが、Pt/Rhの酸化活性により酸化浄化される。
(b)第2触媒上
NOx :変化なし。但し第2触媒にもNOx 吸蔵材が含まれていれば、その量は第1触媒に比べて少ないもののPdの酸化活性により酸化されてNOx 吸蔵材に吸蔵される。
【0015】
HC・CO:Pdの酸化活性により低温域から活発に酸化浄化される。
[ストイキ・リッチ時]
(a)第1触媒上
NOx :Ptの還元活性により還元されてN2 に浄化される。
HC・CO:NOx の還元に消費されて浄化される。
(b)第2触媒上
NOx :さほど活発ではないが、Pdの還元活性により還元浄化される。
【0016】
HC・CO:NOx の還元に消費されて浄化される。
第1及び第2多孔質担体の材質は特に限定されず、アルミナ、シリカ、シリカ・アルミナ、チタニアなどから選択して用いることができる。中でも耐熱性及び貴金属分散性に優れたアルミナを用いるのが特に好ましい。
第1及び第2多孔質担体は、コーディエライトやメタル製のハニカム担体基材やペレット担体基材に上記の材質をコートして形成してもよいし、上記材質から形成されたハニカム担体基材やペレット担体基材とすることもできる。また、第1多孔質担体と第2多孔質担体とは同一材質であってもよいし、異材質であってもよい。
【0017】
第1触媒には、少なくともPt及びRhの一方又は両方が担持され、他にPd,Au,Agの1種又は複数種が担持された構成とすることもできる。その担持量は、いずれの貴金属でも、第1多孔質担体100gに対して0.05〜40gが好ましく、0.1〜20gが特に好ましい。
第2触媒には少なくともPdが担持され、他にPt,Rh,Au,Agの1種又は複数種が担持された構成とすることもできる。Pdの望ましい担持量は、第2多孔質担体100gに対して0.2〜40gが好ましく、1〜20gが特に好ましい。
【0018】
触媒貴金属の担持量をこれ以上増加させても活性は向上せず、その有効利用が図れない。また触媒貴金属の担持量がこれより少ないと、実用上十分な活性が得られない。
なお、Pt/Rh及びPdを各多孔質担体に担持させるには、その塩化物や硝酸塩等を用いて、含浸法、噴霧法、スラリー混合法などを利用して従来と同様に担持させることができる。
【0019】
第1触媒に含まれるNOx 吸蔵材としては、アルカリ金属、アルカリ土類金属及び希土類元素から選ばれる少なくとも一種を用いることができる。アルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられる。また、アルカリ土類金属とは周期表2A族元素をいい、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられる。また希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジムなどが例示される。
【0020】
NOx 吸蔵材の含有量は、第1多孔質担体100gに対して0.05〜1.0モルの範囲が望ましい。含有量が0.05モルより少ないとNOx 吸蔵能力が小さくNOx 浄化性能が低下し、1.0モルを超えて含有しても、NOx 吸蔵能力が飽和すると同時にHCのエミッションが増加するなどの不具合が生じる。
PdによるNOの酸化も期待されるので、第2触媒にもNOx 吸蔵材を含む。このNOx 吸蔵材としては上記に例示したものを用いることができ、その含有量は第2多孔質担体100gに対して0.05〜1.0モルの範囲が望ましい。含有量が0.05モルより少ないとNOx 吸蔵能力が小さくNOx浄化性能が低下し、1.0モルを超えて含有しても、NOx 吸蔵能力が飽和すると同時にHCのエミッションが増加するなどの不具合が生じる。
【0021】
第1触媒と第2触媒との容積比は特に制限されないが、触媒貴金属及びNOx吸蔵材の担持量との兼ね合いから、第1触媒の容積が第2触媒の容積より大きいことが望ましく、さらに望ましくは第1触媒容積:第2触媒容積=6:4〜9:1の範囲がよい。また、第1触媒と第2触媒の排ガス流路内の配置順序も特に制限されないが、例えば排ガスの流れに対して第1触媒を第2触媒の上流に配置してもよいし、この逆でもよい。さらに、第1触媒と第2触媒を多段に組み合わせてもよい。また、第1触媒と第2触媒を一体化して構成してもよいし、間隔を隔てて配置してもよい。また第1触媒と第2触媒を混合して使用することもできる。
【0022】
【実施例】
以下、実施例及び比較例により本発明をさらに具体的に説明する。なお、以下にいう「部」は全て「重量部」を意味する。
(実施例1)
実施例1の排ガス浄化用触媒の模式的な構成説明図を図1に示す。この排ガス浄化用触媒は、ハニカム形状の第1触媒1と第2触媒2とからなり、第1触媒1にはPt10とRh11が担持され、NOx 吸蔵材としてのBa12が担持されている。また第2触媒2にはPd20とBa21が担持されている。
【0023】
以下、この排ガス浄化用触媒の製造方法を説明し、構成の詳細な説明に代える。
アルミナ粉末100部と、酸化セリウム粉末30部、濃度40重量%の硝酸アルミニウム水溶液65部、及び水80部を混合し、コーティング用スラリーを調製した。
【0024】
コーディエライト質のハニカム状モノリス担体基材(直径30mm、長さ50mm)をこのスラリーに浸漬し、引き上げて余分なスラリーを吹き払った後、乾燥し600℃で1時間焼成してコート層を形成し多孔質担体を調製した。コート層は、モノリス担体基材1リットル当たりアルミナが100gとなるように形成されている。またセリウム(Ce)の担持量は、モノリス担体基材1リットル当たり0.25molである。
【0025】
この多孔質担体を長さ40mm及び10mmとなるように二つに切断し、長さ40mmの方を第1担体とし、長さ10mmの方を第2担体とした。第1担体及び第2担体の直径はいずれも30mmであり、両者の体積比は8:2である。
次に、第1担体を所定濃度のジニトロジアンミン白金水溶液に浸漬し、引き上げて余分な水分を吹き払った後、250℃で乾燥してPtを担持した。次いで所定濃度の硝酸ロジウム水溶液に浸漬し、引き上げて余分な水分を吹き払った後、250℃で乾燥してRhを担持した。Pt及びRhの担持量は、それぞれ2.0g/L、0.1g/Lである。
【0026】
一方、第2担体については、所定濃度の塩化パラジウム水溶液に浸漬し、引き上げて余分な水分を吹き払った後、250℃で乾燥してPdを担持した。Pdの担持量は4.0g/Lである。
そして触媒貴金属が担持された第1担体及び第2担体を所定濃度の酢酸バリウム水溶液にそれぞれ浸漬し、引き上げて余分な水分を吹き払った後250℃で乾燥し、300℃で1時間焼成して、それぞれBaを担持して第1触媒1及び第2触媒2を調製した。Baの担持量は、第1触媒1及び第2触媒2ともに0.3mol/Lである。
(実施例2)
酢酸バリウム水溶液の代わりに硝酸ストロンチウムを用いたこと以外は実施例1と同様である。なお、Srの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例3)
酢酸バリウム水溶液の代わりに硝酸カルシウムを用いたこと以外は実施例1と同様である。なお、Caの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例4)
酢酸バリウム水溶液の代わりに硝酸マグネシウムを用いたこと以外は実施例1と同様である。なお、Mgの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例5)
酢酸バリウム水溶液の代わりに硝酸セシウムを用いたこと以外は実施例1と同様である。なお、Csの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例6)
酢酸バリウム水溶液の代わりに硝酸カリウムを用いたこと以外は実施例1と同様である。なお、Kの担持量は、第1触媒及び第2触媒ともに0.6mol/Lである。
(実施例7)
酢酸バリウム水溶液の代わりに硝酸リチウムを用いたこと以外は実施例1と同様である。なお、Liの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例8)
酢酸バリウム水溶液の代わりに硝酸ランタンを用いたこと以外は実施例1と同様である。なお、Laの担持量は、第1触媒及び第2触媒ともに0.3mol/Lである。
(実施例9)
下流側担体のPdの担持量を8.0g/Lとしたこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例10)
上流側担体のPtの担持量を1.2g/Lとしたこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例11)
上流側担体にRhを担持しなかったこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例12)
上流側担体にPtを担持せず、Rhの担持量を1.2g/Lとしたこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例13)
多孔質担体を45mmと5mmに切断し、第1担体と第2担体の体積比が9:1となるようにしたこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例14)
多孔質担体を30mmと20mmに切断し、第1担体と第2担体の体積比が6:4となるようにしたこと以外は実施例1と同様にして第1触媒及び第2触媒を調製した。
(実施例15)
Baの担持後、第1担体及び第2担体を所定濃度の硝酸リチウム水溶液にそれぞれ浸漬し、引き上げて余分な水分を吹き払った後250℃で乾燥し、300℃で1時間焼成して、それぞれLiを担持して第1触媒及び第2触媒を調製した。Liの担持量は、第1触媒及び第2触媒ともに0.1mol/Lである。
(実施例16)
酢酸バリウム水溶液の代わりに硝酸セシウムを用いたこと以外は実施例1と同様にして、それぞれCsを担持した。Csの担持量は、第1担体及び第2担体ともに0.3mol/Lである。
【0027】
Csの担持後、第1担体及び第2担体を所定濃度の硝酸リチウム水溶液にそれぞれ浸漬し、引き上げて余分な水分を吹き払った後250℃で乾燥し、300℃で1時間焼成して、それぞれLiを担持して第1触媒及び第2触媒を調製した。Liの担持量は、第1触媒及び第2触媒ともに0.1mol/Lである。
(実施例17)
酢酸バリウム水溶液の代わりに酢酸カリウムを用いたこと以外は実施例1と同様にして、それぞれKを担持した。Kの担持量は、第1担体及び第2担体ともに0.3mol/Lである。
【0028】
Kの担持後、上流側担体及び下流側担体を所定濃度の硝酸リチウム水溶液にそれぞれ浸漬し、引き上げて余分な水分を吹き払った後250℃で乾燥し、300℃で1時間焼成して、それぞれLiを担持して第1触媒及び第2触媒を調製した。Liの担持量は、第1触媒及び第2触媒ともに0.1mol/Lである。
(比較例1)
多孔質担体を切断することなく用い、全体にPt、Rh、Pd及びBaを実施例1と同様に担持した。
(比較例2)
多孔質担体を切断することなく用い、全体にPt、Rh及びPdを実施例1と同様に担持した。そして酢酸バリウム水溶液の代わりに硝酸セシウムを用いたこと以外は実施例1と同様にしてCsを担持した。Csの担持量は0.3mol/Lである。
(比較例3)
多孔質担体を切断することなく用い、Pdを担持しなかったこと以外は実施例1と同様にして、全体にPt、Rh及びBaを担持した。
(比較例4)
多孔質担体を切断することなく用い、Pdを担持しなかったこと以外は実施例1と同様にして、全体にPt及びRhを実施例1と同様に担持した。そして酢酸バリウム水溶液の代わりに硝酸セシウムを用いたこと以外は実施例1と同様にしてCsを担持した。Csの担持量は0.3mol/Lである。
(比較例5)
多孔質担体を切断することなく用い、Pt及びRhを担持しなかったこと以外は実施例1と同様にして、全体にPd及びBaを担持した。
(比較例6)
多孔質担体を切断することなく用い、Pt及びRhを担持しなかったこと以外は実施例1と同様にして、全体にPdを実施例1と同様に担持した。そして酢酸バリウム水溶液の代わりに硝酸セシウムを用いたこと以外は実施例1と同様にしてCsを担持した。Csの担持量は0.3mol/Lである。
(評価試験)
得られたそれぞれの排ガス浄化用触媒について、モデルガスによる評価試験を行った。モデルガスとしては、表1に示す組成の3種類の耐久用モデルガスと2種類の評価用モデルガスを用いた。
【0029】
【表1】

Figure 0003685463
そして実施例及び比較例の各排ガス浄化用触媒について、第1触媒及び第2触媒をそれぞれモデルガス流路の上流側及び下流側に互いに接触した状態で配置した。そして入りガス温度500℃にてA/F=22相当の耐久用モデルガスで4分間処理し、A/F=14.1相当の耐久用モデルガスで1分間処理する処理を10時間交互に繰り返し行い、次いで入りガス温度800℃にてA/F=14.6相当の耐久用モデルガスで5時間処理する耐久試験を行った。ガス流量は1リットル/minである。
【0030】
耐久試験後の各排ガス浄化用触媒について、第1触媒及び第2触媒をそれぞれモデルガス流路の上流側及び下流側に互いに接触した状態で配置した。そして入りガス温度350℃にてA/F=22相当の評価用モデルガスとA/F=14.5の評価用モデルガスを2分間隔で切り換えながら流し、その時のNOx ,HC及びCOの浄化率を測定した。結果を表2及び表3に示す。
【0031】
【表2】
Figure 0003685463
【0032】
【表3】
Figure 0003685463
【0033】
表3より、比較例3,4の排ガス浄化用触媒では、Pdを担持しないために耐久後のHC及びCOの浄化率が低い。また比較例5,6の排ガス浄化用触媒では、Pt及びRhを担持しないために耐久後のNOx 浄化率が低い。しかし、比較例1,2の排ガス浄化用触媒のようにPt、Rh及びPdを担持しても、耐久後のHC及びCOの浄化率は高いものの、耐久後のNOx 浄化率の向上はほんの僅かでPt及びRhの本来の触媒活性が得られていないことがわかる。
【0034】
一方、各実施例の排ガス浄化用触媒では、NOx 浄化率は57%以上と高く、かつHC及びCOの浄化率も90%以上と高く、Pt、Rh及びPdのそれぞれの本来の触媒活性が十分発揮されていることがわかる。つまり実施例と比較例のこの顕著な差異は、実施例において多孔質担体を分割し、Pt及びRhとPdとを分離して担持したことに起因することが明らかである。
【0035】
なお、本実施例では第1触媒を上流側に配置し、第2触媒を下流側に配置したが、この順序を逆にしてもほぼ同様の作用効果が奏される。また第2触媒にNOx 吸蔵材を含ませない場合にも、効果は若干低下するものの同様の作用効果が奏される。
【0036】
【発明の効果】
すなわち本発明の排ガス浄化用触媒によれば、Pt、Rh及びPdの本来の触媒活性が発揮されるため、リーンバンーエンジンの排気系に用いられた場合における耐久後にも高いHC、CO及びNOx の浄化活性が維持される。
【図面の簡単な説明】
【図1】本発明の一実施例の排ガス浄化用触媒の構成を示す模式的説明図である。
【符号の説明】
1:第1触媒 2:第2触媒
10:Pt 11:Rh 20:Pd[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst for purifying exhaust gas discharged from an internal combustion engine or the like, and more specifically, exhaust gas containing excess oxygen, that is, carbon monoxide (CO), hydrogen (H 2 ) and carbonization contained in the exhaust gas. The present invention relates to an exhaust gas purifying catalyst that can efficiently reduce and purify nitrogen oxides (NO x ) in exhaust gas containing oxygen in excess of the amount of oxygen necessary to completely oxidize reducing components such as hydrogen (HC).
[0002]
[Prior art]
Conventionally, a three-way catalyst that purifies exhaust gas by simultaneously performing oxidation of CO and HC and reduction of NO x has been used as an exhaust gas purification catalyst for automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. A catalyst on which a catalyst noble metal is supported is widely known. Also known is a three-way catalyst that uses ceria (cerium oxide) having oxygen storage capacity and has improved low-temperature activity.
[0003]
On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has been a problem, and so-called lean burn that makes lean combustion in an oxygen-excess atmosphere is promising as a solution. Is being viewed. In this lean burn, since the fuel consumption is improved, the use of fuel is reduced, and the generation of CO 2 as the combustion exhaust gas can be suppressed.
[0004]
On the other hand, the conventional three-way catalyst is one that simultaneously oxidizes, reduces, and purifies CO, HC, and NO x in the exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). do not exhibit sufficient purification performance for reduction and removal of the nO x in an oxygen excess atmosphere in the exhaust gas during the burn. For this reason, development of a catalyst and a purification system capable of purifying NO x even in an oxygen-excess atmosphere is desired.
[0005]
Therefore, the applicant of the present application previously described an exhaust gas purifying catalyst (JP-A-5-317652) in which an alkaline earth metal and Pt are supported on a porous carrier such as alumina, or an exhaust gas in which lanthanum and Pt are supported on a porous carrier. A purifying catalyst (Japanese Patent Laid-Open No. 5-168860) or an exhaust gas purifying catalyst (Japanese Patent Laid-Open No. 6-31139) in which an alkali metal and Pt are supported on a porous carrier is proposed.
[0006]
According to these exhaust gas purifying catalysts, NO x is occluded in the NO x occlusion material such as alkaline earth metal, lanthanum, or alkali metal on the lean side. By controlling the lean burn engine to periodically supply a stoichiometric or rich air-fuel mixture, the stored NO x is released on the stoichiometric or rich side, and this is reduced with reducing components such as HC and CO. since the reaction to be purified, is excellent in purification performance of NO x.
[0007]
[Problems to be solved by the invention]
By the way, the above-mentioned NO x storage material is not preferable for catalytic noble metals such as Pt, and the presence of the NO x storage material may decrease the oxidation catalyst ability. Therefore, after endurance, the ability to purify HC and CO on the stoichiometric or rich side may decrease.
[0008]
On the other hand, the catalytic activity is known to be different depending on the type of catalytic noble metal, Pt is excellent in ability to occluded in the NO x storage material by oxidizing the NO x in lean atmosphere. The Pt and Rh is excellent in ability to react NO x with reducing components such as HC. On the other hand, Pd has the property of being excellent in oxidative activity such as HC and CO. Thus, it is recalled that Pt, Rh, and Pd are used together in order to sufficiently remove NO x , HC, and CO under various vehicle operating conditions. By increasing the amount of Pd supported, HC on the stoichiometric or rich side can be recalled. And it became clear that the purifying ability of CO was improved. However other hand thereof when increasing the amount of supported Pd purifying ability of the NO x becomes also clear that decrease.
[0009]
The reason for this purification performance of the NO x is reduced by Pd as is, Pd is concentrated on the surface of the Pt or Rh in an oxidizing atmosphere, also occurs even alloying of Pt and Pd, and oxidizes NO in the lean side of the Pt and ability to occluded in the NO x storage material, the ability to react with the reducing component of the NO x etc. HC in stoichiometric or rich side of the Pt and Rh are believed because lowered Te.
[0010]
The present invention has been made in view of such circumstances, and by making the respective functions of the catalyst noble metal and the NO x storage material sufficiently fulfilled, the NO x , HC and CO in the exhaust gas are more efficiently produced. The object is to provide a catalyst for exhaust gas purification that can be purified well.
[0011]
[Means for Solving the Problems]
A feature of the exhaust gas purification catalyst of the present invention that solves the above problems is an exhaust gas purification catalyst that purifies hydrocarbons, carbon monoxide, and nitrogen oxides in exhaust gas in an oxygen-excess atmosphere,
A first porous support and at least one NO x storage material selected from at least one of platinum and rhodium supported on the first porous support and a rare earth element excluding alkali metal, alkaline earth metal and Ce ; A first catalyst comprising:
A second catalyst comprising a second porous carrier and at least one NO x storage material selected from the rare earth elements except palladium and alkali metals, alkaline earth metals and Ce supported on the second porous carrier And is configured to include.
[0012]
It is desirable that the first porous carrier and the second porous carrier contain cerium oxide .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In the exhaust gas purifying catalyst of the present invention, at least one of Pt and Rh (hereinafter referred to as Pt / Rh) is supported on the first catalyst, and Pd is supported on the second catalyst. Therefore, since Pt / Rh and Pd are supported separately, the catalytic activity of Pt / Rh is prevented from being inhibited by Pd. As a result, Pt / Rh and Pd exhibit the maximum catalytic activity due to the difference in the atmospheric conditions as shown below, and are excellent in NO x , HC and CO purifying ability.
[When lean]
(A) a first catalyst on NO x: are inserted in the oxidized the NO x storage material by oxidizing activity of Pt / Rh. Some of them are reduced and purified by reacting with HC.
[0014]
HC · CO: Not so active in the low temperature range, but is oxidized and purified by the oxidation activity of Pt / Rh.
(B) NO x on the second catalyst: No change. However if it also includes the NO x storage material in the second catalyst, the amount is occluded in oxidized the NO x storage material by oxidation activity Pd although less than in the first catalyst.
[0015]
Oxidation and purification is actively performed from a low temperature range by the oxidation activity of HC · CO: Pd.
[When stoichiometric rich]
(A) a first catalyst on NO x: is purified to be reduced N 2 by reduction activity of Pt.
HC · CO: Used to reduce NO x and purified.
(B) NO x on the second catalyst: Although not so active, it is reduced and purified by the reduction activity of Pd.
[0016]
HC · CO: Used to reduce NO x and purified.
The material of the first and second porous carriers is not particularly limited, and can be selected from alumina, silica, silica / alumina, titania and the like. Among these, it is particularly preferable to use alumina having excellent heat resistance and noble metal dispersibility.
The first and second porous carriers may be formed by coating a cordierite or metal honeycomb carrier substrate or pellet carrier substrate with the above material, or a honeycomb carrier substrate formed from the above material. It can also be a material or a pellet carrier substrate. Further, the first porous carrier and the second porous carrier may be made of the same material or different materials.
[0017]
The first catalyst may have a configuration in which at least one or both of Pt and Rh are supported, and one or more of Pd, Au, and Ag are supported on the first catalyst. The supported amount of any precious metal is preferably 0.05 to 40 g, particularly preferably 0.1 to 20 g, with respect to 100 g of the first porous carrier.
At least Pd is supported on the second catalyst, and one or more of Pt, Rh, Au, and Ag may be supported. The preferable loading amount of Pd is preferably 0.2 to 40 g, particularly preferably 1 to 20 g with respect to 100 g of the second porous carrier.
[0018]
Even if the amount of the catalyst noble metal supported is increased further, the activity is not improved, and the effective utilization cannot be achieved. On the other hand, if the amount of the catalyst noble metal supported is less than this, practically sufficient activity cannot be obtained.
In order to carry Pt / Rh and Pd on each porous carrier, the chloride, nitrate, etc. can be carried in the same manner as in the past using an impregnation method, a spray method, a slurry mixing method, and the like. it can.
[0019]
As the NO x storage material contained in the first catalyst, at least one selected from alkali metals, alkaline earth metals and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. Alkaline earth metal refers to Group 2A elements of the periodic table, and examples include beryllium, magnesium, calcium, strontium, and barium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, and the like.
[0020]
The content of the NO x storage material is desirably in the range of 0.05 to 1.0 mol with respect to 100 g of the first porous carrier. If the content is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the content exceeds 1.0 mol, the NO x storage capacity is saturated and at the same time the HC emission increases. Such problems occur.
Since oxidation of NO by Pd is also expected, the second catalyst also contains a NO x storage material . As the NO x storage material, those exemplified above can be used, and the content thereof is desirably in the range of 0.05 to 1.0 mol with respect to 100 g of the second porous carrier. If the content is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the content exceeds 1.0 mol, the NO x storage capacity is saturated and at the same time the HC emission increases. Such problems occur.
[0021]
The volume ratio of the first catalyst to the second catalyst is not particularly limited, but it is desirable that the volume of the first catalyst is larger than the volume of the second catalyst in view of the amount of the catalyst precious metal and the amount of the NO x storage material supported. Desirably, the first catalyst volume: second catalyst volume = 6: 4 to 9: 1 is preferable. Further, the arrangement order of the first catalyst and the second catalyst in the exhaust gas flow path is not particularly limited. For example, the first catalyst may be arranged upstream of the second catalyst with respect to the flow of the exhaust gas, or vice versa. Good. Further, the first catalyst and the second catalyst may be combined in multiple stages. Further, the first catalyst and the second catalyst may be integrated, or may be arranged with an interval. Moreover, a 1st catalyst and a 2nd catalyst can also be mixed and used.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, “parts” means “parts by weight”.
(Example 1)
FIG. 1 shows a schematic configuration diagram of the exhaust gas purifying catalyst of Example 1. As shown in FIG. The exhaust gas purifying catalyst comprises a first catalyst 1 and the second catalyst 2 which honeycomb-shaped, the first catalyst 1 Pt10 and Rh11 are supported, BA12 as the NO x storage material is supported. The second catalyst 2 carries Pd20 and Ba21.
[0023]
Hereinafter, a method for producing the exhaust gas-purifying catalyst will be described, and a detailed description of the configuration will be substituted.
100 parts of alumina powder, 30 parts of cerium oxide powder, 65 parts of an aqueous aluminum nitrate solution having a concentration of 40% by weight, and 80 parts of water were mixed to prepare a slurry for coating.
[0024]
A cordierite-type honeycomb monolith support substrate (diameter 30 mm, length 50 mm) is immersed in this slurry, pulled up to blow off excess slurry, dried, and fired at 600 ° C. for 1 hour to form a coating layer. A porous carrier was prepared. The coat layer is formed such that 100 g of alumina per liter of the monolith carrier substrate. The amount of cerium (Ce) supported is 0.25 mol per liter of the monolith carrier substrate.
[0025]
This porous carrier was cut into two pieces having a length of 40 mm and 10 mm, and the one having a length of 40 mm was used as a first carrier, and the one having a length of 10 mm was used as a second carrier. The diameters of the first carrier and the second carrier are both 30 mm, and the volume ratio between them is 8: 2.
Next, the first support was immersed in a dinitrodiammine platinum aqueous solution having a predetermined concentration, pulled up to blow off excess water, and then dried at 250 ° C. to carry Pt. Next, the substrate was immersed in an aqueous rhodium nitrate solution having a predetermined concentration, pulled up to blow off excess water, and then dried at 250 ° C. to carry Rh. The supported amounts of Pt and Rh are 2.0 g / L and 0.1 g / L, respectively.
[0026]
On the other hand, the second carrier was immersed in an aqueous palladium chloride solution having a predetermined concentration, pulled up to blow off excess water, and then dried at 250 ° C. to carry Pd. The amount of Pd supported is 4.0 g / L.
Then, the first carrier and the second carrier on which the catalyst noble metal is supported are respectively immersed in a barium acetate aqueous solution having a predetermined concentration, and then pulled up to blow off excess moisture, dried at 250 ° C., and calcined at 300 ° C. for 1 hour. The first catalyst 1 and the second catalyst 2 were prepared by carrying Ba, respectively. The supported amount of Ba is 0.3 mol / L for both the first catalyst 1 and the second catalyst 2.
(Example 2)
The same as Example 1 except that strontium nitrate was used instead of the barium acetate aqueous solution. The supported amount of Sr is 0.3 mol / L for both the first catalyst and the second catalyst.
(Example 3)
The same as Example 1 except that calcium nitrate was used instead of the barium acetate aqueous solution. The supported amount of Ca is 0.3 mol / L for both the first catalyst and the second catalyst.
(Example 4)
Example 1 is the same as Example 1 except that magnesium nitrate was used instead of the barium acetate aqueous solution. The supported amount of Mg is 0.3 mol / L for both the first catalyst and the second catalyst.
(Example 5)
Example 1 is the same as Example 1 except that cesium nitrate was used in place of the aqueous barium acetate solution. The amount of Cs supported is 0.3 mol / L for both the first catalyst and the second catalyst.
(Example 6)
The same as Example 1 except that potassium nitrate was used in place of the barium acetate aqueous solution. The supported amount of K is 0.6 mol / L for both the first catalyst and the second catalyst.
(Example 7)
Example 1 is the same as Example 1 except that lithium nitrate was used in place of the aqueous barium acetate solution. The supported amount of Li is 0.3 mol / L for both the first catalyst and the second catalyst.
(Example 8)
Example 1 is the same as Example 1 except that lanthanum nitrate was used in place of the aqueous barium acetate solution. The supported amount of La is 0.3 mol / L for both the first catalyst and the second catalyst.
Example 9
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that the amount of Pd supported on the downstream carrier was 8.0 g / L.
(Example 10)
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that the amount of Pt supported on the upstream carrier was 1.2 g / L.
(Example 11)
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that Rh was not supported on the upstream carrier.
(Example 12)
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that Pt was not supported on the upstream carrier and the supported amount of Rh was 1.2 g / L.
(Example 13)
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that the porous carrier was cut into 45 mm and 5 mm so that the volume ratio of the first carrier to the second carrier was 9: 1. .
(Example 14)
A first catalyst and a second catalyst were prepared in the same manner as in Example 1 except that the porous carrier was cut into 30 mm and 20 mm so that the volume ratio of the first carrier to the second carrier was 6: 4. .
(Example 15)
After supporting Ba, the first carrier and the second carrier are each immersed in a predetermined concentration of lithium nitrate aqueous solution, pulled up to blow off excess moisture, dried at 250 ° C., and calcined at 300 ° C. for 1 hour, A first catalyst and a second catalyst were prepared by supporting Li. The supported amount of Li is 0.1 mol / L for both the first catalyst and the second catalyst.
(Example 16)
Cs was supported in the same manner as in Example 1 except that cesium nitrate was used instead of the barium acetate aqueous solution. The amount of Cs supported is 0.3 mol / L for both the first carrier and the second carrier.
[0027]
After supporting Cs, each of the first carrier and the second carrier is immersed in a predetermined concentration of lithium nitrate aqueous solution, pulled up to blow off excess moisture, dried at 250 ° C., and calcined at 300 ° C. for 1 hour. A first catalyst and a second catalyst were prepared by supporting Li. The supported amount of Li is 0.1 mol / L for both the first catalyst and the second catalyst.
(Example 17)
K was supported in the same manner as in Example 1 except that potassium acetate was used instead of the barium acetate aqueous solution. The amount of K supported is 0.3 mol / L for both the first carrier and the second carrier.
[0028]
After carrying K, the upstream carrier and the downstream carrier are each immersed in an aqueous solution of lithium nitrate of a predetermined concentration, pulled up to blow off excess water, dried at 250 ° C., fired at 300 ° C. for 1 hour, A first catalyst and a second catalyst were prepared by supporting Li. The supported amount of Li is 0.1 mol / L for both the first catalyst and the second catalyst.
(Comparative Example 1)
The porous carrier was used without being cut, and Pt, Rh, Pd and Ba were supported in the same manner as in Example 1.
(Comparative Example 2)
The porous carrier was used without being cut, and Pt, Rh and Pd were supported in the same manner as in Example 1. Cs was supported in the same manner as in Example 1 except that cesium nitrate was used instead of the barium acetate aqueous solution. The amount of Cs supported is 0.3 mol / L.
(Comparative Example 3)
The porous support was used without cutting, and Pt, Rh, and Ba were supported on the whole in the same manner as in Example 1 except that Pd was not supported.
(Comparative Example 4)
Pt and Rh were supported in the same manner as in Example 1 except that the porous carrier was used without being cut and Pd was not supported. Cs was supported in the same manner as in Example 1 except that cesium nitrate was used instead of the barium acetate aqueous solution. The amount of Cs supported is 0.3 mol / L.
(Comparative Example 5)
The porous support was used without cutting, and Pd and Ba were supported as a whole in the same manner as in Example 1 except that Pt and Rh were not supported.
(Comparative Example 6)
The porous support was used without cutting, and Pd was supported on the whole in the same manner as in Example 1 except that Pt and Rh were not supported. Cs was supported in the same manner as in Example 1 except that cesium nitrate was used instead of the barium acetate aqueous solution. The amount of Cs supported is 0.3 mol / L.
(Evaluation test)
Each obtained exhaust gas purification catalyst was subjected to an evaluation test using a model gas. As the model gas, three kinds of durability model gases having the composition shown in Table 1 and two kinds of evaluation model gases were used.
[0029]
[Table 1]
Figure 0003685463
And about each exhaust gas purification catalyst of an Example and a comparative example, the 1st catalyst and the 2nd catalyst were arrange | positioned in the state which mutually contacted the upstream and downstream of the model gas flow path, respectively. Then, the treatment was performed for 4 minutes with a durable model gas equivalent to A / F = 22 at an inlet gas temperature of 500 ° C., and for 1 minute with the durable model gas equivalent to A / F = 14.1, alternately for 10 hours. Then, an endurance test was performed in which the gas was treated for 5 hours with an endurance model gas corresponding to A / F = 14.6 at an inlet gas temperature of 800 ° C. The gas flow rate is 1 liter / min.
[0030]
About each exhaust gas purifying catalyst after an endurance test, the 1st catalyst and the 2nd catalyst were arranged in the state which contacted mutually the upstream and the downstream of the model gas channel, respectively. Then, an evaluation model gas corresponding to A / F = 22 and an evaluation model gas corresponding to A / F = 14.5 are made to flow at intervals of 2 minutes at an inlet gas temperature of 350 ° C., and NO x , HC and CO at that time are flown The purification rate was measured. The results are shown in Tables 2 and 3.
[0031]
[Table 2]
Figure 0003685463
[0032]
[Table 3]
Figure 0003685463
[0033]
From Table 3, the exhaust gas purifying catalysts of Comparative Examples 3 and 4 have low HC and CO purification rates after durability because they do not carry Pd. In the exhaust gas purifying catalyst of Comparative Example 5, 6, NO x purification ratio after durability is low in order not carrying Pt and Rh. However, even if carrying Pt, the Rh and Pd as the exhaust gas purifying catalyst of Comparative Example 1, although the purification rate of HC and CO after the endurance is high, improvement of the NO x purification ratio after durability is only a It can be seen that the original catalytic activity of Pt and Rh was not obtained.
[0034]
On the other hand, in the exhaust gas purification catalyst of each example, the NO x purification rate is as high as 57% or more, and the purification rate of HC and CO is as high as 90% or more, and the original catalytic activity of each of Pt, Rh, and Pd is high. It turns out that it is fully demonstrated. That is, it is clear that this remarkable difference between the example and the comparative example is caused by dividing the porous support in the example and separating and supporting Pt, Rh, and Pd.
[0035]
In the present embodiment, the first catalyst is disposed on the upstream side and the second catalyst is disposed on the downstream side. However, even if this order is reversed, substantially the same operation and effect can be obtained. Even when the NO x storage material is not included in the second catalyst, the same effect can be obtained although the effect is slightly reduced.
[0036]
【The invention's effect】
That is, according to the exhaust gas purifying catalyst of the present invention, the original catalytic activity of Pt, Rh and Pd is exerted, so that when used in the exhaust system of a lean van engine, high HC, CO and NO even after endurance. The purifying activity of x is maintained.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing a configuration of an exhaust gas purifying catalyst according to an embodiment of the present invention.
[Explanation of symbols]
1: First catalyst 2: Second catalyst 10: Pt 11: Rh 20: Pd

Claims (2)

酸素過剰雰囲気下の排ガス中の炭化水素、一酸化炭素及び窒素酸化物を浄化する排ガス浄化用触媒であって、
第1多孔質担体と該第1多孔質担体に担持された白金及びロジウムの少なくとも1種及びアルカリ金属,アルカリ土類金属及びCeを除く希土類元素の中から選ばれる少なくとも一種のNOx 吸蔵材とを含んでなる第1触媒と、
第2多孔質担体と該第2多孔質担体に担持されたパラジウム及びアルカリ金属,アルカリ土類金属及びCeを除く希土類元素の中から選ばれる少なくとも一種のNO x 吸蔵材とを含んでなる第2触媒と、を含んで構成されたことを特徴とする排ガス浄化用触媒。
An exhaust gas purifying catalyst for purifying hydrocarbons, carbon monoxide and nitrogen oxides in exhaust gas under an excess oxygen atmosphere,
A first porous carrier and at least one NO x storage material selected from at least one of platinum and rhodium supported on the first porous carrier and a rare earth element excluding alkali metal, alkaline earth metal and Ce ; A first catalyst comprising:
A second porous carrier comprising a second porous carrier and at least one NO x storage material selected from the rare earth elements excluding palladium and alkali metals, alkaline earth metals and Ce supported on the second porous carrier. And a catalyst for exhaust gas purification comprising the catalyst.
前記第1多孔質担体及び前記第2多孔質担体は酸化セリウムを含む請求項1記載の排ガス浄化用触媒。The exhaust gas-purifying catalyst according to claim 1, wherein the first porous carrier and the second porous carrier contain cerium oxide .
JP21906295A 1995-08-28 1995-08-28 Exhaust gas purification catalyst Expired - Lifetime JP3685463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21906295A JP3685463B2 (en) 1995-08-28 1995-08-28 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21906295A JP3685463B2 (en) 1995-08-28 1995-08-28 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPH0957098A JPH0957098A (en) 1997-03-04
JP3685463B2 true JP3685463B2 (en) 2005-08-17

Family

ID=16729681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21906295A Expired - Lifetime JP3685463B2 (en) 1995-08-28 1995-08-28 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3685463B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4012320B2 (en) * 1998-10-15 2007-11-21 株式会社アイシーティー Exhaust gas purification catalyst for lean combustion engine
JP4438114B2 (en) * 1999-01-14 2010-03-24 株式会社日立製作所 Exhaust gas purification method, exhaust gas purification catalyst and exhaust gas purification device for internal combustion engine
JP3897483B2 (en) * 1999-03-31 2007-03-22 トヨタ自動車株式会社 Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
US6729125B2 (en) 2000-09-19 2004-05-04 Nissan Motor Co., Ltd. Exhaust gas purifying system
US6557342B2 (en) 2000-09-19 2003-05-06 Nissan Motor Co., Ltd. Exhaust gas purifying system
JP2007130580A (en) * 2005-11-10 2007-05-31 Toyota Motor Corp Exhaust gas purification device and exhaust gas purification method
JP2009000624A (en) * 2007-06-21 2009-01-08 Toyota Motor Corp Exhaust gas purification catalyst
JP5684973B2 (en) * 2008-07-22 2015-03-18 株式会社豊田中央研究所 Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5720949B2 (en) * 2011-12-08 2015-05-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
KR101745150B1 (en) 2015-10-13 2017-06-09 현대자동차주식회사 Lnt catalyst
JP7195995B2 (en) * 2019-03-27 2022-12-26 株式会社キャタラー Exhaust gas purification catalyst
JP6775052B2 (en) * 2019-03-27 2020-10-28 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPH0957098A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
JP3358766B2 (en) Exhaust gas purification catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3821343B2 (en) Exhaust gas purification device
JP3789231B2 (en) Exhaust gas purification catalyst
JPH08117600A (en) Catalyst for purifying exhaust gas and preparation of catalyst
JPH07155601A (en) Exhaust gas purifying catalyst
JP3589383B2 (en) Exhaust gas purification catalyst
JP3532979B2 (en) Exhaust gas purification catalyst
JPH10128114A (en) Catalyst for purifying exhaust gas
JPH0810573A (en) Exhaust gas purifying device
JP3741292B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2004216224A (en) NOx storage reduction catalyst
JP3775080B2 (en) Exhaust gas purification catalyst
JP3551346B2 (en) Exhaust gas purification equipment
JP4479418B2 (en) Exhaust gas purification catalyst
JP2002168117A (en) Exhaust emission control system
JPH07132226A (en) Catalyst for purifying exhaust gas
JPH09299795A (en) Exhaust gas purification catalyst
JP4225099B2 (en) Exhaust gas purification catalyst, exhaust gas purification device, and exhaust gas purification method
JP3338889B2 (en) Exhaust gas purification device
JP3347481B2 (en) Exhaust gas purification catalyst
JP3839860B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2005185966A (en) Automobile exhaust emission purification catalyst
JP2010017693A (en) NOx STORAGE CATALYST
JP2009000624A (en) Exhaust gas purification catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term