[go: up one dir, main page]

JP2001196052A - Negative electrode and nonaqueous electrolyte battery - Google Patents

Negative electrode and nonaqueous electrolyte battery

Info

Publication number
JP2001196052A
JP2001196052A JP2000006341A JP2000006341A JP2001196052A JP 2001196052 A JP2001196052 A JP 2001196052A JP 2000006341 A JP2000006341 A JP 2000006341A JP 2000006341 A JP2000006341 A JP 2000006341A JP 2001196052 A JP2001196052 A JP 2001196052A
Authority
JP
Japan
Prior art keywords
negative electrode
weight
active material
electrode active
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000006341A
Other languages
Japanese (ja)
Inventor
Hiroaki Tanizaki
博章 谷崎
Hiroshi Imoto
浩 井本
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2000006341A priority Critical patent/JP2001196052A/en
Publication of JP2001196052A publication Critical patent/JP2001196052A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict deterioration in charging/discharging cycles and achieve a high capacity and a long life. SOLUTION: This battery comprises a positive electrode containing a lithium composite oxide, a negative electrode containing a metal capable of forming an alloy with lithium or its alloy and fiber carbon or carbon black and a nonaqueous electrolyte laid between the positive electrode and the negative electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、負極及びそれを用
いた非水電解質電池に関する。
TECHNICAL FIELD The present invention relates to a negative electrode and a non-aqueous electrolyte battery using the same.

【0002】[0002]

【従来の技術】近年、カメラ一体型ビデオテープレコー
ダ、携帯電話、ラップトップ型コンピュータ等のポータ
ブル電子機器が多く登場し、その小型軽量化が図られて
いる。そして、これら電子機器のポータブル電源とし
て、電池、特に二次電池について、エネルギー密度を向
上させるための研究開発が活発に進められている。中で
も、リチウムイオン二次電池は、従来の水系電解液二次
電池である鉛電池、ニッケルカドミウム電池と比較して
大きなエネルギー密度が得られるため、期待が大きい。
2. Description of the Related Art In recent years, many portable electronic devices such as a camera-integrated video tape recorder, a portable telephone, and a laptop computer have appeared, and their size and weight have been reduced. Research and development for improving the energy density of batteries, particularly secondary batteries, as portable power sources for these electronic devices are being actively pursued. Above all, lithium ion secondary batteries are expected to have a large energy density as compared with conventional aqueous electrolyte secondary batteries such as lead batteries and nickel cadmium batteries.

【0003】リチウムイオン電池に使用される負極材料
としては、難黒鉛化炭素や、黒鉛等の炭素質材料が、比
較的高容量を示し良好なサイクル特性を発現することか
ら広く用いられている。
As negative electrode materials used in lithium ion batteries, non-graphitizable carbon and carbonaceous materials such as graphite are widely used because they exhibit a relatively high capacity and exhibit good cycle characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、近年の
高容量化に伴い、負極材料の更なる高容量化が課題とな
っている。特開平8−315825号公報には、炭素化
材料と作製条件とを選ぶことにより、炭素質材料負極で
高容量を達成している。しかしながら、負極放電電位が
対リチウム電位で0.8V〜1.0Vであり、電池を構
成した時の電池放電電圧が低くなり、電池エネルギー密
度では大きな向上が見込めなかった。さらに、充放電曲
線形状にヒステリシスが大きく、各充放電サイクルでの
エネルギー効率が低いという欠点があった。
However, with the recent increase in capacity, there has been an issue of further increasing the capacity of the negative electrode material. JP-A-8-315825 discloses that a carbonaceous material negative electrode achieves high capacity by selecting a carbonized material and manufacturing conditions. However, the negative electrode discharge potential was 0.8 V to 1.0 V with respect to lithium potential, the battery discharge voltage at the time of configuring the battery was low, and no significant improvement in battery energy density could be expected. Further, there is a disadvantage that the hysteresis is large in the shape of the charge / discharge curve and the energy efficiency in each charge / discharge cycle is low.

【0005】一方、高負荷容量としては、ある種のリチ
ウム合金が電気化学的に可逆的に生成/分解することを
応用した材料が広く研究されてきた。
On the other hand, as a high load capacity, a material which utilizes the fact that a certain kind of lithium alloy is electrochemically reversibly formed / decomposed has been widely studied.

【0006】Li−Al合金を用いた高容量負極が広く
研究され、US-Patent Number 4950566号には、Si合金
を用いた高容量負極が提案されている。しかし、充放電
に伴ってLi−Al合金又はLi−Si合金は膨張収縮
し、充放電サイクルを繰り返す毎に負極は微粉化し、サ
イクル特性が極めて劣る電池を与える。このサイクル特
性を改良するため、材料中にリチウムのドープ・脱ドー
プに伴う膨張収縮に関与しない元素を添加する等の方法
が検討されてきた。例えば特開平6−325765号公
報には、LixSiOy(x≧0、2>y>0)、特開平
7−230800号公報には、LixSi(1-y)y
z(x≧0、1>y>0、0<z<2)や、特開平7−
288130号公報には、Li−Ag−Te系合金が提
案されている。
A high capacity negative electrode using a Li-Al alloy has been widely studied, and US-Patent Number 4950566 proposes a high capacity negative electrode using a Si alloy. However, the Li-Al alloy or Li-Si alloy expands and contracts with charge and discharge, and each time the charge and discharge cycle is repeated, the negative electrode is pulverized to give a battery with extremely poor cycle characteristics. In order to improve the cycle characteristics, a method of adding an element which does not participate in expansion and contraction accompanying doping and undoping of lithium into a material has been studied. For example, JP-A-6-325765 discloses Li x SiO y (x ≧ 0, 2>y> 0), and JP-A-7-230800 discloses Li x Si (1-y) M y O
z (x ≧ 0, 1>y> 0, 0 <z <2), and
No. 288130 proposes a Li-Ag-Te alloy.

【0007】しかしながら、これらの方法によっても合
金の膨張収縮に由来する充放電サイクル劣化が大きく、
高容量負荷の特長を活かしきれていないのが実情であ
る。
However, even with these methods, the charge / discharge cycle deterioration resulting from the expansion and contraction of the alloy is large,
The fact is that the features of high capacity loads are not fully utilized.

【0008】1つ以上の非金属元素を含む、炭素以外の
4B族化合物を用いた高容量負極が特開平11−102
705号公報に報告されているが、上述の場合と同様に
充放電サイクル劣化が大きいという問題があった。
A high-capacity negative electrode using a Group 4B compound other than carbon, which contains one or more nonmetallic elements, is disclosed in JP-A-11-102.
As reported in Japanese Unexamined Patent Publication No. 705, there is a problem that charge / discharge cycle deterioration is large as in the case described above.

【0009】本発明は、上述したような従来の実情に鑑
みて提案されたものであり、充放電サイクル劣化を抑制
し、高容量、高寿命を実現する負極及びそれを用いた非
水電解質電池を提供することを目的とする。
The present invention has been proposed in view of the above-described conventional circumstances, and has a negative electrode which suppresses deterioration of charge / discharge cycles and achieves high capacity and long life, and a non-aqueous electrolyte battery using the same. The purpose is to provide.

【0010】[0010]

【課題を解決するための手段】本発明の負極は、リチウ
ムと合金を形成可能な金属又は当該金属の合金と、繊維
状炭素又はカーボンブラックとを含有する極活物質層を
有することを特徴とする。
The negative electrode according to the present invention has a pole active material layer containing a metal capable of forming an alloy with lithium or an alloy of the metal, and fibrous carbon or carbon black. I do.

【0011】上述したような本発明に係る負極では、負
極活物質層に繊維状炭素又はカーボンブラックを含有さ
せることで、負極中の導電パスが安定に形成されるとと
もに、リチウムのドープ・脱ドープに伴う負極の体積変
化が抑えられる。
In the above-described negative electrode according to the present invention, by including fibrous carbon or carbon black in the negative electrode active material layer, a conductive path in the negative electrode is formed stably, and lithium is doped and dedoped. The change in volume of the negative electrode due to this is suppressed.

【0012】また、本発明の負極は、1つ以上の非金属
元素を含む、炭素以外の4B族化合物と、繊維状炭素又
はカーボンブラックとを含有する負極活物質層を有する
ことを特徴とする。
Further, the negative electrode of the present invention has a negative electrode active material layer containing a group 4B compound other than carbon, which contains one or more nonmetallic elements, and fibrous carbon or carbon black. .

【0013】上述したような本発明に係る負極では、負
極活物質層に繊維状炭素又はカーボンブラックを含有さ
せることで、負極中の導電パスが安定に形成されるとと
もに、リチウムのドープ・脱ドープに伴う負極の体積変
化が抑えられる。
In the above-described negative electrode according to the present invention, by including fibrous carbon or carbon black in the negative electrode active material layer, a conductive path in the negative electrode is formed stably, and lithium is doped and dedoped. The change in volume of the negative electrode due to this is suppressed.

【0014】また、本発明の非水電解質電池は、リチウ
ム複合酸化物を含有する正極と、リチウムと合金を形成
可能な金属又は当該金属の合金と繊維状炭素又はカーボ
ンブラックとを含有する負極活物質層を有する負極と、
上記正極と上記負極との間に介在される非水電解質とを
備えることを特徴とする。
Further, the nonaqueous electrolyte battery of the present invention comprises a positive electrode containing a lithium composite oxide and a negative electrode containing a metal capable of forming an alloy with lithium or an alloy of the metal and fibrous carbon or carbon black. A negative electrode having a material layer;
A nonaqueous electrolyte interposed between the positive electrode and the negative electrode.

【0015】上述したような本発明に係る非水電解質電
池では、負極活物質層に繊維状炭素又はカーボンブラッ
クを含有させることで、負極中の導電パスが安定に形成
されるとともに、リチウムのドープ・脱ドープに伴う負
極の体積変化が抑えられる。そして、このような負極を
用いた本発明に係る非水電解質電池は、サイクル特性に
優れたものとなる。
In the non-aqueous electrolyte battery according to the present invention as described above, by including fibrous carbon or carbon black in the negative electrode active material layer, a conductive path in the negative electrode is formed stably, and lithium is doped. -A change in the volume of the negative electrode due to undoping is suppressed. The non-aqueous electrolyte battery according to the present invention using such a negative electrode has excellent cycle characteristics.

【0016】また、本発明の非水電解質電池は、リチウ
ム複合酸化物を含有する正極と、1つ以上の非金属元素
を含む、炭素以外の4B族化合物と繊維状炭素又はカー
ボンブラックとを含有する負極活物質層を有する負極
と、上記正極と上記負極との間に介在される非水電解質
とを備えることを特徴とする。
Further, the non-aqueous electrolyte battery of the present invention comprises a positive electrode containing a lithium composite oxide, a group 4B compound other than carbon containing one or more nonmetallic elements, and fibrous carbon or carbon black. And a non-aqueous electrolyte interposed between the positive electrode and the negative electrode.

【0017】上述したような本発明に係る非水電解質電
池では、負極活物質層に繊維状炭素又はカーボンブラッ
クを含有させることで、負極中の導電パスが安定に形成
されるとともに、リチウムのドープ・脱ドープに伴う負
極の体積変化が抑えられる。そして、このような負極を
用いた本発明に係る非水電解質電池は、サイクル特性に
優れたものとなる。
In the nonaqueous electrolyte battery according to the present invention as described above, by including fibrous carbon or carbon black in the negative electrode active material layer, the conductive path in the negative electrode is formed stably, and lithium is doped. -A change in the volume of the negative electrode due to undoping is suppressed. The non-aqueous electrolyte battery according to the present invention using such a negative electrode has excellent cycle characteristics.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0019】本発明を適用した非水電解液電池の一構成
例を図1に示す。この非水電解液電池1は、負極2と、
負極2を収容する負極缶3と、正極4と、正極4を収容
する正極缶5と、正極4と負極2との間に配されたセパ
レータ6と、絶縁ガスケット7とを備え、負極缶3及び
正極缶5内に非水電解液が充填されてなる。
FIG. 1 shows an example of the configuration of a nonaqueous electrolyte battery according to the present invention. This non-aqueous electrolyte battery 1 includes a negative electrode 2,
A negative electrode can 3 containing the negative electrode 2, a positive electrode 4, a positive electrode can 5 containing the positive electrode 4, a separator 6 disposed between the positive electrode 4 and the negative electrode 2, and an insulating gasket 7; The positive electrode can 5 is filled with a non-aqueous electrolyte.

【0020】負極2は、負極集電体上に、上記負極活物
質を含有する負極活物質層が形成されてなる。負極集電
体としては、例えばニッケル箔等が用いられる。そし
て、本発明の非水電解液電池1では、後述するように、
負極2に、繊維状炭素又はカーボンブラックを含有して
いる。
The negative electrode 2 is formed by forming a negative electrode active material layer containing the above-mentioned negative electrode active material on a negative electrode current collector. As the negative electrode current collector, for example, a nickel foil or the like is used. And in the nonaqueous electrolyte battery 1 of the present invention, as described later,
The negative electrode 2 contains fibrous carbon or carbon black.

【0021】負極活物質としては、リチウムと合金を形
成可能な金属又は当該金属の合金化合物が挙げられる。
ここで言う合金化合物とは、リチウムと合金を形成可能
なある金属元素をMとしたとき、化学式MxM'yLi
z(M'はLi元素及びM元素以外の1つ以上の金属元素
である。また、xは0より大きい数値であり、y,zは
0以上の数値である。)で表される化合物である。さら
に、本発明では半導体元素であるB,Si,As等の元
素も金属元素に含めることとする。
Examples of the negative electrode active material include a metal capable of forming an alloy with lithium and an alloy compound of the metal.
The alloy compound referred to here is a chemical formula M x M ′ y Li where M is a metal element capable of forming an alloy with lithium.
z (M ′ is one or more metal elements other than the Li element and the M element. Further, x is a numerical value greater than 0, and y and z are numerical values of 0 or more.) is there. Further, in the present invention, semiconductor elements such as B, Si, and As are included in the metal elements.

【0022】負極活物質として具体的には、Mg,B,
Al,Ga,In,Si,Ge,Sn,Pb,Sb,B
i,Cd、Ag、Zn、Hf、Zr、Yの各金属とそれ
らの合金化合物、すなわち、例えばLi−Al,Li−
Al−M(Mは2A族、3B族、4B族遷移金属元素の
うち1つ以上からなる。)、AlSb、CuMgSb等
が挙げられる。
As the negative electrode active material, specifically, Mg, B,
Al, Ga, In, Si, Ge, Sn, Pb, Sb, B
i, Cd, Ag, Zn, Hf, Zr, Y and their alloy compounds, that is, for example, Li-Al, Li-
Al-M (M is composed of at least one of transition metal elements of Group 2A, 3B and 4B), AlSb, CuMgSb and the like.

【0023】上述したような元素の中でも、3B族典型
元素の他、SiやSn等の元素又はその合金を用いるの
が好ましい。その中でもSi又はSi合金が特に好適で
ある。Si又はSi合金として具体的には、MxSi、
xSn(MはSi又はSnを除く1つ以上の金属元
素)で表される化合物で、具体的にはSiB4、Si
6、Mg2Si、Mg2Sn、Ni2Si、TiSi2
MoSi2、CoSi2、NiSi2、CaSi2、CrS
2、Cu5Si、FeSi2、MnSi2、NbSi2
TaSi2、VSi2、WSi2、ZnSi2等が挙げられ
る。
Among the above-mentioned elements, it is preferable to use an element such as Si or Sn or an alloy thereof in addition to the group 3B typical element. Among them, Si or Si alloy is particularly preferred. Specifically, as Si or a Si alloy, M x Si,
A compound represented by M x Sn (M is one or more metal elements excluding Si or Sn), specifically, SiB 4 , Si
B 6 , Mg 2 Si, Mg 2 Sn, Ni 2 Si, TiSi 2 ,
MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrS
i 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 ,
TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 and the like can be mentioned.

【0024】さらに、本発明の非水電解液電池1では、
1つ以上の非金属元素を含む、炭素以外の4B族元素も
負極活物質として利用できる。本材料中には1種以上の
4B族炭素が含まれていてもよい。またリチウムを含む
4B族以外の金属元素が含まれていても良い。例示する
ならば、SiC、Si34、Si22O、Ge22O、
SiOx(式中、0<x≦2である。)、SnOx(式
中、0<x≦2である。)、LiSiO、LiSnO等
が挙げられる。
Further, in the non-aqueous electrolyte battery 1 of the present invention,
Group 4B elements other than carbon, including one or more nonmetallic elements, can also be used as the negative electrode active material. The material may contain one or more group 4B carbons. Further, a metal element other than Group 4B including lithium may be contained. For example, SiC, Si 3 N 4 , Si 2 N 2 O, Ge 2 N 2 O,
SiO x (where 0 <x ≦ 2), SnO x (where 0 <x ≦ 2), LiSiO, LiSnO, and the like.

【0025】上記の1つ以上の非金属元素を含む、炭素
以外の4B族元素は、リチウムを電気化学的にドープ・
脱ドープする能力を有する必要がある。好ましくは40
0mAh/cm3以上、更に好ましくは500mAh/
cm3以上の充放電容量を有することが好ましい。この
体積当たりの充放電容量を計算する際には、上記化合物
の真比重値が用いられる。
The group 4B element other than carbon, including one or more non-metallic elements, is electrochemically doped with lithium.
Must have the ability to undope. Preferably 40
0 mAh / cm 3 or more, more preferably 500 mAh / cm 3
It preferably has a charge / discharge capacity of at least cm 3 . When calculating the charge / discharge capacity per volume, the true specific gravity of the compound is used.

【0026】上述したような負極活物質の作成方法は限
定されないが、メカニカルアイロニング法、原料化合物
を混合して不活性雰囲気下あるいは還元性雰囲気下で加
熱処理する方法が採られる。
The method of preparing the negative electrode active material as described above is not limited, but a mechanical ironing method, a method of mixing raw material compounds and performing a heat treatment in an inert atmosphere or a reducing atmosphere may be employed.

【0027】上記負極活物質へのリチウムのドープは電
池作成後に電池内で電気化学的に行われても良く、電池
作成後あるいは電池作製前に、正極あるいは正極以外の
リチウム源から供給され電気化学的にドープされても構
わない。あるいは材料合成の際にリチウム含有材料とし
て合成され、電池作製時に負極に含有されても構わな
い。
The doping of the negative electrode active material with lithium may be performed electrochemically in the battery after the battery is prepared. After or before the battery is prepared, the lithium may be supplied from a positive electrode or a lithium source other than the positive electrode. It may be doped. Alternatively, it may be synthesized as a lithium-containing material at the time of material synthesis, and may be contained in the negative electrode at the time of battery production.

【0028】上述したような負極活物質は、粉砕して用
いてもよいし、粉砕しないで用いてもよい。
The negative electrode active material as described above may be used after being pulverized, or may be used without being pulverized.

【0029】負極活物質を粉砕して用いる場合には、最
大粒子径が負極活物質層の厚みを下回るように粉砕され
ればよく、粉砕の方法としては、限定されるものではな
いが、例えばボールミル粉砕、ジェットミル粉砕等が挙
げられる。具体的に、粉砕後の負極活物質の平均粒子径
(体積平均粒子径)は、好ましくは50μm以下であ
り、さらに好ましくは20μm以下である。
When the negative electrode active material is used after being pulverized, it may be pulverized so that the maximum particle diameter is smaller than the thickness of the negative electrode active material layer. The method of pulverization is not limited. Ball mill pulverization, jet mill pulverization and the like can be mentioned. Specifically, the average particle diameter (volume average particle diameter) of the pulverized negative electrode active material is preferably 50 μm or less, and more preferably 20 μm or less.

【0030】負極活物質が粉砕されずに用いられる場合
には、負極活物質層は、化学気相成長法、スパッタ法、
ホットプレス等により成形体として作製することができ
る。
When the negative electrode active material is used without being pulverized, the negative electrode active material layer is formed by chemical vapor deposition, sputtering,
It can be manufactured as a molded body by hot pressing or the like.

【0031】負極活物質層に含有される結着剤として
は、この種の非水電解液電池の負極活物質層の結着剤と
して通常用いられている公知の樹脂材料等を用いること
ができる。
As the binder contained in the negative electrode active material layer, a known resin material or the like which is generally used as a binder for the negative electrode active material layer of this type of nonaqueous electrolyte battery can be used. .

【0032】そして、本発明の非水電解液電池1では、
負極活物質層に、繊維状炭素又はカーボンブラックを含
有している。
In the non-aqueous electrolyte battery 1 of the present invention,
The negative electrode active material layer contains fibrous carbon or carbon black.

【0033】負極活物質層に、繊維状炭素又はカーボン
ブラックを含有させることで、負極中の導電パスを安定
に形成するとともに、リチウムのドープ脱ドープに伴う
負極の体積変化を抑えることができる。その結果、この
非水電解液電池1は、サイクル特性に優れたものとな
る。
By including fibrous carbon or carbon black in the negative electrode active material layer, a conductive path in the negative electrode can be formed stably, and a change in the volume of the negative electrode due to doping and undoping of lithium can be suppressed. As a result, the nonaqueous electrolyte battery 1 has excellent cycle characteristics.

【0034】繊維状炭素には、繊維状に紡糸された高分
子やピッチからなる前駆体を熱処理することで得られる
ものと、ベンゼン等の有機物蒸気を1000℃程度の温
度となされた基板上に直接流し、鉄微粒子等を触媒とし
て炭素結晶を成長させることで得られる気相成長炭素等
がある。
The fibrous carbon is obtained by heat-treating a precursor made of a polymer or pitch spun into a fibrous form, and an organic vapor such as benzene is placed on a substrate at a temperature of about 1000 ° C. There is a vapor-grown carbon or the like obtained by directly flowing and growing a carbon crystal using iron fine particles or the like as a catalyst.

【0035】熱処理によって繊維状炭素を得る場合にお
いて、高分子系の前駆体としては、例えばポリアクリロ
ニトリル、レーヨン等が挙げられる。また、ポリアミ
ド、リグニン、ポリビニルアルコール等も使用可能であ
る。
When fibrous carbon is obtained by heat treatment, examples of the polymer precursor include polyacrylonitrile and rayon. Further, polyamide, lignin, polyvinyl alcohol and the like can be used.

【0036】また、ピッチとしては、コールタール、エ
チレンボトム油、原油等の高温熱分解で得られるタール
類、アスファルトなどより蒸留(真空蒸留、常圧蒸留、
スチーム蒸留)、熱重縮合、抽出、化学重縮合等の操作
によって得られるものや、その他木材乾留時に生成する
ピッチ等もある。上記ピッチとなる出発原料としては、
ポリ塩化ビニル樹脂、ポリビニルアセテート、ポリビニ
ルブチラート、3,5−ジメチルフェノール樹脂等が挙
げられる。
As the pitch, tars obtained by high-temperature pyrolysis of coal tar, ethylene bottom oil, crude oil, etc., and asphalt are distilled (vacuum distillation, atmospheric distillation,
There are also those obtained by operations such as steam distillation), thermal polycondensation, extraction, and chemical polycondensation, and other pitches formed during wood carbonization. As the starting material for the above pitch,
Examples include polyvinyl chloride resin, polyvinyl acetate, polyvinyl butyrate, and 3,5-dimethylphenol resin.

【0037】これら石炭、ピッチは、炭素化の途中、最
高400℃程度で液状として存在し、その温度で保持す
ることで芳香環同士が縮合、多環化して積層配向した状
態となり、その後500℃程度以上の温度になると固体
の炭素前駆体すなわちセミコークスを形成する。このよ
うな過程を液相炭素化過程と呼び、易黒鉛化炭素の典型
的な生成過程である。
During the carbonization, these coals and pitches exist as liquids at a maximum of about 400 ° C., and when held at that temperature, aromatic rings are condensed and polycyclic to form a laminated orientation. At temperatures above this level, a solid carbon precursor, semicoke, is formed. Such a process is called a liquid phase carbonization process and is a typical production process of graphitizable carbon.

【0038】その他、ナフタレン、フェナントレン、ア
ントラセン、トリフェニレン、ピレン、ペリレン、ペン
タフェン、ペンタセン等の縮合多環炭化水素化合物、そ
の他誘導体(例えばこれらのカルボン酸、カルボン酸無
水物、カルボン酸イミド等)、あるいは混合物、アセナ
フチレン、インドール、イソインドール、キノリン、イ
ソキノリン、キノキサリン、フタラジン、カルバゾー
ル、アクリジン、フェナジン、フェナントリジン等の縮
合複素環化合物、さらにはその誘導体も繊維状炭素の原
料として使用可能である。
In addition, condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphen, and pentacene, other derivatives (eg, carboxylic acids, carboxylic anhydrides, carboxylic imides, etc.), or Mixtures, condensed heterocyclic compounds such as acenaphthylene, indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, phenanthridine, and derivatives thereof can also be used as raw materials for fibrous carbon.

【0039】高分子系の前駆体、ピッチ系の前駆体とも
に、不融化あるいは安定化という工程を経て、その後さ
らに高温中で熱処理されることで繊維状炭素となる。
Both the polymer-based precursor and the pitch-based precursor undergo a process of infusibility or stabilization, and are then heat-treated at a higher temperature to form fibrous carbon.

【0040】なお、この不融化あるいは安定化の工程と
は、高分子等が炭素化の際に溶融や熱分解を起こさない
よう、繊維表面を酸、酸素、オゾン等を用いて酸化を行
う工程である。この際、処理方法は前駆体の種類によっ
て適宜選択できる。但し、処理温度は前駆体の融点以下
を選択する必要がある。また、必要に応じて複数回処理
を繰り返し、安定化が十分になされるようにしても良
い。
The infusibilizing or stabilizing step is a step of oxidizing the fiber surface with an acid, oxygen, ozone, or the like so that the polymer or the like does not melt or thermally decompose during carbonization. It is. At this time, the treatment method can be appropriately selected depending on the type of the precursor. However, the processing temperature needs to be selected below the melting point of the precursor. Further, the processing may be repeated a plurality of times as necessary to ensure sufficient stabilization.

【0041】繊維状炭素を得るには、この不融化あるい
は安定化が施された高分子系の前駆体あるいはピッチ系
の前駆体を、窒素等の不活性ガス気流中、温度300℃
〜700℃で炭化した後、不活性ガス気流中、昇温速度
毎分1℃〜100℃、到達温度900℃〜1500℃、
到達温度での保持時間0〜30時間程度の条件で仮焼き
することによって得られる。勿論、場合によっては炭化
を省略しても良い。
In order to obtain fibrous carbon, the infusibilized or stabilized polymer precursor or pitch precursor is heated at a temperature of 300 ° C. in an inert gas stream such as nitrogen.
After carbonization at ~ 700 ° C, in an inert gas stream, the temperature is raised at a rate of 1 ° C to 100 ° C per minute, ultimate temperature of 900 ° C to 1500 ° C,
It is obtained by calcining under conditions of a holding time at the ultimate temperature of about 0 to 30 hours. Of course, carbonization may be omitted in some cases.

【0042】一方、繊維状炭素を気相成長法によって得
る場合において、出発原料として気体状となりうる有機
物であればいずれでも良い。例えば、エチレン、プロパ
ン等の常温で気体状で存在するもの、或いは熱分解温度
以下の温度で加熱気化できる有機物が使用可能である。
On the other hand, when fibrous carbon is obtained by a vapor phase growth method, any organic substance which can be gaseous as a starting material may be used. For example, ethylene or propane which exists in a gaseous state at normal temperature or an organic substance which can be heated and vaporized at a temperature lower than the thermal decomposition temperature can be used.

【0043】気化した有機物は、直接高温の基板上に放
出されることで繊維状炭素として結晶成長する。この際
の温度は、400℃〜1500℃程度が好ましく、出発
原料である有機物の種類によって適宜選択される。
The vaporized organic substance is crystallized as fibrous carbon by being directly discharged onto a high-temperature substrate. The temperature at this time is preferably about 400 ° C. to 1500 ° C., and is appropriately selected depending on the type of the organic material as the starting material.

【0044】このとき、結晶成長を促進するために触媒
を用いるようにしてもよい。触媒としては鉄やニッケル
又はその混合物等を微粒子化したものが使用可能であ
り、その他、黒鉛化触媒と称される金属やその酸化物も
触媒として機能する。これら触媒は、出発原料である有
機物の種類によって適宜選択される。
At this time, a catalyst may be used to promote crystal growth. As the catalyst, fine particles of iron, nickel, or a mixture thereof can be used. In addition, a metal called a graphitization catalyst or an oxide thereof also functions as a catalyst. These catalysts are appropriately selected depending on the kind of the organic substance as a starting material.

【0045】繊維状炭素の外径や長さは調製条件によっ
て適宜選択可能である。
The outer diameter and length of the fibrous carbon can be appropriately selected depending on the preparation conditions.

【0046】例えば、高分子を原料にする場合には繊維
状に成形する時の吹き出しノズル内径などや、吹き出し
温度によって適当な繊維径や長さを得ることができる。
また気相成長法による場合には基板や触媒など結晶成長
の核となる部分の大きさを適宜選択することで最適な繊
維径を得ることができる。また、原料となるエチレン、
プロパン等の有機物の供給量を規定することにより繊維
径や直線性は適宜選択できる。
For example, when a polymer is used as a raw material, an appropriate fiber diameter and length can be obtained depending on the inner diameter of a blowing nozzle for forming into a fiber shape and the blowing temperature.
In the case of the vapor phase growth method, an optimum fiber diameter can be obtained by appropriately selecting the size of a portion that becomes a nucleus of crystal growth such as a substrate and a catalyst. In addition, ethylene as a raw material,
The fiber diameter and linearity can be appropriately selected by regulating the supply amount of an organic substance such as propane.

【0047】なお、得られた繊維状炭素は、さらに不活
性ガス気流中、昇温速度毎分1〜100℃、到達温度2
000℃以上、好ましくは2500℃以上、到達温度で
の保持時間0〜30時間程度の条件で黒鉛化処理するよ
うにしても良い。
The obtained fibrous carbon was further heated in an inert gas stream at a rate of 1 to 100 ° C./min.
The graphitization treatment may be performed under the conditions of 000 ° C. or more, preferably 2500 ° C. or more, and a holding time at the ultimate temperature of about 0 to 30 hours.

【0048】また、得られた繊維状炭素は、電極の厚み
や活物質の粒径等に合わせて粉砕しても良く、紡糸時に
単繊維となったものも使用可能である。なお、粉砕は炭
化、仮焼きの前後あるいは、黒鉛化前の昇温過程の間、
いずれで行っても良い。
The obtained fibrous carbon may be pulverized in accordance with the thickness of the electrode, the particle size of the active material, and the like, and a single fiber obtained during spinning may be used. In addition, grinding is performed before and after carbonization and calcining, or during the heating process before graphitization.
Either may be performed.

【0049】このような繊維状炭素を負極活物質層に含
有させるには、負極活物質と、結着剤等を混合して負極
合剤を調製する際に、当該負極合剤中に繊維状炭素を添
加すればよい。
In order to include such fibrous carbon in the negative electrode active material layer, when preparing the negative electrode mixture by mixing the negative electrode active material and the binder, the fibrous carbon is contained in the negative electrode mixture. What is necessary is just to add carbon.

【0050】負極活物質層は、上述したような繊維状炭
素を、当該負極活物質層の全体に対して0.2重量%以
上、10重量%以下の範囲で含有していることが好まし
い。繊維状炭素の量が0.2重量%よりも少ないと、充
電時に膨張した負極活物質が放電時に収縮する際に、導
電性を十分に付与することができずサイクル特性を向上
することができない。また、繊維状炭素の量が10重量
%よりも多すぎると、その分負極活物質の量が少なくな
り、放電容量が低下してしまう。
The negative electrode active material layer preferably contains the above-mentioned fibrous carbon in the range of 0.2% by weight or more and 10% by weight or less based on the whole negative electrode active material layer. When the amount of the fibrous carbon is less than 0.2% by weight, when the negative electrode active material expanded at the time of charging contracts at the time of discharging, sufficient conductivity cannot be imparted and the cycle characteristics cannot be improved. . On the other hand, if the amount of fibrous carbon is more than 10% by weight, the amount of the negative electrode active material decreases accordingly, and the discharge capacity decreases.

【0051】したがって、繊維状炭素の量を、負極活物
質層の全体に対して0.2重量%以上、10重量%以下
の範囲とすることで、高い放電容量を維持しつつも、充
放電サイクル特性を向上することができる。
Therefore, when the amount of fibrous carbon is in the range of 0.2% by weight or more and 10% by weight or less with respect to the entire negative electrode active material layer, charge / discharge is maintained while maintaining a high discharge capacity. Cycle characteristics can be improved.

【0052】一方、負極活物質層に添加されるカーボン
ブラックは、特に限定されることなく種々のものが使用
可能であるが、具体例を挙げるとすれば、サーマル法、
アセチレン分解法、コンタクト法、ランプ・松煙法、ガ
スファーネス法、オイルファーネス法で作製したものが
挙げられる。上記製法により生成されるカーボンブラッ
クの具体例としては、例えばアセチレンブラック、ケッ
チェンブラック、サーマルブラック、ファーネスブラッ
ク等が挙げられる。
On the other hand, the carbon black added to the negative electrode active material layer is not particularly limited, and various carbon blacks can be used.
Examples include those produced by an acetylene decomposition method, a contact method, a lamp / pine smoke method, a gas furnace method, and an oil furnace method. Specific examples of the carbon black produced by the above production method include, for example, acetylene black, Ketjen black, thermal black, furnace black and the like.

【0053】このようなカーボンブラックを負極活物質
層に含有させるには、負極活物質と、結着剤等を混合し
て負極合剤を調製する際に、当該負極合剤中にカーボン
ブラックを添加すればよい。
In order to include such carbon black in the negative electrode active material layer, when preparing the negative electrode mixture by mixing the negative electrode active material and the binder, the carbon black is contained in the negative electrode mixture. What is necessary is just to add.

【0054】負極活物質層は、上述したようなカーボン
ブラックを、当該負極活物質層の全体に対して0.5重
量%以上、10重量%以下の範囲で含有していることが
好ましい。カーボンブラックの量が0.5重量%よりも
少ないと、負極活物質の膨張時に負極活物質とカーボン
ブラックとの接触状態が失われ、充電時に膨張した負極
活物質が放電時に収縮する際に、導電性を十分に付与す
ることができずサイクル特性を向上することができな
い。
The negative electrode active material layer preferably contains the above-mentioned carbon black in a range of 0.5% by weight or more and 10% by weight or less based on the whole negative electrode active material layer. If the amount of carbon black is less than 0.5% by weight, the contact state between the negative electrode active material and the carbon black is lost when the negative electrode active material expands, and when the negative electrode active material expanded during charging contracts during discharging, The conductivity cannot be sufficiently imparted, and the cycle characteristics cannot be improved.

【0055】また、カーボンブラックの量が10重量%
よりも多すぎると、その分負極活物質の量が少なくな
り、放電容量が低下してしまう。また、サイクル特性も
却って低下してしまう。これは、カーボンブラックの量
が多いため、負極活物質の膨張時にはカーボンブラック
も追随して導電性が確保されるが、負極活物質の収縮時
にカーボンブラックが負極活物質の膨張前の段階まで収
縮しにくいと考えられる。充放電を繰り返す初期の段階
においては、負極活物質とカーボンブラックとの接触性
は保たれているが、負極活物質が膨張収縮を繰り返すと
負極活物質とカーボンブラックとの接触状態が悪化して
いき、負極活物質に導電性を付与するのが難しくなって
いくためと考えられる。
The amount of carbon black is 10% by weight.
If the amount is too large, the amount of the negative electrode active material decreases accordingly, and the discharge capacity decreases. Further, the cycle characteristics are rather deteriorated. This is because the amount of carbon black is large, so that when the negative electrode active material expands, the carbon black follows and the conductivity is secured, but when the negative electrode active material contracts, the carbon black shrinks to the stage before the negative electrode active material expands. It is considered difficult. In the initial stage of repeating charge and discharge, the contact between the negative electrode active material and the carbon black is maintained, but when the negative electrode active material repeats expansion and contraction, the contact state between the negative electrode active material and the carbon black deteriorates. It is considered that it becomes difficult to impart conductivity to the negative electrode active material.

【0056】したがって、カーボンブラックの量を、負
極活物質層の全体に対して0.2重量%以上、10重量
%以下の範囲とすることで、高い放電容量を維持しつつ
も、充放電時サイクル特性を向上することができる。
Therefore, by setting the amount of carbon black in the range of 0.2% by weight or more and 10% by weight or less with respect to the whole negative electrode active material layer, it is possible to maintain a high discharge capacity while maintaining a high discharge capacity. Cycle characteristics can be improved.

【0057】負極缶3は、負極2を収容するものであ
り、また、非水電解液電池1の外部負極となる。
The negative electrode can 3 accommodates the negative electrode 2 and serves as an external negative electrode of the nonaqueous electrolyte battery 1.

【0058】正極4は、正極集電体上に、正極活物質を
含有する正極活物質層が形成されてなる。正極集電体と
しては、例えばアルミニウム箔等が用いられる。
The positive electrode 4 is formed by forming a positive electrode active material layer containing a positive electrode active material on a positive electrode current collector. As the positive electrode current collector, for example, an aluminum foil or the like is used.

【0059】正極活物質は、目的とする電池の種類に応
じて、金属酸化物、金属硫化物又は特定のポリマー等を
用いることができる。
As the positive electrode active material, a metal oxide, a metal sulfide, a specific polymer, or the like can be used depending on the type of the intended battery.

【0060】具体的に、正極活物質としては、Ti
2、MoS2、NbSe2、V25等のリチウムを含有
しない金属硫化物あるいは酸化物や、LixMO2(式
中、Mは一種以上の遷移金属を表し、xは電池の充放電
状態によって異なり、通常0.05≦x≦1.10であ
る。)を主体とするリチウム複合酸化物等を使用するこ
とができる。
Specifically, as the positive electrode active material, Ti
Lithium-free metal sulfides or oxides such as S 2 , MoS 2 , NbSe 2 , V 2 O 5 , or Li x MO 2 (where M represents one or more transition metals, and x represents the charge of the battery. It depends on the state of discharge, and usually satisfies 0.05 ≦ x ≦ 1.10).

【0061】このリチウム複合酸化物を構成する遷移金
属Mとしては、Co,Ni,Mn等が好ましい。このよ
うなリチウム複合酸化物の具体例としては、LiCoO
2、LiNiO2、LixNiyCo1-y2(式中、x、y
は電池の充放電状態によって異なり、通常0<x<1、
0.7<y<1.02である。)スピネル型構造を有す
るリチウムマンガン複合酸化物等を挙げることができ
る。これらリチウム複合酸化物は、高電圧を発生でき、
エネルギー密度的に優れた正極活物質となる。正極に
は、これらの正極活物質の複数種を混合して使用しても
良い。
As the transition metal M constituting the lithium composite oxide, Co, Ni, Mn and the like are preferable. As a specific example of such a lithium composite oxide, LiCoO
2 , LiNiO 2 , Li x Ni y Co 1-y O 2 (where x, y
Depends on the charge / discharge state of the battery, and usually 0 <x <1,
0.7 <y <1.02. A) Lithium manganese composite oxide having a spinel structure. These lithium composite oxides can generate high voltage,
It becomes a positive electrode active material excellent in energy density. A plurality of these positive electrode active materials may be mixed and used for the positive electrode.

【0062】また、以上のような正極活物質を使用して
正極を形成するに際しては、公知の導電材や結着剤等を
添加することができる。
In forming a positive electrode using the above-described positive electrode active material, a known conductive material, a binder and the like can be added.

【0063】正極缶5は、正極4を収容するものであ
り、また、非水電解液電池1の外部正極となる。
The positive electrode can 5 accommodates the positive electrode 4 and serves as an external positive electrode of the nonaqueous electrolyte battery 1.

【0064】セパレータ6は、正極4と、負極2とを離
間させるものであり、この種の非水電解液電池のセパレ
ータとして通常用いられている公知の材料を用いること
ができ、例えばポリプロピレンなどの高分子フィルムが
用いられる。また、リチウムイオン伝導度とエネルギー
密度との関係から、セパレータの厚みはできるだけ薄い
ことが必要である。具体的には、セパレータの厚みは例
えば50μm以下が適当である。
The separator 6 separates the positive electrode 4 and the negative electrode 2 from each other, and can be formed of a known material usually used as a separator of this type of nonaqueous electrolyte battery. A polymer film is used. Also, from the relationship between lithium ion conductivity and energy density, it is necessary that the thickness of the separator be as small as possible. Specifically, the thickness of the separator is suitably, for example, 50 μm or less.

【0065】絶縁ガスケット7は、負極缶3に組み込ま
れ一体化されている。この絶縁ガスケット7は、負極缶
3及び正極缶5内に充填された非水電解液の漏出を防止
するためのものである。
The insulating gasket 7 is integrated into the negative electrode can 3. The insulating gasket 7 is for preventing the leakage of the nonaqueous electrolyte filled in the negative electrode can 3 and the positive electrode can 5.

【0066】非水電解液としては、非プロトン性非水溶
媒に電解質を溶解させた溶液が用いられる。
As the non-aqueous electrolyte, a solution in which an electrolyte is dissolved in an aprotic non-aqueous solvent is used.

【0067】非水溶媒としては、この種の電池に用いら
れるものであればいずれも使用可能である。例示するな
らば、プロピレンカーボネート、エチレンカーボネー
ト、ジエチルカーボネート、ジメチルカーボネート、
1,2−ジメトキシエタン、1,2−ジエトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1,3−ジオキソラン、4−
メチル−1,3−ジオキソラン、ジエチルエーテル、ス
ルホラン、メチルスルホラン、アセトニトリル、プロピ
オニトリル、アニソール、酢酸エステル、酪酸エステ
ル、プロピオン酸エステル等が挙げられる。
Any non-aqueous solvent can be used as long as it is used for this type of battery. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate,
1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-
Methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile, anisole, acetate, butyrate, propionate and the like.

【0068】また、電解質としては、この種の電池に用
いられるものであればいずれも使用することができる。
例示するならば、LiClO4、LiAsF6、LiPF
6、LiBF4、LiB(C654、CH3SO3Li、
CF3SO3Li、LiCl、LiBr等が挙げられる。
As the electrolyte, any electrolyte can be used as long as it is used for this type of battery.
For example, LiClO 4 , LiAsF 6 , LiPF
6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li,
CF 3 SO 3 Li, LiCl, LiBr and the like can be mentioned.

【0069】以上のような構成を有する本発明の非水電
解液電池1では、負極活物質層に、繊維状炭素又はカー
ボンブラックが含有されているので、負極中の導電パス
が安定に形成されるとともに、リチウムのドープ脱ドー
プに伴う負極の体積変化が抑えられる。その結果、本発
明の非水電解液電池1は、サイクル特性に優れたものと
なる。
In the nonaqueous electrolyte battery 1 of the present invention having the above-described structure, since the negative electrode active material layer contains fibrous carbon or carbon black, the conductive path in the negative electrode is formed stably. In addition, a change in the volume of the negative electrode due to doping and undoping of lithium is suppressed. As a result, the nonaqueous electrolyte battery 1 of the present invention has excellent cycle characteristics.

【0070】なお、上述した実施の形態では、非水電解
液を用いた非水電解液電池を例に挙げて説明したが、本
発明はこれに限定されるものではなく、電解質塩を含有
させた固体電解質、或いは有機高分子に非水溶媒と電解
質塩を含浸させた固体電解質を用いた固体電解質電池
や、マトリクス高分子に非水溶媒と電解質塩を含浸させ
たゲル状電解質を用いたゲル状電解質電池についても適
用可能である。
In the above-described embodiment, a non-aqueous electrolyte battery using a non-aqueous electrolyte has been described as an example. However, the present invention is not limited to this. Solid electrolyte battery using a solid electrolyte in which a non-aqueous solvent and an electrolyte salt are impregnated in an organic polymer or a gel using a gel electrolyte in which a matrix polymer is impregnated with a non-aqueous solvent and an electrolyte salt The present invention is also applicable to a solid electrolyte battery.

【0071】固体電解質としては、リチウムイオン導電
性を有する材料であれば無機固体電解質、高分子固体電
解質いずれも用いることができる。無機固体電解質とし
て、窒化リチウム、ヨウ化リチウムが挙げられる。高分
子固体電解質は、電解質塩とそれを溶解する高分子化合
物からなり、その高分子化合物としては、ポリ(エチレ
ンオキサイド)や同架橋体などのエーテル系高分子、ポ
リ(メタクリレート)等のエステル系高分子や、アクリ
レート系高分子などを単独で、あるいは分子中に共重合
又は混合して用いることができる。
As the solid electrolyte, any of inorganic solid electrolyte and polymer solid electrolyte can be used as long as the material has lithium ion conductivity. Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide. The polymer solid electrolyte is composed of an electrolyte salt and a polymer compound that dissolves the electrolyte salt. Examples of the polymer compound include an ether polymer such as poly (ethylene oxide) and its crosslinked product, and an ester polymer such as poly (methacrylate). A polymer, an acrylate-based polymer, or the like can be used alone, or copolymerized or mixed in the molecule.

【0072】また、ゲル状電解質のマトリクス高分子と
しては、非水電解液を吸収してゲル化するものであれば
種々の高分子を使用することができる。マトリクス高分
子として具体的には、ポリ(ビニリデンフルオライド)
やポリ(ビニリデンフルオライド−co−ヘキサフルオ
ロプロピレン)などのフッ素系高分子、ポリ(エチレン
オキサイド)や同架橋体などのエーテル系高分子、ま
た、ポリ(アクリロニトリル)等が挙げられる。特に酸
化還元安定性から、フッ素系高分子を用いることが好ま
しい。電解質塩を含有させることによりイオン導電性を
付与する。
As the matrix polymer of the gel electrolyte, various polymers can be used as long as they absorb the non-aqueous electrolyte and gel. Specific examples of the matrix polymer include poly (vinylidene fluoride)
And poly (vinylidene fluoride-co-hexafluoropropylene), such as fluorine-based polymers, ether-based polymers such as poly (ethylene oxide) and crosslinked products thereof, and poly (acrylonitrile). In particular, it is preferable to use a fluoropolymer from the viewpoint of oxidation-reduction stability. Ionic conductivity is imparted by including an electrolyte salt.

【0073】また、上述した実施の形態では、二次電池
を例に挙げて説明したが、本発明はこれに限定されるも
のではなく、一次電池についても適用可能である。ま
た、本発明の電池は、円筒型、角型、コイン型、ボタン
型等、その形状については特に限定されることはなく、
また、薄型、大型等の種々の大きさにすることができ
る。
Further, in the above-described embodiment, the description has been given by taking the secondary battery as an example. However, the present invention is not limited to this, and can be applied to a primary battery. In addition, the battery of the present invention has a cylindrical shape, a square shape, a coin shape, a button shape, and the like, and its shape is not particularly limited,
In addition, various sizes such as a thin type and a large size can be used.

【0074】[0074]

【実施例】本発明の効果を確認すべく、上述したような
構成の電池を作製し、その特性を評価した。
EXAMPLES In order to confirm the effects of the present invention, a battery having the above-mentioned structure was manufactured and its characteristics were evaluated.

【0075】まず、以下に示す実施例1〜実施例5及び
比較例1では、負極中に繊維状炭素を添加した場合の効
果について調べた。
First, in Examples 1 to 5 and Comparative Example 1 described below, the effect when fibrous carbon was added to the negative electrode was examined.

【0076】〈実施例1〉まず、負極を以下のようにし
て作製した。
<Example 1> First, a negative electrode was manufactured as follows.

【0077】Mg2Siを粉砕して平均粒径15μmと
した。このMg2Si粉末を54.9重量部と、繊維状
炭素として気相法炭素繊維(昭和電工株式会社製)を
0.1重量部と、人造黒鉛を35重量部と、結着剤とし
てポリフッ化ビニリデンを10重量部とを混合して負極
合剤とし、さらにこれをn−メチルピロリドンに分散さ
せてスラリー状とした。
Mg 2 Si was pulverized to an average particle size of 15 μm. 54.9 parts by weight of this Mg 2 Si powder, 0.1 part by weight of vapor-grown carbon fiber (manufactured by Showa Denko KK) as fibrous carbon, 35 parts by weight of artificial graphite, and polyfluoride as a binder 10 parts by weight of vinylidene chloride was mixed with a negative electrode mixture, and this was further dispersed in n-methylpyrrolidone to form a slurry.

【0078】次に、得られたスラリーを負極集電体とな
る銅箔の両面に均一に塗布し、乾燥後、ロールプレス機
で圧縮成型し、直径15.5mmのペレット状に打ち抜
いた。
Next, the obtained slurry was uniformly applied to both surfaces of a copper foil as a negative electrode current collector, dried, compression-molded by a roll press, and punched into a pellet having a diameter of 15.5 mm.

【0079】つぎに、正極を以下のようにして作製し
た。
Next, a positive electrode was prepared as follows.

【0080】炭酸リチウムと炭酸コバルトとをモル比で
0.5:1の割合で混合し、空気中900℃で5時間焼
成することにより、正極活物質となるLiCoO2を得
た。
LiCoO 2 as a positive electrode active material was obtained by mixing lithium carbonate and cobalt carbonate at a molar ratio of 0.5: 1 and calcining in air at 900 ° C. for 5 hours.

【0081】次に、得られたLiCoO2を91重量部
と、導電材としてグラファイトを6重量部と、結着剤と
してポリフッ化ビニリデンを3重量部とを混合して正極
合剤を調製し、さらにこれをN−メチル−2−ピロリド
ンに分散させてスラリー状とした。
Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This was further dispersed in N-methyl-2-pyrrolidone to form a slurry.

【0082】次に、得られたスラリーを正極集電体とな
る厚さ20μmのアルミニウム箔の両面に均一に塗布
し、乾燥後、ロールプレス機で圧縮成型し、直径15.
5mmのペレット状に打ち抜いた。
Next, the obtained slurry was uniformly applied to both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then compression-molded by a roll press to obtain a slurry having a diameter of 15 μm.
Punched into 5 mm pellets.

【0083】一方、エチレンカーボネートとジエチルカ
ーボネートとの等容量混合溶媒中にLiPF6を1.0
mol/lの濃度で溶解させて非水電解液を調製した。
On the other hand, LiPF 6 was added to a mixed solvent of ethylene carbonate and diethyl carbonate in an equal volume of 1.0.
A non-aqueous electrolyte was prepared by dissolving at a concentration of mol / l.

【0084】そして、得られた負極を負極缶に収容し、
正極を正極缶に収容し、負極と正極との間に、厚さ25
μmのポリプロピレン製多孔質膜からなるセパレータを
配した。負極缶及び正極缶内に非水電解液を注入し、絶
縁ガスケットを介して負極缶と正極缶とをかしめて固定
することにより、直径20mm、高さ2.5mmのコイ
ン型非水電解液電池を完成した。
Then, the obtained negative electrode was accommodated in a negative electrode can,
The positive electrode is accommodated in a positive electrode can, and a thickness of 25 mm is provided between the negative electrode and the positive electrode.
A separator made of a μm polypropylene porous membrane was provided. A coin-type non-aqueous electrolyte battery having a diameter of 20 mm and a height of 2.5 mm is obtained by injecting a non-aqueous electrolyte into the negative electrode can and the positive electrode can and caulking and fixing the negative electrode can and the positive electrode can via an insulating gasket. Was completed.

【0085】〈実施例2〉負極合剤を、Mg2Si粉末
を54.8重量部と、繊維状炭素として気相法炭素繊維
(昭和電工株式会社製)を0.2重量部と、人造黒鉛を
35重量部と、結着剤としてポリフッ化ビニリデンを1
0重量部とを混合して調製したこと以外は、実施例1と
同様にしてコイン型非水電解液電池を作製した。
Example 2 The negative electrode mixture was composed of 54.8 parts by weight of Mg 2 Si powder, 0.2 part by weight of vapor grown carbon fiber (manufactured by Showa Denko KK) as fibrous carbon, and 35 parts by weight of graphite and 1 part of polyvinylidene fluoride as a binder
A coin-type non-aqueous electrolyte battery was produced in the same manner as in Example 1, except that the mixture was prepared by mixing 0 parts by weight.

【0086】〈実施例3〉負極合剤を、Mg2Si粉末
を45重量部と、繊維状炭素として気相法炭素繊維(昭
和電工株式会社製)を10重量部と、人造黒鉛を35重
量部と、結着剤としてポリフッ化ビニリデンを10重量
部とを混合して調製したこと以外は、実施例1と同様に
してコイン型非水電解液電池を作製した。
Example 3 The negative electrode mixture was composed of 45 parts by weight of Mg 2 Si powder, 10 parts by weight of vapor grown carbon fiber (manufactured by Showa Denko KK) as fibrous carbon, and 35 parts by weight of artificial graphite. And a coin-type nonaqueous electrolyte battery was produced in the same manner as in Example 1, except that the mixture was prepared by mixing 10 parts by weight of polyvinylidene fluoride as a binder.

【0087】〈実施例4〉負極合剤を、Mg2Si粉末
を44重量部と、繊維状炭素として気相法炭素繊維(昭
和電工株式会社製)を11重量部と、人造黒鉛を35重
量部と、結着剤としてポリフッ化ビニリデンを10重量
部とを混合して調製したこと以外は、実施例1と同様に
してコイン型非水電解液電池を作製した。
Example 4 The negative electrode mixture was composed of 44 parts by weight of Mg 2 Si powder, 11 parts by weight of vapor grown carbon fiber (manufactured by Showa Denko KK) as fibrous carbon, and 35 parts by weight of artificial graphite. And a coin-type nonaqueous electrolyte battery was produced in the same manner as in Example 1, except that the mixture was prepared by mixing 10 parts by weight of polyvinylidene fluoride as a binder.

【0088】〈実施例5〉負極活物質として、Mg2
iの代わりにSi22Oを用いたこと以外は、実施例2
と同様にしてコイン型非水電解液電池を作製した。
Example 5 Mg 2 S was used as a negative electrode active material.
Example 2 except that Si 2 N 2 O was used instead of i.
In the same manner as in the above, a coin-type nonaqueous electrolyte battery was produced.

【0089】〈比較例1〉負極合剤中に繊維状炭素を添
加せず、Mg2Si粉末を55重量部と、人造黒鉛を3
5重量部と、結着剤としてポリフッ化ビニリデンを10
重量部とを混合して調製したこと以外は、実施例1と同
様にしてコイン型非水電解液電池を作製した。
Comparative Example 1 55 parts by weight of Mg 2 Si powder and 3 parts of artificial graphite were added without adding fibrous carbon to the negative electrode mixture.
5 parts by weight and 10 parts by weight of polyvinylidene fluoride as a binder
A coin-type non-aqueous electrolyte battery was produced in the same manner as in Example 1 except that the mixture was prepared by mixing the same with the same weight part.

【0090】以上のようにして得られた各電池に対し
て、サイクル特性を評価した。
The cycle characteristics of each battery obtained as described above were evaluated.

【0091】まず、各電池に対して、20℃、1mAの
定電流定電圧放電を上限4.2Vまで行い、次に1mA
の定電流放電を終止電圧2.5Vまで行った。以上の工
程を1サイクルとし、これを100サイクル繰り返し
た。そして、1サイクル目の放電容量を100とした場
合の100サイクル目の放電容量維持率(%)を求め
た。
First, each battery was subjected to constant current and constant voltage discharge at 20 ° C. and 1 mA up to an upper limit of 4.2 V.
Was discharged to a final voltage of 2.5 V. The above process was defined as one cycle, and this was repeated 100 cycles. Then, the discharge capacity retention rate (%) at the 100th cycle was determined, where the discharge capacity at the first cycle was 100.

【0092】実施例1〜実施例5及び比較例1の電池に
ついての放電容量維持率の測定結果を表1に示す。
Table 1 shows the measurement results of the discharge capacity retention ratio for the batteries of Examples 1 to 5 and Comparative Example 1.

【0093】[0093]

【表1】 [Table 1]

【0094】表1から明らかなように、負極活物質層中
に繊維状炭素を添加した実施例1〜実施例4の電池で
は、繊維状炭素を添加しなかった比較例1の電池に比べ
ていずれも放電容量及び100サイクル後の放電容量維
持率が向上していることがわかる。
As is clear from Table 1, the batteries of Examples 1 to 4 in which fibrous carbon was added to the negative electrode active material layer were compared with the batteries of Comparative Example 1 in which no fibrous carbon was added. In each case, the discharge capacity and the discharge capacity retention rate after 100 cycles are improved.

【0095】しかし、繊維状炭素の添加量が0.1重量
%である実施例1の電池では、特性を満足する放電容量
維持率が得られているとは言えない。これは、繊維状炭
素の添加量が少なく、充電時に膨張した負極活物質が放
電時に収縮する際に、導電性を十分に付与することがで
きないためと考えられる。また、繊維状炭素の添加量が
11重量%である実施例5の電池では、放電容量維持率
は高いものの、初回放電容量が低下してしまっている。
これは、繊維状炭素の添加量が多すぎると、その分負極
活物質の量が少なくなり、放電容量が低下してしまうた
めと考えられる。
However, it cannot be said that the battery of Example 1 in which the amount of fibrous carbon was 0.1% by weight had a discharge capacity retention ratio satisfying the characteristics. This is presumably because the amount of the fibrous carbon added was small and the negative electrode active material expanded during charging contracted during discharging, so that sufficient conductivity could not be imparted. In addition, in the battery of Example 5 in which the amount of fibrous carbon added was 11% by weight, the discharge capacity retention ratio was high, but the initial discharge capacity was reduced.
This is considered to be because if the amount of the fibrous carbon added is too large, the amount of the negative electrode active material decreases accordingly, and the discharge capacity decreases.

【0096】一方、繊維状炭素の添加量を負極活物質層
の全体に対して0.2重量%とした実施例2の電池、繊
維状炭素の添加量を負極活物質層の全体に対して10重
量%とした実施例3の電池では、初回放電容量及び10
0サイクル後の放電容量維持率の両方を満足することが
できている。
On the other hand, in the battery of Example 2 in which the amount of fibrous carbon added was 0.2% by weight based on the whole negative electrode active material layer, the amount of fibrous carbon added was 0.2% by weight based on the whole negative electrode active material layer. In the battery of Example 3 with 10% by weight, the initial discharge capacity and 10%
Both of the discharge capacity retention rates after 0 cycles can be satisfied.

【0097】したがって、繊維状炭素の量を、負極活物
質層の全体に対して0.2重量%以上、10重量%以下
の範囲とすることで、高い放電容量を維持しつつも、充
放電サイクル特性を向上することができる。
Therefore, by setting the amount of fibrous carbon in the range of 0.2% by weight or more and 10% by weight or less with respect to the entire negative electrode active material layer, charge and discharge can be performed while maintaining a high discharge capacity. Cycle characteristics can be improved.

【0098】また、実施例5の結果から、Mg2Siの
代わりにSi22Oを負極活物質として用いた電池につ
いても、本発明の効果が得られることがわかる。
Further, from the results of Example 5, it can be seen that the effect of the present invention can be obtained also in a battery using Si 2 N 2 O as a negative electrode active material instead of Mg 2 Si.

【0099】つぎに、以下に示す実施例6〜実施例12
及び比較例2では、負極中にカーボンブラックを添加し
た場合の効果について調べた。
Next, the following Embodiments 6 to 12 will be described.
In Comparative Example 2, the effect of adding carbon black to the negative electrode was examined.

【0100】〈実施例6〉まず、負極を以下のようにし
て作製した。
Example 6 First, a negative electrode was manufactured as follows.

【0101】Mg2Siを粉砕して平均粒径15μmと
した。このMg2Si粉末を54.6重量部と、アセチ
レンブラックを0.4重量部と、人造黒鉛を35重量部
と、結着剤としてポリフッ化ビニリデンを10重量部と
を混合して負極合剤とし、さらにこれをn−メチルピロ
リドンに分散させてスラリー状とした。
Mg 2 Si was pulverized to an average particle size of 15 μm. A negative electrode mixture was prepared by mixing 54.6 parts by weight of this Mg 2 Si powder, 0.4 parts by weight of acetylene black, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder. This was further dispersed in n-methylpyrrolidone to form a slurry.

【0102】次に、得られたスラリーを負極集電体とな
る銅箔の両面に均一に塗布し、乾燥後、ロールプレス機
で圧縮成型し、直径15.5mmのペレット状に打ち抜
いた。
Next, the obtained slurry was uniformly applied to both surfaces of a copper foil as a negative electrode current collector, dried, compression-molded by a roll press, and punched into a pellet having a diameter of 15.5 mm.

【0103】つぎに、正極を以下のようにして作製し
た。
Next, a positive electrode was produced as follows.

【0104】炭酸リチウムと炭酸コバルトとをモル比で
0.5:1の割合で混合し、空気中900℃で5時間焼
成することにより、正極活物質となるLiCoO2を得
た。
LiCoO 2 as a positive electrode active material was obtained by mixing lithium carbonate and cobalt carbonate at a molar ratio of 0.5: 1 and firing in air at 900 ° C. for 5 hours.

【0105】次に、得られたLiCoO2を91重量部
と、導電材としてグラファイトを6重量部と、結着剤と
してポリフッ化ビニリデンを3重量部とを混合して正極
合剤を調製し、さらにこれをN−メチル−2−ピロリド
ンに分散させてスラリー状とした。
Next, 91 parts by weight of the obtained LiCoO 2 , 6 parts by weight of graphite as a conductive material, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. This was further dispersed in N-methyl-2-pyrrolidone to form a slurry.

【0106】次に、得られたスラリーを正極集電体とな
る厚さ20μmのアルミニウム箔の両面に均一に塗布
し、乾燥後、ロールプレス機で圧縮成型し、直径15.
5mmのペレット状に打ち抜いた。
Next, the obtained slurry was uniformly applied to both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector, dried, and then compression-molded by a roll press to obtain a slurry having a diameter of 15 μm.
Punched into 5 mm pellets.

【0107】一方、エチレンカーボネートとジエチルカ
ーボネートとの等容量混合溶媒中にLiPF6を1.0
mol/lの濃度で溶解させて非水電解液を調製した。
On the other hand, LiPF 6 was added to a mixed solvent of ethylene carbonate and diethyl carbonate in an equal volume of 1.0.
A non-aqueous electrolyte was prepared by dissolving at a concentration of mol / l.

【0108】そして、得られた負極を負極缶に収容し、
正極を正極缶に収容し、負極と正極との間に、厚さ25
μmのポリプロピレン製多孔質膜からなるセパレータを
配した。負極缶及び正極缶内に非水電解液を注入し、絶
縁ガスケットを介して負極缶と正極缶とをかしめて固定
することにより、直径20mm、高さ2.5mmのコイ
ン型非水電解液電池を完成した。
Then, the obtained negative electrode was housed in a negative electrode can,
The positive electrode is accommodated in a positive electrode can, and a thickness of 25 mm is provided between the negative electrode and the positive electrode.
A separator made of a μm polypropylene porous membrane was provided. A coin-type non-aqueous electrolyte battery having a diameter of 20 mm and a height of 2.5 mm is obtained by injecting a non-aqueous electrolyte into the negative electrode can and the positive electrode can and caulking and fixing the negative electrode can and the positive electrode can via an insulating gasket. Was completed.

【0109】〈実施例7〉負極合剤を、Mg2Si粉末
を54.5重量部と、アセチレンブラックを0.5重量
部と、人造黒鉛を35重量部と、結着剤としてポリフッ
化ビニリデンを10重量部とを混合して調製したこと以
外は、実施例6と同様にしてコイン型非水電解液電池を
作製した。
Example 7 A negative electrode mixture was composed of 54.5 parts by weight of Mg 2 Si powder, 0.5 part by weight of acetylene black, 35 parts by weight of artificial graphite, and polyvinylidene fluoride as a binder. Was prepared in the same manner as in Example 6, except that it was mixed with 10 parts by weight of a nonaqueous electrolyte battery.

【0110】〈実施例8〉負極合剤を、Mg2Si粉末
を54重量部と、アセチレンブラックを1重量部と、人
造黒鉛を35重量部と、結着剤としてポリフッ化ビニリ
デンを10重量部とを混合して調製したこと以外は、実
施例6と同様にしてコイン型非水電解液電池を作製し
た。
Example 8 The negative electrode mixture was composed of 54 parts by weight of Mg 2 Si powder, 1 part by weight of acetylene black, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder. A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 6, except that the mixture was prepared by mixing.

【0111】〈実施例9〉負極合剤を、Mg2Si粉末
を47重量部と、アセチレンブラックを8重量部と、人
造黒鉛を35重量部と、結着剤としてポリフッ化ビニリ
デンを10重量部とを混合して調製したこと以外は、実
施例6と同様にしてコイン型非水電解液電池を作製し
た。
Example 9 The negative electrode mixture was composed of 47 parts by weight of Mg 2 Si powder, 8 parts by weight of acetylene black, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder. A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 6, except that the mixture was prepared by mixing.

【0112】〈実施例10〉負極合剤を、Mg2Si粉
末を45重量部と、アセチレンブラックを10重量部
と、人造黒鉛を35重量部と、結着剤としてポリフッ化
ビニリデンを10重量部とを混合して調製したこと以外
は、実施例6と同様にしてコイン型非水電解液電池を作
製した。
Example 10 The negative electrode mixture was composed of 45 parts by weight of Mg 2 Si powder, 10 parts by weight of acetylene black, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder. A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 6, except that the mixture was prepared by mixing.

【0113】〈実施例11〉負極合剤を、Mg2Si粉
末を44重量部と、アセチレンブラックを11重量部
と、人造黒鉛を35重量部と、結着剤としてポリフッ化
ビニリデンを10重量部とを混合して調製したこと以外
は、実施例6と同様にしてコイン型非水電解液電池を作
製した。
Example 11 The negative electrode mixture was composed of 44 parts by weight of Mg 2 Si powder, 11 parts by weight of acetylene black, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder. A coin-type non-aqueous electrolyte battery was manufactured in the same manner as in Example 6, except that the mixture was prepared by mixing.

【0114】〈実施例12〉負極活物質として、Mg2
Siの代わりにSi22Oを用いたこと以外は、実施例
7と同様にしてコイン型非水電解液電池を作製した。
Example 12 Mg 2 was used as the negative electrode active material.
A coin-type nonaqueous electrolyte battery was manufactured in the same manner as in Example 7, except that Si 2 N 2 O was used instead of Si.

【0115】〈比較例2〉負極合剤中にアセチレンブラ
ックを添加せず、Mg2Si粉末を55重量部と、人造
黒鉛を35重量部と、結着剤としてポリフッ化ビニリデ
ンを10重量部とを混合して調製したこと以外は、実施
例6と同様にしてコイン型非水電解液電池を作製した。
Comparative Example 2 Without adding acetylene black to the negative electrode mixture, 55 parts by weight of Mg 2 Si powder, 35 parts by weight of artificial graphite, and 10 parts by weight of polyvinylidene fluoride as a binder were used. Was prepared in the same manner as in Example 6 except that the mixture was prepared by mixing the above.

【0116】以上のようにして得られた各電池に対し
て、上述した方法と同様の方法によりサイクル特性を評
価した。
The cycle characteristics of each of the batteries obtained as described above were evaluated by the same method as described above.

【0117】実施例6〜実施例12及び比較例2の電池
についての放電容量維持率の測定結果を表2に示す。
Table 2 shows the measurement results of the discharge capacity retention rates of the batteries of Examples 6 to 12 and Comparative Example 2.

【0118】[0118]

【表2】 [Table 2]

【0119】表2から明らかなように、負極活物質層中
にカーボンブラックを添加した実施例6〜実施例11の
電池では、カーボンブラックを添加しなかった比較例1
の電池に比べていずれも放電容量及び100サイクル後
の放電容量維持率が向上していることがわかる。
As is clear from Table 2, in the batteries of Examples 6 to 11 in which carbon black was added to the negative electrode active material layer, Comparative Example 1 in which no carbon black was added was used.
It can be seen that the discharge capacity and the discharge capacity retention rate after 100 cycles are improved as compared to the batteries of No.

【0120】しかし、カーボンブラックの添加量が0.
4重量%である実施例6の電池では、特性を満足する放
電容量維持率が得られているとは言えない。これは、カ
ーボンブラックの量が少ないと、負極活物質の膨張時に
負極活物質とカーボンブラックとの接触状態が失われ、
充電時に膨張した負極活物質が放電時に収縮する際に、
導電性を十分に付与することができないためと考えられ
る。
However, when the amount of carbon black added was 0.1%.
In the battery of Example 6 with 4% by weight, it cannot be said that the discharge capacity maintenance ratio satisfying the characteristics was obtained. This is because if the amount of carbon black is small, the contact state between the negative electrode active material and the carbon black is lost when the negative electrode active material expands,
When the negative electrode active material expanded during charging contracts during discharging,
This is probably because conductivity cannot be sufficiently imparted.

【0121】また、カーボンブラックの添加量が11重
量%である実施例11の電池では、放電容量維持率、初
回放電容量がともに低下してしまっている。これは、カ
ーボンブラックの量が多いため、負極活物質の膨張時に
はカーボンブラックも追随して導電性が確保されるが、
負極活物質の収縮時にカーボンブラックが負極活物質の
膨張前の段階まで収縮しにくいためと考えられる。すな
わち、充放電を繰り返す初期の段階においては、負極活
物質とカーボンブラックとの接触性は保たれているが、
負極活物質が膨張収縮を繰り返すと負極活物質とカーボ
ンブラックとの接触状態が悪化していき、負極活物質に
導電性を付与するのが難しくなっていくためと考えられ
る。
Further, in the battery of Example 11 in which the addition amount of carbon black was 11% by weight, both the discharge capacity retention ratio and the initial discharge capacity were reduced. This is because, because of the large amount of carbon black, the carbon black follows during the expansion of the negative electrode active material, ensuring conductivity.
This is probably because the carbon black hardly shrinks to the stage before the negative electrode active material expands when the negative electrode active material shrinks. That is, at the initial stage of repeating charge and discharge, the contact between the negative electrode active material and the carbon black is maintained,
It is considered that when the negative electrode active material repeats expansion and contraction, the contact state between the negative electrode active material and the carbon black deteriorates, and it becomes difficult to impart conductivity to the negative electrode active material.

【0122】一方、カーボンブラックの添加量を負極活
物質層の全体に対して0.5重量%以上、10重量%以
下の範囲とした実施例7〜実施例10の電池では、初回
放電容量及び100サイクル後の放電容量維持率の両方
を満足することができている。
On the other hand, in the batteries of Examples 7 to 10 in which the addition amount of carbon black was in the range of 0.5% by weight or more and 10% by weight or less based on the whole negative electrode active material layer, the initial discharge capacity and Both of the discharge capacity retention rates after 100 cycles can be satisfied.

【0123】したがって、カーボンブラックの量を、負
極活物質層の全体に対して0.5重量%以上、10重量
%以下の範囲とすることで、高い放電容量を維持しつつ
も、充放電サイクル特性を向上することができる。
Therefore, by setting the amount of carbon black in the range of 0.5% by weight or more and 10% by weight or less based on the whole negative electrode active material layer, the charge / discharge cycle can be maintained while maintaining a high discharge capacity. Characteristics can be improved.

【0124】また、実施例12の結果から、Mg2Si
の代わりにSi22Oを負極活物質として用いた電池に
ついても、本発明の効果が得られることがわかる。
Further, from the results of Example 12, it was found that Mg 2 Si
It can be seen that the effect of the present invention can also be obtained for a battery using Si 2 N 2 O as the negative electrode active material instead of the above.

【0125】[0125]

【発明の効果】本発明では、負極活物質層に、繊維状炭
素又はカーボンブラックを含有させることで、負極中の
導電パスを安定に形成するとともに、リチウムのドープ
脱ドープに伴う負極の体積変化を抑えた負極を実現する
ことができる。
According to the present invention, by including fibrous carbon or carbon black in the negative electrode active material layer, the conductive path in the negative electrode can be formed stably, and the volume change of the negative electrode due to doping and undoping of lithium. Thus, it is possible to realize a negative electrode in which the density is suppressed.

【0126】そして、本発明では、上記のような負極を
用いることで、サイクル特性に優れた非水電解質電池を
実現することができる。
In the present invention, by using the above-described negative electrode, a non-aqueous electrolyte battery having excellent cycle characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水電解質電池の一構成例を示す
断面図である。
FIG. 1 is a cross-sectional view illustrating a configuration example of a nonaqueous electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 非水電解液電池、 2 負極、 3 負極缶、 4
正極、 5 正極缶、 6 セパレータ、 7 絶縁
ガスケット
1 non-aqueous electrolyte battery, 2 negative electrode, 3 negative electrode can, 4
Positive electrode, 5 Positive electrode can, 6 Separator, 7 Insulating gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小丸 篤雄 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内 Fターム(参考) 5H003 AA04 BB02 BB04 BB05 BB15 BC02 BD04 5H014 AA02 EE05 EE07 HH01 HH04 5H029 AJ05 AK02 AK03 AK05 AL01 AL02 AL03 AL11 AM00 AM02 AM03 AM04 AM05 AM07 AM12 AM16 DJ08 DJ15 EJ04 HJ01 HJ19  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Komaru 1-1-1 Shimosugishita, Takakura, Hiwada-cho, Koriyama-shi, Fukushima Prefecture Sony Energy Tech Co., Ltd. F term (reference) 5H003 AA04 BB02 BB04 BB05 BB15 BC02 BD04 5H014 AA02 EE05 EE07 HH01 HH04 5H029 AJ05 AK02 AK03 AK05 AL01 AL02 AL03 AL11 AM00 AM02 AM03 AM04 AM05 AM07 AM12 AM16 DJ08 DJ15 EJ04 HJ01 HJ19

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 リチウムと合金を形成可能な金属又は当
該金属の合金と、繊維状炭素又はカーボンブラックとを
含有する負極活物質層を有することを特徴とする負極。
1. A negative electrode comprising a negative electrode active material layer containing a metal capable of forming an alloy with lithium or an alloy of the metal, and fibrous carbon or carbon black.
【請求項2】 上記負極活物質層は、上記繊維状炭素を
0.2重量%以上、10重量%以下の範囲で含有するこ
とを特徴とする請求項1記載の負極。
2. The negative electrode according to claim 1, wherein the negative electrode active material layer contains the fibrous carbon in a range of 0.2% by weight or more and 10% by weight or less.
【請求項3】 上記負極活物質層は、上記カーボンブラ
ックを0.5重量%以上、10重量%以下の範囲で含有
することを特徴とする請求項1記載の負極。
3. The negative electrode according to claim 1, wherein the negative electrode active material layer contains the carbon black in a range of 0.5% by weight or more and 10% by weight or less.
【請求項4】 1つ以上の非金属元素を含む、炭素以外
の4B族化合物と、繊維状炭素又はカーボンブラックと
を含有する負極活物質層を有することを特徴とする負
極。
4. A negative electrode comprising a negative electrode active material layer containing a Group 4B compound other than carbon, which contains one or more nonmetallic elements, and fibrous carbon or carbon black.
【請求項5】 上記負極活物質層は、上記繊維状炭素を
0.2重量%以上、10重量%以下の範囲で含有するこ
とを特徴とする請求項4記載の負極。
5. The negative electrode according to claim 4, wherein the negative electrode active material layer contains the fibrous carbon in a range of 0.2% by weight or more and 10% by weight or less.
【請求項6】 上記負極活物質層は、上記カーボンブラ
ックを0.5重量%以上、10重量%以下の範囲で含有
することを特徴とする請求項4記載の負極。
6. The negative electrode according to claim 4, wherein the negative electrode active material layer contains the carbon black in a range of 0.5% by weight or more and 10% by weight or less.
【請求項7】 上記1つ以上の非金属元素を含む、炭素
以外の4B族化合物は、電気化学的にリチウムを400
mAh/cm3以上ドープ・脱ドープ可能であることを
特徴とする請求項4記載の負極。
7. The Group 4B compound other than carbon, including one or more non-metallic elements, electrochemically converts lithium to 400.
5. The negative electrode according to claim 4, wherein the negative electrode can be doped and de-doped at mAh / cm 3 or more.
【請求項8】 リチウム複合酸化物を含有する正極と、 リチウムと合金を形成可能な金属又は当該金属の合金
と、繊維状炭素又はカーボンブラックとを含有する負極
活物質層を有する負極と、 上記正極と上記負極との間に介在される非水電解質とを
備えることを特徴とする非水電解質電池。
8. A negative electrode comprising a positive electrode containing a lithium composite oxide, a metal capable of forming an alloy with lithium or an alloy of the metal, and a negative electrode active material layer containing fibrous carbon or carbon black; A nonaqueous electrolyte battery comprising a nonaqueous electrolyte interposed between a positive electrode and the negative electrode.
【請求項9】 上記負極活物質層は、上記繊維状炭素を
0.2重量%以上、10重量%以下の範囲で含有するこ
とを特徴とする請求項8記載の非水電解質電池。
9. The nonaqueous electrolyte battery according to claim 8, wherein the negative electrode active material layer contains the fibrous carbon in a range of 0.2% by weight or more and 10% by weight or less.
【請求項10】 上記負極活物質層は、上記カーボンブ
ラックを0.5重量%以上、10重量%以下の範囲で含
有することを特徴とする請求項8記載の非水電解質電
池。
10. The non-aqueous electrolyte battery according to claim 8, wherein the negative electrode active material layer contains the carbon black in a range of 0.5% by weight or more and 10% by weight or less.
【請求項11】 リチウム複合酸化物を含有する正極
と、 1つ以上の非金属元素を含む、炭素以外の4B族化合物
と繊維状炭素又はカーボンブラックとを含有する負極活
物質層を有する負極と、 上記正極と上記負極との間に介在される非水電解質とを
備えることを特徴とする非水電解質電池。
11. A positive electrode containing a lithium composite oxide, and a negative electrode having a negative electrode active material layer containing a group 4B compound other than carbon and fibrous carbon or carbon black containing at least one nonmetallic element. A nonaqueous electrolyte battery comprising: a nonaqueous electrolyte interposed between the positive electrode and the negative electrode.
【請求項12】 上記負極活物質層は、上記繊維状炭素
を0.2重量%以上、10重量%以下の範囲で含有する
ことを特徴とする請求項11記載の非水電解質電池。
12. The nonaqueous electrolyte battery according to claim 11, wherein the negative electrode active material layer contains the fibrous carbon in a range of 0.2% by weight or more and 10% by weight or less.
【請求項13】 上記負極活物質層は、上記カーボンブ
ラックを0.5重量%以上、10重量%以下の範囲で含
有することを特徴とする請求項11記載の非水電解質電
池。
13. The nonaqueous electrolyte battery according to claim 11, wherein the negative electrode active material layer contains the carbon black in a range of 0.5% by weight or more and 10% by weight or less.
【請求項14】 上記1つ以上の非金属元素を含む、炭
素以外の4B族化合物は、電気化学的にリチウムを40
0mAh/cm3以上ドープ・脱ドープ可能であること
を特徴とする請求項11記載の非水電解質電池。
14. The group 4B compound other than carbon, including one or more nonmetallic elements, electrochemically converts lithium to 40%.
12. The non-aqueous electrolyte battery according to claim 11, wherein the non-aqueous electrolyte battery can be doped / dedoped at 0 mAh / cm 3 or more.
JP2000006341A 2000-01-12 2000-01-12 Negative electrode and nonaqueous electrolyte battery Pending JP2001196052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000006341A JP2001196052A (en) 2000-01-12 2000-01-12 Negative electrode and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000006341A JP2001196052A (en) 2000-01-12 2000-01-12 Negative electrode and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2001196052A true JP2001196052A (en) 2001-07-19

Family

ID=18534884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000006341A Pending JP2001196052A (en) 2000-01-12 2000-01-12 Negative electrode and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2001196052A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
WO2012138152A3 (en) * 2011-04-05 2013-01-10 주식회사 엘지화학 Negative electrode active material for a lithium secondary battery, and method for preparing same
JP2016219370A (en) * 2015-05-26 2016-12-22 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary battery
JPWO2014080891A1 (en) * 2012-11-22 2017-01-05 日産自動車株式会社 Negative electrode for electric device and electric device using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
JP2022168968A (en) * 2021-04-27 2022-11-09 トヨタ自動車株式会社 All-solid battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138744A (en) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH10223221A (en) * 1997-02-10 1998-08-21 Asahi Chem Ind Co Ltd Lithium secondary battery
JPH10270086A (en) * 1997-03-26 1998-10-09 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH113710A (en) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd Lithium secondary battery
JPH1186854A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Lithium secondary battery
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JPH11297361A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Non-aqueous electrolyte secondary battery and electric device using the same
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its negative electrode material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138744A (en) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10162811A (en) * 1996-11-29 1998-06-19 Showa Denko Kk Electrode material for battery and secondary battery
JPH10223221A (en) * 1997-02-10 1998-08-21 Asahi Chem Ind Co Ltd Lithium secondary battery
JPH10270086A (en) * 1997-03-26 1998-10-09 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JPH113710A (en) * 1997-06-10 1999-01-06 Hitachi Maxell Ltd Lithium secondary battery
JPH11102705A (en) * 1997-07-29 1999-04-13 Sony Corp Negative electrode material, and nonaqueous electrolyte secondary battery using the same
JPH1186854A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Lithium secondary battery
JPH11297361A (en) * 1998-04-08 1999-10-29 Hitachi Ltd Non-aqueous electrolyte secondary battery and electric device using the same
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and its negative electrode material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249211A (en) * 2002-02-26 2003-09-05 Nec Corp Negative electrode for secondary battery, manufacturing method of secondary battery and negative electrode for secondary battery
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
US9972828B2 (en) 2011-04-05 2018-05-15 Lg Chem, Ltd. Anode active material for lithium secondary battery and preparation thereof
WO2012138152A3 (en) * 2011-04-05 2013-01-10 주식회사 엘지화학 Negative electrode active material for a lithium secondary battery, and method for preparing same
US9735418B2 (en) 2011-04-05 2017-08-15 Lg Chem, Ltd. Anode active material for lithium secondary battery and preparation thereof
US10367198B2 (en) 2011-05-25 2019-07-30 Nissan Motor Co., Ltd. Negative electrode active material for electric device
US10566608B2 (en) 2012-11-22 2020-02-18 Nissan Motor Co., Ltd. Negative electrode for electric device and electric device using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
JPWO2014080891A1 (en) * 2012-11-22 2017-01-05 日産自動車株式会社 Negative electrode for electric device and electric device using the same
US10476101B2 (en) 2014-01-24 2019-11-12 Nissan Motor Co., Ltd. Electrical device
US10535870B2 (en) 2014-01-24 2020-01-14 Nissan Motor Co., Ltd. Electrical device
JP2016219370A (en) * 2015-05-26 2016-12-22 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary battery
JP2022168968A (en) * 2021-04-27 2022-11-09 トヨタ自動車株式会社 All-solid battery
JP7517242B2 (en) 2021-04-27 2024-07-17 トヨタ自動車株式会社 All-solid-state battery
US12341152B2 (en) 2021-04-27 2025-06-24 Toyota Jidosha Kabushiki Kaisha All solid state battery

Similar Documents

Publication Publication Date Title
JP4228593B2 (en) Nonaqueous electrolyte secondary battery
US7229713B2 (en) Electrode and battery using the same
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
JP3311104B2 (en) Lithium secondary battery
JP3709628B2 (en) Non-aqueous electrolyte secondary battery
JP2002279989A (en) Battery
JPH07192724A (en) Nonaqueous electrolyte secondary battery
JP2001196052A (en) Negative electrode and nonaqueous electrolyte battery
JPH11233140A (en) Nonaqueous electrolyte secondary battery
JP2002270230A (en) Battery
CN1175098B (en) Accumulator with no water electrolytic solution
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP2003346804A (en) Negative electrode material, non-aqueous electrolyte battery, and method for manufacturing the negative electrode material
JP2007048717A (en) Battery
JP2005197175A (en) Positive electrode, negative electrode, electrolyte and battery
JP2002270228A (en) Battery
JP3552377B2 (en) Rechargeable battery
JP4192574B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP2002270159A (en) Battery
JP2002280080A (en) Method of charging secondary battery
JP2002270231A (en) Cell
JP2002198036A (en) Negative electrode, nonaqueous electrolyte cell and their manufacturing method
JP4734707B2 (en) Non-aqueous electrolyte battery
JP2001015170A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120604

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120618

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121225