JP3637794B2 - Method for producing methyl methacrylate polymer beads - Google Patents
Method for producing methyl methacrylate polymer beads Download PDFInfo
- Publication number
- JP3637794B2 JP3637794B2 JP33729398A JP33729398A JP3637794B2 JP 3637794 B2 JP3637794 B2 JP 3637794B2 JP 33729398 A JP33729398 A JP 33729398A JP 33729398 A JP33729398 A JP 33729398A JP 3637794 B2 JP3637794 B2 JP 3637794B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- methyl methacrylate
- weight
- polymerization
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/12—Esters of monohydric alcohols or phenols
- C08F20/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、公知のメタクリル酸メチル系重合体よりも粒径の大きいメタクリル酸メチル系重合体ビーズの製造方法、詳しくは発泡成形に適した平均粒子径が400μm以上のメタクリル酸メチル系重合体ビーズの製造方法に関するものである。
【0002】
【従来の技術】
メタクリル酸メチル系重合体は剛性があり、透明性に優れ、かつ耐候性にも優れることから、射出成形して、自動車のランプカバーやメーターカバー、眼鏡レンズ、導光体等の成形品や、さらに押出し成形して看板や銘板等の押出し板として広く使用されている。
一方、メタクリル酸メチル系重合体は、流動性と溶融延伸時の強度が共に高いことが必要な異形(共)押出し、ブロー成形、発泡成形の材料に適さず、これらの分野に使用されていないのが現状である。
【0003】
本発明者等はかかる分野にも適用し得る溶融流動性に優れたメタクリル酸メチル系重合体を提供すべく鋭意検討した結果、「分岐構造を有し、重量平均分子量が8万〜40万で、Z平均分子量を用いて規定される分岐点間分子量が3万〜50万である分岐構造を有するメタクリル酸メチル系重合体」は上記特性を満足し得ることを見出し先に特願平7−280235号(特開平8−208746号公報)として出願した。
ところで、発泡成形材料としては発泡剤を含有する樹脂粒子径が大きいほど、小さいものに比較して、発泡に寄与する発泡剤が粒子表面より揮散し難く、高発泡倍率の成形を可能とすることが考えられるが、スチレン等の重合に於いては難溶性無機塩微粉末と陰イオン界面活性剤さらにはこれらとポリビニルアルコール、ポリビニルピロリドン、メチルセルロース等の水溶性高分子を懸濁安定剤として使用することより大粒子径の樹脂を得る製造方法は知られているものの、メタクリル酸メチル系樹脂に於いては、知られていない。
【0004】
【発明が解決しようとする課題】
このような状況下に鑑み、本発明者等は発泡剤を樹脂中に容易に含浸せしめ、かつガス抜けの少ない大粒子径のメタクリル酸メチル系樹脂を得ることを目的として鋭意検討した結果、メタクリル酸メチルを主成分とする単量体を水性媒体中で懸濁重合するに際し、特定の懸濁安定剤と特定の懸濁助剤を併用し、さらに特定の重合時期に特定の懸濁安定剤を添加し重合する場合には、上記目的を満足する平均粒子径約400μm以上の大粒子径を有するメタクリル酸メチル系重合体ビーズが得られることを見出し、本発明を完成するに至った。
【0005】
【課題を解決するための手段】
すなわち本発明は、メタクリル酸メチルを主成分とする単官能単量体を、ラジカル重合開始剤を用い、共重合可能な多官能単量体及び連鎖移動剤の共存下に水性媒体中で懸濁重合することによりメタクリル酸メチル系重合体を製造するに際し、アニオン系水溶性高分子からなる懸濁安定剤と水性媒体中の濃度が1〜10重量%となる水溶性塩基性りん酸塩の存在下で重合を開始し、重合率が40〜80%になった時点で、ノニオン系水溶性高分子からなる懸濁安定剤を添加することを特徴とする平均粒子径が400μm以上のメタクリル酸メチル系重合体ビーズの製造方法を提供するにある。
【0006】
さらに本発明は、メタクリル酸メチルを主成分とする単官能単量体を、ラジカル重合開始剤を用い、共重合可能な多官能単量体及び連鎖移動剤の共存下に水性媒体中で懸濁重合することによりメタクリル酸メチル系重合体を製造するに際し、該単官能単量体1モル当たり、該連鎖移動剤の量が2.5×10-5モル〜5×10-3モル、該共重合可能な多官能単量体の量が該単官能単量体1モル当たり、その官能基数が1×10-5〜{該連鎖移動剤(モル)−2.5×10-4}モルとなる量で、アニオン系水溶性高分子からなる懸濁安定剤と水性媒体中の濃度が1〜10重量%となる水溶性塩基性りん酸塩の存在下で重合を開始した後、重合率が40〜80%になった時点で、ノニオン系水溶性高分子からなる懸濁安定剤を添加し、極限粘度〔η〕が0.25〜1.5dl/gの重合体を生成させることを特徴とする平均粒子径が400μm以上のメタクリル酸メチル系重合体ビーズの製造方法を提供するにある。
【0007】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明のメタクリル酸メチル系重合体ビーズは、メタクリル酸メチルを主成分とする単官能単量体およびこれと共重合可能な多官能単量体の重合体よりなる平均粒子径が400μm以上の実質的に球状の粒子である。球状の粒子とは、目視で円盤状や楕円状ではなく、実質的に球状〔例えばランダムに選んだ粒子100個の長短度(短径/長径)の平均値が約0.7以上、好ましくは約0.8以上〕の粒子を言う。
【0008】
本発明に於いて平均粒子径とは、音波振動式全自動篩分測定器(株式会社セイシン企業製)あるいは電磁振とう式篩分測定器(三田村理研工業株式会社)を用いて測定して得られる累積重量50%平均粒子径を意味する。(JIS Z−8801(1982)に準拠)
【0009】
本発明の製造方法に於いて、メタクリル酸メチルを主成分とする単官能単量体とはメタクリル酸メチルの単独、または50重量%以上、好ましくは70重量%以上のメタクリル酸メチルと共重合可能な単官能不飽和単量体との混合物である。メタクリル酸メチルが50重量%未満では、いわゆるメタクリル酸メチル重合体の特性である透明性、機械的強度が発現し難い。
【0010】
メタクリル酸メチルと共重合可能な単官能不飽和単量体としては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ベンジル等のメタクリル酸エステル類:アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル類:アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸等の酸無水物:アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸モノグリセロール、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸モノグリセロール等のヒドロキシル基合有のエステル:アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドが挙げられる。さらにアクリロニトリル、メタクリロニトリル等のニトリル類:メタクリル酸ジメチルアミノエチル等の窒素含有単量体:アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有単量体が挙げられる。
【0011】
メタクリル酸メチルを主成分とする単官能単量体と共重合可能な多官能単量体としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコールまたはこれら多価アルコール誘導体をアクリル酸またはメタクリル酸でエステル化したもの等が挙げられる。
【0012】
本発明では、メタクリル酸メチルを主成分とする単官能単量体およびこれと共重合可能な多官能単量体を、アニオン系水溶性高分子からなる懸濁安定剤及び水性媒体中の濃度が約1〜10重量%、好ましくは約1〜約3重量%の水溶性塩基性りん酸塩の存在する水性媒体中で重合を開始する。そして、該単量体(単官能単量体+多官能単量体)の重合率が約40〜約80%、好ましくは約50〜約70%になった時点で、ノニオン系水溶性高分子からなる懸濁安定剤を添加する。ノニオン系水溶性高分子からなる懸濁安定剤の添加は、一括、分割、または連続的に添加することができる。重合率が40%未満でノニオン系水溶性高分子からなる懸濁安定剤を添加した場合には得られる樹脂粒子は球状でないものが多く粒形は不揃いとなる。重合率が80%を越えた時点で添加した場合には、重合が不安定になるため、得られる重合体ビーズは球状でないものや、凝集粒子が多くなる。
【0013】
本発明で用いるアニオン系水溶性高分子からなる懸濁安定剤としては、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、メタクリル酸ナトリウム−メタクリル酸アルキルエステル共重合体等が挙げられ、これらは単独または併用して使用することができる。中でも、ポリアクリル酸ナトリウム、ポリメタクリル酸ナトリウムが好ましい。
【0014】
ノニオン系水溶性高分子からなる懸濁安定剤としては、ポリビニルアルコール、部分けん化ポリ酢酸ビニル、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、ポリエチレンオキシド、ポリオキシエチレン−ポリオキシプロピレンブロック共重合体、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンラウリルアミン等の水溶性高分子が挙げられ、これらは単独または併用して使用することができる。好ましくはポリオキシエチレン−ポリオキシプロピレンブロック共重合体である。
【0015】
アニオン系及びノニオン系水溶性高分子からなる懸濁安定剤の使用量は、それぞれ、該単量体に対して約0.005〜約1.0重量部、好ましくは約0.01〜約0.1重量部の範囲から選択されるが、重合系が安定となる範囲内で少ない方が好ましい。約0.005重量部以下では重合系が不安定となり、約1.0重量部を超えると微小粒状重合体ビーズが多く生成し平均粒子径が小さくなる。
【0016】
本発明では、アニオン系水溶性高分子からなる懸濁安定剤とともに水性媒体中での濃度が約1〜約10重量%、好ましくは約1〜約3重量%の水溶性塩基性りん酸塩を用いることが、発泡成形に適した平均粒子径が400μm以上のメタクリル酸メチル系重合体ビーズを得るための必須要件である。濃度が約1重量%より低いと得られるビーズの平均粒子径が小さくなり、約10重量%より高いと重合系が不安定となる。水溶性塩基性りん酸塩としては、りん酸水素2ナトリウム、りん酸水素2カリウム、りん酸3ナトリウム、りん酸3カリウム等が挙げられ、これらは単独または併用して使用することができる。好ましくはりん酸水素2ナトリウムが適用される。
【0017】
水性媒体と単量体または単量体混合物の割合は、1:1〜5:1、好ましくは1:1〜3:1の範囲である。水性媒体の量が少なすぎると、単量体の分散が不均一となり易く、重合系が不安定となり、多いと微小粒状重合体ビーズが多く生成し平均粒子径が小さくなる。
【0018】
重合の温度条件は、60〜120℃程度で、用いる重合開始剤に適した温度でよく、また攪拌条件も通常の懸濁重合でメタクリル酸メチル系重合体ビーズを製造する際の条件でよい。重合装置としては、周知の攪拌翼例えばタービン翼、ファウドラー翼、プロペラ翼、ブルーマージン翼等の付いた攪拌機を備えた重合容器を用い、該容器には、バッフルを付けているのが一般的である。
懸濁重合の終了後は、周知の方法により洗浄、脱水、乾燥することにより重合体ビーズを得ることができる。
【0019】
本発明のメタクリル酸メチル系重合体ビーズとしては、特に制限されるものではないが、既に特開平8ー208746号公報により公知の溶融流動性に優れた分岐構造を有し、重量平均分子量(Mw)は8万〜40万、好ましくは15万〜30万であり、Z平均分子量(Mz)を用いて規定される分岐点間分子量(Mzb)が3万〜50万、好ましくは5万〜20万のメタクリル酸メチル系樹脂粒子を適用することが推奨される。
【0020】
Mwが上記範囲のものは該重合体の機械的強度に優れ、これを成分とするメタクリル酸メチル系重合体ビーズを発泡させた発泡体の強度にも優れ、発泡ビーズの成形時の融着特性にも優れる。
また、分岐点間分子量(Mzb)が上記範囲のものは、重合体の発泡性能に優れ、機械的強度、成形品の外観にも優れる。
【0021】
ここでMw、Mzとは、ゲル・パーミェーション・クロマトグラフィー(GPC)と示差屈折率計により求められる値である。この求め方は、例えば1984年度版、「高分子特性解析」(共立出版)24頁〜55頁に記載されている。
【0022】
分岐点間分子量とは、分岐構造を有するポリマーにおいて分岐点から次の分岐点までの分子量の平均値を意味する。
このZ平均分子量を用いて規定する分岐点間分子量(Mzb)は、日本ゴム協会誌、第45巻、第2号、105〜118頁「キャラクタリゼーション」の記載に基づき、下記数式 数1、数2より算出される。
【0023】
【数1】
{[η1 ]/[η2 ]}10/6={(1+Bz/6)0.5 +4Bz/3π}-0.5
【0024】
【数2】
Mzb=Mz/Bz
【0025】
上記数式 数1において、η1 は、直鎖状メタクリル酸メチル重合体標準試料のGPC溶出時間に対する極限粘度と絶対分子量との積の関係を示す普遍較正曲線を用いて得られる測定対象の重合体の絶対分子量に対する極限粘度の関係を示す較正曲線において、分子量がMz値に対応する極限粘度である。
η2 は、直鎖状メタクリル酸メチル重合体標準試料の絶対分子量に対する極限粘度の関係を示す較正曲線において、測定対象の重合体と同じ分子量Mz値に対応する極限粘度である。
Bzは、Z平均分子量Mzにおける分岐点の数である。
【0026】
上記メタクリル酸メチル系重合体は、その重合体のうち分子量30万以上のものの割合が、その重合体のクロロホルム中25℃における還元粘度が0.7dl/g以下の時は、{〔14×該還元粘度値−6.8〕〜〔14×該還元粘度値+11・2〕}(重量%)であり、還元粘度が0.7dl/g以上の時は、{〔40×該還元粘度値−25〕〜〔40×該還元粘度値−7〕}(重量%)であることが好ましい。
なお、本発明で表す還元粘度とは、その測定する重合体の溶液濃度が1g/dlでの値である。
分岐構造を有するメタクリル酸メチル系重合体の分子量30万以上の割合が上記の範囲内の場合には、メタクリル酸メチル系重合体の流動性と溶融時の引張り強度のバランスに優れ、それに伴って、これを用いて得られる樹脂組成物の流動性と溶融延伸時の強度のバランスに優れることによる良好な発泡体が得られる。
このような分岐構造を有するメタクリル酸メチル系重合体の架橋度は、ゲル分率(全重合体重量に対するアセトン不要部分の重量%)で表して、通常3%以下、好ましくは1%以下、更に好ましくはほぼ0%である。
【0027】
このような物性を兼ね備える本発明の大粒子径を有するメタクリル酸メチル系重合体は、メタクリル酸メチルを主成分とする単官能単量体を、アニオン系水溶性高分子からなる懸濁安定剤、ラジカル重合開始剤を用い、共重合可能な多官能単量体及び連鎖移動剤の共存下に懸濁重合することによりメタクリル酸メチル系重合体を製造するに際し、該単官能単量体1モル当たり、該連鎖移動剤の量が2.5×10-5モル〜5×10-3モル、該共重合可能な多官能単量体の量が該単官能単量体1モル当たり、その官能基数が1×10-5〜{該連鎖移動剤(モル)−2.5×10-4}モルとなる量で、水性媒体中の濃度が1〜10重量%となる水溶性塩基性りん酸塩の存在下で重合を開始した後、重合率が40〜80%になった時点で、ノニオン系水溶性高分子からなる懸濁安定剤を添加することにより得られる。
【0028】
上記製造方法に於いて、該多官能単量体の量は、該単官能単量体1モル当たり、官能基数で1×10-5〜{該連鎖移動剤(モル)−2.5×10-4}モルとなる量である。つまり、後述の該連鎖移動剤の量によっては、{該連鎖移動剤(モル)−2.5×10-4}モルが、1×10-5モルよりも少なくなる場合でも、1×10-5は必要である。官能基数が1×10-5モル未満では、得られる樹脂が高剪断速度での流動性が低く、しかも耐溶剤性も充分ではない。また、{該連鎖移動剤(モル)−2.5×10-4}モルを越えると得られる樹脂の溶融流動性が低く成形性が低いものとなる。
【0029】
ラジカル重合開始剤としては、ビニル単量体の重合用として周知のものでよい。例えば、2,2‘−アゾビス(2,4−ジメチルバレロニトリル)、アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート等のアゾ化合物;t−ブチルパーオキシピバレート、t−ブチルパーオキシ2−エチルヘキサノエート、クミルパーオキシ2−エチルヘキサノエート等のパーオキシエステル類;ジ−3,5,5−トリメチルヘキサノイルパーオキシド、ジラウロイルパーオキサイド等のジアシルパーオキサイド等のジアシルパーオキサイド類の有機過酸化物、2官能の1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、ジ−t−ブチルパーオキシトリメチルアジペート、3官能のトリス−(t−ブチルパーキシ)トリアジン、4官能の、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン等を挙げることができ、これらのうち1種類または2種類以上が用いられる。
これらのラジカル重合開始剤の使用量は、単量体または単量体混合物100重量部に対して通常0.001〜1重量部程度、好ましくは0.01〜0.7重量部である。
【0030】
上記製造方法に於いて、連鎖移動剤としては、メタクリル酸メチルの重合に用いられる周知のものでよい。この中には、連鎖移動官能基をlつ有する単官能の連鎖移動剤および連鎖移動官能基を2つ以上有する多官能連鎖移動剤とがある。
【0031】
単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類、3−メルカプトプロピオン酸エステル類、チオフェノール類、アルキルサルファイド類、アルキルジサルファイド類、α−メチルスチレンダイマー等が挙げられ、好ましくは、アルキルメルカプタン類、3−メルカプトプロピオン酸エステル類等が挙げられる。
【0032】
多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。
【0033】
該連鎖移動剤の量は、該単官能単量体1モル当たり、通常は2.5×10-4モル〜5×10-3モルである。2.5×10-4モルより低いと、得られるメタクリル系樹脂の〔η〕が過大となり、溶融流動性が低くなる。また、5×10-3モルを越えて多いと〔η〕が過少となり得られるメタクリル樹脂の機械的強度が低いものとなる。
【0034】
上記製造方法により得られるメタクリル系樹脂の極限粘度〔η〕は、0.25〜1.5dl/gとする。〔η〕が0.25dl/g未満だと該樹脂の機械的強度や耐溶剤性が十分なものとなり得ない。また、1.5dl/gを越えて高いと溶融流動性が低くなり過ぎて成形性が低下する。
【0035】
メタクリル系樹脂の極限粘度〔η〕は、一般に主として用いる該多官能単量体の濃度、連鎖移動剤の濃度及びラジカル開始剤の濃度に支配される。この内ラジカル開始剤の濃度は、前述の濃度範囲とすればよい。それゆえ、〔η〕は上述した該多官能単量体の濃度範囲内及び連鎖移動剤の濃度の範囲内で適宜変更して前述の〔η〕となるよう調整する。これは数回の試行によって容易に設定し得る。
【0036】
本発明の(分岐構造を有する)メタクリル酸メチル系重合体ビーズの製造方法に於いては、先の記載の条件を満足する以外は周知の懸濁重合法が適用できる。すなわち、水性媒体中に前述のメタクリル酸メチルを主成分とする単量体、アニオン系水溶性高分子からなる懸濁安定剤、重合開始剤、連鎖移動剤及び共重合可能な多官能単量体、さらに必要に応じて離型剤、安定剤、着色剤、紫外線吸収剤、酸化防止剤、光拡散材、可塑剤等を懸濁させ、重合する方法である。水性媒体と単量体または単量体混合物の割合は1:1〜5:1、好ましくは1:1〜3:1の範囲である。重合の温度条件は、60〜120℃程度で、用いる重合開始剤に適した温度とする。懸濁重合終了後は、周知の方法で洗浄、脱水、乾燥して使用することができる。
【0037】
【発明の効果】
以上詳述した本発明方法により得られるメタクリル酸メチル系重合体ビーズは通常平均粒子径が400μmを越える大粒子径を有するもので、発泡成形時のガス抜けが少なく高発泡倍率の発泡体の製造を可能とする、さらに本発明の製造方法に於いて特定の分岐構造を有するメタクリル酸メチル系重合体ビーズを得る場合には、得られたメタクリル酸メチル系重合体ビーズは、高発泡倍率で、発泡セルが均一で、外観が良好である発泡体の製造を可能とするもので、緩衝包装材や断熱材、土木用材料としてその工業的利用価値は極めて大である。
【0038】
【実施例】
以下、実施例により本発明を詳細に説明する。
尚、本発明に於いて重合率は以下の方法により測定した。
重合率:重合スラリーを抜き取り水相を除去し、重合体部分をアセトンに溶解したのち大量のメタノールに投入して重合体を析出させ、重合体を分離、乾燥後、秤量して算出した。
【0039】
実施例1
200リットルのSUS製オートクレーブに、メタクリル酸メチル95重量部、アクリル酸メチル5重量部、1,6−ヘキサンジオールジアクリレート0.15重量部、ラウロイルパーオキサイド0.2重量部、n−ドデシルメルカプタン0.4重量部、イオン交換水150重量部、ポリメタクリル酸ナトリウム(1%水溶液が30ストークス)0.045重量部、りん酸水素2ナトリウム・7水塩4.5重量部(純品換算2.384重量部:水性媒体中の濃度1.59重量%)を入れて混合し、加熱昇温して、80℃で重合を開始し、100分後にノニオン系水溶性高分子からなる懸濁安定剤としてポリオキシエチレン−ポリオキシプロピレンブロック共重合体であるプルロニックF68(旭電化工業株式会社製)0.045重量部を添加した。この時の重合率は55%であった。その後同じ温度で60分、さらに100℃で60分重合させた。重合後、洗浄、脱水、乾燥を行い重合体ビーズを得た。得られた重合体ビーズは平均粒子径770μmで粒子形状は球状(長短度:0.8以上)であった。
【0040】
比較例1
りん酸水素2ナトリウム・7水塩を1.5重量部(純品換算0.795重量部:水性媒体中の濃度0.53重量%)用いた以外は、実施例1と同様に重合を行い平均粒子径340μmの重合体ビーズを得た。
【0041】
比較例2
りん酸水素2ナトリウム・7水塩に代えて硫酸ナトリウムを2.25重量部用いた以外は、実施例1と同様に重合を行った。得られた重合体ビーズの平均粒子径は360μmであった。
【0042】
比較例3
りん酸水素2ナトリウム・7水塩の代えて炭酸水素ナトリウムを2.25重量部用いた以外は、実施例1と同様に重合を行った。得られた重合体ビーズの平均粒子径は790μmで、かつ粒子は球状ではなく偏平状(長短度:0.59)であった。
【0043】
比較例4
りん酸水素2ナトリウム・7水塩の代えてりん酸2水素ナトリウムを3.75重量部用いた以外は、実施例1と同様に重合を行ったところ、90分後に凝集が起こり重合体ビーズは得られなかった。
【0044】
比較例5
プルロニックF68を途中で用いなかったこと以外は実施例1と同様に重合を行ったところ、120分後に凝集が起こり重合体ビーズは得られなかった。
【0045】
比較例6
実施例1において重合途中で添加するプルロニックF68の添加時期を重合率が28%にした以外は実施例1と同様に重合を行った。得られた重合体ビーズは平均粒子径430μmで、かつ粒子形状は球状ではなく偏平状(長短度:0.63)であった。
【0046】
実施例2
りん酸水素2ナトリウム・7水塩の代えてりん酸3ナトリウムを3重量部(水性媒体中の濃度2.0重量%)用いた以外は、実施例1と同様に重合を行った。得られた重合体ビーズは平均粒子径615μmで粒子形状は球状(長短度:0.8以上)であった。
【0047】
実施例3
りん酸水素2ナトリウム・7水塩の代えてりん酸水素2カリウムを3重量部(水性媒体中の濃度2.0重量%)用いた以外は、実施例1と同様に重合を行た。得られた重合体ビーズは平均粒子径700μmで粒子形状は球状(長短度:0.8以上)であった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a methyl methacrylate polymer bead having a particle size larger than that of a known methyl methacrylate polymer, and more specifically, a methyl methacrylate polymer bead having an average particle size of 400 μm or more suitable for foam molding It is related with the manufacturing method.
[0002]
[Prior art]
Methyl methacrylate polymer is rigid, excellent in transparency, and excellent in weather resistance, so it can be injection molded, molded products such as automotive lamp covers, meter covers, spectacle lenses, light guides, Furthermore, it is widely used as an extrusion plate for signboards and nameplates by extrusion molding.
On the other hand, methyl methacrylate-based polymers are not suitable for deformed (co) extrusion, blow molding, and foam molding materials that require both high fluidity and high strength during melt drawing, and are not used in these fields. is the current situation.
[0003]
As a result of intensive studies to provide a methyl methacrylate-based polymer excellent in melt fluidity that can be applied to such fields, the present inventors have found that “having a branched structure and having a weight average molecular weight of 80,000 to 400,000. The methyl methacrylate polymer having a branched structure having a molecular weight between branch points of 30,000 to 500,000 defined using the Z average molecular weight can satisfy the above-mentioned characteristics. The application was filed as 280235 (JP-A-8-208746).
By the way, as a foam molding material, the larger the resin particle diameter containing a foaming agent, the less the foaming agent that contributes to foaming volatilizes from the particle surface compared to the smaller one, enabling molding with a high expansion ratio. However, in the polymerization of styrene and the like, a slightly soluble inorganic salt fine powder and an anionic surfactant, and these and a water-soluble polymer such as polyvinyl alcohol, polyvinyl pyrrolidone and methyl cellulose are used as a suspension stabilizer. Although a production method for obtaining a resin having a large particle diameter is known, it is not known for methyl methacrylate resins.
[0004]
[Problems to be solved by the invention]
In view of such circumstances, the present inventors have made extensive studies for the purpose of easily impregnating a foaming agent into a resin and obtaining a methyl methacrylate resin having a large particle diameter with little outgassing. When suspension polymerization of monomers based on methyl acid in an aqueous medium, a specific suspension stabilizer and a specific suspension aid are used in combination, and a specific suspension stabilizer is used at a specific polymerization time. In the case of polymerizing with the addition of methacrylic acid, it was found that methyl methacrylate polymer beads having a large particle diameter of about 400 μm or more satisfying the above-mentioned purpose were obtained, and the present invention was completed.
[0005]
[Means for Solving the Problems]
That is, the present invention suspends a monofunctional monomer mainly composed of methyl methacrylate in an aqueous medium in the presence of a copolymerizable polyfunctional monomer and a chain transfer agent using a radical polymerization initiator. When producing a methyl methacrylate polymer by polymerization, the presence of a suspension stabilizer composed of an anionic water-soluble polymer and a water-soluble basic phosphate having a concentration in an aqueous medium of 1 to 10% by weight The polymerization is started under the conditions, and when the polymerization rate reaches 40 to 80%, a suspension stabilizer composed of a nonionic water-soluble polymer is added, and methyl methacrylate having an average particle size of 400 μm or more It is in providing the manufacturing method of a polymer bead.
[0006]
Furthermore, the present invention provides a monofunctional monomer mainly composed of methyl methacrylate suspended in an aqueous medium in the presence of a copolymerizable polyfunctional monomer and a chain transfer agent using a radical polymerization initiator. In the production of a methyl methacrylate polymer by polymerization, the amount of the chain transfer agent is 2.5 × 10 −5 mol to 5 × 10 −3 mol per 1 mol of the monofunctional monomer. The amount of the polymerizable polyfunctional monomer is 1 × 10 −5 to {the chain transfer agent (mol) −2.5 × 10 −4 } mol per mol of the monofunctional monomer. After the polymerization was initiated in the presence of a suspension stabilizer comprising an anionic water-soluble polymer and a water-soluble basic phosphate having a concentration in the aqueous medium of 1 to 10% by weight, the polymerization rate was When it becomes 40 to 80%, a suspension stabilizer composed of a nonionic water-soluble polymer is added, and the intrinsic viscosity [η] The average particle size, characterized in that to produce a polymer of 0.25~1.5dl / g is to provide a method for producing a more methyl polymer beads methacrylate 400 [mu] m.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The methyl methacrylate polymer beads of the present invention are substantially a mean particle diameter of 400 μm or more consisting of a polymer of a monofunctional monomer mainly composed of methyl methacrylate and a polyfunctional monomer copolymerizable therewith. Spherical particles. The spherical particles are not visually discoid or elliptical, but are substantially spherical (for example, the average value of the length (short diameter / long diameter) of 100 randomly selected particles is about 0.7 or more, preferably Particles of about 0.8 or more].
[0008]
In the present invention, the average particle size is obtained by measuring using a sonic vibration type fully automatic sieving meter (manufactured by Seishin Enterprise Co., Ltd.) or an electromagnetic shaking sieving meter (Mitamura Riken Kogyo Co., Ltd.). Means an average particle size of 50% cumulative weight. (Conforms to JIS Z-8801 (1982))
[0009]
In the production method of the present invention, the monofunctional monomer mainly composed of methyl methacrylate can be copolymerized with methyl methacrylate alone or with 50% by weight or more, preferably 70% by weight or more of methyl methacrylate. It is a mixture with a monofunctional unsaturated monomer. When methyl methacrylate is less than 50% by weight, the transparency and mechanical strength, which are the characteristics of so-called methyl methacrylate polymer, are hardly exhibited.
[0010]
Examples of monofunctional unsaturated monomers copolymerizable with methyl methacrylate include, for example, methacrylic acid esters such as ethyl methacrylate, propyl methacrylate, butyl methacrylate, benzyl methacrylate: methyl acrylate, ethyl acrylate, Acrylic esters such as propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate: unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and acid anhydrides such as maleic anhydride and itaconic anhydride : Esters with hydroxyl groups such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, monoglycerol acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, monoglycerol methacrylate: acrylamide, methacrylate Amide, diacetone acrylamide. Furthermore, nitriles such as acrylonitrile and methacrylonitrile: nitrogen-containing monomers such as dimethylaminoethyl methacrylate: epoxy group-containing monomers such as allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate.
[0011]
Examples of polyfunctional monomers that can be copolymerized with monofunctional monomers based on methyl methacrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, Ethylene glycol such as tetraethylene glycol di (meth) acrylate or its oligomers esterified at both terminal hydroxyl groups with acrylic acid or methacrylic acid; neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate, butanediol A hydroxyl group of a divalent alcohol such as di (meth) acrylate esterified with acrylic acid or methacrylic acid; a polyhydric alcohol such as trimethylolpropane or pentaerythritol or a polyhydric alcohol derivative thereof. Such as those obtained by esterifying with acrylic acid or methacrylic acid.
[0012]
In the present invention, a monofunctional monomer mainly composed of methyl methacrylate and a polyfunctional monomer copolymerizable therewith are mixed with a suspension stabilizer composed of an anionic water-soluble polymer and in an aqueous medium. The polymerization is initiated in an aqueous medium in which about 1 to 10% by weight, preferably about 1 to about 3% by weight, of a water-soluble basic phosphate is present. When the polymerization rate of the monomer (monofunctional monomer + polyfunctional monomer) is about 40 to about 80%, preferably about 50 to about 70%, the nonionic water-soluble polymer Add suspension stabilizer consisting of The suspension stabilizer composed of the nonionic water-soluble polymer can be added all at once, in a divided manner or continuously. When a suspension stabilizer having a polymerization rate of less than 40% and comprising a nonionic water-soluble polymer is added, the resin particles obtained are often non-spherical and the particle shape is irregular. When added when the polymerization rate exceeds 80%, the polymerization becomes unstable, so that the polymer beads obtained are not spherical or have a lot of aggregated particles.
[0013]
The suspension stabilizer comprising an anionic water-soluble polymer used in the present invention includes polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, polysodium methacrylate, polypotassium methacrylate, sodium methacrylate. -A methacrylic acid alkylester copolymer etc. are mentioned, These can be used individually or in combination. Of these, sodium polyacrylate and polysodium methacrylate are preferable.
[0014]
As suspension stabilizers composed of nonionic water-soluble polymers, polyvinyl alcohol, partially saponified polyvinyl acetate, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, polyethylene oxide, polyoxyethylene-polyoxypropylene block copolymer, Water-soluble polymers such as polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene nonylphenyl ether, polyethylene glycol fatty acid ester, polyoxyethylene laurylamine, and the like can be used alone or in combination. it can. A polyoxyethylene-polyoxypropylene block copolymer is preferred.
[0015]
The amount of the suspension stabilizer composed of an anionic and nonionic water-soluble polymer is about 0.005 to about 1.0 parts by weight, preferably about 0.01 to about 0, respectively, with respect to the monomer. It is selected from the range of 1 part by weight, but it is preferable that the amount is less within the range where the polymerization system is stable. When the amount is less than about 0.005 parts by weight, the polymerization system becomes unstable. When the amount exceeds about 1.0 parts by weight, a large amount of fine granular polymer beads are generated and the average particle size is reduced.
[0016]
In the present invention, a water-soluble basic phosphate having a concentration in an aqueous medium of about 1 to about 10% by weight, preferably about 1 to about 3% by weight, together with a suspension stabilizer composed of an anionic water-soluble polymer. The use is an essential requirement for obtaining methyl methacrylate polymer beads having an average particle size of 400 μm or more suitable for foam molding. When the concentration is lower than about 1% by weight, the average particle size of the beads obtained becomes small, and when it is higher than about 10% by weight, the polymerization system becomes unstable. Examples of the water-soluble basic phosphate include disodium hydrogen phosphate, dipotassium hydrogen phosphate, trisodium phosphate, and tripotassium phosphate. These can be used alone or in combination. Preferably disodium hydrogen phosphate is applied.
[0017]
The ratio of aqueous medium to monomer or monomer mixture ranges from 1: 1 to 5: 1, preferably from 1: 1 to 3: 1. If the amount of the aqueous medium is too small, the dispersion of the monomers tends to be non-uniform, and the polymerization system becomes unstable. If the amount is large, a large amount of fine granular polymer beads are produced and the average particle size is reduced.
[0018]
The temperature condition for the polymerization may be about 60 to 120 ° C., and may be a temperature suitable for the polymerization initiator to be used, and the stirring condition may be a condition for producing methyl methacrylate polymer beads by ordinary suspension polymerization. As a polymerization apparatus, a polymerization vessel equipped with a well-known stirring blade such as a turbine blade, a fiddler blade, a propeller blade, a blue margin blade, etc. is used, and the vessel is generally provided with a baffle. is there.
After completion of the suspension polymerization, polymer beads can be obtained by washing, dehydrating and drying by a known method.
[0019]
The methyl methacrylate polymer beads of the present invention are not particularly limited, but already have a branched structure excellent in melt fluidity as disclosed in JP-A-8-208746, and have a weight average molecular weight (Mw). ) Is 80,000 to 400,000, preferably 150,000 to 300,000, and the molecular weight (Mzb) between branch points defined using the Z average molecular weight (Mz) is 30,000 to 500,000, preferably 50,000 to 20 It is recommended to apply 10,000 methyl methacrylate resin particles.
[0020]
When the Mw is in the above range, the polymer has excellent mechanical strength, and is excellent in strength of a foam obtained by foaming a methyl methacrylate polymer bead containing the polymer. Also excellent.
Moreover, when the molecular weight (Mzb) between branch points is in the above range, the foaming performance of the polymer is excellent, and the mechanical strength and the appearance of the molded product are also excellent.
[0021]
Here, Mw and Mz are values obtained by gel permeation chromatography (GPC) and a differential refractometer. This method of determination is described, for example, in the 1984 edition, “Polymer characterization” (Kyoritsu Shuppan) pages 24 to 55.
[0022]
The molecular weight between branch points means an average value of molecular weights from a branch point to the next branch point in a polymer having a branched structure.
The molecular weight between branch points (Mzb) defined by using this Z-average molecular weight is based on the description of the Japan Rubber Association Journal, Vol. 45, No. 2, pages 105-118 “Characterization”. 2 is calculated.
[0023]
[Expression 1]
{[Η 1 ] / [η 2 ]} 10/6 = {(1 + Bz / 6) 0.5 + 4Bz / 3π} −0.5
[0024]
[Expression 2]
Mzb = Mz / Bz
[0025]
In the above formula (1), η 1 is the polymer to be measured obtained using a universal calibration curve indicating the product of the intrinsic viscosity and the absolute molecular weight with respect to the GPC elution time of the linear methyl methacrylate polymer standard sample. In the calibration curve showing the relationship of the intrinsic viscosity to the absolute molecular weight, the molecular weight is the intrinsic viscosity corresponding to the Mz value.
η 2 is the intrinsic viscosity corresponding to the same molecular weight Mz value as that of the polymer to be measured in a calibration curve showing the relationship of the intrinsic viscosity to the absolute molecular weight of the linear methyl methacrylate polymer standard sample.
Bz is the number of branch points in the Z average molecular weight Mz.
[0026]
When the ratio of the polymer having a molecular weight of 300,000 or more in the methyl methacrylate polymer is 0.7 dl / g or less at 25 ° C. in chloroform of the polymer, {[14 × Reduced viscosity value−6.8] to [14 × the reduced viscosity value + 11 · 2]} (% by weight), and when the reduced viscosity is 0.7 dl / g or more, {[40 × the reduced viscosity value− 25] to [40 × the reduced viscosity value−7]} (% by weight).
The reduced viscosity represented in the present invention is a value when the solution concentration of the polymer to be measured is 1 g / dl.
When the proportion of the molecular weight of the methyl methacrylate polymer having a branched structure is within the above range, the methyl methacrylate polymer has excellent balance between fluidity and tensile strength at the time of melting. A good foam can be obtained by having an excellent balance between the fluidity of the resin composition obtained by using this and the strength during melt stretching.
The degree of cross-linking of the methyl methacrylate polymer having such a branched structure is usually 3% or less, preferably 1% or less, expressed as a gel fraction (% by weight of the acetone-free portion with respect to the total polymer weight). Preferably it is about 0%.
[0027]
The methyl methacrylate polymer having a large particle size of the present invention having such physical properties is a suspension stabilizer comprising a monofunctional monomer mainly composed of methyl methacrylate and comprising an anionic water-soluble polymer, In producing a methyl methacrylate polymer by suspension polymerization in the presence of a copolymerizable polyfunctional monomer and a chain transfer agent using a radical polymerization initiator, per mole of the monofunctional monomer The amount of the chain transfer agent is 2.5 × 10 −5 mol to 5 × 10 −3 mol, and the amount of the copolymerizable polyfunctional monomer is the number of functional groups per mol of the monofunctional monomer. Is a water-soluble basic phosphate whose concentration in an aqueous medium is 1 to 10% by weight in an amount of 1 × 10 −5 to {the chain transfer agent (mol) −2.5 × 10 −4 } mol After starting the polymerization in the presence of water, when the polymerization rate becomes 40 to 80%, nonionic water It can be obtained by adding a suspension stabilizer composed of a soluble polymer.
[0028]
In the above production method, the amount of the polyfunctional monomer is 1 × 10 −5 to {the chain transfer agent (mol) −2.5 × 10 in terms of the number of functional groups per mole of the monofunctional monomer. -4 } is the amount to be a mole. That is, depending on the amount of the chain transfer agent described below, {chain transfer agent (mol) -2.5 × 10 -4} moles, even 1 × 10 -5 If less than the molar, 1 × 10 - 5 is necessary. When the number of functional groups is less than 1 × 10 −5 mol, the resulting resin has low fluidity at a high shear rate, and solvent resistance is not sufficient. On the other hand, when the amount exceeds {the chain transfer agent (mol) -2.5 × 10 -4 } mol, the melt fluidity of the resulting resin is low and the moldability is low.
[0029]
As the radical polymerization initiator, those known for polymerization of vinyl monomers may be used. For example, azo compounds such as 2,2′-azobis (2,4-dimethylvaleronitrile), azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate; t-butyl peroxypivalate, Peroxyesters such as t-butylperoxy 2-ethylhexanoate and cumylperoxy 2-ethylhexanoate; diacyl peroxides such as di-3,5,5-trimethylhexanoyl peroxide and dilauroyl peroxide Diacyl peroxide organic peroxides, bifunctional 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, di-t-butylperoxytrimethyladipate, trifunctional tris- (T-Butylperoxy) triazine, tetrafunctional, 2,2-bis (4,4-di-t-butylperper) Carboxymethyl cyclohexyl) can be mentioned propane, one or more kinds of these may be used.
The amount of these radical polymerization initiators used is usually about 0.001 to 1 part by weight, preferably 0.01 to 0.7 part by weight, based on 100 parts by weight of the monomer or monomer mixture.
[0030]
In the above production method, the chain transfer agent may be a known one used for polymerization of methyl methacrylate. Among these, there are monofunctional chain transfer agents having 1 chain transfer functional group and polyfunctional chain transfer agents having two or more chain transfer functional groups.
[0031]
Examples of the monofunctional chain transfer agent include alkyl mercaptans, thioglycolic acid esters, 3-mercaptopropionic acid esters, thiophenols, alkyl sulfides, alkyl disulfides, α-methylstyrene dimer, and the like. Examples thereof include alkyl mercaptans and 3-mercaptopropionic acid esters.
[0032]
Polyfunctional chain transfer agents include ethylene glycol, neopentyl glycol, trimethylol propane, ditrimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol and other polyhydric alcohol hydroxyl groups such as thioglycolic acid or 3-mercaptopropion. Those esterified with an acid may be mentioned.
[0033]
The amount of the chain transfer agent is usually 2.5 × 10 −4 mol to 5 × 10 −3 mol per mol of the monofunctional monomer. When it is lower than 2.5 × 10 −4 mol, [η] of the resulting methacrylic resin becomes excessive, and the melt fluidity becomes low. On the other hand, when it exceeds 5 × 10 −3 mol, [η] becomes too small, and the resulting methacrylic resin has low mechanical strength.
[0034]
The intrinsic viscosity [η] of the methacrylic resin obtained by the above production method is 0.25 to 1.5 dl / g. If [η] is less than 0.25 dl / g, the mechanical strength and solvent resistance of the resin cannot be sufficient. On the other hand, if it exceeds 1.5 dl / g, the melt fluidity becomes too low and the moldability deteriorates.
[0035]
The intrinsic viscosity [η] of the methacrylic resin is generally governed by the concentration of the polyfunctional monomer, the concentration of the chain transfer agent, and the concentration of the radical initiator that are mainly used. The concentration of the radical initiator may be in the above-described concentration range. Therefore, [η] is appropriately changed within the above-mentioned concentration range of the polyfunctional monomer and within the concentration range of the chain transfer agent and adjusted to be the above-mentioned [η]. This can be easily set by several trials.
[0036]
In the method for producing methyl methacrylate polymer beads (having a branched structure) of the present invention, a well-known suspension polymerization method can be applied except that the above-described conditions are satisfied. That is, a monomer mainly composed of methyl methacrylate as described above in an aqueous medium, a suspension stabilizer comprising an anionic water-soluble polymer, a polymerization initiator, a chain transfer agent, and a copolymerizable polyfunctional monomer In addition, if necessary, a release agent, a stabilizer, a colorant, an ultraviolet absorber, an antioxidant, a light diffusing material, a plasticizer, etc. are suspended and polymerized. The ratio of aqueous medium to monomer or monomer mixture ranges from 1: 1 to 5: 1, preferably from 1: 1 to 3: 1. The temperature condition for the polymerization is about 60 to 120 ° C., and the temperature is suitable for the polymerization initiator used. After the suspension polymerization is completed, it can be used after being washed, dehydrated and dried by a known method.
[0037]
【The invention's effect】
The methyl methacrylate polymer beads obtained by the method of the present invention described in detail above usually have a large particle diameter with an average particle diameter exceeding 400 μm, and there is little outgassing during foam molding to produce a foam with a high expansion ratio. In the production method of the present invention, in the case of obtaining methyl methacrylate polymer beads having a specific branched structure, the obtained methyl methacrylate polymer beads have a high expansion ratio, It is possible to produce a foam having a uniform foam cell and good appearance, and its industrial utility value is extremely large as a buffer packaging material, a heat insulating material, and a civil engineering material.
[0038]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
In the present invention, the polymerization rate was measured by the following method.
Polymerization rate: The polymerization slurry was taken out, the aqueous phase was removed, the polymer portion was dissolved in acetone, and then poured into a large amount of methanol to precipitate the polymer. The polymer was separated, dried, weighed and calculated.
[0039]
Example 1
In a 200-liter SUS autoclave, 95 parts by weight of methyl methacrylate, 5 parts by weight of methyl acrylate, 0.15 parts by weight of 1,6-hexanediol diacrylate, 0.2 parts by weight of lauroyl peroxide, n-dodecyl mercaptan 0 .4 parts by weight, 150 parts by weight of ion-exchanged water, 0.045 parts by weight of sodium polymethacrylate (1% aqueous solution is 30 Stokes), 4.5 parts by weight of disodium hydrogen phosphate / 7 water salt (2. 384 parts by weight: a concentration of 1.59% by weight in an aqueous medium) is mixed, heated and heated to start polymerization at 80 ° C., and after 100 minutes, a suspension stabilizer composed of a nonionic water-soluble polymer. As a polyoxyethylene-polyoxypropylene block copolymer, Pluronic F68 (Asahi Denka Kogyo Co., Ltd.) 0.045 parts by weight was added. It was. The polymerization rate at this time was 55%. Thereafter, polymerization was carried out at the same temperature for 60 minutes and further at 100 ° C. for 60 minutes. After the polymerization, washing, dehydration and drying were performed to obtain polymer beads. The resulting polymer beads had an average particle size of 770 μm and a spherical particle shape (length: 0.8 or more).
[0040]
Comparative Example 1
Polymerization was carried out in the same manner as in Example 1, except that 1.5 parts by weight of disodium hydrogenphosphate.7 hydrate was used (0.795 parts by weight in terms of pure product: 0.53% by weight in aqueous medium). Polymer beads having an average particle size of 340 μm were obtained.
[0041]
Comparative Example 2
Polymerization was carried out in the same manner as in Example 1 except that 2.25 parts by weight of sodium sulfate was used in place of disodium hydrogen phosphate and heptahydrate. The average particle diameter of the obtained polymer beads was 360 μm.
[0042]
Comparative Example 3
Polymerization was carried out in the same manner as in Example 1 except that 2.25 parts by weight of sodium hydrogen carbonate was used instead of disodium hydrogen phosphate · 7 hydrate. The average particle diameter of the obtained polymer beads was 790 μm, and the particles were not spherical but flat (length: 0.59).
[0043]
Comparative Example 4
Polymerization was carried out in the same manner as in Example 1 except that 3.75 parts by weight of sodium dihydrogen phosphate was used in place of disodium hydrogen phosphate / 7 hydrate. It was not obtained.
[0044]
Comparative Example 5
Polymerization was carried out in the same manner as in Example 1 except that Pluronic F68 was not used in the middle. As a result, aggregation occurred after 120 minutes and no polymer beads were obtained.
[0045]
Comparative Example 6
Polymerization was carried out in the same manner as in Example 1 except that the addition rate of Pluronic F68 added during polymerization in Example 1 was changed to a polymerization rate of 28%. The obtained polymer beads had an average particle diameter of 430 μm, and the particle shape was not spherical but flat (length: 0.63).
[0046]
Example 2
Polymerization was carried out in the same manner as in Example 1 except that 3 parts by weight of trisodium phosphate (concentration in an aqueous medium of 2.0% by weight) was used in place of disodium hydrogen phosphate / 7 hydrate. The resulting polymer beads had an average particle size of 615 μm and a spherical particle shape (length: 0.8 or more).
[0047]
Example 3
Polymerization was carried out in the same manner as in Example 1, except that 3 parts by weight of dipotassium hydrogen phosphate (concentration of 2.0% by weight in an aqueous medium) was used in place of disodium hydrogen phosphate and heptahydrate. The obtained polymer beads had an average particle size of 700 μm and a spherical particle shape (length: 0.8 or more).
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33729398A JP3637794B2 (en) | 1998-11-27 | 1998-11-27 | Method for producing methyl methacrylate polymer beads |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33729398A JP3637794B2 (en) | 1998-11-27 | 1998-11-27 | Method for producing methyl methacrylate polymer beads |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000159821A JP2000159821A (en) | 2000-06-13 |
JP3637794B2 true JP3637794B2 (en) | 2005-04-13 |
Family
ID=18307265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33729398A Expired - Fee Related JP3637794B2 (en) | 1998-11-27 | 1998-11-27 | Method for producing methyl methacrylate polymer beads |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3637794B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999046301A1 (en) * | 1998-03-12 | 1999-09-16 | Ineos Acrylics Uk Limited | Polymer composition |
WO2012093465A1 (en) * | 2011-01-06 | 2012-07-12 | 株式会社カネカ | Acryl acrylate resin production method |
JP5726053B2 (en) | 2011-11-25 | 2015-05-27 | Jx日鉱日石エネルギー株式会社 | Method for producing methacrylic resin for optical film |
TW201510047A (en) * | 2013-06-24 | 2015-03-16 | Mitsubishi Rayon Co | (Meth)acrylic polymer, (meth)acrylic resin composition, (meth)acrylic resin sheet, (meth)acrylic resin laminate and composite sheet |
US20180223026A1 (en) * | 2015-07-31 | 2018-08-09 | Rohm And Haas Company | Oligomer seed for synthesis of unimodal acrylic bead particles |
CN113845616B (en) * | 2021-11-04 | 2023-04-07 | 佳易容聚合物(上海)有限公司 | PMMA copolymerized functional resin and preparation method thereof |
-
1998
- 1998-11-27 JP JP33729398A patent/JP3637794B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000159821A (en) | 2000-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3770214B1 (en) | Thermoplastic resin composition | |
JP2021505725A (en) | Method for producing graft copolymer, graft copolymer and thermoplastic resin molded product containing the same | |
KR20220029680A (en) | Allyl Functional Thermoplastic Additives for Thermoset Polymers | |
EP2662391B1 (en) | Methyl methacrylate polymer production method | |
JP3637794B2 (en) | Method for producing methyl methacrylate polymer beads | |
US20210253770A1 (en) | High melt index thermoplastic elastomer and preparation method therefor | |
JP3637785B2 (en) | Method for producing expandable methyl methacrylate resin particles | |
JP3633327B2 (en) | Method for producing methyl methacrylate polymer beads | |
US6875802B2 (en) | Processes for preparing non-gelling high polymer compositions and thermoplastic blends thereof | |
JP3817993B2 (en) | Methyl methacrylate resin composition | |
JP3215719B2 (en) | Polymer composition | |
JP3301156B2 (en) | Method for producing methacrylic resin | |
JP3232983B2 (en) | Methyl methacrylate polymer | |
JP2004339442A (en) | Resin composition and vehicular lamp lens using the same | |
CN114207019B (en) | PMMA-based casting polymers with improved mechanical properties | |
KR20240011776A (en) | Thickener and adhesive composition | |
EP3875535B1 (en) | Thermoplastic resin composition | |
JP3149487B2 (en) | Method for producing methacrylic resin particles | |
KR20230038769A (en) | Thickener for cyanoacrylate-based adhesives | |
US6784246B2 (en) | Non-gelling high molecular weight polymer compositions and thermosplastic blends thereof | |
JP2007284465A (en) | Method for producing methacrylic resin molded product | |
JPH0339522B2 (en) | ||
JP3434050B2 (en) | Method for producing methacrylic polymer | |
JPS58125712A (en) | Heat-resistant acrylic resin copolymer | |
JPH08333422A (en) | (Meth) acrylic acid-based copolymer, aqueous dispersion and use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040914 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050103 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |