[go: up one dir, main page]

JP3664302B2 - Electrolytic water purifier - Google Patents

Electrolytic water purifier Download PDF

Info

Publication number
JP3664302B2
JP3664302B2 JP2001308609A JP2001308609A JP3664302B2 JP 3664302 B2 JP3664302 B2 JP 3664302B2 JP 2001308609 A JP2001308609 A JP 2001308609A JP 2001308609 A JP2001308609 A JP 2001308609A JP 3664302 B2 JP3664302 B2 JP 3664302B2
Authority
JP
Japan
Prior art keywords
water purification
purification member
porous water
porous
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001308609A
Other languages
Japanese (ja)
Other versions
JP2003113488A (en
Inventor
滋夫 栃窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2001308609A priority Critical patent/JP3664302B2/en
Publication of JP2003113488A publication Critical patent/JP2003113488A/en
Application granted granted Critical
Publication of JP3664302B2 publication Critical patent/JP3664302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多数の細孔を備えている多孔質浄水部材に電圧を印加して水を電気分解させる電解浄水器に関し、殊に、電気分解で発生したガス、殊に、活性が強いと一般に言われている電気分解直後のガスを多孔質浄水部材の細孔に効率的に吸蔵するのに有利な電解浄水器に適用できる。本発明は、家庭用、医療用、業務用等の浄水器に適用できる。
【0002】
【従来の技術】
浄水器は、内壁面で区画された給水室をもつ容器と、容器の給水室に収容された水浄化性をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを備えている。この浄水器によれば、水が多孔質浄水部材により浄化される。
【0003】
また、最近の文献の実証データによれば、電気分解した直後の水素ガスは、電気分解からかなり時間が経過した通常のガス(一般的には水素ガス)よりも、活性に富み、生体等に有効であることが報告されている。即ち、電気分解した直後に確認される極微小サイズ(一般的には3〜100nm)のガス粒(一般的には水素ガス粒)は、電気分解から時間が経過した通常のガス(水素:一般的には、10〜30μm)よりも活性に富み、生体等に有効であることが報告されている。
【0004】
【発明が解決しようとする課題】
本発明は上記した多孔質浄水部材を有する浄水器の開発の一貫としてなされたものであり、請求項1は、電気分解で発生したガスを多孔質浄水部材の細孔に吸蔵させるのに有利な、殊に、生体に良いとされている電気分解直後の活性に富むガスを多孔質浄水部材の細孔に吸蔵させるのに有利な電解浄水器を提供することを課題とする。さらに請求項2は、直流電圧を印加する際に発生する陽極腐蝕を抑え、且つ、陰極(−極)となる部位に炭酸カルシュームまたは炭酸マグネシューム等の生成物が堆積することを抑制するのに有利な電解浄水器を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明に係る電解浄水器は、内壁面で区画された給水室をもつ容器と、前記容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、前記容器の給水室に給水する給水部と、前記容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、
、前記多孔質浄水部材は、環状隙間を形成するように径方向において少なくとも2つの多孔質浄水部材に分割されており、
一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、他の多孔質浄水部材は第2給電端子と接続されて第2電極とされており、
前記第1電極と前記第2電極とに電圧を印加することにより、前記環状隙間の水を電気分解し、発生したガスを前記多孔質浄水部材の細孔に吸蔵させるようにしていることを特徴とするものである。
【0006】
一般的には、電気分解で生成した直後のガスは、活性が高く、生体によい影響を与えると言われている。また、電気分解で生成した直後のガスのサイズは、時間が経過したものに比較して、サイズが極微小であり、生体によい影響を与えると言われている。
【0007】
本発明に係る電解浄水器によれば、環状隙間を形成するように径方向において少なくとも2つの筒状の多孔質浄水部材に分割されている。従って、径方向において2つに分割されていても良い。場合によっては、径方向において3個に分割されていても良いし、4個に分割されていても良い。一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、一の多孔質浄水部材に対面する他の多孔質浄水部材は第2給電端子と接続されて第2電極とされている。第1電極と第2電極とに電圧を印加することにより、環状隙間の水が電気分解される。即ち、環状隙間が電解室とされる。この場合、環状隙間の近傍に一の多孔質浄水部材及び他の多孔質浄水部材が配置されているため、電気分解で発生したガスを一の多孔質浄水部材の細孔、他の多孔質浄水部材の細孔に吸蔵させ易い。この場合、電気分解で生成した直後のガスを一の多孔質浄水部材の細孔、他の多孔質浄水部材の細孔に拡散させて吸蔵させるのに有利となる。
【0008】
本発明に係る電解浄水器によれば、多数の細孔を保有する多孔質浄水部材はガス透過抵抗性をもつため、電気分解でガスが発生すれば、電解室とされた環状隙間における圧力を効果的に上昇させ得る。このように電解室とされた環状隙間内における圧力が上昇すれば、電解室とされた環状隙間内におけるガスを多孔質浄水部材の内部の内部に、上昇した圧力によってガス拡散させ吸蔵させ易くなる。
【0009】
【発明の実施形態】
本発明に係る電解浄水器の好ましい形態によれば、次の形態の少なくとも一つを採用できる。
【0010】
・電解室は一の多孔質浄水部材及び他の多孔質浄水部材により形成された環状隙間で構成できる。この場合、電解室である環状隙間としては、多孔質浄水部材の軸端(例えば上端、下端)までを貫通または実質的に貫通する形態を採用できる。さらに、電解室である環状隙間の貫通方向の端部には、電解室の端部を閉鎖して電解室の圧力を高めるために電解室の端部を閉鎖するシールキャップ等の閉鎖部が設けられている形態を採用できる。電解室である環状隙間の閉鎖性が閉鎖部により高まり、電解室である環状隙間における電気分解で発生したガスによって、電解室である環状隙間の圧力を増加させるのに有利となる。この場合には、電解室である環状隙間において電気分解で発生させたガス、殊に電気分解直後のガスを多孔質浄水部材の細孔に早期に吸蔵させ得る効果を期待できる。電解室における環状隙間の隙間幅を維持するためのスペーサ部材等の隙間維持手段をシールキャップ等の閉鎖部に一体的に形成することもできる。なお、電解室である環状隙間の隙間幅が過剰に大きくなると、電解電流が流れにくくなる。故に、電解室である環状隙間の隙間幅としては、印加する電圧によっても相違するものの、例えば、30ミリメートル以下、20ミリメートル以下、10ミリメートル以下、5ミリメートル以下、4ミリメートル以下とすることができる。
【0011】
・一の多孔質浄水部材及び他の多孔質浄水部材は共に、筒形状をなしている形態を採用できる。一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、他の多孔質浄水部材は第2給電端子と接続されて第2電極とされている。第1電極と第2電極とに電圧(交流電圧が好ましいが、場合によっては直流電圧でも良い)を印加することにより、環状隙間の水を電気分解し、発生したガスを多孔質浄水部材の細孔に吸蔵させる。第1電極と第2電極との間に印加する電圧としては必要に応じて適宜選択でき、例えば、1.5〜9.0ボルトの範囲内、殊に5〜7ボルトの範囲内とすることができるが、これに限定されるものではない。本明細書でいうボルト及びアンペアは、交流の場合には実効値を意味する。
【0012】
・容器としてはチタン合金、ステンレス鋼、高合金鋼等の耐食材料で形成することが好ましい。後述する実施例のように、第1電極、第2電極に導通される場合には、一般的には容器等を構成する導通部材は分極されやすい。陽極(+極)に分極された部位では金属部品は陽極腐蝕を起こすおそれがある。また直流電圧を第1電極及び第2電極に印加する場合には、陽極(+極)とされた部位では金属部品は陽極腐蝕を起こす。しかしながら正電位・負電位が単位時間当たり多数回繰り返される交流電圧を第1電極及び第2電極に印加する場合には、酸化、還元がサイクル数に基づいて単位時間当たり何回も繰り返されるので、直流電圧を印加する場合に比較し、陽極腐蝕、陽極溶出を抑えることができる。また、直流電圧を第1電極及び第2電極に印加する場合には、電解浄水器の使用が長期にわたると、陰極(−極)側には、炭酸カルシューム、炭酸マグネシューム等の生成物が堆積するが、これらの堆積を抑えるためにも、正電位・負電位が単位時間あたり多数回交互に繰り返される交流電圧を第1電極及び第2電極に印加することが好ましい。交流電圧の周波数としては、500Hz以下、300Hz以下、200Hz以下を採用することができる。家庭に給電されている交流電圧を考慮すると、40〜70Hzの範囲内、殊に50〜60Hzの範囲内を採用することができる。具体的には通常の交流式家庭電器製品と同様に、50Hzまたは60Hzを採用することができる。従って、本発明の電解浄水器は、第1電極及び第2電極に交流を印加する交流印加部を有することが好ましい。交流印加部としては第1電極及び第2電極に交流を印加するものであれば良く、構造、機能は特に限定されない。
【0013】
・交流電圧を第1電極及び第2電極に印加する場合には、図6(A)〜図6(C)に示す形態を例示することができる。横軸のtは時間を意味する。図6(A)に示す形態によれば、正電圧・負電圧が単位時間あたりサインカーブ状に多数回交互に繰り返され、正電圧のピーク電圧+Vpと負電圧のピーク電圧−Vpとは、符号を除けば基本的には同じ大きさである。図6(B)に示す形態によれば、正電圧(ピーク電圧:+Vp)及び負電圧(ピーク電圧:−Vp)が単位時間あたり多数回交互に繰り返され、正電圧のピーク電圧+VpはΔVバイアスされている。バイアスされる側は、第1電極A1及び第2電極A2のいずれかとすることができる。図6(C)に示す形態によれば、正電圧の矩形波と負電圧の矩形波が単位時間あたり多数回交互に繰り返される。なお交流電圧の波形は図6(A)〜図6(C)に示す形態に限定されるものではない。
【0014】
・多孔質浄水部材は多数の細孔を有し、菌等の異物に対する高い捕捉性を有する。細孔同士は連通しており、水を透過させ得る水透過層を形成する。細孔は水浄化能力を有する他に、電気分解で発生した水素や酸素等といったガス等の物質を吸蔵させ得る。多孔質浄水部材としては、電気良導体である活性炭等の炭素系物質(一般的には炭素系成形体)を利用して構成することが好ましい。この場合には、多孔質浄水部材は活性炭と結合材によって成形できる。活性炭としては粉末状、粒状、繊維状の少なくとも1種を採用できる。
【0015】
【実施例】
以下、本発明に係る電解浄水器の実施例について図1〜図3を参照しつつ具体的に説明する。図1は、据え置き型の家庭用または業務用の電解浄水器を示し、全体構成の断面図を示す。図2は主要部を拡大した電解浄水器の詳細断面図を示す。図3は内部を一部断面にして示す電解浄水器の外観図を示す。容器1は、金属で円筒形状に成形された容器本体としての筒部10と、円形平板形状をなし筒部10の下側の軸端開口を閉鎖するように溶接で固定された金属板で形成された底蓋11と、筒部10の下端部を保持する樹脂製の台座12と、筒部10の上側の軸端開口において取り付けられた固定部として機能する樹脂の電装収容部13とを有している。筒部10及び底蓋11を構成する金属は、耐食性が高い金属の代表例であるステンレス鋼で形成されているが、これに限らず、アルミ合金、チタン、チタン合金、樹脂の少なくとも1種で形成してもよい。容器1は圧力容器を形成している。
【0016】
容器1は、筒部10の内壁面10mで形成された横断面円形状の給水室14を有する。給水室14の横断面は円形状とされているが、これに限定されるものでなく、四角形状等の角形状でもよい。電装収容部13は、電装品を収容する電装室16と電装室16の上面開口を閉じる蓋16aとを有しており、リング状のシール部材19を介して筒部10の上端部に着脱可能に固定されている。電装収容部13は、樹脂製の蓋部材18T及び樹脂またはゴム製のシール部材19を上側から圧縮しており、筒部10の上端部と電装収容部13との間の水密性を確保している。
【0017】
電装収容部13の裏面13a側には、図2に示す如く、チタン合金、ステンレス鋼、炭素鋼等の導電材料で形成されたビス17,18が保持されている。ビス17,18には交流電圧が印加されるため、交流印加部として機能できる。ビス17,18は、給電リード線の接続のために図略のナット部材が螺合される雄螺子部17m,18mを有する。図2に示すように、ビス17の下部の雄螺子部には、加圧体17aの雌螺子部が螺着されて固定されている。加圧体17aと電装収容部13との間には、バネ17cが配置されている。バネ17cは、内側多孔質浄水部材4に対する通電抵抗を低減させるための付勢手段として機能する。またビス18の下部の雄螺子部に加圧体18aの雌螺子部が螺着されて保持されている。加圧体18aと電装収容部13との間には、バネ18cが配置されている。バネ18cは、外側多孔質浄水部材5に対する通電抵抗を低減させるための付勢手段として機能する。バネ17c,18cはコイル状とされているが、これに限らず板バネ、皿バネ、発泡体等でも良い。
【0018】
容器1の筒部10の給水室14内には、円筒形状の多孔質浄水部材3が同軸的に収容されている。多孔質浄水部材3は、実質的に同軸的に配置された厚肉状の内側多孔質浄水部材4と厚肉状の外側多孔質浄水部材5とで構成されている。内側多孔質浄水部材4は厚肉の円筒形状をなしており、筒空洞状の中央孔4aを有する円筒形状の内壁面4iと、内壁面4iに背向する円筒形状の外壁面4kとを有する。外側多孔質浄水部材5は、内側多孔質浄水部材4を外周側を包囲する厚肉の円筒形状をなしており、内側多孔質浄水部材4の外壁面4kに環状隙間6を介して対面する円筒形状の内壁面5iと、筒部10の内壁面10mに対面する円筒形状の外壁面5kとを有する。環状隙間6は周方向において隙間間隔が均等またはほぼ均等となるようにリング形状をなしており、内側多孔質浄水部材4と外側多孔質浄水部材5との直接的導通を回避し、両者を電気的に絶縁する絶縁空間として機能することができる。環状隙間6の隙間幅は、多孔質浄水部材3の軸長方向にわたり、均一または実質的に均一とされている。
【0019】
内側多孔質浄水部材4と外側多孔質浄水部材5との双方は、多孔質の活性炭ブロックフィルターであり、粉末状の活性炭と結合材と水とを所定の重量比で混練した材料を加圧成形して厚肉状の成形体とし、成形体を焼成した後に、所定のサイズに研削して形成したものである。内側多孔質浄水部材4と外側多孔質浄水部材5については、気孔率としては適宜選択されるが、例えば体積比で15〜65%範囲内に設定できる。但し気孔率はこれに限定されるものではない。このような気孔率を有する微細な水透過層であれば、内側多孔質浄水部材4および外側多孔質浄水部材5の微生物の繁殖が抑え易い利点がある。また、含水した活性炭は、一般的に、空気中ではよく酸素を吸着し、水中では水中を拡散してくる電解水素ガスについても多量に吸蔵することが本発明者の試験により確認された。上記した結合材としては、焼結する必要のない溶融温度の低い熱可塑性樹脂(例えばポリエチレン)の粉末、あるいは、アルミナ系またはシリカ系等の無機バインダを用いてもよい。内側多孔質浄水部材4と外側多孔質浄水部材5は、水に含まれる次亜塩素酸(以下塩素という)等を化学反応で除去する水浄化性を有し、更に細孔により、水に溶解したトリハロメタン類等の有害物質を吸着する水浄化性を有する。本実施例に係る内側多孔質浄水部材4、外側多孔質浄水部材5によれば、内側多孔質浄水部材4、外側多孔質浄水部材5の水透過層を形成する細孔の径は平均で0.1〜20ミクロン、特に0.3〜20ミクロン、殊に0.3〜15ミクロンとすることができる。但し細孔径は上記した範囲に限定されるものではない。前記したように、内側多孔質浄水部材4は中央孔4aをもつ厚肉状の円筒形状をなす。外側多孔質浄水部材5は、内側多孔質浄水部材4を軸芯状に配置して環状間隙6を形成する中央孔5aをもつ厚肉状の円筒形状をなしている。
【0020】
本実施例では、図1に示すように、内側多孔質浄水部材4と外側多孔質浄水部材5の軸端付近の損傷等を防ぐため、内側多孔質浄水部材4および外側多孔質浄水部材5を略同心円状に配置して構成した多孔質浄水部材3の軸端には、樹脂またはゴム等の高分子材料で形成されたシールキャップ70,71(閉鎖部)が接着剤により接着されている。シールキャップ70,71は電気絶縁性およびシール性を有する。図1に示すように、シールキャップ70は、内側多孔質浄水部材4及び外側多孔質浄水部材5の軸端面(上端面)を被覆するキャップ70aと、内側多孔質浄水部材4の内壁面4iの上部を被覆する内側被覆部70bと、外側多孔質浄水部材5の外壁面5kの上部を被覆する外側被覆部70cとを備えている。
【0021】
図1に示すように、シールキャップ71は、内側多孔質浄水部材4及び外側多孔質浄水部材5の軸端面(下端面)を被覆するキャップ71aと、内側多孔質浄水部材4の内壁面4iの下部を被覆する内側被覆部71bと、外側多孔質浄水部材5の外壁面5kの下部を被覆する外側被覆部71cとを備えている。シールキャップ70,71は、環状隙間6の隙間幅を維持するための隙間維持手段としても機能することができる。またシールキャップ70,71により、内側多孔質浄水部材4および外側多孔質浄水部材5の軸端面(上端面4u,下端面4d)から浄化不充分の水が浸入することが抑止される。即ち、内側多孔質浄水部材4の外壁面4kおよび外側多孔質浄水部材5の外壁面5kから水が内側多孔質浄水部材4および外側多孔質浄水部材5の内部に進入できるようにされている。
【0022】
吐水用の内筒部材として機能するセンターパイプ22はパイプ孔で形成された通路22wを有し、周壁に多数の通孔22kを有する。センターパイプ22は、内側多孔質浄水部材4の中央孔4a内に縦型で設置されている。容器10の底蓋11には係合部材としてのエルボ23が溶接で固定されている。センターパイプ22の下端部は、エルボ23の雄ネジ孔に接続された係合部材としてのブッシュ24を介してねじ込み固定されている。センターパイプ22の上端部は、ホルダ21に保持された上側のブッシュ25をねじ込むことにより一体とされている。
【0023】
電装収容部13は、電源からのリード線を通す開口13c、LED27a,27b(図3参照)を有する。LED27aは、内側多孔質浄水部材4と外側多孔質浄水部材5とに電圧が印加されており、電解室(即ち、内側多孔質浄水部材4と外側多孔質浄水部材5との間の環状間隙6に相当)において電気分解が生じているときに点灯するものである。従ってLED27aは、浄水器において電気分解処理が行われていることを使用者に報知する第1報知手段として機能する。LED27bは、浄水器において電気分解処理が行われていないことを使用者に報知する第2報知手段として機能する。従ってLED27bは、電気分解で発生したガスが内側多孔質浄水部材4および外側多孔質浄水部材5に吸蔵されていることを報知するガス吸蔵報知手段としても機能できる。
【0024】
本実施例によれば、発生した水素量を還元電位に置き換えて表示する表示部26(図3参照)が電装収容部13の外面側に使用者により視認できる位置に設けられている。還元電位のセンシングについては、図2に示すように、電装収容部13内部に搭載したセンサー27で行っている。センサー27の検出部27fはセンターパイプ22の上側に位置している。センサー27の図示していないマイコンを持った出力部は結露、浸水等を考慮すれば、電装収容部13に水密構造で設置することが好ましい。
【0025】
図1に示すように容器1の側方には、給水室14に水を供給する給水部29、給水部29に連通する1次浄化部として機能するフィルタ部90が設置されている。給水部29はホース等の連結管29rを介して図略の水道の蛇口に接続されている。水道の蛇口が開放されると、水道水等の浄化前の原水が、給水部29の通路29aを介してフィルタ部90に供給されて予備処理として濾過される。フィルタ部90で濾過された水は、フィルタ部90の中空室90wから給水部29の通路29cを経て、容器1内の給水室14のうち、給水隙間4xに導かれる。給水隙間4xは外側多孔質浄水部材5の外壁面5kと筒部10の内壁面10mとの間のリング状の隙間である。
【0026】
さて本実施例によれば、図1に示すように、内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとは、これらの軸長方向に電解室となるリング状の環状間隙6(隙間幅X0)を構成している。環状間隙6は電解室となり、内側多孔質浄水部材4および外側多孔質浄水部材5における水の往路に設けられている。図2に示すように、内側多孔質浄水部材4の上端面4uに形成されている凹部4wには、コマ型の給電端子34(第1給電端子)が電気的に接触した状態で保持されている。図2に示すように、コマ型の給電端子34は導電材料(例えばチタン、チタン合金、合金鋼)で形成されており、凹部4wに嵌合された本体34aと、径外方向に延設された鍔部34bと、保持性を高めるために内側多孔質浄水部材4に食い込んだ突起状の食い込み部34cとを有する。バネ17cで付勢された加圧体17aにより、コマ型の給電端子34は内側多孔質浄水部材4に導電可能に圧接されており、圧接により給電端子34と内側多孔質浄水部材4との間の通電抵抗が軽減されており、給電性が確保されている。これにより内側多孔質浄水部材4は、コマ型の給電端子35と接続されて第1電極A1とされている。
【0027】
図2に示すように、コマ型の給電端子35(第2給電端子)も同様に導電材料(例えばチタン、チタン合金、合金鋼)で形成されており、外側多孔質浄水部材5の上端面5uに形成された凹部4wに嵌合された本体35aと、径外方向に延設された鍔部35bと、保持性を高めるために外側多孔質浄水部材5に食い込んだ突起状の食い込み部35cとを有する。バネ18cで付勢された加圧体18aにより、コマ型の給電端子35は外側多孔質浄水部材5に導電可能に圧接されており、圧接により給電端子35と外側多孔質浄水部材5との間における通電抵抗が軽減されており、給電性が確保されている。これにより外側多孔質浄水部材5は、コマ型の給電端子34と接続されて第2電極A2とされている。図1,図2に示すように、コマ型の給電端子34,35は多孔質浄水部材3のうちの同一面側(上端面側)に配置されているため、多孔質浄水部材3に対する給電に有利である。
【0028】
図1に示すように、外側多孔質浄水部材5の下端面5dにも、給電端子35を収容可能な凹部4woが形成されている。この凹部4woにはシール部4nが嵌められている。内側多孔質浄水部材4の下端面4dにも給電端子34を収容可能な凹部4woが形成されており、この凹部4woにも同様なシール部4nが嵌められている。従って、内側多孔質浄水部材4及び外側多孔質浄水部材5を上下逆にしても、シール部4nを外した状態の凹部4woにコマ型の給電端子34,35を取り付けることができる。即ち、内側多孔質浄水部材4及び外側多孔質浄水部材5は上下反転したとしても、給電できるような上下反転給電可能な構造とされている。
【0029】
なお、直流電圧を第1電極A1及び第2電極A2に印加した場合には、直流電圧の陽極(+極)側においては、印加電流値にもよるが、陽極(+極)側をステンレス鋼、チタン、炭素等で形成したとしても、これらは酸化して、溶出したり、酸化膜を形成して導通を悪くしたり、また、表面をボロボロにしたり、弊害を及ぼす。この点について本実施例によれば、正負の電圧が交互となる交流電圧を第1電極A1及び第2電極A2に印加する交流電圧印加方式を採用している。このため、第1電極A1及び第2電極A2において単位時間当たり酸化及び還元を多数回交互に繰り返すようにしている。この結果、従来生じていた陽極酸化現象、陽極溶出現象は防止できるが、更に万全を記するため、直接電流の流れる部位については、導電性の他に耐食性にも富む材料(例えばチタン、チタン合金、高耐食ステンレス鋼、合金鋼等)で形成できる。
【0030】
外側多孔質浄水部材5の外壁面5mと筒部10の内壁面10mとの間の環状の給水隙間4xには、浄化すべき水が供給される。図1に示すように給水隙間4xは給水部29の通路29a,29cに連通している。この給水間隙4xの隙間幅X1(図1参照)は、筒部10の分極現象を積極的に取り入れるためにできるだけ狭い(例えば2〜5ミリ、これに限定されるものではない)隙間に設定することができる。従来、直流電圧を印加する方式では、筒部10は、陽極腐蝕の発生をなくすために、陰極(−極)として直流電圧を直接印加するか、直流電圧を直接印加しないまでも陰極(−極)として分極するようにしてきた。しかしながらこの場合には、水中に含まれているカルシューム、マグネシュームが炭酸イオンと結びつき、陰極(−極)となっている筒部10の内壁面10mに生成物として堆積し、日が経つにつれて生成物が固着して電解効率を著しく下げてしまったり、更には掃除ができないほど、生成物の堆積厚さを増やす現象があった。陽極腐蝕が起き難いチタン合金で筒部10全体を作る場合には、筒部10における陽極腐食の問題を回避でき易いものの、高コストとなるため、コスト面を考慮すると製作することができない。そこで通常的には、筒部10はコスト低減を考慮してチタン合金ではなくステンレス鋼等の鋼系で形成されているため、筒部10の極性を陽極に設定し、堆積物を溶解しようとすると、陽極となる筒部10を構成している鋼材中の鉄が溶解して、赤錆または鉄臭を発し、実用上問題がある。
【0031】
そこで本実施例のように正負電圧が単位時間当たり交互に多数回印加される交流電圧を第1電極A1及び第2電極A2に印加すれば、筒部10は長期にわたり陰極として維持されることが回避されるため、筒部10等の陰極部位における炭酸カルシューム等の生成物の過剰堆積が抑えられる。更に筒部10等の陰極部位の材質を問う必要が無くなり、筒部10等の陰極部位をコストアップを誘発するチタン合金ではなく、ステンレス鋼等の鋼系等の低廉な金属材料で形成することができる。
【0032】
本出願人による実験でも、交流電圧印加方式では、直流電圧印加方式に比較して、電解効率がやや下がるものの、直流電圧印加方式に比し、倍ほどの印加電圧で所定電流が流れるようになり、目的とする電解ガスの発生を実現でき、更には電解腐蝕を抑制でき、炭酸カルシューム等の生成物の過剰堆積を回避できた。即ち、従来の直流電圧印加方式においては、浄水器を構成している金属部品の分極を回避する手段を諸々講じねばならない不具合があったが、本実施例に係る交流電圧印加方式にあっては、上記不具合を回避できる。
【0033】
浄水器の使用の際には、給水部29に繋がる水道の蛇口を開く。すると、図1において、浄化すべき水は給水部29の給水路29aを経て、筒部10の内壁面10mと外側多孔質浄水部材5の外壁面5mとの間の給水隙間4xに供給される。給水隙間4xに供給された水は、外側多孔質浄水部材5の外壁面5kから外側多孔質浄水部材5の内部に矢印W方向に沿って進入して外側多孔質浄水部材5の透過層5cで浄化され、ついで、内側多孔質浄水部材4の外壁面4kから内側多孔質浄水部材4の内部に進入して透過層4cで浄化され、内側多孔質浄水部材4の中央孔4aに到達する。内側多孔質浄水部材4の中央孔4aに到達した浄化水は、センターパイプ22の通孔22k及び通路22wを通り、センターパイプ22の下方の端部に設けられている係合部材としてのエルボ23の通路23cを経て吐出部36から器外に吐出される。
【0034】
また、使用の際には、ビス17とビス18とを経由してコマ型の給電端子34,35に交流電圧を印加するため、コマ型の給電端子34,35に交流電圧が印加される。このため内側多孔質浄水部材4と外側多孔質浄水部材5との間の環状間隙6(例えば2ミリメートルに設定できるが、これに限定されるものではない)における電気分解によって、ガスが環状隙間6内に発生する。水素ガス及び酸素ガスが発生すると推察される。この場合、筒部10の内壁面10m及びセンターパイプ22の外壁面22iは、電圧が直接的には印加されていないもののそれぞれ分極する。よって、筒部10の内壁10mと、これに対面する外側多孔質浄水部材5の外壁面5kとの間で、即ち給水隙間4xにおいて電気分解を発生させることができる。同様に、センターパイプ22の外壁面22iとこれに対面する内側多孔質浄水部材4の内壁面4iとの間の隙間4yにおいても電気分解を発生させることができ、ガス量を確保し易い。これは本発明者により試験により確認されている。
【0035】
さて電解室である環状域間6において生成したガスは、環状隙間6等の水に溶解したり、あるいは、微小気泡となったりして電解室である環状域間6の上部に溜まり、電解室である環状隙間6の圧力を上昇させる。このように電解室である環状隙間6の圧力が上昇すると、外側多孔質浄水部材5の内壁面5iから外側多孔質浄水部材5の内部にガス粒を送り込む作用、内側多孔質浄水部材4の外壁面4kから内側多孔質浄水部材4の内部にガス粒を送り込む作用が増加する。ここで電気分解直後に生成された大半のガスは、電解室である環状隙間6を構成している多孔質浄水部材3の細孔、水の通路に吸着、滞留するものと推察される。
【0036】
上記したように電解室である環状隙間6において電気分解により水素ガス等が生成されると、電解室である環状隙間6の上部から溜まり、終局的には、電解室である環状隙間6のガス圧が増加する。電解室である環状隙間6に滞留している滞留水の大半を内側多孔質浄水部材4の透過層4cに向けて押し出すことになる。
【0037】
電解室である環状隙間6内の滞留水を内側多孔質浄水部材4の内部である透過層4cに押し出した段階で、電解室である環状隙間6の水の大部分が消失するため、水の電気分解が停止する。この際、電解室である環状隙間6の滞留水は、内側多孔質浄水部材4の側よりも、外側多孔質浄水部材5の側へは押し出されにくいものと推察される。外側多孔質浄水部材5は水圧が高い給水隙間4xに近いためと推察される。
【0038】
ところで電解室の隙間幅が大きくなる場合には、一般的には電解電流が小さくなるため、筒部10の内壁面10mと外側多孔質浄水部材5の外壁面5kとの間の給水隙間4x(隙間幅X1)における電解、センターパイプ22の外壁面22iと内側多孔質浄水部材4の内壁面4i(隙間幅X2)との間の隙間4yにおける電解については、この隙間4x,4yにおける滞留水の量が多い場合には、継続的に電気分解が行われることになるものと推察される。但し本実施例では、隙間X1,X2が環状隙間6の間隙幅X0よりも大きくなるように設定されているため、隙間4x,4yにおける電気分解は電解電流が小さくなり、電解室である環状隙間6における電解に対して補助的なものに過ぎない。
【0039】
ところで、モデル型の電解浄水器を用いて本発明者が試験したところ、通水して電解室である環状隙間6が満水の状態から環状隙間6が空になるまで、約4時間を要した。環状隙間6が空となれば、環状隙間6における電気分解は終了するものと推察される。但し、その後も電流値は下がったものの、前記部位(即ち、隙間4x,4y)での電解が継続起きていたものと推定される。尚本実施例によれば、直流での印加電圧としては1.5ボルトで所要の電解電流となり、所要の電解ガスの発生を見ていたものが、交流の印加電圧としては、理想的には、4倍の6.0ボルトを掛けないと、所要の電解電流20〜100ミリアンペアに至らなかった。未だこの印加電圧は低電圧であるので、消費電力の面からも問題でないと判断された。従って各種条件を理想的に設定すると、交流の印加電圧としては例えば、1.5〜12ボルト、殊に2.0〜9.0ボルトの範囲内とすることができる。互いに対峙する内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとの電位差としては例えば1.5〜9.0ボルト、殊に3.0〜6.0ボルトとすることができる。内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとの電位差間の電流を例えば20〜80ミリアンペアにすることができる。
【0040】
また、窒素、ヘリウム等のガスを使って活性炭の吸着特性を調べる気孔径分布計測装置を用い、本発明の実施例と類似の材質で形成された多孔質浄水部材の一部を切り出した試験片を用い、この試験片を気孔径分布計測装置の測定室に収容し、その状態で試験片の活性炭の吸着量を測定した。測定結果によれば、前記計測装置の測定室の圧力が高いほど、活性炭における吸蔵水素量、つまり活性炭における水素吸蔵特性が向上していることが確認された。このことから本実施例によれば、前記したように、吐出部36に接続される図略のホース先端部に逆止弁80を配置し、逆止弁80の逆止機能により電解室である環状隙間6内の圧力を高めに保持することにしている。図1に示すように、逆止弁80は、弁口80aを閉鎖する弁体80bと、弁体80bが弁口80aを閉鎖する方向に弁体80bを付勢すると共に開放設定圧力を規定する付勢バネ80cとをもつ。電気分解で生成したガスによって容器1の圧力が逆止弁80の開放設定圧力よりも高くなると、逆止弁80が自動的に開放されるため、吐出部36から器外に浄水を吐出することができる。なお、容器1の圧力が逆止弁80の開放設定圧よりも低いときには、逆止弁80が閉鎖されているため、吐出部36から浄水を吐出することができない。なお場合によっては逆止弁80を設けずとも良い。
【0041】
上記のような本実施例においては、電解浄水器が使用されていない状態において、逆止弁80により容器1の密閉性が維持される。このため、両多孔質浄水部材4,5の環状間隙6に設けられた水を電気分解することにより発生したガスが、多孔質浄水部材3の内部へ吸蔵されることが促進される。電解浄水器が使用されていない状態においては、容器1内の密閉性が逆止弁80により維持されやすく、電解室である環状間隙6のガス圧力が増加しやすいためである。
【0042】
また本発明者は、デジタル式の微小圧力計を電解室である環状隙間6に装備し、吐水をしない状態で、時間の経過に伴う電解室である環状隙間6の圧力変化を調べた。測定結果によれば、測定開始時から150分を経過したとき、電解室である環状隙間6の圧力のピークであった。それ以降においては、電解室である環状隙間6の圧力が低下する現象が見られた。測定開始時から150分経過したときの圧力データは、前記した逆止弁80の開放設定圧とほぼ一致していた。150分以降における電解室である環状隙間6の圧力低下は、内側多孔質浄水部材4と外側多孔質浄水部材5へのガスの吸収が進行したことを意味する。
【0043】
本発明者は本実施例に係る電解浄水器を用い、容器1内の水素量の変化を測定する試験を行った。この試験によれば、外径124ミリメートル、内径66ミリメートル、高さ200ミリメートルの外側多孔質浄水部材5と、外径62ミリメートル、内径20.5ミリメートル、高さ200ミリメートルの内側多孔質浄水部材4とを用いた。電解室である環状隙間6では、2ミリメートルの間隙を形成した。そして、約6ボルトの交流電圧(周波数:50〜60Hzの範囲)を第1電極A1及び第2電極A2に印加したところ、内側多孔質浄水部材4と外側多孔質浄水部材5との間に、83ミリアンペアの電流が流れた。
【0044】
この試験によれば、水素量を還元電位に置き換えて測定できるデジタル式の酸化還元電位計を用いた。電解開始時には、650ミリボルトであったが、30分を経過した後には、−120ミリボルトに変化した。水素の発生が確実に進行したためである。その後、12時間放置の後調べたところ、−458ミリボルトを示した。pHは吐出当初には、pH8.3を示したが、水の吐出量が1リットルを越えた以降は、pHは7.5に戻った。
【0045】
従来、直流を印加した場合には、軟水のところでも、使用期間が長期に亘ると、浄化前の水に含まれている重炭酸カルシュームが炭酸カルシュームとなり、これが生成物として、浄水器の陰極(−極)側に堆積して絶縁膜を形成し、ひいては電解室における環状隙間6での電解が止まってしまう問題が発生するおそれがある。本試験によれば、正電圧及び負電圧が50〜60サイクルで交互に反転する交流電圧を印加するため、酸化及び還元が繰り返され、炭酸カルシューム等の生成物が堆積することを抑えることができる。実際、4ヶ月を経過した後に電解浄水器を分解して調べて見ると、堆積の痕跡すら全くなく、交流電圧の印加が極めて有効であることが判明した。
【0046】
通常、大気中には、殆ど水素は存在しないことから、水中にも水素は溶存する機会は殆どない。従来、類似のアルカリイオン生成水等は、ガラス比較電極を用いた酸化還元電位計が用いられているが、ガラス電極先端から内部液を浸出させて測定するものであるため、通年での測定には、随時の内部液の補充が必要であった。そこで、本発明者は、酸化還元電位は、明確にpHと相関があることを見出し、内部液を必要としない半導体式のpH測定器として機能できるセンサー27を電装収容部13から、内側多孔質浄水部材4の内壁面4iで区画される中央孔4aに差し込み、マイコンに基づいてpH値から酸化還元電位を演算し、電装収容部13の外周に設けた表示部26に演算数値を表示することにした。そこで、センサー27の検出部27fをセンターパイプ22の上端部にねじ込みされているブッシュ25側に挿入して、図略のマイコンは電装収容部13の電装室16に設けて表示部26に接続した。
【0047】
以上説明したように本実施例によれば、多孔質浄水部材3は、環状隙間6を形成するように径方向において2つの内側多孔質浄水部材4,外側多孔質浄水部材5に分割されており、内側多孔質浄水部材4は給電端子34と接続されて第1電極A1とされていると共に、外側多孔質浄水部材5は給電端子35と接続されて第2電極A2とされている。このようにすれば、電解室となる環状隙間6を形成する外側多孔質浄水部材5の内壁面5i、内側多孔質浄水部材4の外壁面4kの表出面積を大きく確保することができる。ひいては多孔質浄水部材3における電解面積を大きく確保することができ、電解室となる環状隙間6における電解能力を大きくするのに有利である。更にガスを吸蔵させる多孔質浄水部材3のガス透過面積も大きく確保できるため、電解室となる環状隙間6における水の電気分解で生成したガスを、多孔質浄水部材3の細孔に吸蔵させるのに有利となる。一般的には、電解で発生した直後の水素等のガスは活性に富み、生体によい影響を与えるといわれている。殊に本実施例によれば、電解室である環状隙間6は多孔質浄水部材間4,5によって形成されているため、電気分解で発生した直後の活性が高くて生体に良いとされるガスを多孔質浄水部材3に効果的に吸蔵させるのに有利である。
【0048】
(他の実施例)
第2実施例は前記した実施例と基本的には同様の構成であり、交流電圧を印加するものであり、前記した実施例と基本的には同様の作用効果を奏するため、図1〜図3を援用する。この例では、菌等の捕捉性を重視して、外側多孔質浄水部材5Mについては、その気孔率が高く、それでいて緻密なもので、平均細孔径も内側多孔質浄水部材4Mの平均細孔径よりも小さくする(例えば0.1〜1ミクロン、殊に0.3ミクロン)に設定する。このような外側多孔質浄水部材5Mについては、菌等の捕捉性は良好であるものの、通水時の圧損が大きく、単位時間当たりの吐水量も低い。
【0049】
また内側多孔質浄水部材4Mについては、その気孔率が若干低いものとし、平均細孔径も外側多孔質浄水部材5Mの平均細孔径よりも大きく(例えば8〜100ミクロン、8〜20ミクロン、8〜10ミクロン)し、通水時の圧損を減らし、単位時間当たりの吐水量を大きくしている。このような特性を有する内側多孔質浄水部材4M及び外側多孔質浄水部材5Mの組み合わせにより、捕捉性を確保しつつ、単位時間当たりの吐水量を確保することができる。殊に給水室14においては内側多孔質浄水部材4M及び外側多孔質浄水部材5Mの求心方向に水圧が作用するが、外側多孔質浄水部材5Mは緻密で強度が確保されているため、このような水圧に対処するのに有利である。なお平均細孔径の大きさは上記した値に限定されるものではない。
【0050】
(第3実施例)
第3実施例は前記した実施例と基本的には同様の構成であり、交流電圧を印加するものであり、前記した実施例と基本的には同様の作用効果を奏する。この例では、内側多孔質浄水部材4M及び外側多孔質浄水部材5Mの特性を第2実施例と逆としている。即ち、内側多孔質浄水部材4Mについては、その気孔率が高いものの緻密なものとし、平均細孔径も外側多孔質浄水部材5Mの平均細孔径よりも小さく設定する。このような内側多孔質浄水部材4Mについては、菌等の捕捉性は良好であるものの、気孔率は高いものの緻密であるため、通水時の圧損が大きく、単位時間当たりの吐水量も低い。
【0051】
また外側多孔質浄水部材5Mについては、その気孔率が若干低いものとし、平均細孔径も内側多孔質浄水部材4Mの平均細孔径よりも大きくし、通水時の圧損を減らし、単位時間当たりの吐水量を大きくしている。このような特性を有する内側多孔質浄水部材4M及び外側多孔質浄水部材5Mの組み合わせにより、捕捉性を確保しつつ、単位時間当たりの吐水量を確保することができる。
【0052】
(第4実施例)
図4は第4実施例を示す。第4実施例は前記した実施例と基本的には同様の構成であり、交流電圧を印加するものであり、前記した実施例と基本的には同様の作用効果を奏する。本実施例においても環状隙間6を形成するように径方向に内側多孔質浄水部材4と外側多孔質浄水部材5とに分割されている。内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとの間にはスペーサ部材98が隙間維持手段として介在している。電解室である環状隙間6の隙間幅がスペーサ部材98により良好に維持され、環状隙間6における電解を長期にわたり安定的に行うのに有利である。同様なスペーサ部材は多孔質浄水部材3の下側にも設けられている。スペーサ部材98はリング形状とすることができるが、これに限定されるものではない。スペーサ部材98の材質としては樹脂等の高分子材料、セラミックス材料等を採用することができ、電気絶縁性が高く且つ耐食性が良いものが好ましい。
【0053】
(第5実施例)
図5は第5実施例を示す。第5実施例は前記した実施例と基本的には同様の構成であり、交流電圧を印加するものであり、前記した実施例と基本的には同様の作用効果を奏する。本実施例においても環状隙間6を形成するように径方向に内側多孔質浄水部材4と外側多孔質浄水部材5とに分割されている。内側多孔質浄水部材4の外壁面4kと外側多孔質浄水部材5の内壁面5iとの間にはスペーサ部材99が隙間維持手段として介在している。スペーサ部材99はシールキャップ71と一体的に形成されている。電解室である環状隙間6の隙間幅がスペーサ部材99により良好に維持され、環状隙間6における電解を長期にわたり安定的に行うのに有利である。同様なスペーサ部材は別のシールキャップ70にもこれと一体的に形成されている。スペーサ部材99はリング形状とすることができるが、これに限定されるものではない。
【0054】
(その他)
本発明は上記し且つ図面に示した各実施例のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できるものである。例えば上記した各部品の形状、構造、サイズ、材質等は上記したものに限定されるものではない。印加される電圧値、電流値等は、上記した値に限定されるものではない。上記した各実施例においては、交流電圧を第1電極A1及び第2電極A2に印加させることにしているが、場合によっては、請求項1の内容を満たす限り、直流電圧を第1電極A1及び第2電極A2に印加させることにしても良い。但し直流電圧を印加する場合には、堆積した生成物を定期的に清掃することが好ましい。浄化前の原水としては水道水に限定されるものではなく、井戸等の水でも良い。給電端子34,35はコマ型に限らず、他の形状及び他の構造でも良く、要するに多孔質浄水部材に給電できるものであれば良い。水は、多孔質浄水部材3の求心方向に通過するが、これに限らず逆でも良い。図1に示す実施例では、内側多孔質浄水部材4の上端面4u及び外側多孔質浄水部材5の上端面5uに給電端子34,35を設け、内側多孔質浄水部材4及び外側多孔質浄水部材5の上側から給電することにしているが、これに限らず、内側多孔質浄水部材4及び外側多孔質浄水部材5の下側から給電することにしても良い。あるいは、内側多孔質浄水部材4及び外側多孔質浄水部材5の下側及び上側の双方から給電することにしても良い。上記した実施例では、内側多孔質浄水部材4と外側多孔質浄水部材5とは円筒形状とされているが、場合によっては円錐筒形状、角筒形状でも良い。なお必要に応じてアース処理を行うことも好ましい。
【0055】
(付記)上記した記載から次の技術的思想も把握できる。
・各請求項において、両多孔質浄水部材の間隙に設置された電解室は、多孔質浄水部材の水の往路側に設けられていることを特徴とする電解浄水器。
・各請求項において、多孔質浄水部材は、活性炭と結合材とを主要成分とする材料を加圧成形し、焼成して形成されていることを特徴とする電解浄水器。
・各請求項において、多孔質浄水部材は、平均細孔径が0.1〜20ミクロン、特に0.3〜15ミクロン、殊に0.3〜10ミクロンとされた多数の細孔を有していることを特徴とする電解浄水器。
・各請求項において、多孔質浄水部材は、気孔率が15%から65%のブロックの成形体であり、ガス透過に対して抵抗を有し、電解室である環状隙間において発生したガスにより、電解室である環状隙間のガス圧力の上昇が容易であることを特徴とする電解浄水器。多孔質浄水部材は多数の細孔を有しており、ガス透過抵抗をもつため、電解室における圧力上昇が容易であり、電解室である環状隙間のガスを多孔質浄水部材に進入させ易い。
・各請求項において、多孔質浄水部材は中央孔をもつ筒状とされており、多孔質浄水部材の中央孔内に金属製のセンターパイプが略同軸的にリング状の隙間を隔てて配置されており、多孔質浄水部材への電圧印加に伴い、センターパイプは分極可能とされており、センターパイプの外壁面と多孔質浄水部材筒部の内壁面との間の隙間は、電解室として機能できることを特徴とする電解浄水器。
・各請求項において、多孔質浄水部材への電圧印加に伴い、筒部の内壁面は分極可能とされており、多孔質浄水部材の外壁面と筒部の内壁面との間の隙間は、電解室として機能できることを特徴とする電解浄水器。
・各請求項において、給電端子は、多孔質浄水部材のうちの同一面側に配置されていることを特徴とする電解浄水器。多孔質浄水部材への給電に有利なる。
・各請求項において、多孔質浄水部材に印加される電圧(交流電圧または直流電圧)は、1.5〜9ボルトであることを特徴とする電解浄水器。
・各請求項において、電圧が印加される多孔質浄水部材間の電位差間の電流を10〜100ミリアンペアであることを特徴とする電解浄水器。
・各請求項において、容器内で発生した水素ガス量を表示する表示部を有することを特徴とする電解浄水器。容器内で発生した水素ガス量を使用者は把握することができる。
・各請求項において、容器内で発生した水素ガス量をpH値から演算して酸化還元電位を表示する表示部を有することを特徴とする電解浄水器。
・各請求項において、電解室の圧力を高く維持する逆止弁を有し、電気分解で生成したガスにより容器内の圧力が逆止弁の開放設定圧力よりも高いときには、逆止弁が開弁され、吐出部から浄水を吐出することができ、容器内の圧力が逆止弁の開放設定圧力よりも低いときには、逆止弁が閉弁されていることを特徴とする電解浄水器。容器内の圧力を高く維持できる。
・内壁面で区画された給水室をもつ容器と、容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、容器の給水室に給水する給水部と、容器の給水室内の多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、
多孔質浄水部材は、環状隙間を形成するように少なくとも2つの多孔質浄水部材に分割されており、一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、他の多孔質浄水部材は第2給電端子と接続されて第2電極とされており、第1電極と第2電極とに電圧を印加することにより、環状隙間の水を電気分解し、発生したガス等の物質を多孔質浄水部材の細孔に吸蔵させるようにしていることを特徴とする電解浄水器。
・各請求項において、外側に配置された多孔質浄水部材は、内側に配置された多孔質浄水部材よりも単位時間当たりの吐水量が大きいことを特徴とする電解浄水器。
・各請求項において、外側に配置された多孔質浄水部材は、内側に配置された多孔質浄水部材よりも緻密で、単位時間当たりの吐水量が少ないことを特徴とする電解浄水器。
【0056】
【発明の効果】
本発明に係る電解浄水器によれば、多孔質浄水部材は、環状隙間を形成するように径方向に少なくとも2つの筒状の多孔質浄水部材に分割されており、一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、他の多孔質浄水部材は第2給電端子と接続されて第2電極とされている。このようにすれば、電解室となる環状隙間を形成する壁面の表出面積、ひいては多孔質浄水部材における電解面積を大きく確保することができ、電解室となる環状隙間における電解能力を大きくするのに有利である。更に多孔質浄水部材にガスを吸蔵させる多孔質浄水部材のガス透過面積も大きく確保できるため、電解室となる環状隙間における水の電気分解で生成したガス等の物質を、多孔質浄水部材の細孔に吸蔵させるのに有利となる。一般的には、電解で発生した直後の水素等のガスは活性に富み、生体によい影響を与えるといわれている。本発明に係る電解浄水器によれば、電解室である環状隙間は多孔質浄水部材間に形成されているため、電気分解で発生した直後の活性が高くて生体に良いとされるガスを多孔質浄水部材に効果的に吸蔵させるのに有利である。
【0057】
更に本発明に係る電解浄水器によれば、第1電極及び第2電極に交流を印加することにしている場合には、直流電圧を印加する際に発生する陽極腐蝕の現象を抑え、且つ、陰極(−極)に炭酸カルシューム、炭酸マグネシューム等の生成物が堆積することを抑制するのに有利となり、メンテナンス等の面で有利となる。
【図面の簡単な説明】
【図1】本発明の実施例に係る電解浄水器を示す縦断面図である。
【図2】本発明の実施例に係る電解浄水器の要部を示す拡大縦断面図である。
【図3】本発明の実施例の内部を一部断面にして示す外観図である。
【図4】他の実施例に係る電解浄水器を示す要部の縦断面図である。
【図5】別の他の実施例に係る電解浄水器を示す要部の縦断面図である。
【図6】交流電圧を印加する場合における代表的な波形図である。
【符号の説明】
図中、1は容器、10は筒部、3は多孔質浄水部材、4は内側多孔質浄水部材、5は外側多孔質浄水部材、6は環状隙間、17,18はビス(交流印加部)、29は給水部、36は吐出部、34,35は給電端子、98,99はスペーサ部材(隙間維持手段)を示す。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electrolytic water purifier that electrolyzes water by applying a voltage to a porous water purification member having a large number of pores, and in particular, a gas generated by electrolysis, particularly when the activity is strong. The present invention can be applied to an electrolytic water purifier that is advantageous for efficiently storing the gas immediately after electrolysis in the pores of the porous water purification member. The present invention can be applied to water purifiers for home use, medical use, and business use.
[0002]
[Prior art]
The water purifier includes a container having a water supply chamber partitioned by an inner wall surface, a water purifying porous water purification member housed in the water supply chamber of the container, a water supply unit for supplying water to the water supply chamber of the container, and water supply of the container And a discharge part for discharging water purified by the indoor porous water purification member to the outside of the vessel. According to this water purifier, water is purified by the porous water purification member.
[0003]
Moreover, according to the empirical data of recent literature, hydrogen gas immediately after electrolysis is richer in activity than normal gas (generally hydrogen gas) that has passed a long time since electrolysis, and is more useful for living organisms. It has been reported to be effective. That is, a gas particle (generally hydrogen gas particle) of an extremely small size (generally 3 to 100 nm) confirmed immediately after electrolysis is a normal gas (hydrogen: general Specifically, it has been reported that the activity is richer than that of 10 to 30 μm) and is effective for living bodies and the like.
[0004]
[Problems to be solved by the invention]
The present invention has been made as part of the development of a water purifier having the above-described porous water purification member, and claim 1 is advantageous for occluding gas generated by electrolysis in the pores of the porous water purification member. In particular, it is an object of the present invention to provide an electrolytic water purifier which is advantageous in causing a gas rich in activity immediately after electrolysis, which is considered good for a living body, to be occluded in the pores of a porous water purification member. Furthermore, the present invention is advantageous in suppressing anode corrosion that occurs when a DC voltage is applied, and suppressing the deposition of a product such as calcium carbonate or magnesium carbonate in a portion that becomes a cathode (-electrode). It is an object to provide a simple electrolytic water purifier.
[0005]
[Means for Solving the Problems]
An electrolytic water purifier according to the present invention includes a container having a water supply chamber partitioned by an inner wall surface, a porous water purification member having a large number of pores having water purification properties accommodated in the water supply chamber of the container, and the container An electrolytic water purifier having a water supply unit for supplying water to the water supply chamber, and a discharge unit for discharging water purified by the porous water purification member in the water supply chamber of the container to the outside,
The porous water purification member is divided into at least two porous water purification members in the radial direction so as to form an annular gap,
One porous water purification member is connected to the first power supply terminal to be the first electrode, and the other porous water purification member is connected to the second power supply terminal to be the second electrode,
By applying a voltage to the first electrode and the second electrode, the water in the annular gap is electrolyzed, and the generated gas is occluded in the pores of the porous water purification member. It is what.
[0006]
In general, it is said that a gas immediately after being generated by electrolysis has high activity and has a good effect on a living body. In addition, it is said that the size of the gas immediately after being generated by electrolysis is extremely small compared to that after a lapse of time and has a positive effect on the living body.
[0007]
The electrolytic water purifier according to the present invention is divided into at least two cylindrical porous water purification members in the radial direction so as to form an annular gap. Therefore, it may be divided into two in the radial direction. Depending on the case, it may be divided into three in the radial direction, or may be divided into four. One porous water purification member is connected to the first power supply terminal to be the first electrode, and the other porous water purification member facing the one porous water purification member is connected to the second power supply terminal to be the second electrode. It is an electrode. By applying a voltage to the first electrode and the second electrode, the water in the annular gap is electrolyzed. That is, the annular gap is used as an electrolysis chamber. In this case, since one porous water purification member and another porous water purification member are disposed in the vicinity of the annular gap, the gas generated by the electrolysis is removed from the pores of the one porous water purification member, the other porous water purification water Easy to occlude in the pores of the member. In this case, it is advantageous for diffusing the gas immediately after being generated by electrolysis into the pores of one porous water purification member and the pores of the other porous water purification member for occlusion.
[0008]
According to the electrolytic water purifier according to the present invention, since the porous water purification member having a large number of pores has gas permeation resistance, if gas is generated by electrolysis, the pressure in the annular gap defined as the electrolytic chamber is increased. Can be increased effectively. If the pressure in the annular gap defined as the electrolysis chamber increases in this way, the gas in the annular gap defined as the electrolysis chamber is easily diffused and occluded by the increased pressure inside the porous water purification member. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
According to the preferable form of the electrolytic water purifier concerning this invention, at least one of the following forms is employable.
[0010]
-An electrolysis chamber can be comprised by the annular clearance formed by one porous water purification member and another porous water purification member. In this case, as the annular gap that is the electrolysis chamber, a form that penetrates or substantially penetrates to the shaft end (for example, the upper end and the lower end) of the porous water purification member can be adopted. In addition, the end of the annular gap that is the electrolysis chamber is provided with a closing portion such as a seal cap that closes the end of the electrolysis chamber in order to close the end of the electrolysis chamber and increase the pressure in the electrolysis chamber. Can be adopted. The closing property of the annular gap that is the electrolysis chamber is enhanced by the closing portion, and the gas generated by the electrolysis in the annular gap that is the electrolysis chamber is advantageous for increasing the pressure of the annular gap that is the electrolysis chamber. In this case, it can be expected that the gas generated by electrolysis in the annular gap as the electrolysis chamber, particularly the gas immediately after electrolysis can be stored in the pores of the porous water purification member at an early stage. A gap maintaining means such as a spacer member for maintaining the gap width of the annular gap in the electrolysis chamber can also be formed integrally with a closed portion such as a seal cap. Note that if the gap width of the annular gap, which is an electrolysis chamber, becomes excessively large, the electrolytic current will not flow easily. Therefore, although the gap width of the annular gap which is an electrolysis chamber varies depending on the applied voltage, it can be, for example, 30 mm or less, 20 mm or less, 10 mm or less, 5 mm or less, 4 mm or less.
[0011]
-Both one porous water purification member and the other porous water purification member can employ | adopt the form which has comprised the cylindrical shape. One porous water purification member is connected to the first power supply terminal as the first electrode, and the other porous water purification member is connected to the second power supply terminal as the second electrode. By applying a voltage (an AC voltage is preferable, but a DC voltage may be used in some cases) to the first electrode and the second electrode, the water in the annular gap is electrolyzed, and the generated gas is refined in the porous water purification member. Occlude in the hole. The voltage to be applied between the first electrode and the second electrode can be appropriately selected according to need. For example, the voltage is within the range of 1.5 to 9.0 volts, particularly within the range of 5 to 7 volts. However, it is not limited to this. In this specification, the bolt and ampere mean effective values in the case of alternating current.
[0012]
-The container is preferably formed of a corrosion-resistant material such as titanium alloy, stainless steel, or high alloy steel. When conducting to the first electrode and the second electrode as in an embodiment described later, generally, the conducting member constituting the container or the like is easily polarized. Metal parts may cause anodic corrosion at the part polarized to the anode (+ electrode). In addition, when a DC voltage is applied to the first electrode and the second electrode, the metal component causes anodic corrosion at the portion that is the anode (+ electrode). However, when an alternating voltage in which positive and negative potentials are repeated many times per unit time is applied to the first electrode and the second electrode, oxidation and reduction are repeated many times per unit time based on the number of cycles. As compared with the case where a DC voltage is applied, anode corrosion and anode elution can be suppressed. In addition, when a DC voltage is applied to the first electrode and the second electrode, if the electrolytic water purifier is used for a long period of time, products such as calcium carbonate and magnesium carbonate are deposited on the cathode (-electrode) side. However, in order to suppress such deposition, it is preferable to apply an alternating voltage in which the positive potential and the negative potential are alternately repeated many times per unit time to the first electrode and the second electrode. As the frequency of the AC voltage, 500 Hz or less, 300 Hz or less, or 200 Hz or less can be employed. In consideration of the AC voltage supplied to the home, it is possible to adopt the range of 40 to 70 Hz, particularly 50 to 60 Hz. Specifically, 50 Hz or 60 Hz can be employed in the same manner as a normal AC home appliance. Therefore, it is preferable that the electrolytic water purifier of the present invention has an AC application unit that applies AC to the first electrode and the second electrode. The AC application unit may be any unit that applies AC to the first electrode and the second electrode, and the structure and function are not particularly limited.
[0013]
-When applying an alternating voltage to the 1st electrode and the 2nd electrode, the form shown in Drawing 6 (A)-Drawing 6 (C) can be illustrated. T on the horizontal axis means time. According to the form shown in FIG. 6A, the positive voltage and the negative voltage are alternately repeated many times in a sine curve shape per unit time, and the positive voltage peak voltage + Vp and the negative voltage peak voltage -Vp are Is basically the same size. According to the form shown in FIG. 6B, the positive voltage (peak voltage: + Vp) and the negative voltage (peak voltage: −Vp) are alternately repeated many times per unit time, and the positive voltage peak voltage + Vp is ΔV bias. Has been. The side to be biased can be either the first electrode A1 or the second electrode A2. According to the form shown in FIG. 6C, a positive voltage rectangular wave and a negative voltage rectangular wave are alternately repeated many times per unit time. Note that the waveform of the AC voltage is not limited to the form shown in FIGS. 6 (A) to 6 (C).
[0014]
-The porous water purification member has a large number of pores and has a high scavenging ability for foreign substances such as bacteria. The pores communicate with each other and form a water permeable layer that can permeate water. In addition to having a water purification capability, the pores can occlude substances such as gas such as hydrogen and oxygen generated by electrolysis. The porous water purification member is preferably configured using a carbon-based material (generally a carbon-based molded body) such as activated carbon that is a good electrical conductor. In this case, the porous water purification member can be formed by activated carbon and a binder. As the activated carbon, at least one of powdery, granular and fibrous can be adopted.
[0015]
【Example】
Hereinafter, the Example of the electrolysis water purifier concerning this invention is described concretely, referring FIGS. 1-3. FIG. 1 shows a stationary type household or commercial electrolytic water purifier, and shows a cross-sectional view of the overall configuration. FIG. 2 shows a detailed sectional view of an electrolytic water purifier with an enlarged main part. FIG. 3 shows an external view of an electrolytic water purifier showing the inside partly in cross section. The container 1 is formed of a cylindrical portion 10 as a container main body formed of a metal into a cylindrical shape, and a metal plate that is formed in a circular flat plate shape and is fixed by welding so as to close a shaft end opening on the lower side of the cylindrical portion 10. And a resin base 12 that holds the lower end of the cylindrical portion 10, and a resin electrical component accommodating portion 13 that functions as a fixing portion attached to the upper shaft end opening of the cylindrical portion 10. doing. Although the metal which comprises the cylinder part 10 and the bottom cover 11 is formed with the stainless steel which is a representative example of a metal with high corrosion resistance, it is not restricted to this, It is at least 1 sort (s) of an aluminum alloy, titanium, a titanium alloy, and resin. It may be formed. The container 1 forms a pressure container.
[0016]
The container 1 has a water supply chamber 14 having a circular cross section formed by an inner wall surface 10 m of the cylindrical portion 10. Although the cross section of the water supply chamber 14 is circular, it is not limited to this, and may be rectangular such as a quadrangle. The electrical equipment housing part 13 has an electrical equipment room 16 for housing electrical equipment and a lid 16a for closing the upper surface opening of the electrical equipment room 16, and is attachable to and detachable from the upper end part of the tubular part 10 via a ring-shaped seal member 19. It is fixed to. The electrical component housing part 13 compresses the resin lid member 18T and the resin or rubber seal member 19 from the upper side to ensure the watertightness between the upper end of the cylindrical part 10 and the electrical component housing part 13. Yes.
[0017]
As shown in FIG. 2, screws 17 and 18 formed of a conductive material such as titanium alloy, stainless steel, or carbon steel are held on the back surface 13a side of the electrical equipment housing portion 13. Since an alternating voltage is applied to the screws 17 and 18, it can function as an alternating current application unit. The screws 17 and 18 have male screw portions 17m and 18m into which nut members (not shown) are screwed for connection of power supply lead wires. As shown in FIG. 2, the female screw portion of the pressurizing body 17 a is screwed and fixed to the male screw portion at the lower portion of the screw 17. A spring 17 c is disposed between the pressurizing body 17 a and the electrical equipment housing portion 13. The spring 17c functions as an urging means for reducing energization resistance with respect to the inner porous water purification member 4. Further, the female screw portion of the pressurizing body 18a is screwed and held on the male screw portion below the screw 18. A spring 18 c is disposed between the pressurizing body 18 a and the electrical equipment housing portion 13. The spring 18c functions as an urging means for reducing energization resistance with respect to the outer porous water purification member 5. The springs 17c and 18c are coiled, but are not limited thereto, and may be a leaf spring, a disc spring, a foam, or the like.
[0018]
A cylindrical porous water purification member 3 is coaxially accommodated in the water supply chamber 14 of the cylindrical portion 10 of the container 1. The porous water purification member 3 is composed of a thick inner porous water purification member 4 and a thick outer porous water purification member 5 arranged substantially coaxially. The inner porous water purification member 4 has a thick cylindrical shape, and has a cylindrical inner wall surface 4i having a cylindrical hollow central hole 4a and a cylindrical outer wall surface 4k facing away from the inner wall surface 4i. . The outer porous water purification member 5 has a thick cylindrical shape surrounding the inner porous water purification member 4 on the outer peripheral side, and is a cylinder facing the outer wall surface 4k of the inner porous water purification member 4 via the annular gap 6. It has an inner wall surface 5 i having a shape and a cylindrical outer wall surface 5 k facing the inner wall surface 10 m of the cylinder portion 10. The annular gap 6 has a ring shape so that the gap interval is uniform or substantially uniform in the circumferential direction, avoiding direct conduction between the inner porous water purification member 4 and the outer porous water purification member 5, It can function as an insulating space for electrically insulating. The gap width of the annular gap 6 is uniform or substantially uniform over the axial length direction of the porous water purification member 3.
[0019]
Both the inner porous water purification member 4 and the outer porous water purification member 5 are porous activated carbon block filters, and a material obtained by kneading powdered activated carbon, a binder and water at a predetermined weight ratio is pressure-molded. Thus, a thick molded body is formed, and the molded body is fired and then ground to a predetermined size. About the inner porous water purification member 4 and the outer porous water purification member 5, although it selects suitably as a porosity, it can set in 15 to 65% of range, for example by volume ratio. However, the porosity is not limited to this. If it is a fine water-permeable layer having such a porosity, there is an advantage that the propagation of microorganisms in the inner porous water purification member 4 and the outer porous water purification member 5 can be easily suppressed. In addition, it has been confirmed by tests of the present inventors that activated carbon containing water generally absorbs oxygen well in the air and occludes a large amount of electrolytic hydrogen gas that diffuses in water. As the above-mentioned binder, a thermoplastic resin (for example, polyethylene) powder having a low melting temperature that does not need to be sintered, or an inorganic binder such as alumina or silica may be used. The inner porous water purification member 4 and the outer porous water purification member 5 have water purification properties for removing hypochlorous acid (hereinafter referred to as chlorine) contained in water by a chemical reaction, and are further dissolved in water by pores. It has water purification properties to adsorb harmful substances such as trihalomethanes. According to the inner porous water purification member 4 and the outer porous water purification member 5 according to the present embodiment, the average diameter of the pores forming the water permeable layer of the inner porous water purification member 4 and the outer porous water purification member 5 is 0. .1-20 microns, in particular 0.3-20 microns, in particular 0.3-15 microns. However, the pore diameter is not limited to the above range. As described above, the inner porous water purification member 4 has a thick cylindrical shape having a central hole 4a. The outer porous water purification member 5 has a thick cylindrical shape having a central hole 5a that forms an annular gap 6 by arranging the inner porous water purification member 4 in an axial core shape.
[0020]
In the present embodiment, as shown in FIG. 1, in order to prevent damage in the vicinity of the shaft ends of the inner porous water purification member 4 and the outer porous water purification member 5, the inner porous water purification member 4 and the outer porous water purification member 5 are provided. Seal caps 70 and 71 (closed portions) made of a polymer material such as resin or rubber are bonded to an axial end of the porous water purification member 3 configured to be arranged substantially concentrically with an adhesive. The seal caps 70 and 71 have electrical insulation and sealing properties. As shown in FIG. 1, the seal cap 70 includes a cap 70 a that covers the axial end surfaces (upper end surfaces) of the inner porous water purification member 4 and the outer porous water purification member 5, and an inner wall surface 4 i of the inner porous water purification member 4. An inner covering part 70b covering the upper part and an outer covering part 70c covering the upper part of the outer wall surface 5k of the outer porous water purification member 5 are provided.
[0021]
As shown in FIG. 1, the seal cap 71 includes a cap 71 a that covers the axial end surfaces (lower end surfaces) of the inner porous water purification member 4 and the outer porous water purification member 5, and an inner wall surface 4 i of the inner porous water purification member 4. An inner covering portion 71b that covers the lower portion and an outer covering portion 71c that covers the lower portion of the outer wall surface 5k of the outer porous water purification member 5 are provided. The seal caps 70 and 71 can also function as gap maintaining means for maintaining the gap width of the annular gap 6. Further, the seal caps 70 and 71 prevent inadequate purification of water from the shaft end surfaces (the upper end surface 4 u and the lower end surface 4 d) of the inner porous water purification member 4 and the outer porous water purification member 5. That is, water can enter the inside of the inner porous water purification member 4 and the outer porous water purification member 5 from the outer wall surface 4k of the inner porous water purification member 4 and the outer wall surface 5k of the outer porous water purification member 5.
[0022]
The center pipe 22 functioning as an inner cylinder member for water discharge has a passage 22w formed by a pipe hole, and has a large number of through holes 22k on the peripheral wall. The center pipe 22 is vertically installed in the central hole 4 a of the inner porous water purification member 4. An elbow 23 as an engaging member is fixed to the bottom lid 11 of the container 10 by welding. The lower end portion of the center pipe 22 is screwed and fixed via a bush 24 as an engaging member connected to the male screw hole of the elbow 23. The upper end portion of the center pipe 22 is integrated by screwing the upper bush 25 held by the holder 21.
[0023]
The electrical equipment housing part 13 has an opening 13c through which a lead wire from a power source passes, and LEDs 27a and 27b (see FIG. 3). In the LED 27a, a voltage is applied to the inner porous water purification member 4 and the outer porous water purification member 5, and the annular gap 6 between the electrolysis chamber (that is, the inner porous water purification member 4 and the outer porous water purification member 5). ) Is lit when electrolysis occurs. Therefore, LED27a functions as a 1st alerting | reporting means which alert | reports to a user that the electrolysis process is performed in the water purifier. LED27b functions as a 2nd alerting | reporting means which alert | reports to a user that the electrolysis process is not performed in the water purifier. Therefore, the LED 27b can also function as a gas occlusion informing means for informing that the gas generated by the electrolysis is occluded in the inner porous water purification member 4 and the outer porous water purification member 5.
[0024]
According to the present embodiment, the display unit 26 (see FIG. 3) that displays the generated hydrogen amount by replacing it with the reduction potential is provided on the outer surface side of the electrical equipment housing unit 13 at a position that can be visually recognized by the user. As shown in FIG. 2, the reduction potential is sensed by a sensor 27 mounted inside the electrical equipment housing portion 13. The detection unit 27 f of the sensor 27 is located above the center pipe 22. It is preferable that the output unit having a microcomputer (not shown) of the sensor 27 is installed in the electrical component housing unit 13 in a watertight structure in consideration of condensation, water immersion, and the like.
[0025]
As shown in FIG. 1, a water supply unit 29 that supplies water to the water supply chamber 14 and a filter unit 90 that functions as a primary purification unit communicating with the water supply unit 29 are installed on the side of the container 1. The water supply unit 29 is connected to a faucet (not shown) through a connecting pipe 29r such as a hose. When the tap is opened, raw water before purification, such as tap water, is supplied to the filter unit 90 through the passage 29a of the water supply unit 29 and is filtered as a preliminary treatment. The water filtered by the filter unit 90 is guided from the hollow chamber 90w of the filter unit 90 through the passage 29c of the water supply unit 29 to the water supply gap 4x in the water supply chamber 14 in the container 1. The water supply gap 4x is a ring-shaped gap between the outer wall surface 5k of the outer porous water purification member 5 and the inner wall surface 10m of the cylindrical portion 10.
[0026]
Now, according to the present embodiment, as shown in FIG. 1, the outer wall surface 4k of the inner porous water purification member 4 and the inner wall surface 5i of the outer porous water purification member 5 are rings that serve as electrolytic chambers in the axial length direction thereof. An annular gap 6 (gap width X0) is formed. The annular gap 6 serves as an electrolysis chamber, and is provided in the forward path of water in the inner porous water purification member 4 and the outer porous water purification member 5. As shown in FIG. 2, a top-shaped power supply terminal 34 (first power supply terminal) is held in a state of being in electrical contact with the recess 4 w formed on the upper end surface 4 u of the inner porous water purification member 4. Yes. As shown in FIG. 2, the top-shaped power supply terminal 34 is made of a conductive material (for example, titanium, titanium alloy, alloy steel), and extends in the radially outward direction from a main body 34a fitted in the recess 4w. It has the collar part 34b and the protrusion-shaped biting part 34c which dig into the inner porous water purification member 4 in order to improve retainability. By the pressurizing body 17a urged by the spring 17c, the coma type power supply terminal 34 is press-contacted to the inner porous water purification member 4 so as to be conductive, and between the power supply terminal 34 and the inner porous water purification member 4 by pressure contact. The current-carrying resistance is reduced, and the power feeding property is ensured. As a result, the inner porous water purification member 4 is connected to the frame-type power supply terminal 35 to form the first electrode A1.
[0027]
As shown in FIG. 2, the top-shaped power supply terminal 35 (second power supply terminal) is similarly formed of a conductive material (for example, titanium, titanium alloy, alloy steel), and the upper end surface 5 u of the outer porous water purification member 5. A main body 35a fitted in the recess 4w formed in the outer periphery, a flange portion 35b extending in the radially outward direction, and a projecting bite portion 35c that bites into the outer porous water purification member 5 in order to enhance the retainability. Have The pressure-type body 18a biased by the spring 18c causes the coma-type power supply terminal 35 to be press-contacted to the outer porous water purification member 5 so as to be conductive, and between the power supply terminal 35 and the outer porous water purification member 5 by pressure contact. The current-carrying resistance is reduced, and power feeding performance is ensured. As a result, the outer porous water purification member 5 is connected to the frame-type power supply terminal 34 to form the second electrode A2. As shown in FIGS. 1 and 2, the frame-type power supply terminals 34 and 35 are arranged on the same surface side (upper end surface side) of the porous water purification member 3, so that power is supplied to the porous water purification member 3. It is advantageous.
[0028]
As shown in FIG. 1, the lower end surface 5 d of the outer porous water purification member 5 is also formed with a recess 4 wo that can accommodate the power supply terminal 35. A seal portion 4n is fitted in the recess 4wo. A concave portion 4wo that can accommodate the power supply terminal 34 is also formed in the lower end surface 4d of the inner porous water purification member 4, and a similar seal portion 4n is fitted in the concave portion 4wo. Therefore, even if the inner porous water purification member 4 and the outer porous water purification member 5 are turned upside down, the top-type power supply terminals 34 and 35 can be attached to the concave portion 4wo with the seal portion 4n removed. That is, even if the inner porous water purification member 4 and the outer porous water purification member 5 are turned upside down, the structure can be turned upside down so that power can be fed.
[0029]
When a DC voltage is applied to the first electrode A1 and the second electrode A2, the anode (+ electrode) side is made of stainless steel on the anode (+ electrode) side of the DC voltage, depending on the applied current value. Even if they are made of titanium, carbon, etc., they oxidize and elute, or an oxide film is formed to deteriorate conduction, and the surface is tattered. In this regard, according to the present embodiment, an AC voltage application method is employed in which an AC voltage in which positive and negative voltages are alternately applied is applied to the first electrode A1 and the second electrode A2. Therefore, oxidation and reduction per unit time are alternately repeated many times in the first electrode A1 and the second electrode A2. As a result, the anodic oxidation phenomenon and anodic elution phenomenon that have occurred in the past can be prevented. However, in order to ensure completeness, the material through which direct current flows is not only conductive but also rich in corrosion resistance (for example, titanium or titanium alloy). , High corrosion resistant stainless steel, alloy steel, etc.).
[0030]
The water to be purified is supplied to the annular water supply gap 4x between the outer wall surface 5m of the outer porous water purification member 5 and the inner wall surface 10m of the cylindrical portion 10. As shown in FIG. 1, the water supply gap 4 x communicates with the passages 29 a and 29 c of the water supply unit 29. The gap width X1 (see FIG. 1) of the water supply gap 4x is set to a gap as narrow as possible (for example, 2 to 5 mm, but not limited thereto) in order to actively incorporate the polarization phenomenon of the cylindrical portion 10. be able to. Conventionally, in the method of applying a DC voltage, the cylindrical portion 10 is applied with a DC voltage directly as a cathode (-electrode) or without applying a DC voltage directly in order to eliminate the occurrence of anode corrosion. ) Has been polarized. However, in this case, calcium and magnesum contained in the water are combined with carbonate ions and deposited as a product on the inner wall surface 10m of the cylindrical portion 10 serving as the cathode (-pole). There is a phenomenon that the electrolysis efficiency is remarkably lowered due to adhesion, or the deposited thickness of the product is increased so that it cannot be cleaned. When the entire cylindrical portion 10 is made of a titanium alloy that is unlikely to cause anodic corrosion, the problem of anodic corrosion in the cylindrical portion 10 can be easily avoided, but the cost is high, and therefore it cannot be manufactured considering the cost. Therefore, since the cylindrical portion 10 is usually formed of a steel system such as stainless steel instead of a titanium alloy in consideration of cost reduction, the polarity of the cylindrical portion 10 is set to an anode and an attempt is made to dissolve deposits. Then, iron in the steel material constituting the cylindrical portion 10 serving as the anode is dissolved, and red rust or iron odor is emitted, which causes a practical problem.
[0031]
Therefore, as in this embodiment, if an alternating voltage in which positive and negative voltages are alternately applied per unit time is applied to the first electrode A1 and the second electrode A2, the cylindrical portion 10 can be maintained as a cathode for a long time. This avoids excessive deposition of products such as calcium carbonate at the cathode portion of the cylindrical portion 10 or the like. Furthermore, there is no need to ask about the material of the cathode part such as the cylinder part 10, and the cathode part such as the cylinder part 10 is formed of an inexpensive metal material such as stainless steel instead of a titanium alloy which induces cost increase. Can do.
[0032]
Even in the experiment by the applicant, the AC voltage application method has a slightly lower electrolysis efficiency than the DC voltage application method, but the predetermined current flows with an applied voltage about twice that of the DC voltage application method. The generation of the target electrolytic gas can be realized, the electrolytic corrosion can be suppressed, and the excessive accumulation of products such as calcium carbonate can be avoided. That is, in the conventional DC voltage application method, there was a problem that various means to avoid the polarization of the metal parts constituting the water purifier had to be taken, but in the AC voltage application method according to this embodiment, The above problems can be avoided.
[0033]
When using the water purifier, a water tap connected to the water supply unit 29 is opened. Then, in FIG. 1, the water to be purified is supplied to the water supply gap 4x between the inner wall surface 10m of the cylindrical portion 10 and the outer wall surface 5m of the outer porous water purification member 5 through the water supply passage 29a of the water supply portion 29. . The water supplied to the water supply gap 4x enters the outer porous water purification member 5 from the outer wall surface 5k of the outer porous water purification member 5 along the direction of the arrow W and passes through the permeation layer 5c of the outer porous water purification member 5. Next, the water enters the inside of the inner porous water purification member 4 from the outer wall surface 4k of the inner porous water purification member 4 and is purified by the permeable layer 4c, and reaches the central hole 4a of the inner porous water purification member 4. The purified water that has reached the central hole 4 a of the inner porous water purification member 4 passes through the through hole 22 k and the passage 22 w of the center pipe 22, and the passage of the elbow 23 as an engagement member provided at the lower end of the center pipe 22. It is discharged out of the container from the discharge part 36 through 23c.
[0034]
In use, an AC voltage is applied to the coma-type power supply terminals 34 and 35 through the screws 17 and 18 so that an AC voltage is applied to the coma-type power supply terminals 34 and 35. For this reason, the gas flows into the annular gap 6 by electrolysis in the annular gap 6 (for example, but not limited to 2 mm) between the inner porous water purification member 4 and the outer porous water purification member 5. Occurs within. It is assumed that hydrogen gas and oxygen gas are generated. In this case, the inner wall surface 10m of the cylindrical portion 10 and the outer wall surface 22i of the center pipe 22 are polarized although no voltage is directly applied thereto. Therefore, electrolysis can be generated between the inner wall 10m of the cylindrical portion 10 and the outer wall surface 5k of the outer porous water purification member 5 facing this, that is, in the water supply gap 4x. Similarly, electrolysis can also be generated in the gap 4y between the outer wall surface 22i of the center pipe 22 and the inner wall surface 4i of the inner porous water purification member 4 facing this, and it is easy to ensure the amount of gas. This has been confirmed by testing by the inventors.
[0035]
The gas generated in the annular region 6 serving as the electrolysis chamber is dissolved in water such as the annular gap 6 or is formed into microbubbles and collected on the upper portion of the annular region 6 serving as the electrolysis chamber. The pressure in the annular gap 6 is increased. Thus, when the pressure in the annular gap 6 that is an electrolysis chamber rises, the action of sending gas particles from the inner wall surface 5 i of the outer porous water purification member 5 into the outer porous water purification member 5, The effect | action which sends a gas particle into the inside porous water purification member 4 from the wall surface 4k increases. Here, it is presumed that most of the gas generated immediately after electrolysis is adsorbed and retained in the pores of the porous water purification member 3 constituting the annular gap 6 serving as an electrolysis chamber and the water passage.
[0036]
As described above, when hydrogen gas or the like is generated by electrolysis in the annular gap 6 that is an electrolysis chamber, it accumulates from the upper portion of the annular gap 6 that is an electrolysis chamber, and eventually the gas in the annular gap 6 that is an electrolysis chamber. The pressure increases. Most of the staying water staying in the annular gap 6 that is an electrolysis chamber is pushed out toward the permeation layer 4 c of the inner porous water purification member 4.
[0037]
Since most of the water in the annular gap 6 that is the electrolytic chamber disappears at the stage where the accumulated water in the annular gap 6 that is the electrolytic chamber is pushed out to the permeable layer 4c that is inside the inner porous water purification member 4, water Electrolysis stops. At this time, it is presumed that the accumulated water in the annular gap 6 that is an electrolysis chamber is less likely to be pushed to the outer porous water purification member 5 side than to the inner porous water purification member 4 side. It is inferred that the outer porous water purification member 5 is close to the water supply gap 4x having a high water pressure.
[0038]
By the way, when the gap width of the electrolysis chamber is increased, the electrolysis current is generally reduced, and therefore, the water supply gap 4x between the inner wall surface 10m of the cylindrical portion 10 and the outer wall surface 5k of the outer porous water purification member 5 ( Regarding electrolysis in the gap width X1) and electrolysis in the gap 4y between the outer wall surface 22i of the center pipe 22 and the inner wall surface 4i (gap width X2) of the inner porous water purification member 4, the amount of retained water in the gaps 4x and 4y If there are many, it is assumed that electrolysis will be carried out continuously. However, in this embodiment, since the gaps X1 and X2 are set to be larger than the gap width X0 of the annular gap 6, the electrolysis in the gaps 4x and 4y reduces the electrolytic current, and the annular gap that is the electrolytic chamber. It is only an auxiliary to the electrolysis in 6.
[0039]
By the way, when this inventor tested using a model type electrolytic water purifier, it took about 4 hours until the annular gap 6 which is an electrolysis chamber was filled with water and the annular gap 6 became empty. . If the annular gap 6 becomes empty, it is assumed that the electrolysis in the annular gap 6 is completed. However, it is presumed that the electrolysis in the part (that is, the gaps 4x and 4y) continued to occur even though the current value decreased thereafter. According to the present embodiment, the applied voltage at DC is 1.5 volts and the required electrolytic current is obtained, and the generation of the required electrolytic gas has been observed. The required electrolysis current of 20 to 100 milliamps could not be reached without applying 4 times 6.0 volts. Since this applied voltage is still a low voltage, it was determined that there is no problem in terms of power consumption. Accordingly, when various conditions are ideally set, the AC applied voltage can be, for example, in the range of 1.5 to 12 volts, particularly 2.0 to 9.0 volts. The potential difference between the outer wall surface 4k of the inner porous water purification member 4 and the inner wall surface 5i of the outer porous water purification member 5 facing each other is, for example, 1.5 to 9.0 volts, particularly 3.0 to 6.0 volts. can do. The current between the potential difference between the outer wall surface 4k of the inner porous water purification member 4 and the inner wall surface 5i of the outer porous water purification member 5 can be set to, for example, 20 to 80 milliamperes.
[0040]
In addition, a test piece obtained by cutting out a part of a porous water purification member formed of a material similar to the example of the present invention using a pore size distribution measuring device for examining adsorption characteristics of activated carbon using a gas such as nitrogen or helium The test piece was accommodated in a measurement chamber of a pore size distribution measuring apparatus, and the amount of activated carbon adsorbed on the test piece was measured in this state. According to the measurement results, it was confirmed that the higher the pressure in the measurement chamber of the measuring device, the higher the amount of hydrogen stored in the activated carbon, that is, the hydrogen storage characteristics in the activated carbon. From this, according to the present embodiment, as described above, the check valve 80 is disposed at the unillustrated hose front end portion connected to the discharge portion 36, and the check valve 80 serves as an electrolysis chamber. The pressure in the annular gap 6 is kept high. As shown in FIG. 1, the check valve 80 encloses a valve body 80b that closes the valve port 80a, and urges the valve body 80b in a direction that the valve body 80b closes the valve port 80a and defines an opening setting pressure. And an urging spring 80c. When the pressure in the container 1 becomes higher than the set opening pressure of the check valve 80 due to the gas generated by electrolysis, the check valve 80 is automatically opened. Can do. When the pressure in the container 1 is lower than the open set pressure of the check valve 80, the check valve 80 is closed, so that purified water cannot be discharged from the discharge portion 36. In some cases, the check valve 80 may not be provided.
[0041]
In the present embodiment as described above, the sealing performance of the container 1 is maintained by the check valve 80 when the electrolytic water purifier is not used. For this reason, it is promoted that the gas generated by electrolyzing the water provided in the annular gap 6 between the porous water purification members 4 and 5 is occluded in the porous water purification member 3. This is because when the electrolytic water purifier is not used, the airtightness in the container 1 is easily maintained by the check valve 80, and the gas pressure in the annular gap 6 serving as an electrolysis chamber is likely to increase.
[0042]
In addition, the present inventor installed a digital micro pressure gauge in the annular gap 6 that is an electrolysis chamber, and examined the pressure change in the annular gap 6 that is an electrolysis chamber over time without discharging water. According to the measurement result, when 150 minutes passed from the start of the measurement, it was a pressure peak of the annular gap 6 which is an electrolytic chamber. After that, a phenomenon was observed in which the pressure in the annular gap 6 serving as an electrolysis chamber decreased. The pressure data when 150 minutes passed from the start of measurement almost coincided with the set opening pressure of the check valve 80 described above. The pressure drop in the annular gap 6 that is an electrolysis chamber after 150 minutes means that gas absorption to the inner porous water purification member 4 and the outer porous water purification member 5 has progressed.
[0043]
This inventor performed the test which measures the change of the amount of hydrogen in the container 1 using the electrolytic water purifier which concerns on a present Example. According to this test, the outer porous water purification member 5 having an outer diameter of 124 mm, an inner diameter of 66 mm, and a height of 200 mm, and the inner porous water purification member 4 having an outer diameter of 62 mm, an inner diameter of 20.5 mm, and a height of 200 mm. And were used. In the annular gap 6 which is an electrolysis chamber, a gap of 2 mm was formed. And, when an alternating voltage of about 6 volts (frequency: range of 50-60 Hz) was applied to the first electrode A1 and the second electrode A2, between the inner porous water purification member 4 and the outer porous water purification member 5, A current of 83 mA flowed.
[0044]
According to this test, a digital oxidation-reduction potentiometer that can measure the amount of hydrogen by replacing it with a reduction potential was used. Although it was 650 millivolts at the start of electrolysis, it changed to -120 millivolts after 30 minutes. This is because the generation of hydrogen progressed reliably. Thereafter, after examination after standing for 12 hours, it showed -458 millivolts. The pH showed pH 8.3 at the beginning of discharge, but the pH returned to 7.5 after the discharge amount of water exceeded 1 liter.
[0045]
Conventionally, when direct current is applied, even in soft water, when the use period is long, bicarbonate calcium contained in water before purification becomes carbonate carbonate, and this is used as a product as a cathode ( There is a possibility that an insulating film is formed by depositing on the negative electrode side, and as a result, the electrolysis in the annular gap 6 in the electrolytic chamber stops. According to this test, an alternating voltage in which the positive voltage and the negative voltage are alternately reversed in 50 to 60 cycles is applied, so that oxidation and reduction are repeated, and deposition of products such as calcium carbonate can be suppressed. . In fact, when the electrolytic water purifier was disassembled and examined after 4 months, it was found that there was no trace of deposition and that the application of an alternating voltage was extremely effective.
[0046]
Usually, since there is almost no hydrogen in the atmosphere, there is almost no opportunity for hydrogen to dissolve in water. Conventionally, redox potentiometers using a glass reference electrode have been used for similar alkali-ion-generated water, etc., but since the internal liquid is leached from the tip of the glass electrode, it is measured throughout the year. Needed to be replenished with the internal solution as needed. Accordingly, the present inventor has found that the oxidation-reduction potential clearly has a correlation with pH, and the sensor 27 that can function as a semiconductor-type pH measuring device that does not require an internal liquid is connected to the inner porous portion from the electrical equipment housing portion 13. Inserting into the central hole 4a defined by the inner wall surface 4i of the water purification member 4, calculating the oxidation-reduction potential from the pH value based on the microcomputer, and displaying the calculated numerical value on the display unit 26 provided on the outer periphery of the electrical equipment housing unit 13. I made it. Therefore, the detection unit 27 f of the sensor 27 was inserted into the bush 25 side screwed into the upper end portion of the center pipe 22, and the microcomputer (not shown) was provided in the electrical component chamber 16 of the electrical component storage unit 13 and connected to the display unit 26.
[0047]
As described above, according to this embodiment, the porous water purification member 3 is divided into the two inner porous water purification members 4 and the outer porous water purification member 5 in the radial direction so as to form the annular gap 6. The inner porous water purification member 4 is connected to the power supply terminal 34 to be the first electrode A1, and the outer porous water purification member 5 is connected to the power supply terminal 35 to be the second electrode A2. In this way, it is possible to secure a large exposed area of the inner wall surface 5i of the outer porous water purification member 5 and the outer wall surface 4k of the inner porous water purification member 4 that form the annular gap 6 serving as an electrolysis chamber. As a result, a large electrolysis area in the porous water purification member 3 can be secured, which is advantageous for increasing the electrolysis capacity in the annular gap 6 serving as an electrolysis chamber. Furthermore, since the gas permeation area of the porous water purification member 3 for occluding gas can be secured large, the gas generated by electrolysis of water in the annular gap 6 serving as an electrolysis chamber is occluded in the pores of the porous water purification member 3. Is advantageous. In general, it is said that a gas such as hydrogen immediately after being generated by electrolysis is rich in activity and has a positive effect on the living body. In particular, according to the present embodiment, since the annular gap 6 which is an electrolysis chamber is formed by the porous water purification members 4 and 5, the gas immediately after being generated by electrolysis has high activity and is good for the living body. This is advantageous for effectively storing the water in the porous water purification member 3.
[0048]
(Other examples)
The second embodiment has basically the same configuration as that of the above-described embodiment and applies an AC voltage. The second embodiment has basically the same effects as the above-described embodiment. 3 is used. In this example, emphasizing the ability to capture bacteria and the like, the outer porous water purification member 5M has a high porosity and is still dense, and the average pore diameter is larger than the average pore diameter of the inner porous water purification member 4M. Is set to be small (for example, 0.1 to 1 micron, especially 0.3 micron). About such outer porous water purification member 5M, although the capture | acquisition property of a microbe etc. is favorable, the pressure loss at the time of water flow is large, and the amount of water discharge per unit time is also low.
[0049]
Further, the inner porous water purification member 4M has a slightly lower porosity, and the average pore diameter is larger than the average pore diameter of the outer porous water purification member 5M (for example, 8 to 100 microns, 8 to 20 microns, 8 to 8). 10 microns), reducing the pressure loss during water flow and increasing the water discharge per unit time. With the combination of the inner porous water purification member 4M and the outer porous water purification member 5M having such characteristics, it is possible to secure the water discharge amount per unit time while ensuring the capture performance. In particular, in the water supply chamber 14, the water pressure acts in the centripetal direction of the inner porous water purification member 4M and the outer porous water purification member 5M, but the outer porous water purification member 5M is dense and secures strength. It is advantageous to cope with water pressure. The average pore diameter is not limited to the above value.
[0050]
(Third embodiment)
The third embodiment has basically the same configuration as the above-described embodiment and applies an AC voltage, and has basically the same functions and effects as the above-described embodiment. In this example, the characteristics of the inner porous water purification member 4M and the outer porous water purification member 5M are opposite to those of the second embodiment. That is, the inner porous water purification member 4M has a high porosity but is dense, and the average pore diameter is set smaller than the average pore diameter of the outer porous water purification member 5M. Such an inner porous water purification member 4M has good trapping ability for bacteria and the like, but has a high porosity but is dense, and therefore has a large pressure loss during water flow and a low water discharge amount per unit time.
[0051]
In addition, the outer porous water purification member 5M has a slightly lower porosity, the average pore diameter is larger than the average pore diameter of the inner porous water purification member 4M, the pressure loss during water flow is reduced, and the per unit time The amount of water discharge is increased. With the combination of the inner porous water purification member 4M and the outer porous water purification member 5M having such characteristics, it is possible to secure the water discharge amount per unit time while ensuring the capture performance.
[0052]
(Fourth embodiment)
FIG. 4 shows a fourth embodiment. The fourth embodiment has basically the same configuration as that of the above-described embodiment and applies an AC voltage. The fourth embodiment has basically the same effect as the above-described embodiment. Also in this embodiment, the inner porous water purification member 4 and the outer porous water purification member 5 are divided in the radial direction so as to form the annular gap 6. A spacer member 98 is interposed as a gap maintaining means between the outer wall surface 4k of the inner porous water purification member 4 and the inner wall surface 5i of the outer porous water purification member 5. The gap width of the annular gap 6 that is an electrolysis chamber is favorably maintained by the spacer member 98, which is advantageous for stably performing electrolysis in the annular gap 6 over a long period of time. A similar spacer member is also provided below the porous water purification member 3. The spacer member 98 may have a ring shape, but is not limited thereto. As the material of the spacer member 98, a polymer material such as a resin, a ceramic material, or the like can be adopted, and a material having high electrical insulation and good corrosion resistance is preferable.
[0053]
(5th Example)
FIG. 5 shows a fifth embodiment. The fifth embodiment has basically the same configuration as that of the above-described embodiment and applies an alternating voltage, and has basically the same function and effect as the above-described embodiment. Also in this embodiment, the inner porous water purification member 4 and the outer porous water purification member 5 are divided in the radial direction so as to form the annular gap 6. A spacer member 99 is interposed as a gap maintaining means between the outer wall surface 4k of the inner porous water purification member 4 and the inner wall surface 5i of the outer porous water purification member 5. The spacer member 99 is formed integrally with the seal cap 71. The gap width of the annular gap 6 serving as an electrolysis chamber is favorably maintained by the spacer member 99, which is advantageous for stably performing electrolysis in the annular gap 6 over a long period of time. A similar spacer member is integrally formed with another seal cap 70. The spacer member 99 may have a ring shape, but is not limited thereto.
[0054]
(Other)
The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within a range not departing from the gist. For example, the shape, structure, size, material, and the like of each component described above are not limited to those described above. The applied voltage value, current value, etc. are not limited to the above values. In each of the above-described embodiments, an alternating voltage is applied to the first electrode A1 and the second electrode A2. However, in some cases, as long as the content of claim 1 is satisfied, the direct voltage is applied to the first electrode A1 and the second electrode A2. You may make it apply to 2nd electrode A2. However, when a DC voltage is applied, it is preferable to periodically clean the accumulated product. The raw water before purification is not limited to tap water, and water such as wells may be used. The power supply terminals 34 and 35 are not limited to the top type, but may have other shapes and structures, and in short, any power supply can be used as long as it can supply power to the porous water purification member. Although water passes in the centripetal direction of the porous water purification member 3, it is not limited to this and may be reversed. In the embodiment shown in FIG. 1, power supply terminals 34 and 35 are provided on the upper end surface 4 u of the inner porous water purification member 4 and the upper end surface 5 u of the outer porous water purification member 5, and the inner porous water purification member 4 and the outer porous water purification member However, the present invention is not limited to this, and power may be supplied from below the inner porous water purification member 4 and the outer porous water purification member 5. Alternatively, power may be supplied from both the lower side and the upper side of the inner porous water purification member 4 and the outer porous water purification member 5. In the above-described embodiment, the inner porous water purification member 4 and the outer porous water purification member 5 are formed in a cylindrical shape, but depending on circumstances, a conical tube shape or a rectangular tube shape may be used. In addition, it is also preferable to perform a grounding process as needed.
[0055]
(Supplementary note) The following technical idea can be grasped from the above description.
In each claim, the electrolytic water purifier is characterized in that the electrolysis chamber installed in the gap between the two porous water purification members is provided on the water forward side of the porous water purification member.
-In each claim, the porous water purifier is an electrolytic water purifier formed by pressure-molding and firing a material mainly composed of activated carbon and a binder.
In each claim, the porous water purification member has a large number of pores having an average pore diameter of 0.1 to 20 microns, particularly 0.3 to 15 microns, especially 0.3 to 10 microns. Electrolytic water purifier characterized by having.
-In each claim, the porous water purification member is a molded body of a block having a porosity of 15% to 65%, has resistance to gas permeation, and gas generated in the annular gap which is an electrolysis chamber, An electrolytic water purifier characterized in that it is easy to increase the gas pressure in an annular gap which is an electrolysis chamber. Since the porous water purification member has a large number of pores and has gas permeation resistance, it is easy to increase the pressure in the electrolysis chamber, and the gas in the annular gap that is the electrolysis chamber can easily enter the porous water purification member.
In each claim, the porous water purification member has a cylindrical shape with a central hole, and a metal center pipe is disposed substantially coaxially with a ring-shaped gap in the central hole of the porous water purification member. The center pipe is made polarizable in accordance with the voltage application to the porous water purification member, and the gap between the outer wall surface of the center pipe and the inner wall surface of the porous water purification member tube portion can function as an electrolysis chamber. Electrolytic water purifier.
-In each claim, along with voltage application to the porous water purification member, the inner wall surface of the cylindrical portion is polarizable, and the gap between the outer wall surface of the porous water purification member and the inner wall surface of the cylindrical portion is: An electrolytic water purifier that can function as an electrolysis chamber.
-In each claim, the power feeding terminal is arrange | positioned on the same surface side among porous water purification members, The electrolytic water purifier characterized by the above-mentioned. This is advantageous for supplying power to the porous water purification member.
-In each claim, the voltage (alternating voltage or direct-current voltage) applied to a porous water purification member is 1.5-9 volts, The electrolytic water purifier characterized by the above-mentioned.
In each claim, the electrolytic water purifier is characterized in that a current between potential differences between porous water purification members to which a voltage is applied is 10 to 100 milliamperes.
-In each claim, the electrolytic water purifier which has a display part which displays the amount of hydrogen gas generated in the container. The user can grasp the amount of hydrogen gas generated in the container.
-In each claim, the electrolytic water purifier which has a display part which displays the oxidation-reduction potential by calculating the amount of hydrogen gas generated in the container from the pH value.
-In each claim, a check valve that maintains the pressure in the electrolysis chamber at a high level is provided. When the pressure in the container is higher than the set open pressure of the check valve due to gas generated by electrolysis, the check valve is opened. An electrolytic water purifier, wherein the check valve is closed when the pressure in the container is lower than the open set pressure of the check valve. The pressure inside the container can be kept high.
A container having a water supply chamber partitioned by an inner wall surface, a porous water purification member having a large number of pores having water purifying properties contained in the water supply chamber of the container, a water supply unit for supplying water to the water supply chamber of the container, An electrolytic water purifier having a discharge part for discharging water purified by a porous water purification member in a water supply chamber of the container to the outside,
The porous water purification member is divided into at least two porous water purification members so as to form an annular gap, and one porous water purification member is connected to the first power supply terminal as the first electrode, The other porous water purification member is connected to the second power supply terminal to be the second electrode, and is generated by electrolyzing the water in the annular gap by applying a voltage to the first electrode and the second electrode. An electrolytic water purifier characterized in that a substance such as gas is stored in the pores of a porous water purification member.
-In each claim, the water purifier per unit time of the porous water purifier member arrange | positioned on the outer side is larger than the porous water purifier member arrange | positioned on the inner side, The water purifier characterized by the above-mentioned.
-In each claim, the porous water purification member arrange | positioned on the outer side is denser than the porous water purification member arrange | positioned on the inner side, and the amount of water discharge per unit time is less, The electrolytic water purifier characterized by the above-mentioned.
[0056]
【The invention's effect】
According to the electrolytic water purifier according to the present invention, the porous water purification member is divided into at least two cylindrical porous water purification members in the radial direction so as to form an annular gap, and one porous water purification member is The other porous water purification member is connected to the second power supply terminal to be the second electrode while being connected to the first power supply terminal to be the first electrode. In this way, it is possible to secure a large exposed area of the wall surface that forms the annular gap serving as the electrolysis chamber, and consequently, an electrolysis area in the porous water purification member, thereby increasing the electrolysis capacity in the annular gap serving as the electrolysis chamber. Is advantageous. Furthermore, since the porous water purification member that allows the porous water purification member to store gas also has a large gas permeation area, a substance such as a gas generated by electrolysis of water in the annular gap serving as the electrolysis chamber can be separated from the porous water purification member. It is advantageous for occlusion in the hole. In general, it is said that a gas such as hydrogen immediately after being generated by electrolysis is rich in activity and has a positive effect on the living body. According to the electrolytic water purifier according to the present invention, the annular gap that is the electrolysis chamber is formed between the porous water purification members, so that the gas that is highly active immediately after the electrolysis and is good for the living body is porous. It is advantageous for effectively storing the quality water purification member.
[0057]
Furthermore, according to the electrolytic water purifier according to the present invention, when alternating current is to be applied to the first electrode and the second electrode, the phenomenon of anodic corrosion that occurs when a direct current voltage is applied, and This is advantageous for suppressing deposition of products such as calcium carbonate and magnesium carbonate on the cathode (-electrode), and is advantageous in terms of maintenance and the like.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an electrolytic water purifier according to an embodiment of the present invention.
FIG. 2 is an enlarged longitudinal sectional view showing a main part of the electrolytic water purifier according to the embodiment of the present invention.
FIG. 3 is an external view showing a part of the inside of an embodiment of the present invention.
FIG. 4 is a longitudinal sectional view of a main part showing an electrolytic water purifier according to another embodiment.
FIG. 5 is a longitudinal sectional view of an essential part showing an electrolytic water purifier according to another embodiment.
FIG. 6 is a typical waveform diagram when an AC voltage is applied.
[Explanation of symbols]
In the figure, 1 is a container, 10 is a cylindrical portion, 3 is a porous water purification member, 4 is an inner porous water purification member, 5 is an outer porous water purification member, 6 is an annular gap, and 17 and 18 are screws (AC application portion). , 29 is a water supply unit, 36 is a discharge unit, 34 and 35 are power supply terminals, and 98 and 99 are spacer members (gap maintaining means).

Claims (4)

内壁面で区画された給水室をもつ容器と、前記容器の給水室に収容された水浄化性を有する多数の細孔をもつ多孔質浄水部材と、前記容器の給水室に給水する給水部と、前記容器の給水室内の前記多孔質浄水部材で浄化された水を器外に吐出する吐出部とを有する電解浄水器であって、
前記多孔質浄水部材は、環状隙間を形成するように径方向において少なくとも2つの筒状の多孔質浄水部材に分割されており、
一の多孔質浄水部材は第1給電端子と接続されて第1電極とされていると共に、他の多孔質浄水部材は第2給電端子と接続されて第2電極とされており、
前記第1電極と前記第2電極とに電圧を印加することにより、前記環状隙間の水を電気分解し、発生したガスを前記多孔質浄水部材の細孔に吸蔵させるようにしていることを特徴とする電解浄水器。
A container having a water supply chamber partitioned by an inner wall surface, a porous water purification member having a large number of pores having water purification properties contained in the water supply chamber of the container, and a water supply unit for supplying water to the water supply chamber of the container; An electrolytic water purifier having a discharge part for discharging water purified by the porous water purification member in the water supply chamber of the container to the outside,
The porous water purification member is divided into at least two cylindrical porous water purification members in the radial direction so as to form an annular gap,
One porous water purification member is connected to the first power supply terminal to be the first electrode, and the other porous water purification member is connected to the second power supply terminal to be the second electrode,
By applying a voltage to the first electrode and the second electrode, the water in the annular gap is electrolyzed, and the generated gas is occluded in the pores of the porous water purification member. Electrolytic water purifier.
請求項1において前記第1電極及び前記第2電極に交流を印加する交流印加部を有することを特徴とする電解浄水器。2. The electrolytic water purifier according to claim 1, further comprising an alternating current application unit configured to apply alternating current to the first electrode and the second electrode. 請求項2において前記交流印加部は前記多孔質浄水部材に電気的に導通する給電端子であることを特徴とする電解浄水器。3. The electrolytic water purifier according to claim 2, wherein the AC application unit is a power supply terminal that is electrically connected to the porous water purification member. 請求項1〜請求項3のいずれかにおいて、前記環状隙間は断面リング形状の隙間であり、一の多孔質浄水部材と他の多孔質浄水部材との間の前記環状隙間の隙間幅を維持する隙間維持手段が前記容器内に設けられていることを特徴とする電解浄水器。In any one of Claims 1-3, the said annular clearance is a clearance gap of a cross-sectional ring shape, and the clearance gap width of the said annular clearance between one porous water purification member and another porous water purification member is maintained. An electrolytic water purifier characterized in that a gap maintaining means is provided in the container.
JP2001308609A 2001-10-04 2001-10-04 Electrolytic water purifier Expired - Fee Related JP3664302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308609A JP3664302B2 (en) 2001-10-04 2001-10-04 Electrolytic water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308609A JP3664302B2 (en) 2001-10-04 2001-10-04 Electrolytic water purifier

Publications (2)

Publication Number Publication Date
JP2003113488A JP2003113488A (en) 2003-04-18
JP3664302B2 true JP3664302B2 (en) 2005-06-22

Family

ID=19127893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308609A Expired - Fee Related JP3664302B2 (en) 2001-10-04 2001-10-04 Electrolytic water purifier

Country Status (1)

Country Link
JP (1) JP3664302B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420667B2 (en) 2003-12-26 2010-02-24 タカオカ化成工業株式会社 Electrolytic hydrogen water generator
JP5190834B2 (en) * 2007-03-26 2013-04-24 国立大学法人東北大学 Bubble generation method
US20160056489A1 (en) * 2013-03-27 2016-02-25 Konica Minolta, Inc. Secondary Battery Type Fuel Cell System
JP6183747B2 (en) * 2013-11-18 2017-08-23 株式会社ドンクレーブ Reduced hydrogen water generator
JP6446633B2 (en) * 2017-05-06 2019-01-09 株式会社ドンクレーブ Reduced hydrogen water generator

Also Published As

Publication number Publication date
JP2003113488A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US8002955B2 (en) Cylindrical electrolysis cell
US5744028A (en) Water treating apparatus
JPH07509536A (en) water electrochemical treatment equipment
CN101348291A (en) Water treatment device and water treatment method
US20080116146A1 (en) Water purification system
JP3664302B2 (en) Electrolytic water purifier
MXPA04009787A (en) Water treatment system and water heater with cathodic protection and method.
CN208948909U (en) A kind of electro-chemical systems of the purifying drinking water using the building of closing anode chamber
JP2004060011A (en) Electrolytic ozone water manufacturing apparatus
JP4056421B2 (en) Electrolytic water purifier
CN107935130A (en) A kind of electro-chemical systems and purification method for purifying drinking water
US20050247557A1 (en) Electrolytic water purifier
JP2008062234A (en) Electrolytic water purifier
JP3795905B1 (en) Combustion gas generator
JP2002066563A (en) Active hydrogen occluded water cleaning device
JP2002273435A (en) Gas occlusion water purifier
JP2001187382A (en) Water purifier for producing reduced water
RU10710U1 (en) FILTERING DEVICE FOR WATER TREATMENT
JP2000239874A (en) Inline chlorine generating electrolytic apparatus and electrolytic treatment of water to be treated by using this apparatus
JP3790346B2 (en) Water treatment equipment
JP4944913B2 (en) Hydrogen water generator
JP2005177537A (en) Electrolytic ion water generator
KR101963695B1 (en) Blended gas manufacturing device that electrically decomposes wastewater
JPH04219194A (en) Electrochemical treatment of water to be treated
JP3468241B2 (en) Electrolyzed water generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees