JP3618492B2 - Battery electrode material and secondary battery - Google Patents
Battery electrode material and secondary battery Download PDFInfo
- Publication number
- JP3618492B2 JP3618492B2 JP32042296A JP32042296A JP3618492B2 JP 3618492 B2 JP3618492 B2 JP 3618492B2 JP 32042296 A JP32042296 A JP 32042296A JP 32042296 A JP32042296 A JP 32042296A JP 3618492 B2 JP3618492 B2 JP 3618492B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- battery
- electrode material
- material according
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007772 electrode material Substances 0.000 title claims description 54
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000002134 carbon nanofiber Substances 0.000 claims description 15
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 14
- 239000004917 carbon fiber Substances 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 9
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- 239000002003 electrode paste Substances 0.000 claims description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 15
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 239000011149 active material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- -1 polypropylene Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 1
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011357 graphitized carbon fiber Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- 239000002931 mesocarbon microbead Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、二次電池、特にリチウム二次電池、鉛二次電池などに好適な炭素繊維、特に気相成長炭素繊維(VGCF)を使用した電池用電極材(以下、電極材と略記することがある。)に関する。
【0002】
【従来の技術】
従来、この種の気相成長炭素繊維を用いた電極材として、特開平4−155776号公報に開示されたものがある。この先行発明の電極材は、コークスを高温熱処理して得られた黒鉛粉末と気相成長炭素繊維を混合したものであり、これをリチウムイオン二次電池の負極として使用するものである。
【0003】
また、特開平4−237971号公報に記載の電極材は、メソカーボンマイクロビースと気相成長炭素繊維を混合したもので、これをやはりリチウムイオン二次電池の負極として使用するものである。
これらの先行発明にあっては、二次電池の充放電を繰り返すことによって生じる電極活物質である黒鉛粉末等の膨張を防止でき、電極材の変形、破損を抑えることができ、これによって容量低下を防ぐことができるとされている。
【0004】
しかしながら、これらの従来の電極材にあっては、黒鉛粉末等と気相成長炭素繊維とが単に混合された状態にあるだけであるため、黒鉛粉末等の膨潤を気相成長炭素繊維で十分抑えることができず、容量低下を防止する効果は十分とは言えない不都合がある。
【0005】
【発明が解決しようとする課題】
よって、本発明における課題は、充放電の繰り返しによる黒鉛粉末等の電極活物質の膨張、変形等をより完全に抑えることができ、電池容量の低下を高度に防止することができる電池用電極材を得ることにある。
【0006】
【課題を解決するための手段】
かかる課題は、気相成長炭素繊維が絡み合って形成され、その繊維相互の接点の一部が化学的に結合して固着され、大きさ5〜500μmの凝集体を用い、この凝集体の微細空洞内に電極活物質粉末を包含させた複合体を電池用電極材とすることによって解決できる。
【0007】
また、本発明では、電極活物質として、黒鉛粉末以外にLiCoO2などのリチウム含有複合酸化物の粉末も用いられ、この場合には導電性付与物質としてのカーボンブラック、グラファイト粉末などを同時に、上記凝集体の空洞に取り込むことが好ましい。
また、その他の電極活物質として、二酸化鉛、金属鉛の粉末も使用でき、この場合には得られる電極材は密閉形鉛二次電池に利用される。
【0008】
上記凝集体には、特定の気相成長法によって得られた樹枝状炭素繊維を圧縮し、高温加熱し、さらに解砕したものが好ましい。
本発明の電極材は、リチウムイオン二次電池や密閉型鉛二次電池の陽極用あるいは陰極用電極材として好適である。また、この電極材に結着剤を加えて電極ペーストとすることができ、この電極ペーストを成形して電極とすることができる。
【0009】
【作用】
電極活物質が凝集体の微細空洞内に取り込まれるために、電極活物質の充放電による膨張が制限され、電極体自体の変形、破壊が防止できる。
または凝集体は、炭素繊維相互の接触が単なる機械的接触ではなく、炭素繊維が部分的に化学的に結合して繊維が絡みあっているので、凝集体の電気抵抗が低く、得られる電極材の内部抵抗も低くなる。
【0010】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明で使用される凝集体は、繊維径が0.01〜5μmの気相法炭素繊維が凝集し、その繊維相互の接点の一部がタール、ピッチなどの炭素物質の炭化物によって化学的に結合して固着された大きさが5〜500μmのフロック状または糸鞠状の構造体であり、その内部には種々の大きさの微細空洞が形成されているものである。
このような凝集体は、繊維径0.05〜5μmの気相成長炭素繊維を圧縮成形し、嵩密度0.02g/cm3以上の成形体とし、これを600℃、好ましくは800℃以上で加熱し、さらに機械的に解砕する方法や、該気相成長炭素繊維を0.1kg/cm2以上で圧縮しながら600℃以上好ましくは800℃以上で加熱し、さらに解砕する方法などによって製造できる(特願平7−308406号、平成7年11月1日出願、参照)。
【0011】
また、上記凝集体に使われる気相成長炭素繊維としては、特に限定されず、分岐を有しない単繊維でも、また分岐を有する繊維でもよく、これらを混合したものでもよい。また、生成したままの熱処理されていない粗製の繊維が好ましい。粗製の炭素繊維には、約5〜20重量%のタール、ピッチ等が吸着されており、これが圧縮成形時の繊維間を結合するバインダーとして機能し、さらに熱処理すると容易に炭化して繊維同士を接着する炭化物となる。
もし、熱処理後の気相成長炭素繊維を使用するのであれば、ピッチ等を添加して成形することが望ましい。
【0012】
また、本発明で用いられる電極活物質としては、本発明の電極材をリチウムイオン二次電池の負極とする場合には、黒鉛粉末が用いられる。ここでの黒鉛粉末としては、リチウムイオンをインターカレーションできる層状結晶構造を有するものが用いられ、002面の面間隔(d002)が0.34mm以下のものが好ましい。黒鉛粉末の粒径は平均粒径1〜30μm、好ましくは2〜10μmである。
【0013】
上記凝集体と黒鉛粉末との混合比は、凝集体が混合物の全量の3〜20重量%となるようにされる。3重量%未満では、凝集体を使用した効果が得られず、20重量%を越えると黒鉛粉末の量が減少し、電池容量が低下する。
黒鉛粉末と凝集体とは、十分に混合することが重要であり、混合後の状態において黒鉛粒子が凝集体の炭素繊維に絡み付いた状態、凝集体の内部の空洞に黒鉛粒子が取り込まれた状態あるいはこれがさらに絡み合った状態となっていることが必要である。
このための混合には、混合物に十分な剪断力を作用させうるヘンシェルミキサーやスパルタンリューザなどが用いられる。
【0014】
この例での電極材を用いた合剤の具体的構造としては、凝集体と黒鉛粉末とを混合し、これに必要に応じて導電性付与剤としてのカーボンブラック等を添加し、これに結着剤としてのフッ素樹脂などを加えてよく混合してペースト状となし、このものを集電体となる銅箔、ステンレス鋼ネットなどの金属材に塗布、乾燥したシート状のものや集電体となる金属材上に塗布、成形したブロック状のものなどがある。
【0015】
この例の電極活物質として黒鉛粉末を用い電極材では、負極に限らず、正極に用いることもできる。この場合には、負極には金属リチウムが用いられる。
【0016】
また、リチウムイオン二次電池の正極とする場合には、電極活物質として、LiCoO2、LiMnO2あるいはこれらのCo、Mnの一部をCo、Mn、Fe、Ni等で置換したリチウム複合酸化物の粉末が用いられる。
これらのリチウム複合酸化物は、Li、Co、Mn、Fe、Niなどの炭酸塩や酸化物を混合し、焼成することによって得られ、焼成物を粉砕して粉末とする。
【0017】
リチウム複合酸化物粉末を活物質とした場合には、導電性付与剤として、カーボンブラック、黒鉛粉末が添加され、これに上記凝集体を加えて混合することにより、電極材となる。
ここでの混合も先の例と同様でリチウム酸化物粉末と凝集体を十分に剪断力を作用させて混合することが必要となる。
凝集体の混合割合は、リチウム複合酸化物と凝集体との混合物全量の5〜20重量%とされ、5重量%未満では凝集体添加効果が発現せず、20重量%を越えると活物質が減少し、電池容量が低下する。
この例での電極材を用いた合剤の具体的な構造は、先の例と同様である。
【0018】
また、本発明の電極材は、密閉形の鉛二次電池(鉛蓄電池)の電極材として使用できる。
この場合の正極用電極材を用いた合剤の具体的構造は、例えば活物質としての二酸化鉛粉末と上記凝集体とを混合し、これに硫酸水溶液を加えてペースト状とし、このペーストを鉛合金などからなる格子状の集電体に塗布、充填し、乾燥したものなどがある。
【0019】
また、負極用電極材を用いた合剤の具体的構造としては、例えば活物質としての金属鉛粉末と上記凝集体とを混合し、これに硫酸水溶液を添加してペーストとし、このペーストを鉛又は鉛合金からなる格子状の集電体に塗布、充填し、乾燥したものなどが挙げられる。
【0020】
このような構造の電極材にあっては、電極活物質の粒子が凝集体の微細空洞内に取り込まれ、あるいは粒子が凝集体の炭素繊維に絡み付くので、個々の粒子と炭素繊維との接触確率が増加し、電気的接触点が大幅に増大する。このため、電流が極めて流れ易くなり、内部抵抗が低下し、かつ活物質が無駄なく有効に電解反応に関与し、電池容量も増大する。
【0021】
さらに、電極活物質が黒鉛粉末の場合には、上記作用効果に加えて、黒鉛粒子の大部分が凝集体内の微細空洞に取り込まれるため、充放電による黒鉛粒子の膨張が抑えられる。このため、電極材自体が膨潤し、変形することがなく、充放電の繰り返しによる電池容量の低下が防止され、長寿命となる。
【0022】
本発明の電極材を用いて二次電池を構成するには、リチウムイオン二次電池の場合では、例えば上述した正極用のシート状電極合剤と負極用のシート状電極合剤との間にポリプロピレン不織布などからなるシート状のセパレータを挟み込み、この積層物を渦巻状に巻回する。このもののそれぞれの合剤の集電体にリード線を取り付けて、缶体に収容し、過塩素酸リチウムなどのリチウム塩を溶解したエチレンカーボネート、プロピレンカーボネートなどの電解液を注入するなどの方法で行われる。
勿論、これ以外の種々の形態を取りうることは説明するまでもない。
【0023】
以下、具体例を示す。
(実施例1)
本実施例では、図1に示す構造のコイン型リチウムイオン電池を作成した。図中符号1は電池ケース、2は封口板であり、これらは、耐電解液性のステンレス鋼板からなるものである。電池ケース1内には、ステンレス鋼ネットからなる正極集電体3がスポット溶接によって取り付けられている。この正極集電体3には正極電極材4が設けられて、正極となっている。
この正極電極材4は、黒鉛粉末95重量部と上記凝集体5重量部とを混合し、この混合物8重量部に対してフッ素樹脂結着剤2重量部を加え、ヘンシェルミキサーによって混合した合剤0.2gを正極集電体3上に充填、成形したものである。
【0024】
上記黒鉛粉末には、温度3000℃で加熱処理した人造黒鉛電極(d002=0.338nm)を粉砕して平均粒径5μmとしたものを用いた。
上記凝集体には、分枝状の気相成長炭素繊維を圧縮成形し、嵩密度0.06g/cm2とした成形体を1300℃で熱処理し、さらに2800℃で5分間加熱し黒鉛化したものを解砕して大きさが100〜300μmのフロック状のもの(d002=0.339nm)を用いた。
【0025】
正極電極体4上には微孔性のポリプロピレン製セパレータ5が設けられ、このセパレータ5上には円板状の金属リチウムの負極6が設けられ、この負極6は封口板2に接合されている。符号7は、ポリプロピレン製のパッキングである。
電解液には、エチレンカーボネートとジエチルカーボネートとの等容積混合溶媒にLiPF6を1モル/リットルの濃度となるように溶解した溶液を用いた。
このコイン型電池の寸法は、直径20mm、厚さ16mmであった。
【0026】
(比較例1)
実施例1において、人造黒鉛電極粉砕粉末8重量部に対してフッ素樹脂結着剤2重量部を加え、ヘンシェルミキサーで混合した合剤0.2gを正極集電体3上に充填、成形した以外は同様にしてコイン型電池を作成した。
【0027】
(比較例2)
実施例1において、人造黒鉛電極粉砕粉末95重量部と、特公昭62−49363号公報に示された方法で合成された平均繊維径0.2μm、平均繊維長さ30μmの気相成長炭素繊維をアハゴン中で2800℃で5分間加熱して部分的に黒鉛化した炭素繊維5重量部とを混合し、この混合物8重量部に対してフッ素樹脂結着剤2重量部を加え、ヘンシェルミキサーで混合した合剤0.2gを正極集電体3上に充填、成形した以外は同様にしてコイン型電池を作成した。
【0028】
これら3種のコイン型電池について、100mHz時の内部抵抗値、正極黒鉛粉末の重量エネルギー密度、充放電回数を測定した。
充放電条件は、電流密度0.3mA/cm2、充電終止電圧3.0V、放電終止電圧0Vで、定電流充放電を行った。
結果を表1、表2、表3に示す。
【0029】
【表1】
【0030】
【表2】
【0031】
【表3】
【0032】
(実施例2)
実施例1で使用した正極を負極とし、集電体のステンレス鋼ネットを封口板にスポット溶接した。
正極として、LiCoO2 80重量部と実施例1での凝集体10重量部とフッ素樹脂結着剤100重量部とをヘンシェルミキサーで混合した合剤0.4gをチタン製ネットの正極集電体とともにケース内に充填、成形したものを用いた以外は実施例1と同様にしてボタン電池を作成した。
【0033】
このボタン電池について、充放電電流密度2.0mA/cm2、充電終止電圧4.0V、放電終止電圧2.7Vの条件下で定電流充放電試験を行った。
その結果、重量エネルギー密度は140mAh/gであり、500サイクルの充放電後において初期エネルギー密度の94%を維持していた。
【0034】
(比較例3)
実施例2において、正極として、LiCoO2 8重量部とアセチレンブラック1重量部とフッ素樹脂結着剤1重量部とをヘンシェルミキサーで混合した合剤0.4gを用いた以外は同様にして、ボタン電池を作成した。
このものについて、実施例2と同様の試験条件で充放電試験を行ったところ、重量エネルギー密度は120mAh/gであり、500サイクルの充放電後において初期エネルギー密度の70%を維持していた。
【0035】
(比較例4)
実施例2において、正極としてLiCoO2 8重量部と、比較例2で使用した気相炭素繊維1重量部とフッ素樹脂結着剤1重量部をヘンシェルミキサーで混合した合剤0.4gを用いた以外は同様にしてボタン電池を作成した。
このものについて、実施例2と同様の試験条件で充放電試験を行ったところ、重量エネルギー密度は130mAh/gであり、500サイクルの充放電後において初期エネルギー密度の78%を維持していた。
【0036】
【発明の効果】
以上説明したように、本発明の電極材によれば電極活物質の粒子が凝集体の微細空洞内に取り込まれたり、粒子が炭素繊維に絡み付いたりして、粒子と炭素繊維との接触確率が増加して粒子と炭素繊維との電気的接触が多くなり、かつ凝集体自体の電気抵抗も低いので、内部抵抗が小さく、活物質の無駄がなく、有効に電解反応に関与するので、電池容量が増大する。
また、黒鉛粉末を活物質とした場合には、黒鉛粒子の充放電に起因する膨張が抑えられ、電極材の膨張、変形が防止されて充放電可能な回数が増し、長寿命となる。
【図面の簡単な説明】
【図1】本発明の実施例におけるボタン電池の例を示す概略断面図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery electrode material (hereinafter abbreviated as an electrode material) using carbon fibers suitable for secondary batteries, particularly lithium secondary batteries, lead secondary batteries, etc., particularly vapor-grown carbon fibers (VGCF). There is.)
[0002]
[Prior art]
Conventionally, as an electrode material using this type of vapor-grown carbon fiber, there is one disclosed in JP-A-4-155576. This electrode material of the prior invention is a mixture of graphite powder obtained by high-temperature heat treatment of coke and vapor-grown carbon fiber, and is used as a negative electrode of a lithium ion secondary battery.
[0003]
Moreover, the electrode material described in JP-A-4-237971 is a mixture of mesocarbon microbeads and vapor-grown carbon fibers, which is also used as a negative electrode of a lithium ion secondary battery.
In these prior inventions, it is possible to prevent expansion of graphite powder, which is an electrode active material, which is generated by repeatedly charging and discharging the secondary battery, and to suppress deformation and breakage of the electrode material, thereby reducing the capacity. It can be prevented.
[0004]
However, in these conventional electrode materials, the graphite powder or the like and the vapor-grown carbon fiber are merely mixed, so that the swelling of the graphite powder or the like is sufficiently suppressed by the vapor-grown carbon fiber. However, the effect of preventing the decrease in capacity cannot be said to be sufficient.
[0005]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is that the electrode material for a battery that can more fully suppress the expansion, deformation, etc. of the electrode active material such as graphite powder due to repeated charge and discharge, and can highly prevent a decrease in battery capacity. There is in getting.
[0006]
[Means for Solving the Problems]
Such a problem is that vapor-grown carbon fibers are entangled and part of the contact points between the fibers are chemically bonded and fixed, and an agglomerate having a size of 5 to 500 μm is used. This can be solved by using a composite in which the electrode active material powder is contained in the battery electrode material.
[0007]
In the present invention, a lithium-containing composite oxide powder such as LiCoO 2 is also used as the electrode active material in addition to the graphite powder. In this case, the carbon black, the graphite powder, and the like as the conductivity-imparting material are simultaneously used. It is preferable to take in the cavity of the aggregate.
As other electrode active materials, powders of lead dioxide and metal lead can also be used. In this case, the obtained electrode material is used for a sealed lead secondary battery.
[0008]
The agglomerates are preferably those obtained by compressing dendritic carbon fibers obtained by a specific vapor growth method, heating them at a high temperature, and further crushing them.
The electrode material of the present invention is suitable as an electrode material for an anode or a cathode of a lithium ion secondary battery or a sealed lead secondary battery. Moreover, a binder can be added to this electrode material to form an electrode paste, and this electrode paste can be formed into an electrode.
[0009]
[Action]
Since the electrode active material is taken into the fine cavities of the aggregate, expansion due to charge and discharge of the electrode active material is limited, and deformation and destruction of the electrode body itself can be prevented.
Or the agglomerates are not mechanical contacts between carbon fibers, but carbon fibers are partially chemically bonded and the fibers are intertwined. The internal resistance is also reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In the agglomerates used in the present invention, vapor-grown carbon fibers having a fiber diameter of 0.01 to 5 μm are aggregated, and some of the contact points between the fibers are chemically formed by carbonaceous carbides such as tar and pitch. It is a flock-like or string-like structure having a size of 5 to 500 μm bonded and fixed, and various sizes of fine cavities are formed inside.
Such an aggregate is obtained by compression-molding vapor-grown carbon fibers having a fiber diameter of 0.05 to 5 μm to form a compact having a bulk density of 0.02 g / cm 3 or more, which is 600 ° C., preferably 800 ° C. or more. By heating and further mechanically pulverizing, or by compressing the vapor-grown carbon fiber at 0.1 kg / cm 2 or higher and heating at 600 ° C. or higher, preferably 800 ° C. or higher, and further pulverizing It can be manufactured (see Japanese Patent Application No. 7-308406, filed on Nov. 1, 1995).
[0011]
The vapor growth carbon fiber used for the aggregate is not particularly limited, and may be a single fiber having no branch, a fiber having a branch, or a mixture thereof. Moreover, the crude fiber which has not been heat-processed as it is produced | generated is preferable. About 5 to 20% by weight of tar, pitch, etc. are adsorbed to the crude carbon fiber, which functions as a binder that bonds the fibers during compression molding, and is further carbonized easily by heat treatment. It becomes the carbide to adhere.
If the vapor-grown carbon fiber after heat treatment is used, it is desirable to form by adding pitch or the like.
[0012]
As the electrode active material used in the present invention, graphite powder is used when the electrode material of the present invention is used as the negative electrode of a lithium ion secondary battery. As the graphite powder, one having a layered crystal structure capable of intercalating lithium ions is used, and one having a 002 plane spacing (d002) of 0.34 mm or less is preferable. The particle size of the graphite powder is 1 to 30 μm, preferably 2 to 10 μm, with an average particle size.
[0013]
The mixing ratio of the aggregate and the graphite powder is set so that the aggregate is 3 to 20% by weight of the total amount of the mixture. If the amount is less than 3% by weight, the effect of using the aggregate cannot be obtained. If the amount exceeds 20% by weight, the amount of the graphite powder decreases, and the battery capacity decreases.
It is important that the graphite powder and the agglomerate are sufficiently mixed. In the state after mixing, the graphite particles are entangled with the carbon fibers of the agglomerates, and the graphite particles are taken into the cavities inside the agglomerates. Or it must be in an intertwined state.
For this purpose, a Henschel mixer, a Spartan luzer or the like capable of applying a sufficient shearing force to the mixture is used.
[0014]
As a specific structure of the mixture using the electrode material in this example, an agglomerate and graphite powder are mixed, and if necessary, carbon black or the like as a conductivity-imparting agent is added to the mixture. Add a fluororesin as an adhesive and mix well to form a paste, which is applied to a metal material such as copper foil or stainless steel net as a current collector, and then dried into a sheet or current collector There are block-like ones coated and molded on the metal material to be used.
[0015]
The electrode material using graphite powder as the electrode active material of this example can be used not only for the negative electrode but also for the positive electrode. In this case, metallic lithium is used for the negative electrode.
[0016]
In the case of a positive electrode of a lithium ion secondary battery, LiCoO 2 , LiMnO 2 or a lithium composite oxide obtained by substituting a part of these Co and Mn with Co, Mn, Fe, Ni, etc. as an electrode active material The powder is used.
These lithium composite oxides are obtained by mixing and firing carbonates and oxides such as Li, Co, Mn, Fe, and Ni, and the fired product is pulverized into powder.
[0017]
When the lithium composite oxide powder is used as an active material, carbon black and graphite powder are added as conductivity-imparting agents, and the above-mentioned aggregate is added to and mixed with this to form an electrode material.
The mixing here is the same as the previous example, and it is necessary to mix the lithium oxide powder and the aggregate by sufficiently applying a shearing force.
The mixing ratio of the agglomerates is 5 to 20% by weight of the total amount of the lithium composite oxide and the agglomerates. If the amount is less than 5% by weight, the effect of adding the agglomerates is not manifested. The battery capacity decreases.
The specific structure of the mixture using the electrode material in this example is the same as in the previous example.
[0018]
Moreover, the electrode material of this invention can be used as an electrode material of a sealed lead secondary battery (lead storage battery).
The specific structure of the mixture using the electrode material for the positive electrode in this case is, for example, mixing lead dioxide powder as an active material and the above agglomerates, adding an aqueous sulfuric acid solution to this to form a paste, and this paste is lead For example, a grid-like current collector made of an alloy or the like is applied, filled, and dried.
[0019]
In addition, as a specific structure of the mixture using the electrode material for the negative electrode, for example, metallic lead powder as an active material and the above-mentioned aggregate are mixed, and an aqueous sulfuric acid solution is added thereto to form a paste. Or what apply | coated to the grid | lattice-shaped electrical power collector which consists of lead alloys, filled, and dried is mentioned.
[0020]
In the electrode material having such a structure, since the particles of the electrode active material are taken into the fine cavities of the aggregate or the particles are entangled with the carbon fibers of the aggregate, the probability of contact between the individual particles and the carbon fibers And the electrical contact point is greatly increased. For this reason, it becomes easy to flow an electric current, internal resistance falls, an active material participates in an electrolytic reaction effectively without waste, and battery capacity also increases.
[0021]
Further, when the electrode active material is graphite powder, in addition to the above-described effects, most of the graphite particles are taken into the fine cavities in the agglomerate, so that the expansion of the graphite particles due to charge / discharge can be suppressed. For this reason, the electrode material itself does not swell and deform, and a decrease in battery capacity due to repeated charge and discharge is prevented, resulting in a long life.
[0022]
In order to configure a secondary battery using the electrode material of the present invention, in the case of a lithium ion secondary battery, for example, between the above-described positive electrode sheet electrode mixture and negative electrode sheet electrode mixture. A sheet-like separator made of polypropylene nonwoven fabric or the like is sandwiched, and the laminate is wound in a spiral shape. A lead wire is attached to the current collector of each mixture of this material, accommodated in a can, and injected with an electrolytic solution such as ethylene carbonate or propylene carbonate in which a lithium salt such as lithium perchlorate is dissolved. Done.
Of course, it goes without saying that various other forms can be adopted.
[0023]
Specific examples are shown below.
Example 1
In this example, a coin-type lithium ion battery having the structure shown in FIG. 1 was produced. In the figure, reference numeral 1 denotes a battery case, and 2 denotes a sealing plate, which are made of an electrolytic solution-resistant stainless steel plate. A positive electrode
This
[0024]
As the graphite powder, an artificial graphite electrode (d002 = 0.338 nm) heat-treated at a temperature of 3000 ° C. was pulverized to have an average particle diameter of 5 μm.
The aforementioned aggregates, compression molded branched vapor-grown carbon fiber, a molded body with a bulk density of 0.06 g / cm 2 was heat-treated at 1300 ° C., was further graphitized by heating for 5 minutes at 2800 ° C. The material was crushed and a floc material (d002 = 0.339 nm) having a size of 100 to 300 μm was used.
[0025]
A
As the electrolytic solution, a solution in which LiPF 6 was dissolved in an equal volume mixed solvent of ethylene carbonate and diethyl carbonate to a concentration of 1 mol / liter was used.
The coin type battery had a diameter of 20 mm and a thickness of 16 mm.
[0026]
(Comparative Example 1)
In Example 1, 2 parts by weight of a fluororesin binder was added to 8 parts by weight of the artificial graphite electrode pulverized powder, and 0.2 g of the mixture mixed with a Henschel mixer was filled on the positive electrode
[0027]
(Comparative Example 2)
In Example 1, 95 parts by weight of artificial graphite electrode pulverized powder and vapor grown carbon fiber having an average fiber diameter of 0.2 μm and an average fiber length of 30 μm synthesized by the method disclosed in Japanese Patent Publication No. 62-49363
[0028]
For these three types of coin-type batteries, the internal resistance value at 100 mHz, the weight energy density of the positive electrode graphite powder, and the number of charge / discharge cycles were measured.
The charge / discharge conditions were constant current charge / discharge at a current density of 0.3 mA / cm 2 , a charge end voltage of 3.0 V, and a discharge end voltage of 0 V.
The results are shown in Table 1, Table 2, and Table 3.
[0029]
[Table 1]
[0030]
[Table 2]
[0031]
[Table 3]
[0032]
(Example 2)
The positive electrode used in Example 1 was used as a negative electrode, and a stainless steel net as a current collector was spot welded to a sealing plate.
As a positive electrode, 0.4 g of a mixture obtained by mixing 80 parts by weight of LiCoO 2 , 10 parts by weight of the aggregate in Example 1 and 100 parts by weight of a fluororesin binder with a Henschel mixer, together with a positive electrode current collector made of titanium net. A button battery was made in the same manner as in Example 1 except that a case filled and molded was used.
[0033]
This button battery was subjected to a constant current charge / discharge test under the conditions of a charge / discharge current density of 2.0 mA / cm 2 , a charge end voltage of 4.0 V, and a discharge end voltage of 2.7 V.
As a result, the weight energy density was 140 mAh / g, and 94% of the initial energy density was maintained after 500 cycles of charge and discharge.
[0034]
(Comparative Example 3)
In Example 2, the button was similarly used except that 0.4 g of a mixture in which 8 parts by weight of LiCoO 2, 1 part by weight of acetylene black and 1 part by weight of a fluororesin binder were mixed with a Henschel mixer was used as the positive electrode. A battery was created.
When this was subjected to a charge / discharge test under the same test conditions as in Example 2, the weight energy density was 120 mAh / g, and 70% of the initial energy density was maintained after 500 cycles of charge / discharge.
[0035]
(Comparative Example 4)
In Example 2, 8 parts by weight of LiCoO 2 as a positive electrode, 0.4 g of a mixture in which 1 part by weight of vapor-phase carbon fiber used in Comparative Example 2 and 1 part by weight of a fluororesin binder were mixed with a Henschel mixer were used. A button battery was made in the same manner except for the above.
When this was subjected to a charge / discharge test under the same test conditions as in Example 2, the weight energy density was 130 mAh / g, and 78% of the initial energy density was maintained after 500 cycles of charge / discharge.
[0036]
【The invention's effect】
As described above, according to the electrode material of the present invention, the electrode active material particles are taken into the fine cavities of the aggregate, or the particles are entangled with the carbon fibers, so that the contact probability between the particles and the carbon fibers is increased. Increase in electrical contact between the particles and carbon fiber, and the electrical resistance of the aggregate itself is low, so the internal resistance is small, there is no waste of active material, and it effectively participates in the electrolytic reaction, so the battery capacity Will increase.
In addition, when graphite powder is used as an active material, expansion due to charging / discharging of the graphite particles is suppressed, expansion and deformation of the electrode material are prevented, and the number of charge / discharge can be increased, resulting in a long life.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a button battery in an embodiment of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32042296A JP3618492B2 (en) | 1996-11-29 | 1996-11-29 | Battery electrode material and secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32042296A JP3618492B2 (en) | 1996-11-29 | 1996-11-29 | Battery electrode material and secondary battery |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004149461A Division JP2004281414A (en) | 2004-05-19 | 2004-05-19 | Electrode material for battery, and secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10162811A JPH10162811A (en) | 1998-06-19 |
JP3618492B2 true JP3618492B2 (en) | 2005-02-09 |
Family
ID=18121288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32042296A Expired - Lifetime JP3618492B2 (en) | 1996-11-29 | 1996-11-29 | Battery electrode material and secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3618492B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108269A1 (en) | 2010-03-02 | 2011-09-09 | 昭和電工株式会社 | Process for production of carbon fibers |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4395925B2 (en) * | 1999-06-29 | 2010-01-13 | ソニー株式会社 | Non-aqueous electrolyte battery |
JP2001196052A (en) * | 2000-01-12 | 2001-07-19 | Sony Corp | Negative electrode and nonaqueous electrolyte battery |
JP4707426B2 (en) | 2005-03-23 | 2011-06-22 | 三洋電機株式会社 | Nonaqueous electrolyte secondary battery |
US8999585B2 (en) | 2007-07-18 | 2015-04-07 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
JP4712837B2 (en) * | 2007-07-18 | 2011-06-29 | パナソニック株式会社 | Nonaqueous electrolyte secondary battery |
US8426064B2 (en) | 2007-12-25 | 2013-04-23 | Kao Corporation | Composite material for positive electrode of lithium battery |
JP5377946B2 (en) * | 2007-12-25 | 2013-12-25 | 花王株式会社 | Composite material for lithium battery positive electrode |
JP5321192B2 (en) * | 2009-03-27 | 2013-10-23 | 株式会社豊田自動織機 | Non-aqueous secondary battery electrode and manufacturing method thereof |
EP3059790B1 (en) * | 2013-10-18 | 2019-12-04 | LG Chem, Ltd. | Carbon nanotube-sulfur composite comprising carbon nanotube aggregates, and method for preparing same |
-
1996
- 1996-11-29 JP JP32042296A patent/JP3618492B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011108269A1 (en) | 2010-03-02 | 2011-09-09 | 昭和電工株式会社 | Process for production of carbon fibers |
Also Published As
Publication number | Publication date |
---|---|
JPH10162811A (en) | 1998-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462445B2 (en) | Lithium ion secondary battery | |
JP2884746B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4046601B2 (en) | Negative electrode material for lithium secondary battery and lithium secondary battery using the same | |
JP3285520B2 (en) | Graphite particles, method for producing graphite particles, graphite paste using graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery | |
JP2005123175A (en) | COMPOSITE PARTICLE AND PROCESS FOR PRODUCING THE SAME, Anode Material and Anode for Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery | |
US20070212611A1 (en) | Lithium secondary battery | |
WO2006068066A1 (en) | Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same | |
JP3532016B2 (en) | Organic electrolyte secondary battery | |
JP3082557B2 (en) | Manufacturing method of non-aqueous electrolyte secondary battery | |
JP3618492B2 (en) | Battery electrode material and secondary battery | |
JPH0927314A (en) | Nonaqueous electrolyte secondary battery | |
JP3216661B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3816799B2 (en) | Lithium secondary battery | |
JP3992529B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH0684516A (en) | Nonaqueous electrolyte secondary cell | |
JPH09245770A (en) | Non-aqueous electrolyte battery | |
JP4943308B2 (en) | Battery electrode material and secondary battery | |
JP3508411B2 (en) | Lithium ion secondary battery | |
JP2000203817A (en) | Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell | |
JP3052760B2 (en) | Non-aqueous electrolyte secondary battery | |
JP7223999B2 (en) | Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP3732654B2 (en) | Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery | |
JPH0684515A (en) | Nonaqueous electrolyte secondary cell | |
JP3424419B2 (en) | Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery | |
JP2003331823A (en) | Nonaqueous electrolyte secondary battery and method of manufacturing the battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041102 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041110 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101119 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |