JP3620051B2 - エンジン用触媒劣化検出装置 - Google Patents
エンジン用触媒劣化検出装置 Download PDFInfo
- Publication number
- JP3620051B2 JP3620051B2 JP08854793A JP8854793A JP3620051B2 JP 3620051 B2 JP3620051 B2 JP 3620051B2 JP 08854793 A JP08854793 A JP 08854793A JP 8854793 A JP8854793 A JP 8854793A JP 3620051 B2 JP3620051 B2 JP 3620051B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel ratio
- air
- catalyst
- correction coefficient
- catalyst deterioration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
- F01N11/007—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/04—Methods of control or diagnosing
- F01N2900/0422—Methods of control or diagnosing measuring the elapsed time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【産業上の利用分野】
本発明はエンジンの排気系に配置され、排ガスを浄化するための触媒の劣化を検出する触媒劣化検出装置に関するものである。
【0002】
【従来の技術】
従来より、触媒の上下流に酸素センサを設けたシステムにおいて、触媒正常時は触媒のストレージ効果によって下流酸素センサの出力信号の周期は上流酸素センサのそれより長くなり、触媒劣化時はストレージ効果の低下によって下流酸素センサの出力信号の周期が短くなり、ほぼ上流酸素センサの出力信号周期と同じになるとともに、下流酸素センサの出力信号の振幅が触媒正常時に比べて大きくなることが知られている。
【0003】
そのため、触媒の劣化検出装置としては上下流酸素センサの出力信号の周期比(上流酸素センサ周期/下流酸素センサ周期)を求め、この周期比が所定値以下になった時あるいは下流酸素センサの出力信号振幅が判定値を越えた時、触媒劣化と判別するものが特開昭61−286550号公報に開示されている。
【0004】
【発明が解決しようとする課題】
しかし、前述のような装置においては、上流酸素センサの出力特性が劣化し応答性が遅くなるとその出力信号の周期は長くなるため下流酸素センサも同じ周期でリッチ/リーンに振れてしまうので前後酸素センサの周期比は小さくなり、触媒が良くても劣化であると誤検出してしまうという問題がある。
【0005】
また、図7に示すように上流酸素センサ劣化時には上流酸素センサ出力V1に基づいて定められる空燃比補正係数FAFの振幅W2が、図6に示す上流酸素センサ正常時(周期が短い時)の振幅W1より大きくなるため、空燃比は大きく振られ、その結果、その空燃比の変動幅の増大に応じて下流酸素センサの出力信号の振幅も大きくなる。即ち、下流酸素センサの振幅は上流酸素センサの周期が長くなるに従って大きくなる。そのため、下流酸素センサの振幅が大きくなった時、触媒劣化と判別する前述の装置だと上流酸素センサ劣化による下流酸素センサの振幅増大を触媒劣化と誤判定してしまうという問題もある。
【0006】
また、上下流酸素センサの出力信号から触媒劣化を判断する以上、下流酸素センサの出力応答バラツキの影響は避けられないという問題がある。
そこで、これらの問題を解決するため、下流酸素センサの出力に応じて演算される副空燃比補正係数の所定時間内の変化量を演算し、この変化量が所定値以下であるときに触媒が劣化したと判断するものも考えられている(例えば、特開平3−134241号公報)。
【0007】
ところが、このように副空燃比補正係数の所定時間内の変化量により触媒の劣化を検出するものでは、下流酸素センサの出力に応じて演算される副空燃比補正係数の1回当たりの更新量によって、副空燃比補正係数の所定時間内の変化量も大きく変化するので、副空燃比補正係数の更新量や、副空燃比補正係数の種類、すなわち、スキップ量、積分定数、遅延時間のうちいずれの空燃比フィードバック制御定数を副空燃比補正係数として用いているかにより、副空燃比補正係数の所定時間内の変化量が大きく相違し、しかも、これらの副空燃比補正係数は各種の内燃機関に適合させて各種の値に設定されるため、各種の副空燃比補正係数に合わせて、触媒劣化の判定をきめ細かく適合させる必要があるのみならず、触媒の劣化検出に合わせて副空燃比補正係数の更新量が決められていないので、触媒の劣化検出精度も劣るという問題がある。
【0008】
本発明は、前述のような問題点に鑑みてなされたものであり、その目的とするところは、上流及び下流酸素センサの劣化の有無や出力応答のバラツキによる影響が少なく、しかも、各種の内燃機関に対して比較的適合が容易で、かつ触媒の劣化を精度よく検出できる装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明は図1に示すように、エンジンの排気系に配設され、排ガスを浄化するための触媒と、この触媒の上・下流にそれぞれ配設され、空燃比が理論空燃比に対してリッチかリーンかを検出する上流,下流酸素センサと、この上流酸素センサの出力信号に応じて前記エンジンに供給される混合気の空燃比を理論空燃比近傍になるように補正するための主空燃比補正係数を算出する空燃比補正係数算出手段と、前記主空燃比補正係数を用いて前記混合気の空燃比を理論空燃比になるように制御するエンジン制御手段と、前記下流酸素センサの出力信号の低周波成分を検出する低周波成分検出手段と、前記低周波成分検出手段により検出された前記下流酸素センサ信号の低周波成分のうち、低周波成分の振幅に基づいて前記触媒の劣化を検出する触媒劣化検出手段とを備えることを特徴とするエンジン用触媒劣化検出装置を要旨としている。
【0010】
また、エンジンの排気系に配設され、排ガスを浄化するための触媒と、
この触媒の上・下流にそれぞれ配設され、空燃比が理論空燃比に対してリッチかリーンかを検出する上流,下流酸素センサと、
この上流酸素センサの出力信号に応じて前記エンジンに供給される混合気の空燃比を理論空燃比近傍になるように補正するための主空燃比補正係数を算出する空燃比補正係数算出手段と、
前記主空燃比補正係数を用いて前記混合気の空燃比を理論空燃比になるように制御するエンジン制御手段と、
前記下流酸素センサの出力信号の高周波振幅を検出する高周波振幅検出手段と、
前記下流酸素センサの出力信号の低周波振幅を検出する低周波振幅検出手段と、
前記高周波振幅検出手段と低周波振幅検出手段との双方の検出結果に応じて前記触媒の劣化を検出する触媒劣化検出手段を備えることを特徴とするエンジン用触媒劣化検出装置を要旨とすることもできる。
【0011】
【作用】
以上の構成により、空燃比補正係数算出手段でエンジンの排気系に配設される排ガスを浄化するための触媒の上流に配設された上流酸素センサの出力信号に応じてエンジンに供給される混合気の空燃比を理論空燃比近傍になるように補正するための主空燃比補正係数が算出される。
【0012】
更に下流酸素センサの出力に応じて、副空燃比補正係数が算出されて、主空燃比補正係数を微調整する。そして、エンジ制御手段でこの主空燃比補正係数を用いてエンジンに供給される混合気の空燃比が理論空燃比近傍に制御される。
【0014】
さらに、高周波振幅検出手段で下流酸素センサ出力の高周波の振幅が検出され、低周波振幅検出手段で下流酸素センサ出力の低周波の振幅が検出され、触媒劣化検出手段で高周波振幅が所定値より大きく、かつ低周波振幅が所定値より小さい時、触媒劣化と判断するようにすることもできる。
【0015】
【実施例】
以下、本発明を車両用エンジンに適応した実施例について図面に基づいて説明する。
【0016】
〔第1実施例〕
図2は本発明実施例の概略構成図である。エンジン1の吸気通路2にはエアフロメータ3が設けられている。エアフロメータ3はエアクリーナ4を通って導かれる吸気量Qを直接計測するものである。さらに吸気通路2には、運転者のアクセル5の操作量に応じて開閉し、エンジン1へ供給する吸気量Qを調節するスロットル弁6が設けられている。また、エンジン1の各気筒には各気筒毎に燃料供給系7から加圧燃料を吸気ポートへ供給するための燃料噴射弁8が設けられている。
【0017】
また、ディストリビュータ9には、720クランク角度(℃A)毎に基準位置検出用信号を発生する基準位置センサ10および30℃A毎にクランク角検出用信号を発生するクランク角センサ11が設けられている。
【0018】
さらに、エンジン1のシリンダブロックのウォータジャケット12には、冷却水温Thwを検出するための水温センサ13が設けられている。
一方、排気系には排気マニホールド14の下流に排ガス中の有害成分(HC,CO,NOx)を同時に浄化する三元触媒15が設けられている。そして、三元触媒15の上流側、即ち排気マニホールド14には、上流酸素センサ(O2 センサ)16が設けられ、また三元触媒15の下流側の排気管17には下流O2 センサ18が設けられている。周知の通り、これら上・下流O2 センサ16,18は空燃比が理論空燃比に比してリーンであるかリッチであるかに応じて異なる出力電圧を発生するものである。
【0019】
また、19は後述する電子制御装置(ECU)20で三元触媒15が劣化したと判断された時、運転者へ警告を発するためのアラームである。
ECU20は、例えばマイクロコンピュータとして構成され、周知の通りA/D変換器101,I/Oポート102,CPU103,ROM104,RAM105,バックアップRAM106,クロック発生回路107等が設けられている。
【0020】
ECU20は、エアフロメータ3で検出される吸気量Q,水温センサ13で検出される冷却水温THW,クランク角センサ11から出力されるクランク角検出用信号に基づいて算出される回転数NE等に応じて基本燃料噴射量を設定する。そして、上,下流のO2 センサ16,18の信号に応じて三元触媒15の浄化率αが最大となるように基本燃料噴射量が補正されて燃料噴射量TAUが設定される。そして、I/Oポート102より燃料噴射量TAUに応じた制御信号が燃料噴射弁8へ出力される。
【0021】
また、ECU20において、ダウンカウンタ108,フリップフロップ109、および駆動回路110は燃料噴射弁8を制御するためのものである。すなわち、後述のルーチンにおいて、燃料噴射量TAUが演算されると、燃料噴射量TAUがダウンカウンタ108にプリセットされると共にフリップフロップ109もセットされる。この結果、駆動回路110が燃料噴射弁8の付勢を開始する。他方、ダウンカウンタ108がクロック信号(図示せず)を計数して最後にそのキャリアウト端子が“1”レベルとなったときに、フリップフロップ109がリセットされて駆動回路110は燃料噴射弁8の付勢を停止する。つまり、上述の燃料噴射量TAUだけ燃料噴射弁8は付勢され、従って、燃料噴射量TAUに応じた量の燃料がエンジン1の燃焼室に送り込まれる。
【0022】
次に、三元触媒15の劣化検出について説明する。図3に触媒浄化率と下流酸素センサ波形の関係を示す。なお、図中下流酸素センサ出力信号(下流O2 )に示された破線は副空燃比フィードバック(F/B)により生じる低周波成分の動きである。図3の(a)に示す通り、触媒が高浄化率(図では75%)の時、下流酸素センサの波形は高周波振幅が小さく、低周波振幅が大きい。そして図3の(a)→(b)→(c)で示すごとく、触媒の劣化度合が進むにつれて(図では触媒浄化率75%→40%→20%)、高周波振幅が大きくなり、逆に低周波振幅が小さくなっていく。 本発明は、この特徴に着目し、下流酸素センサ出力の高周波振幅と、低周波振幅とを検出し、これらの双方を用いて正確に触媒の劣化を検出するものである。すなわち、下流酸素センサ出力の高周波振幅が大きく、かつ、低周波振幅が小さい時触媒が劣化していると判定する。
【0023】
図4に下流酸素センサ出力の判定領域を示す。図4は横軸に低周波振幅、縦軸に高周波振幅を示している。前述の触媒劣化判定基準は高周波振幅が大きく、即ち所定値Bよりも大きい時、かつ低周波振幅が小さい時、即ち所定値C未満の時、触媒劣化を判定し、その劣化判定領域は本図では斜線領域で触媒劣化を判定する。
【0024】
ここで、振幅を検出する高周波,低周波の各周波数は重要な意味を持つ。それでは、この各周波数の設定について以下に説明する。
高周波とは、主空燃比フィードバック(F/B)の影響を受け、上流酸素センサ16と同じ周波数で細かく変動する下流酸素センサ18出力の周波数成分を高周波成分と定義する。この振幅は触媒の吸着作用により、触媒の正常時には小さく、劣化するに従い大きくなる(上流酸素センサ16の振幅に近づく)。この下流酸素センサ18の振幅を高周波振幅と定義する。
【0025】
一方、副F/Bの影響を受け、高周波よりも十分に長い(4倍以上)周期で大きく変動する下流酸素センサ18出力の低周波成分を低周波成分と定義する。この振幅は、触媒の劣化に伴ない浄化しきれない成分(リッチ出力時のO2 ,リーン出力時のH2 等)が増加すると、小さくなる。
【0026】
すなわち、触媒浄化率が高い時低周波成分の振幅は大きく、触媒浄化率が低い時低周波成分の振幅は小さくなる。この振幅を低周波振幅と定義する。そこで本発明では上記2つの振幅のANDをとることで高い精度での触媒劣化検出を行なう。
【0027】
以下三元触媒15の劣化検出について図5に示すフローチャートに基づいて説明する。
このルーチンは通常の空燃比フィードバック中において所定時間(例えば64msec)毎に起動・実行されるものである。ステップ1401で検出時間に対応する検出時間カウンタCTIMEをインクリメントしてステップ1402へ進む。
【0028】
ステップ1402で下流酸素センサ出力値がピークであるか否かの判定のため下流酸素センサ18の出力の信号方向がリッチ→リーン、あるいはリーン→リッチに反転したか否かを判定し、反転した時ステップ1403へ進む。
【0029】
ステップ1403で高周波振幅の演算のため、高周波成分が反転した時の下流酸素センサ出力値OX2 を高周波成分のピーク値HKCとし、このピーク値HKCと前回のピーク値HKCOとの差の絶対値を高周波振幅HCとすると共に、次回の演算のために今回のピーク値HKCを前回のピーク値HKCOとして置換した後、ステップ1404ヘ進む。
【0030】
ステップ1404で高周波振幅の平均値を求める演算に用いるため、高周波振幅HCの積算GHCを行ない、また平均値演算の分母としての反転回数積算カウンタCHを積算してステップ1406に進む。
【0031】
ステップ1406で下流酸素センサ出力OX2 を、あるなまし率TIMCでなまして低周波成分代用値のOXSMを演算し、ステップ1407へ進む。ステップ1407〜1410で低周波振幅の演算として用いるOXSMの最大値LHIGH,最小値LLOWを求め、ステップ1411へ進む。
【0032】
ステップ1411で検出時間カウンタCTIMEにより、検出時間が所定時間A(例えば29秒)以上か否かを判定し、所定時間A未満であるならばステップ1401に戻り、所定時間以上であるならステップ1412へ進む。
【0033】
ステップ1412で高周波振幅HCの積算値GHCを反転回数積算カウンタ値CHで除算して、下流酸素センサ18出力の高周波振幅平均値AHCを算出すると共に、OXSMの最大値LHIGHからその最小値LLOWを減算して低周波振幅LCを算出し、ステップ1413へ進む。
【0034】
ステップ1413で高周波振幅AHCが所定値Bより大きく、ステップ1414で低周波振幅LCが所定値Cより小さければステップ1415で触媒劣化と判定してアラーム19を点灯する。また、ステップ1413で高周波振幅AHCが所定値B以下か、ステップ1414で低周波振幅LCが所定値C以上であればステップ1417で触媒正常と判定し、次のステップ1416でカウンタCTIMEおよびCHを0にリセットした後、本ルーチンを終了する。
【0035】
以上の図5に示す三元触媒の劣化検出の結果、ステップ1417で触媒正常と判定した場合には、図8のフローチャートにより三元触媒15の劣化検出をダブルチェックする。
【0036】
図8のルーチンは所定期間(例えば、本実施例では64msec)毎に起動・実行される。ステップ401で劣化検出条件が成立しているか否か、即ち劣化検出処理を実行するか否かを判断する。ここで、劣化検出条件とは、図6のステップ1417で触媒正常と判定した場合において、例えば後述する主・副空燃比フィードバック制御中である、空燃比補正計数FAF、第1のリッチスキップ量RSR1および第1のリーンスキップ量RSL2がガード値でない、エンジン1が定常状態である等である。ステップ401で劣化検出条件が成立していない場合は以後の処理を行わずに本ルーチンを終了する。
【0037】
一方、ステップ401で触媒劣化検出条件が成立した場合は、ステップ402以後の劣化検出処理を実行する。まずステップ402及び403でカウンタCRL,CLRをインクリメントする(CRL→CRL+1,CLR←CLR+1)。
【0038】
ここでカウンタCRLは空燃比補正係数FAFがリッチからリーンにスキップ状に変化した時点からの経過時間に相当し、カウンタCLRは空燃比補正係数FAFがリーンからリッチ側にスキップ状に変化した時点からの経過時間に相当する。
【0039】
図9は、上流O2 センサ16,空燃比補正係数FAF,下流O2 センサ18の出力波形を表したもので、下流O2 センサ18の出力は空燃比補正係数FAFのスキップ状の変化(リッチからリーン及びリーンからリッチ)に対し、それぞれ所定の遅延時間T1,T2経過後に比較電圧VR2をリーン側に、あるいはリッチ側に横切っている。
【0040】
即ち、触媒15が正常であればそのストレージ効果によって、空燃比補正係数FAFの変化に伴う空燃比の変動の下流O2 センサ18への伝搬が遅れる。しかし触媒15が劣化するとそのストレージ効果が低下し、図9に示す様に空燃比補正係数FAFの変化に対する下流O2 センサ18の出力の変化の遅れ時間T1X,T2Xはそれぞれ正常時の遅れ時間T1,T2に対して短くなる。本発明実施例では空燃比補正係数FAFがリッチからリーンへの変化時点から下流O2 センサ18の出力電圧V2が比較電圧VR2以下になるまでの遅延時間T1をカウンタCRLでカウントし、空燃比補正係数FAFがリーンからリッチへの変化時点から出力電圧V2が比較電圧VR2以上になるまでの遅延時間T2をカウンタCLRでカウントする。そして所定回数α(例えば10回)だけT1,T2を求め、T1,T2の平均を算出し、その平均値より触媒15の劣化を判別している。
【0041】
図8に戻って、ステップ402,403でカウンタCRL,CLRをインクリメントするとステップ404で空燃比補正係数FAFがリッチ側からリーン側にスキップ状に変化したか即ち、FAFの値が1.0以上から1.0以下に下降したかの判別を行なう。リッチからリーンに変化した場合はステップ405でカウンタCRLをリセット(CRL←0)する。
【0042】
そしてステップ408で下流O2 センサ18がリッチからリーンに変化したか即ち出力電圧V2が比較電圧VR2を下回ったか否かの判別を行ない、下回った場合はステップ409で遅延時間T1の演算値に相当し、第1の積算手段をなす積算カウンタTCRLに現在のカウント値CRL(T1に相当する値)を加算する。
【0043】
【数1】
TCRL→TCRL+CRL
そしてステップ410でカウンタ値CRLを積算した回数を示す第1のカウント手段をなす積算回数カウンタCCRLをインクリメントする(CCRL→CCRL+1)。次にステップ414でステップ409,412で遅延時間T1,T2の積算回数に相当する実行積算カウンタTTをインクリメントする(TT←TT+1)。そしてステップ415で積算カウンタTTが所定回数αに達したか否かの(所定期間積算したか否か)判別を行ない、達した場合は以下ステップ416〜421の処理を実行し、達していない場合は本ルーチンを抜ける。
【0044】
またステップ404でNO判定のときはステップ406で空燃比補正係数FAFがリーンからリッチにスキップ状に変化したか即ちFAFの値が1.0以下から1.0以上に上昇したかの判別を行ない、リーンからリッチに変化した場合はステップ407でカウンタCLRをリセットする(CLR←0)。
【0045】
またステップ408での判定がNOであった場合はステップ411で下流O2 センサ18がリーンからリッチに変化したか即ち出力電圧V2が比較電圧VR2を上回ったか否かの判別を行ない、上回った場合はステップ412で遅延時間T2を積算する第2の生産手段をなすカウンタTCLRに現在のカウント値CRL(T2に相当する値)を加算する。
【0046】
【数2】
TCLR←TCLR+CLR
そしてステップ413でカウンタ値CLRを積算した回数を示し、第2のカウント手段をなす積算回路カウンタCCLRをインクリメント(CCLR←CCLR+1)し、ステップ414に進む。
【0047】
またステップ406でNO判定である都合即ち、空燃比補正係数FAFがリッチ→リーンまたはリーン→リッチの変化時でないときはカウンタCRL,CLRはリセットされずステップ408に進む。そして、ステップ408,411共にNO判定の場合は以下の処理は行なわない。即ち、本ルーチンにおいて、FAFがリッチからリーンへの変化時でなく、また下流O2 センサ18がリッチからリーンへの変化時でないときはカウンタCRL,CLRの更新のみを行なう。
【0048】
ステップ415で積算カウンタTTが所定回数αに達した場合はステップ416に進んで遅延時間T1とT2の平均値Tを算出する。
【0049】
【数3】
T=(TCRL/CCRL+TCLR/CCLR)/2
上式においてTCRL/CCRLは積算結果TCRLを積算回数CCRLで除算して得られる除算結果であり、遅延時間T1のCCRL回数分の平均値に相当し、またTCLR/CCLRは積算結果TCRLを積算回数CCRLで除算して得られる除算結果であり、遅延時間T2のCCLR回数分の平均に相当するため、両者の和を2で除算して求まるTはT1とT2とを含めた遅延時間の平均値となる。
【0050】
ステップ417で劣化判定レベルβを読み込む。ここで劣化判定レベルβは図10に示すように吸入気量Qに対応して定められており吸気量Qが大きくなるに従って劣化判定レベルβは小さくなる特性を有している。ステップ417で劣化判定レベルβが定まるとステップ418で平均値Tと劣化判定レベルβとを比較し、平均値Tの方が小さいときはステップ419で触媒15が劣化を判別してステップ420でアラーム19を点灯してステップ422に進む。
【0051】
逆に平均値Tの方が劣化判定レベルβより大きいときはステップ421で触媒15は正常と判別してステップ422に進む。ステップ422では、カウンタCRL,CLR,積算カウンタTCRL,TCLR,積算回数カウンタCCRL,CCLR,実行積算カウンタTTをリセットして本ルーチンを終了する。
【0052】
ここで、図8の実施例では遅延時間T1,T2を所定回求めてそれらの平均値Tを用いて触媒の劣化検出を行ったが、遅延時間T1の平均値(TCRL/CCRL)のみあるいは遅延時間T2の平均値(TCLR/CCLR)のみを劣化判別レベルβと比較することにより触媒の劣化を判別してもよい。
【0053】
さちに遅延時間T1,T2を積算して積算結果を積算回数で除算した除算結果即ち平均値を用いずに、1回のみの遅延時間T1あるいはT2を劣化判定レベルβと比較することにより触媒の劣化を判別する様にしてもよい。
【0054】
また、遅延時間T1,T2の積算回数が所定αを越えた後にステップ416以降の劣化判別処理を実行する替わりに、所定時間(例えば640msec)毎にステップ416以降の劣化判別処理を実行する様にしてもよい。
【0055】
また、劣化判定レベルβを吸気量Qに対応して設定する替わりに、一定値例えば1secに設定してもよい。
図11は前述の各種センサからの検出信号に応じて燃料噴射量TAUを演算する燃料噴射量演算ルーチンを示すフローチャートである。このルーチンは所定期間(例えば、本実施例では360℃A)毎に起動・実行されるものである。
【0056】
ステップ101で吸気量Q,回転数NE等の検出信号を読み込んでステップ102で基本燃料噴射量Tpを次式により演算する。
【0057】
【数4】
Tp←K・Q/NE
ここで、Kは定数である。つづくステップ103で基本燃料噴射量Tpを後述する空燃比フィードバック制御等の各種の補正を行い燃料噴射量TAUを次式を用いて演算する。
【0058】
【数5】
TAU←Tp・FAF・F
ここで、FAFは空燃比フィードバック制御による空燃比補正係数、Fは各種補正係数である。そして、ステップ104で前述のステップ103により演算された燃料噴射量TAUに対応した制御信号を燃料噴射弁8へ出力する。
【0059】
図12は上流O2 センサ16の検出信号(上流出力値)V1に基づいて行われる主空燃比フィードバック制御、即ち空燃比補正係数FAFを設定する空燃比フィードバック制御ルーチンである。このルーチンは所定時間(例えば、本実施例では4msec)毎に起動・実行されるものである。
【0060】
ステップ201で主空燃比フィードバック制御の条件(第1の実行条件)が成立しているか否かを判断する。ここで、第1の実行条件としては、例えば、本実施例ではエンジン始動後でかつ上流O2 センサ16が活性状態であること等である。ステップ201で第1の実行条件が成立していないと判断された場合は、ステップ202へ進む。ステップ202で空燃比補正係数FAFを1.0に設定(FAF←1.0)し、本ルーチンを終了する。
【0061】
一方、ステップ201で第1の実行条件が成立していると判断された場合はステップ203以降の上流出力値V1によるフィードバック処理を実行する。
ステップ203で上流出力値V1を読み込む。つづくステップ204で上流出力値V1が第1の比較電圧VR1(例えば、本実施例では0.45V)以下か否か、即ち空燃比がリッチかリーンかを判定する。ここで、上流出力値V1が第1の比較電圧VR1以下、即ち空燃比がリーンである場合はステップ205へ進む。ステップ205で第1のディレイカウンタCDLY1が正の値、即ち今回の制御タイミングで上流出力値V1がリッチからリーンへ反転したか否かを判定する。ここで、第1のディレイカウンタCDLY1は上流出力値V1が第1の比較電圧VR1を横切ってからの経過時間を計測するためのカウンタであり、リッチ状態の経過時間は正の値、リーン状態の経過時間は負の値で定義される。
【0062】
ステップ205で第1のディレイカウンタCDLY1が負の値である場合はステップ207へ進む。また、ステップ205で第1のディレイカウンタCDLY1が正の値である場合はステップ206へ進む。ステップ206で第1のディレイカウンタCDLY1をリセット(CDLY1←0)し、ステップ207へ進む。
【0063】
ステップ207で第1のディレイカウンタCDLY1の値をデクリメントする(CDLY1←CDLY1−1)。次にステップ501で図8に示す触媒劣化検出ルーチン実行中か否かの判別を図8のステップ401の触媒劣化検出条件が成立しているか否かで行う。ステップ501がNO判定のときはステップ503で第1のリーン遅延時間TDL1を所定値TR1に設定し、YES判定のときはステップ502で所定値TR1より小さい所定値TS1に設定する。続くステップ208で第1のディレイカウンタCDLY1が第1のリーン遅延時間TDL1未満か否かを判定する。ここで、第1のリーン遅延時間TDL1は、上流O2 センサ16の出力信号がリッチからリーンへの変化があってもリッチであるとの判断を保持する遅延処理における遅延時間に対応するカウント値であり、負の値で定義される。このため第1のリーン遅延時間TDL1を所定値TR1より小さい所定値TS1に設定すると遅延処理における遅延時間は例えば12msecから240msecへ変化して長くなり空燃比補正係数FAFの周期が長くなって前述した図8のステップ408,411で確実に下流酸素センサ18のリッチ⇔リーン反転を検出することができる。
【0064】
ステップ208で第1のディレイカウンタCDLY1が第1のリーン遅延時間TDL1以上の場合はステップ217へ進む。
一方、ステップ208で第1のディレイカウンタCDLY1が第1のリーン遅延時間TDL1未満、即ち上流O2 センサ16の出力信号がリッチからリーンへ変化してから前述の遅延時間以上経過した場合はステップ209へ進む。ステップ209で第1のディレイカウンタCDLY1を第1のリーン遅延時間TDL1に設定(CDLY1←TDL1)し、ステップ201へ進む。ステップ210で遅延処理後の空燃比の状態を示すフラグF1をリセット(F1←0)し、ステップ217へ進む。即ちフラグF1がリセット状態(F1=0)の場合は遅延処理後の空燃比がリーンであることを示す。
【0065】
また、ステップ204で上流出力値V1が第1の比較電圧VR1より大きい、即ち空燃比がリッチである場合はステップ211へ進む。ステップ211で第1のディレイカウンタCDLY1が負の値、即ち今回の制御タイミングで上流出力値V1がリーンからリッチへ反転したか否かを判定する。ここで、第1のディレイカウンタCDLY1が正の値である場合はステップ213へ進む。
【0066】
一方、ステップ211で第1のディレイカウンタCDLY1が負の値である場合はステップ212へ進む。ステップ212で第1のディレイカウンタCDLY1をリセット(CDLY1←0)し、ステップ213へ進む。
【0067】
ステップ213で第1のディレイカウンタCDLY1の値をインクリメントする(CDLY1←CDLY1+1)。次にステップ504でステップ501と同様に図8に示す触媒劣化検出ルーチン実行中か否かの判別を行う。ステップ504がNO判定のときはステップ506で第1のリッチ遅延時間TDR1を所定値TRに設定し、YES判定のときはステップ505で所定値TRより大きい所定値TSに設定する。続くステップ214で第1のディレイカウンタCDLY1が第1のリッチ遅延時間TDR1以上か否かを判定する。ここで、第1のリッチ遅延時間TDR1は、上流O2 センサ16の出力信号がリーンからリッチへの変化があってもリーンであるとの判断を保持する遅延処理に対応する遅延時間に対応するカウント値であり、正の値で定義される。このため第1のリッチ遅延時間TDR1を所定値TRより大きい所定値TSに設定すると遅延処理における遅延時間は例えば64msecから240msecへ変化して長くなり空燃比補正係数FAFの周期が長くなって前述した図8のステップ408,411で確実に下流酸素センサ18のリッチ⇔リーン反転を検出することができる。ステップ214で第1のディレイカウンタCDLY1が第1のリッチ遅延時間TDR1以下の場合はステップ217へ進む。
【0068】
一方、ステップ214で第1のディレイカウンタCDLY1が第1のリッチ遅延時間TDR1より大きい場合、即ち上流O2 センサ16の出力信号がリーンからリッチへ変化してから前述の遅延時間以上経過した場合はステップ215へ進む。ステップ215で第1のディレイカウンタCDLY1を第1のリッチ遅延時間TDR1に設定(CDLY1←TDR1)し、ステップ216へ進む。ステップ216で遅延処理後の空燃比の状態を示すフラグF1をセット(F1←1)し、ステップ217へ進む。即ちフラグF1がセット状態(F1=1)の場合は遅延処理後の空燃比かリッチであることを示す。
【0069】
ステップ217でフラグF1が反転したか否か、即ち遅延処理後の空燃比の状態が反転したか否かを判別する。ここで、遅延処理後の空燃比の状態が反転した場合は、ステップ218〜ステップ220のスキップ処理を行う。まず、ステップ218でフラグF1がリセット状態か否かを判定する。ここで、フラグF1がリセット状態である、即ちリッチからリーンへの反転である場合はステップ219へ進む。ステップ219で空燃比補正係数FAFを第1のリッチスキップ量RSR1だけ増大させ、
【0070】
【数6】
FAF←FAF+RSR1
ステップ224へ進む。また、ステップ218でフラグF1がセット状態である、即ちリーンからリッチへの反転である場合はステップ220へ進む。ステップ220で空燃比補正係数FAFを第1のリーンスキップ量RSL1だけ減少させ、
【0071】
【数7】
FAF←FAF−RSL1
ステップ224へ進む。一方、ステップ217で遅延処理後の空燃比の状態が反転していない場合はステップ221〜ステップ223の積分処理を行う。まず、ステップ221でフラグF1がリセット状態である、即ちリーンであるか否かを判別する。ここで、リーンである場合はステップ222へ進む。ステップ222で空燃比補正係数FAFを第1のリッチ積分定数KIR1だけ増加させ、
【0072】
【数8】
FAF←FAF+KIR1
ステップ224へ進む。また、ステップ221でリッチである場合はステップ223へ進む。ステップ223で空燃比補正係数FAFを第1のリーン積分定数KIL1だけ減少させ、
【0073】
【数9】
FAF←FAF−KIL1
ステップ224へ進む。ステップ224で前述のようにして設定された空燃比係数FAFが所定範囲(例えば、本実施例では0.8〜1.2)となるようにガード処理を行い本ルーチンを終了する。
【0074】
図13は下流O2 センサ18の出力値(下流出力値)V2に基づいて主空燃比フィードバック制御における第1のリッチスキップ量RSR1,第1のリーンスキップ量RSL1を補正する副空燃比フィードバック制御ルーチンを示すフローチャートである。本ルーチンは所定時間(例えば、本実施例では1sec)毎に起動,実行されるものである。
【0075】
まず、ステップ301で空燃比フィードバック条件(第2の実行条件)が成立しているか否か、即ち副空燃比フィードバック制御を実行するか否かを判断する。ここで、第2の実行条件とは、例えば本実施例では、第1の実行条件が成立している、即ち主空燃比フィードバック制御中である。下流O2 センサ18が活性状態である等である。
【0076】
ステップ301で第2の実行条件が成立していない場合はステップ302へ進む。ステップ302で第1のリッチスキップ量RSR1を所定のリッチスキップ量RSR0に設定する。つづくステップ303で第1のリーンスキップ量RSL1を所定のリーンスキップ量RSL0に設定し、本ルーチンを終了する。
【0077】
また、ステップ301で第2の実行条件が成立している場合はステップ304以降の下流出力値V2に基づく副空燃比フィードバック処理を実行する。まず、ステップ304で下流出力値V2を読み込む。ステップ305で下流出力値V2が第2の比較電圧VR2(例えば、本実施例では第1の比較電圧VR1と同じ0.45Vと設定)以下か否か、即ち空燃比がリッチかリーンかを判定する。ここで、下流出力値V2が第2の比較電圧VR2以下、即ち空燃比がリーンである場合はステップ306へ進む。
【0078】
ステップ306で第2のディレイカウンタCDLY2が正の値、即ち今回の制御タイミングで下流出力値V2がリッチからリーンへ反転したか否かを判定する。ここで、第2のディレイカウンタCDLY2は前述の第1のディレイカウンタCDLY1と同様に下流出力値V2が第2の比較電圧VR2を横切ってからの経過時間を計測するためのカウンタであり、リッチ状態の経過時間は正の値、リーン状態の経過時間は負の値で定義される。
【0079】
ステップ306で第2のディレイカウンタCDLY2が負の値である場合はステップ308へ進む。また、ステップ306で第2のディレイカウンタCDLY2が正の値である場合はステップ307へ進む。ステップ307で第2のディレイカウンタCDLY2をリセット(CDLY2←0)し、ステップ308へ進む。
【0080】
ステップ308で第2のディレイカウンタCDLY2の値をデクリメントする(CDLY2←CDLY2−1)。続くステップ309で第2のディレイカウンタCDLY2が第2のリーン遅延時間TDL2未満か否かを判定する。ここで、第2のリーン遅延時間TDL2は、下流O2 センサ18の出力信号がリッチからリーンへの変化があってもリッチであるとの判断を保持する遅延処理における遅延時間に対応するカウント値であり、負の値で定義される。ステップ309で第2のディレイカウンタCDLY2が第2のリーン遅延時間TDL2以上の場合はステップ318へ進む。
【0081】
一方、ステップ309で第2のディレイカウンタCDLY2が第2のリーン遅延時間TDL2未満、即ち下流O2 センサ18の出力信号がリッチからリーンへ変化してから前述の遅延時間以上経過した場合はステップ310へ進む。ステップ310で第2のディレイカウンタCDLY2を第2のリーン遅延時間TDL2に設定(CDLY2←TDL2)し、ステップ311へ進む。ステップ311で遅延処理後の空燃比の状態を示すフラグF2をリセット(F2←0)し、ステップ318へ進む。即ちフラグF2がリセット状態(F2=0)の場合は遅延処理後の空燃比がリーンであることを示す。
【0082】
また、ステップ305で下流出力値V2が第2の比較電圧VR2より大きい、即ち空燃比がリッチである場合はステップ312へ進む。ステップ312で第2のディレイカウンタCDLY2が負の値、即ち今回の制御タイミングで下流出力値V2がリーンからリッチへ反転したか否かを判定する。ここで、第2のディレイカウンタCDLY2が正の値である場合はステップ314へ進む。
【0083】
一方、ステップ312で第2のディレイカウンタCDLY2が負の値である場合はステップ313へ進む。ステップ313で第2のディレイカウンタCDLY2をリセット(CDLY2←0)し、ステップ314へ進む。
【0084】
ステップ314で第2のディレイカウンタCDLY2の値をインクリメントする(CDLY2←CDLY2+1)。続くステップ315で第2のディレイカウンタCDLY2が第2のリッチ遅延時間TDR2未満か否かを判定する。ここで、第2のリッチ遅延時間TDR2は、下流O2 センサ18の出力信号がリーンからリッチへの変化があってもリーンであるとの判断を保持する遅延処理に対応する遅延時間に対応するカウント値であり、正の値で定義される。ステップ315で第2のディレイカウンタCDLY2が第2のリッチ遅延時間TDR2以上の場合はステップ318へ進む。
【0085】
一方、ステップ315で第2のディレイカウンタCDLY2が第2のリッチ遅延時間TDR2より大きい、即ち下流O2 センサ18の出力信号がリーンからリッチへ変化してから前述の遅延時間以上経過した場合はステップ316へ進む。ステップ316で第2のディレイカウンタCDLY2を第2のリッチ遅延時間TDR2に設定(CDLY2←TDR2)し、ステップ317へ進む。ステップ317で遅延処理後の空燃比の状態を示すフラグF2をセット(F2←1)し、ステップ318へ進む。即ちフラグF2がセット状態(F2=1)の場合は遅延処理後の空燃比がリッチであることを示す。
【0086】
ステップ318でフラグF2がリセット状態か否か、即ち遅延処理後の空燃比がリーンであるかリッチであるかを検出する。ここで、フラグF2がリセット状態、即ち遅延処理後の空燃比がリーンである場合はステップ319へ進む。ステップ319で第1のリッチスキップ量RSR1を所定値RSだけ増加させ、
【0087】
【数10】
RSR1←RSR1+RS
ステップ320へ進む。ステップ320で第1のリーンスキップ量RSL1を所定値RSだけ減少させ、
【0088】
【数11】
RSL1←RSL1−RS
ステップ323へ進む。一方、ステップ318でフラグF2がセット状態、即ち遅延処理後の空燃比がリッチである場合はステップ321へ進む。ステップ321で第1のリッチスキップ量RSR1を所定値RSだけ減少させ、
【0089】
【数12】
RSR1←RSR1−RS
ステップ322へ進む。ステップ322で第1のリーンスキップ量RSL1を所定値RSだけ増加させ、
【0090】
【数13】
RSL1←RSL1+RS
ステップ323へ進む。ステップ323で前述のようにして設定された第1のリッチスキップ量RSR1,第1のリーンスキップ量RSL1が所定範囲内となるようにガード処理し、本ルーチンを終了する。
【0091】
〔第2実施例〕
この実施例は第1実施例に対し、図5の触媒劣化検出ルーチンを図14に置換したものであり、他の構成は第1実施例と同じである。
【0092】
このルーチンは通常の空燃比フィードバック中において所定時間(例えば64msec)毎に起動・実行されるものであり、図14中、図5と同一符号のステップはそれと同じ処理を実行する。ステップ1401で検出時間に対応する検出時間カウンタCTIMEをインクリメントしてステップ1405Aへ進む。
【0093】
ステップ1405Aで主空燃比フィードバック周期の判定のため、空燃比補正係数FAFのリッチ→リーンもしくはリーン→リッチのスキップを判定し、FAFスキップが実行されていればステップ1412Bへ、実行されていなければステップ1405Bへ進む。
【0094】
ステップ1405B〜1405Eで高周波振幅演算のため、主空燃比フィードバック一周期間の下流酸素センサ18出力信号の最大値KMAXと最小値KMINを求め、ステップ1411へ進む。
【0095】
ステップ1412Bで低周波振幅演算のため、KMAXとKMINの平均値TEIを求め(この平均値が下流酸素センサ18の低周波成分に相当する)、高周波振幅KOUをKMAXとKMINの差より求める。そして、高周波振幅平均値を求めるため、KOUを積算して高周波振幅積算値GKOUを求め、さらに、高周波振幅の平均値演算の分母としての主フィードバック周期カウンタGHを積算してステップ1412Cに進む。ステップ1412CではKMAX,KMINとして、その時の下流酸素センサ18の出力信号OX2を設定して、次回の主フィードバック周期でのKMAX,KMINの演算に備える。
【0096】
次のステップ1412D〜1412Gで低周波振幅演算のため、TEIの最大値TMAX,最小値TMINを求め、ステップ1411に進む。
ステップ1411で検出時間カウンタCTIMEにより、検出時間が所定時間A(例えば20秒)以上か否かを判定し、所定時間A以上であるならステップ1412Aへ進む。
【0097】
ステップ1412Aで下流酸素センサ18出力の高周波振幅平均値AHCと低周波振幅LCとを算出し、ステップ1413へ進む。
ステップ1413で高周波振幅AHCが所定値Bより大きく、ステップ1414で低周波振幅LCが所定値Cより小さければステップ1415で触媒劣化と判定してアラーム19を点灯し、ステップ1413で高周波振幅AHCが所定値B以下か、ステップ1414で低周波振幅LCが所定値C以上であればステップ1417で触媒正常と判定し、次のステップ1416でカウンタCTIMEおよびCHを0にリセットし、さらに、次のステップ1418でTMAX,TMINとして、その時の下流酸素センサ18の出力信号OX2を設定して、次回の所定時間AでのTMAX,TMINの演算に備える。
【0098】
これにより、図15に示すごとく、主空燃比フィードバック一周期毎に、下流酸素センサ18の出力信号OX2の最大値KMAX及び最小値KMINとこれらの平均値TEIと高周波振幅KOUとを求めることができると共に、所定時間A毎に、下流酸素センサ18の高周波振幅KOUの平均値AHCと低周波成分の最大値TMAX及び最小値TMINと低周波振幅LCとを求めることができる。
〔第3実施例〕
この第3実施例は第1実施例及び第2実施例に対し、図5の代わりに図16に示す触媒劣化検出ルーチンを用いると共に、図8の遅延時間による触媒劣化検出ルーチンを省略し、さらに、図12の主空燃比フィードバック処理中、ステップ501〜506のみを省略したものであって、他の構成は第1実施例及び第2実施例と同じである。
【0099】
以下、劣化検出について図16に示すフローチャートに基づいて説明する。
このルーチンは所定時間(例えば64msec)毎に実行される。ステップ1301で高周波振幅KOUを測定する第1検出条件のチェックを行なう。この第1検出条件は急激な過渡運転時及び燃料カット(F/C)時等を除く通常運転条件である。ステップ1302で第1検出条件を満足した場合はステップ1302へ進み、満足してない場合はステップ1304へ進む。ステップ1302では下流O2 センサ18の高周波振幅KOUの平均値AHCを測定し、ステップ1303へ進む。
【0100】
ステップ1303ではステップ1302で検出された高周波振幅KOUの平均値AHCを所定値Bと比較し、所定値Bより小さければ、触媒を正常と判定し本ルーチンを終了する。一方、高周波振幅KOUが所定値Bより小さければ、ステップ1304へ進む。
【0101】
ステップ1304では、下流O2 センサ18の高周波振幅KOU及び低周波振幅LCを測定するための第2検出条件のチェックを行なう。この第2検出条件はエンジン運転がほぼ定常状態である。第2検出条件を満足しない場合は本ルーチンを終了する。満足した場合はステップ1305へ進み、副空燃比補正係数を変更した後、ステップ1306へ進む。
【0102】
ステップ1306では下流O2 センサ18の高周波振幅KOUの平均値AHCを測定した後、ステップ1307へ進む。ステップ1307では下流O2 センサ18の低周波振幅LCを測定し、その後、ステップ1308で副空燃比補正係数を通常にもどす。ステップ1309ではステップ1306で測定される高周波振幅の平均値AHCとステップ1308で測定された低周波振幅LCとをそれぞれ所定値B,Cと比較する。
【0103】
ステップ1309にて、ステップ1306で測定された高周波振幅KOUの平均値AHCが所定値Bより大きく、かつステップ1307で測定された低周波振幅LCが所定値Cより小さいと判断された場合は、ステップ1310へ進み、そうでない場合はステップ1311へ進む。ステップ1310では触媒が劣化したと判定してアラーム19を点灯させる。ステップ1311では触媒が正常と判定し本ルーチンを終了する。
【0104】
ここで、ステップ1309において高周波振幅KOUの平均値AHC及び低周波振幅LCと比較する所定値B,Cは各運転状態で各々一定値でもよいが、図17に示す様に上流酸素センサ16の反転周期(主フィードバック周期)で切り換えるとさらに検出精度が向上する。
【0105】
このような制御をする場合の図16のステップ1309のルーチンを図18により詳細に説明する。まず、ステップ1309Aで主空燃比フィードバック周期の判定のため、空燃比補正係数FAFのリッチ→リーンのスキップを図12に示すフラグF1の状態により判定し、FAFがスキップしたらステップ1309Bへ進み、スキップしていなければステップ1309Fへ進む。ステップ1309B〜1309Dでは空燃比補正係数FAFがリッチ→リーンへスキップする主空燃比フィードバック一周期の時間TBを求める。
【0106】
次のステップ1309Eで、この主空燃比フィードバック一周期の時間TBに応じて、図17に示すように各所定値B,Cを補間演算して求める。次のステップ1309Fで高周波振幅の平均値AHCと所定値Bとを比較し、さらに次のステップ1309Gで低周波振幅幅LCと所定値Cとを比較して触媒15の劣化の有無を判断する。
【0107】
図16に示す検出法によると、まず、通常運転領域(ほぼ定常)で、ステップ1302により高周波振幅を測定することにより、次のステップ1303での高周波振幅が大でないという簡単な処理で明らかに正常な触媒を検出することができる。そして、正常と判定されなかった触媒については、ステップ1304以降の処理を行なうことで、正確に触媒の劣化または正常の判定を行なうことができるというリメットがある。
【0108】
それでは、ステップ1305にて行なう副空燃比補正係数の変更について図19のタイムチャートを用い説明する。まず、図16のステップ1304で第2の検出条件が満足された場合、副空燃比補正係数は図19の(e)の下流O2 センサ18のディレイ処理後フラグXRO2Dにより、図19の(f)で示すごとく積分処理、スキップ処理を行なう。この下流酸素(O2 )センサディレイ処理後フラグXRO2Dは図19の(d)の下流O2 センサ信号リッチ・リーン波形を基に以下の様に作成する。
【0109】
下流O2 センサ信号リッチ・リーン波形が反転後(例えばリーン→リッチ)所定時間T1msecのディレイを持ち、ディレイ処理後フラグXRO2Dを反転する(リーン→リッチ)。この場合、所定時間T1msec以内に再び下流O2 センサ信号リッチ・リーン波形が反転(リッチ→リーン)した場合は、ディレイ処理後フラグXRO2Dの反転を無効とする。つまり、下流O2 センサディレイ処理後フラグXRO2Dは、下流O2 センサ信号リッチ・リーン波形に対し、所定時間T1msecのディレイを持ち、かつ同一状態がT1msec以上続いた時に反転するフラグである。
【0110】
ステップ1305では、副空燃比補正係数の演算を、この下流O2 センサディレイ処理後フラグXRO2Dを基に行ない、かつ、副空燃比補正係数の積分定数とスキップ定数とを所定の値に設定する。
【0111】
この副空燃比補正係数の変更(積分定数の変更、所定時間T1のディレイの追加、スキップの追加)により、高浄化率触媒使用時の下流O2 センサ18信号の低周波振幅値が顕著に現れ、触媒劣化検出能力が段格に向上する。
【0112】
次に、図16のステップ1305の副空燃比補正係数の変更について図20,図21により説明する。図20は図16のステップ1305により副空燃比補正係数変更と決定されると4mse程度毎に実行されるスキップ処理ルーチンである。まず、ステップ1701〜1709より図19の(c)で示す下流O2 センサ18信号に所定時間ディレイ処理したフラグXRO2Dを作る(図19の(e)参照)。ステップ1710〜1713ではフラグXRO2Dの反転により、副空燃比補正係数をリーンスキップ、リッチスキップさせる(図16の(f)参照)。
【0113】
図21は図16のステップ1305により副空燃比補正係数変更と決定されると500mse程度毎に実行される積分処理ルーチンであり、フラグXRO2Dの状態により、ステップ1801〜1803によって副空燃比補正係数のリーン側積分、リッチ側積分を500mse毎に行なう。
【0114】
つまり、図16のステップ1305では、副空燃比補正係数を下流O2 センサ18出力のディレイ処理後のフラグXRO2Dに基づき、スキップ積分制御を行ない、また、このスキップ量、積分量を通常の副空燃比補正係数に対し、大きな値に変更する。
【0115】
ここで、図16のステップ1305での副空燃比補正係数の変更としては、上記以外に、副空燃比補正係数制御を規則的にオープン制御にするようにしてもよい。
【0116】
ここで、副空燃比補正係数としては、主空燃比フィードバックにおける第1のリッチスキップ量RSR1、第2のリーンスキップ量RSL1、積分定数KIRI,KILI及び遅延時間TDR1,TDL1のうちいずれか1つを変化させるようにすればよい。
【0117】
以上の第3実施例におけるステップ1302,1306の高周波振幅の測定及びステップ1307の低周波振幅の測定は、第1実施例で説明した図5の方法と、第2実施例で説明した図14の方法とのいずれを用いても可能なことは勿論であるが、第2実施例で説明した図14の方法を用いた方が検出精度が向上するため、好ましい。
〔第4実施例〕
第4実施例の三元触媒15の劣化検出について説明する。図22に触媒浄化率と下流酸素センサ18波形の関係を示す。なお、図中下流酸素センサ18出力信号(下流O2 )に示された破線は副空燃補正係数の時間的変化に対応する低周波成分である。
【0118】
図22に示す如く、副空燃比係数の時間的変化に対する下流酸素センサ18の低周波成分の時間差Tは、
触媒の浄化率が高い時、(図では90%)時間差Tが大となり、
触媒の劣化度合が進むにつれて(図では触媒浄化率90%→70%→20%)、前記時間差は小さくなっていく。
【0119】
本発明はこの特徴に着目し、前記時間差が所定値よりも小さい時、触媒が劣化していると判定する。
図23に、触媒浄化率と前記時間差Tとの関係を示す。今、触媒浄化率50%以下を劣化として判定する時は、前記時間差の判定値をT1に設定すれば良い。
【0120】
以下ECU20において実行される三元触媒15の劣化検出について図24に示すフローチャートに基づいて説明する。
このルーチンは通常の空燃比フィードバック中において所定時間(例えば64msec)毎に起動・実行されるものである。ステップ1421で検出時間に対応する検出時間カウンタCTIMEをインクリメントしてステップ1422へ進む。
【0121】
ステップ1422で副空燃比補正係数の変化方向がリーン側(減少)→リッチ側(増加)へ反転したか否かを判定し(ステップ1422の詳細は後述する)、その方向へ反転した時はステップ1423へ進み、判定しなかった場合はステップ1424へ進む。ステップ1423では反転した時刻をTIME1にセットしてステップ1424に進む。
【0122】
ステップ1424では下流酸素センサ18出力OX2 より低周波成分を演算してステップ1425へ進む(ステップ1424の詳細は後述する)。
ステップ1425では低周波成分が極小値(リーンピーク値)か否かを判定し(ステップ1425の詳細は後述する)、極小値と判定しなかった場合にはステップ1427へ進み、極小値と判定した場合はステップ1426へ進んで極小値と判定した時刻をTIME2にセットし、ステップ1428への進む。
【0123】
ステップ1427では検出時間カウンタCTIMEにより、検出時間が所定時間以上か否かを判定し、所定時間未満であるならステップ1421へ戻り、所定時間以上であるならばステップ1428へ進む。
【0124】
ステップ1428では副空燃比補正係数がリッチ側へ反転してから下流酸素センサ18の低周波成分のリーンピーク値が表れるまでの時間差Tを算出する。次のステップ1429でこの時間差Tが所定値T2以上かを判定し、この時間差Tが所定値T2より大きければ、ステップ1430で触媒は正常と判定され、T2以下ならばステップ1431で触媒劣化と判定されてアラーム19を点灯させる。
【0125】
そして、次のステップ1432でカウンタCTIMEおよび時間差Tを0にリセットした後本ルーチンを終了する。
前述の各種センサからの検出信号に応じてECU20において実行される燃料噴射量TAUを演算する燃料噴射量演算ルーチンは第1実施例の図6と同じであるため説明を省略する。
【0126】
図25は上流O2 センサ16の検出信号(上流出力値)V1に基づいてECU20で実行される主空燃比フィードバック制御、即ち空燃比補正係数FAFを設定する空燃比フィードバック制御ルーチンである。このルーチンは第1実施例の図12に対し、ステップ501〜506を省略したのみのものであるため、詳細な説明は省略する。
【0127】
次に、図24のステップ1422のより詳細なフローチャートを図26の(a)により説明する。まず、ステップ1422Aにより、副空燃比補正係数としての第1のリッチスキップ量RSR1の反転を、フラグF2が反転したかにより判断し、反転しているときにはステップ1422Bにより、フラグF2が0かを判断する。これにより、フラグF2が反転した時にフラグF2が0であると判断すると、副空燃比補正係数としての第1のリッチスキップ量RSR1が減少→増加へ反転したことを判断することになる。
【0128】
また、図24のステップ1424、1425のより詳細なフローチャートを図26の(b)により説明する。まず、ステップ1424Aで主空燃比フィードバック周期の判定のため、空燃比補正係数FAFのリッチ→リーンもしくはリーン→リッチのスキップを、フラグF1の状態により図26の(a)と同様にして判定し、FAFのスキップが実行されていればステップ1424Fへ、また実行されていなければステップ1424Bへ進む。
【0129】
そして、ステップ1424Bで下流酸素センサ18の出力信号0X2と主空燃比フィードバック一周期での最大値KMAXとを比較し、最大値KMAXより下流酸素センサ18の出力信号0X2の方が大きい時にはステップ1424Cへ進んで、最大値KMAXとしてその時の下流酸素センサ18の出力信号0X2を設定した後ステップ1424Dへ進み、最大値KMAXより下流酸素センサ18の出力信号0X2の方が大きくない時にはステップ1424Cをバイパスしてステップ1424Dへ進む。
【0130】
ステップ1424Dでは下流酸素センサ18の出力信号0X2とフィードバック一周期での最小値KMINとを比較し、最小値KMINより下流酸素センサ18の出力信号0X2の方が小さい時にはステップ1424Eへ進んで、最小値KMINとしてその時の下流酸素センサ18の出力信号0X2を設定した後次のステップ1427へ進み、最小値KMINより下流酸素センサ18の出力信号0X2の方が小さくない時にはステップ1424Eをバイパスしてステップ1427へ進む。これにより、図15に示すごとく、主空燃比フィードバック一周期毎に下流酸素センサ18の出力信号0X2の最大値KMAXと最小値KMINとを求めることができる。また、ステップ1424Fでは最大値KMAXと最小値KMINとの平均値TEIを演算することにより図15の破線で示すごとく、空燃比補正係数FAFのリッチ→リーンもしくはリーン→リッチのスキップ毎に下流酸素センサ18の出力信号0X2の低周波成分が求められる。
【0131】
次のステップ1425Aでは平均値TEIがその前回の平均値TEIbより小さいか判断し、小さい時にはステップ1425Bへ進んでフラグF3を0とした後ステップ1427へ進み、大きい時にはステップ1425Cへ進んでフラグF3が0かを判断し、フラグF3が0のときにはステップ1425Dへ進み、0でないときにはステップ1427へ進む。ステップ1425DではフラグF3を1とした後ステップ1425Eへ進んで、次回の演算のために今回の平均値TEIを前回の平均値TEIbとして置き換える。これにより、下流酸素センサ18の出力信号0X2の低周波成分である平均値が減少から増加に反転した時点を低周波成分が極小値になった時点であると判断することができる。
【0132】
なお、上述した第4実施例においては、副空燃比補正係数の時間変化に対する下流酸素センサ18の低周波成分の時間差を、前者の極小値発生時刻と後者の極小値発生時刻との差で算出しているが、特に極小値に限るものではなく、図27の(a)で示すごとく、ステップ1422BでフラグF2が1かを判断するようにし、かつ図27の(b)で示すごとく、ステップ1425Aで平均値TEIがその前回の平均値TEIbより大きいかを判断するようにすることにより、極大値を用いて算出するようにしてもよい。
【0133】
また、上述した各実施例においては、副空燃比補正係数として第1のリッチスキップ量RSR1を用いたが、第1のリーンスキップ量RSL1を用いるようにしてもよい。また、副空燃比フィードバック制御によって制御される副空燃比補正係数として、図13に示すステップ319〜322、302、303において、主空燃比フィードバック制御のスキップ量RSR1、RSL1の代わりに、図27の(c)で示すごとく積分定数KIRI、KILIを変化させたり、図27の(d)で示すごとく遅延時間TDR1、TDL1を変化させるものにおいても、これらの積分定数KIRI、KILIや遅延時間TDR1、TDL1を副空燃比補正係数として用いることにより、本発明を適用することができる。
【0134】
〔第5実施例〕
図28は本発明第5実施例におけるECU20で実行される触媒劣化検出ルーチンを示すもので、上述した各実施例より精度は劣るものの、下流酸素センサ18の低周波成分の周期のみにより触媒15の劣化を判別するようにしたものである。この第5実施例によれば、第4実施例の図24のフローチャートに対し、ステップ1421、1422、1423、1427、1432を省略し、ステップ1425と1426との間に、今まで記憶されている低周波成分が極小値となった時刻TIME2を前回の低周波成分が極小値となった時刻TIME2−1として記憶するステップ1425Aを追加し、ステップ1426の後に、ステップ1428の代わりに、ステップ1428Aによって、今回の低周波成分が極小値となった時刻TIME2から前回の低周波成分が極小値となった時刻TIME2−1を減算して下流酸素センサ18の低周波成分の周期TAを検出するようにする。
【0135】
そして、次のステップ1429Aで周期TAが所定時間T3より長いか否かを判断し、周期TAが所定時間T3より長いとき触媒正常と判断し、周期TAが所定時間T3より長くないとき触媒異常と判別するようにしたものである。
【0136】
また、触媒の劣化検出はこれらの実施例の他に、下流酸素センサ18の低周波成分の振幅のみを検出し、この振幅が所定値以下のとき触媒劣化と判別するようにしてもよい。
【0137】
【発明の効果】
以上に詳述したように本発明では下流酸素センサ出力の低周波成分を用い、またこの低周波成分の周期は酸素センサの応答性バラツキに対し十分に(4倍以上)長いため、低周波振幅は下流酸素センサの応答性に対するバラツキにあまり影響を受けない。これにより、上流及び下流酸素センサの劣化の有無や出力応答のバラツキによる影響が少なく、しかも、下流酸素センサの低周波成分は、副空燃比補正係数の時間的変化に対応してはいるが、副空燃比補正係数そのものではないため、触媒劣化検出に際して、各種の内燃機関に対する適合が比較的容易で、かつ触媒の劣化を精度よく検出できるという優れた効果がある。
【0138】
また本発明では下流酸素センサ低周波振幅の検出に加え、高周波振幅も検出することにより、すなわち低周波振幅・高周波振幅の2つのANDを取るようにすることにより、それぞれを単独で取ることに比べ、触媒劣化検出精度が高くなるという優れた効果がある。
【図面の簡単な説明】
【図1】本発明のクレーム対応図である。
【図2】本発明を適応した第1実施例の概略構成図である。
【図3】触媒劣化に伴う上・下流酸素センサの出力波形を示したタイムチャートである。
【図4】触媒劣化判定領域で示す図である。
【図5】振幅による触媒劣化検出ルーチンを示したフローチャートである。
【図6】上流酸素センサ正常時の上・下流酸素センサの出力波形を示したタイムチャートである。
【図7】上流酸素センサ劣化時の上・下流酸素センサの出力波形を示したタイムチャートである。
【図8】遅延時間による触媒劣化検出ルーチンを示したフローチャートである。
【図9】三元触媒15の劣化状態に応じた上・下流酸素センサの出力波形を示したタイムチャートである。
【図10】劣化判定レベルβと吸気量Qとの関係を示したマップである。
【図11】燃料噴射量算出ルーチンを示したフローチャートである。
【図12】主空燃比フィードバック処理を示したフローチャートである。
【図13】副空燃比フィードバック処理を示したフローチャートである。
【図14】本発明の第2実施例における触媒劣化検出ルーチンを示したフローチャートである。
【図15】主空燃比補正係数及び下流酸素センサの出力波形を示したタイムチャートである。
【図16】本発明の第3実施例における触媒劣化検出ルーチンを示したフローチャートである。
【図17】主空燃比フィードバック周期に対する高周波振幅判定値及び低周波振幅判定値を示す図である。
【図18】高周波振幅大、低周波振幅小判定処理を示すフローチャートである。
【図19】第3実施例の作動説明に供する各部波形のタイムチャートである。
【図20】スキップ処理ルーチンを示すフローチャートである。
【図21】積分処理ルーチンを示すフローチャートである。
【図22】触媒劣化に伴う副空燃比補正係数と下流酸素センサの出力波形を示すタイムチャートである。
【図23】触媒浄化率と時間差との関係を示す図である。
【図24】本発明の第4実施例の時間差による触媒劣化検出ルーチンを示したフローチャートである。
【図25】第4実施例の主空燃比フィードバック処理を示したフローチャートである。
【図26】(a)は図24のルーチンにおけるステップ1422をより詳細に示すフローチャートであり、(b)は図24のルーチンにおけるステップ1424,1425をより詳細に示すフローチャートである。
【図27】(a)は図26(a)の他の実施例を示すフローチャートであり、(b)は図26の(b)の他の実施例の要部のフローチャートでり、(c),(d)は図13の他の実施例の要部をそれぞれ示すフローチャートである。
【図28】本発明の第5実施例における触媒劣化検出ルーチンを示すフローチャートである。
【符号の説明】
1 エンジン
8 燃料噴射弁
15 三元触媒
16 上流酸素センサ
18 下流酸素センサ
19 アラーム
20 ECU
Claims (11)
- エンジンの排気系に配設され、排ガスを浄化するための触媒と、
この触媒の上・下流にそれぞれ配設され、空燃比が理論空燃比に対してリッチかリーンかを検出する上流,下流酸素センサと、
この上流酸素センサの出力信号に応じて、前記エンジンに供給される混合気の空燃比を理論空燃比近傍になるように補正するための主空燃比補正係数を算出する空燃比補正係数算出手段と、
前記主空燃比補正係数を用いて前記混合気の空燃比が理論空燃比になるように制御するエンジン制御手段と、
前記下流酸素センサの出力信号の低周波成分を検出する低周波成分検出手段と、
この低周波成分検出手段により検出された低周波成分のうち、低周波成分の振幅に基づいて前記触媒の劣化を検出する触媒劣化検出手段とを備えるエンジン用触媒劣化検出装置。 - エンジンの排気系に配設され、排ガスを浄化するための触媒と、
この触媒の上・下流にそれぞれ配設され、空燃比が理論空燃比に対してリッチかリーンかを検出する上流,下流酸素センサと、
この上流酸素センサの出力信号に応じて、前記エンジンに供給される混合気の空燃比が理論空燃比近傍になるように補正するための主空燃比補正係数を算出する空燃比補正係数算出手段と、
前記主空燃比補正係数を用いて前記混合気の空燃比を理論空燃比になるように制御するエンジン制御手段と、
前記下流酸素センサの出力信号の高周波振幅を検出する高周波振幅検出手段と、
前記下流酸素センサの出力信号の低周波振幅を検出する低周波振幅検出手段と、
前記高周波振幅検出手段と前記低周波振幅検出手段との双方の検出結果に応じて前記触媒の劣化を検出する触媒劣化検出手段とを備えることを特徴とするエンジン用触媒劣化検出装置。 - 前記触媒劣化検出手段は、前記高周波振幅検出手段の検出結果が所定値より大きく、かつ前記低周波振幅検出手段の検出結果が所定値より小さい時、前記触媒が劣化したと判断する手段を含むことを特徴とする請求項2記載のエンジン用触媒劣化検出装置。
- 前記空燃比補正係数の所定変化後、この所定変化に対応した前記下流酸素センサ出力信号変化が生じるまでの遅延時間を検出する遅延時間検出手段と、
前記遅延時間が所定時間未満の場合、前記振幅による触媒劣化検出手段の結果にかかわらず、前記触媒が劣化したと判断する第2の触媒劣化検出手段とをさらに備える請求項2または3記載のエンジン用触媒劣化検出装置。 - 前記高周波振幅検出手段は、前記主空燃比補正係数の一周期間毎の前記下流酸素センサの出力信号の最大値と最小値との差により前記高周波振幅を算出する手段を含む請求項2〜4のうちいずれかに記載のエンジン用触媒劣化検出装置。
- 前記低周波振幅検出手段は、前記主空燃比補正係数の一周期毎に前記下流酸素センサの出力信号の最大値と最小値との平均値を演算する平均手段と、この平均値の所定期間における複数個の値のうち最大値と最小値との差を演算して前記低周波振幅を算出する手段を含む請求項2〜5のうちいずれかに記載のエンジン用触媒劣化検出装置。
- 前記下流酸素センサの出力信号に応じて前記副空燃比補正係数が算出されて前記主空燃比補正係数を微調整する副空燃比補正係数算出手段と、
前記触媒劣化検出手段による触媒劣化検出条件を満足するか否かを判別し、この触媒劣化検出条件が満足された時に前記触媒劣化検出手段の触媒劣化検出処理の実行を許可する条件判別手段と、
前記条件判別手段により触媒劣化検出条件が満足された時に前記副空燃比補正係数を所定の値に変更する変更手段とをさらに備える請求項2〜6のうちいずれかに記載のエンジン用触媒劣化検出装置。 - 前記高周波振幅検出手段は、前記変更手段により前記副空燃比補正係数が変更される前と後との双方において前記高周波振幅を検出するものであり、
前記変更手段により前記副空燃比補正係数が変更される前に、前記高周波振幅検出手段により検出された高周波振幅が所定値より大きいと判断され、かつ前記条件判別手段により触媒劣化検出条件が満足されると前記変更手段による前記副空燃比補正係数の変更を許可する許可手段とをさらに備える請求項7記載のエンジン用触媒劣化検出装置。 - 前記触媒劣化検出手段は、前記高周波検出手段及び低周波検出手段の検出結果と比較される前記各所定値を、前記空燃比補正係数の周期に応じて設定する設定手段を含む請求項3記載のエンジン用触媒劣化検出装置。
- 前記低周波振幅検出手段は、前記主空燃比補正係数の一周期毎に前記下流酸素センサの出力信号の最大値と最小値との平均値を演算して前記低周波成分を検出する平均手段を含む請求項1〜4、7〜9のうちいずれかに記載のエンジン用触媒劣化検出装置。
- 前記低周波振幅検出手段は、前記下流酸素センサの出力信号を所定のなまし率でなまして前記前記低周波成分を検出するなまし手段を含む請求項1〜4、7〜9のうちいずれかに記載のエンジン用触媒劣化検出装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08854793A JP3620051B2 (ja) | 1992-08-27 | 1993-04-15 | エンジン用触媒劣化検出装置 |
US08/112,209 US5412942A (en) | 1992-08-27 | 1993-08-26 | Catalytic converter deterioration detecting system for engine |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22856492 | 1992-08-27 | ||
JP4-228564 | 1993-03-08 | ||
JP5-46777 | 1993-03-08 | ||
JP4677793 | 1993-03-08 | ||
JP08854793A JP3620051B2 (ja) | 1992-08-27 | 1993-04-15 | エンジン用触媒劣化検出装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000109708A Division JP2000314344A (ja) | 1992-08-27 | 2000-04-11 | エンジン用触媒劣化検出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06317144A JPH06317144A (ja) | 1994-11-15 |
JP3620051B2 true JP3620051B2 (ja) | 2005-02-16 |
Family
ID=27292736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08854793A Expired - Fee Related JP3620051B2 (ja) | 1992-08-27 | 1993-04-15 | エンジン用触媒劣化検出装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5412942A (ja) |
JP (1) | JP3620051B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000314344A (ja) * | 1992-08-27 | 2000-11-14 | Denso Corp | エンジン用触媒劣化検出装置 |
JP3412290B2 (ja) * | 1994-09-29 | 2003-06-03 | 株式会社デンソー | 排気ガス浄化用触媒劣化検査装置 |
US5857163A (en) * | 1995-12-12 | 1999-01-05 | General Motors Corporation | Adaptive engine control responsive to catalyst deterioration estimation |
US5848528A (en) * | 1997-08-13 | 1998-12-15 | Siemens Automotive Corporation | Optimization of closed-loop and post O2 fuel control by measuring catalyst oxygen storage capacity |
US7124005B2 (en) * | 2003-08-07 | 2006-10-17 | Denso Corporation | Electronic control unit having hold circuit and method therefor |
JP5331753B2 (ja) * | 2010-06-04 | 2013-10-30 | 日立オートモティブシステムズ株式会社 | エンジンの制御装置 |
JP2012162994A (ja) * | 2011-02-03 | 2012-08-30 | Toyota Motor Corp | 排気浄化装置の劣化判定システム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4135381A (en) * | 1977-07-11 | 1979-01-23 | General Motors Corporation | Oxygen sensor temperature monitor for an engine exhaust monitoring system |
DE3126238A1 (de) * | 1981-07-03 | 1983-01-20 | Robert Bosch Gmbh, 7000 Stuttgart | Vorrichtung zum betrieb einer sauerstoffsonde in einem grossen temperaturbereich |
JP2745761B2 (ja) * | 1990-02-27 | 1998-04-28 | 株式会社デンソー | 内燃機関の触媒劣化判定装置 |
JPH03249320A (ja) * | 1990-02-28 | 1991-11-07 | Nippondenso Co Ltd | 触媒の劣化検出装置 |
JP2826611B2 (ja) * | 1990-11-15 | 1998-11-18 | 三菱自動車工業株式会社 | 触媒劣化診断方法 |
JPH0726580B2 (ja) * | 1990-11-20 | 1995-03-29 | トヨタ自動車株式会社 | 内燃機関の触媒劣化判定装置 |
JPH04321740A (ja) * | 1991-04-19 | 1992-11-11 | Mitsubishi Electric Corp | エンジンの空燃比制御装置 |
US5115639A (en) * | 1991-06-28 | 1992-05-26 | Ford Motor Company | Dual EGO sensor closed loop fuel control |
-
1993
- 1993-04-15 JP JP08854793A patent/JP3620051B2/ja not_active Expired - Fee Related
- 1993-08-26 US US08/112,209 patent/US5412942A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06317144A (ja) | 1994-11-15 |
US5412942A (en) | 1995-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3674017B2 (ja) | 排出ガス浄化用触媒劣化検出装置 | |
JP2626384B2 (ja) | 触媒劣化判別装置 | |
JP2626433B2 (ja) | 触媒劣化検出装置 | |
JP2998575B2 (ja) | 内燃機関の触媒劣化診断装置 | |
US6470674B1 (en) | Deterioration detecting apparatus and method for engine exhaust gas purifying device | |
JP3412290B2 (ja) | 排気ガス浄化用触媒劣化検査装置 | |
JPH09158713A (ja) | 内燃機関の触媒劣化判定装置 | |
JP4055476B2 (ja) | 触媒下流酸素センサの異常検出装置 | |
JP3620051B2 (ja) | エンジン用触媒劣化検出装置 | |
US7063081B2 (en) | Deterioration determining apparatus and deterioration determining method for oxygen sensor | |
JPH04109045A (ja) | 内燃機関の空燃比制御方法及び装置 | |
JP2676987B2 (ja) | 内燃機関の空燃比制御装置 | |
JP3572927B2 (ja) | 内燃機関の空燃比制御装置 | |
JPH055447A (ja) | 酸素センサ劣化検出装置 | |
WO2022091523A1 (ja) | 内燃機関の制御装置及び触媒劣化診断方法 | |
JP2676884B2 (ja) | 内燃機関の空燃比制御装置 | |
JP2737482B2 (ja) | 内燃機関における触媒コンバータ装置の劣化診断装置 | |
JP4069924B2 (ja) | 排出ガス浄化用触媒劣化検出装置 | |
JPH0543253Y2 (ja) | ||
JP3139328B2 (ja) | 内燃機関の触媒劣化判別装置 | |
JP2936780B2 (ja) | 触媒劣化検出装置 | |
JP2606389B2 (ja) | 空燃比制御装置の診断装置 | |
JP3088213B2 (ja) | 触媒コンバータの劣化検出装置 | |
JP2780451B2 (ja) | 触媒の劣化検出装置 | |
JP2000314344A (ja) | エンジン用触媒劣化検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041108 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |