JP3579068B2 - 論理回路 - Google Patents
論理回路 Download PDFInfo
- Publication number
- JP3579068B2 JP3579068B2 JP15337893A JP15337893A JP3579068B2 JP 3579068 B2 JP3579068 B2 JP 3579068B2 JP 15337893 A JP15337893 A JP 15337893A JP 15337893 A JP15337893 A JP 15337893A JP 3579068 B2 JP3579068 B2 JP 3579068B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- cell
- gate
- wiring
- channel mos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Semiconductor Memories (AREA)
- Static Random-Access Memory (AREA)
Description
【産業上の利用分野】
この発明は半導体記憶装置及びこの記憶装置の記憶内容に応じてプログラム可能な論理回路に関する。
【0002】
【従来の技術】
半導体記憶装置の代表的なものとして、従来では、図5に示すように2個のCMOSインバータI1、I2と、2個のトランスファゲート用のNチャネルMOSトランジスタN1、N2とからなるランダム・アクセス・メモリセル(以下、RAMセルと称する)を複数個設けてマトリクス状に配置したものが良く知られている。
【0003】
また、図6は図5のRAMセル中の2個のCMOSインバータI1 、I2 を具体化した回路図であり、それぞれPチャネルとNチャネルのMOSトランジスタで構成されている。なお、図5及び図6において、WLはRAMセルを選択するためのワード線であり、BL、/BLはRAMセルに対する書き込みデータもしくはRAMセルからの読み出しデータが伝達されるビット線である。
【0004】
ここで、図5のRAMセルの動作の概略を説明する。
RAMセルからデータを読み出すか、RAMセルにデータを書き込むか、いずれかの動作を行う場合、ワード線WLを論理1にする。すると、NチャネルMOSトランジスタN1 、N2 がオン状態になり、2個のインバータI1 、I2 がビット線BL、/BLにそれぞれ接続される。読み出しの場合は2個のインバータI1 、I2 の出力がビット線BL、/BLにそれぞれ伝達され、図示しないセンス回路でビット線の電位差が検出される。書き込みの場合には、ビット線BL、/BLに相補的なデータが図示しない書き込み回路から与えられる。また、書き込みも読み出しも行わないときにワード線WLは論理0にしておく。
【0005】
図5のような構成のRAMセルを多数、マトリクス状(行列状)に配置することによって半導体記憶装置が構成される。図7はこの半導体記憶装置の概略的な構成を示すブロック図であり、RAMセル50はロー・デコーダ51とカラム・デコーダ52により選択され、選択されたRAMセル50に対するデータの読み出し及び書き込みがセンス回路/書き込み回路53によって行われる。
【0006】
この半導体記憶装置では、外部アドレスに応じてロー・デコーダ51により横一列分のRAMセルが、外部アドレスに応じてカラム・デコーダ52により縦一行分のRAMセルがそれぞれ選択されることにより1個のRAMセル50が選択され、この選択されたRAMセル50に対するデータの書き込みもしくは選択されたRAMセル50からのデータ読み出しがセンス回路/書き込み回路53で行われる。
【0007】
一方、上記のような半導体記憶装置を内蔵し、この記憶装置の記憶データによって論理回路を制御するという集積回路が開発、実用化されている。このような集積回路は一般にプログラマブル論理回路と称されている。
【0008】
図8はCMOS型の2入力NAND回路を論理回路として用いたプログラマブル論理回路の従来の構成を示すものであり、プログラマブル論理回路セル1個分が図示されている。なお、実際のプログラマブル論理回路ではこのような回路セルが多数設けられ、これらがマトリクス状に配置されている。
【0009】
図8の回路では4個のRAMセル50−1 〜50−4 が示されており、その他に論理回路として1個の2入力NANDゲート回路61が設けられ、このNANDゲート回路61の入力ノードと出力ノードには上記4個のRAMセル50−1 〜50−4 の記憶データに応じて制御されるスイッチ用のNチャネルMOSトランジスタ62〜67が接続されている。また、WL及びBL、/BLはRAMセルに関係したワード線及びビット線である。また、A、B、B′、C、C′及びDはそれぞれ論理回路に関係した配線である。例えば、Aは横方向の長距離配線、B、B′は縦方向の短距離配線、C、C′は縦方向の短距離配線、Dは縦方向の長距離配線である。
【0010】
ここで、短距離配線とは隣接するプログラマブル論理回路セルどうしを接続するものを、長距離配線とは隣接するプログラマブル論理回路セルよりも遠く離れたところに存在するプログラマブル論理回路セルとの接続を行うものをそれぞれいう。なお、配線BとB´、CとC´はそれぞれ隣接した2個のプログラマブル論理回路セル間で接続されている。
【0011】
上記ワード線WL及び配線A、C、C′はそれぞれ第1層目の金属(例えばアルミニウム)配線層を用いて構成され、ビット線BL、/BL及び配線B、B′、Dはそれぞれ第2層目の金属(例えばアルミニウム)配線層を用いて構成されている。
【0012】
図9は上記図8のプログラマブル論理回路セルからNANDゲート回路61及びこのNANDゲート回路61の入力ノード側に接続されたスイッチ用のNチャネルMOSトランジスタ61〜64を抜き出して示したものである。
【0013】
図10は上記図8の回路を集積化した場合に1本のワード線WLに接続され、互いに隣接した2個のRAMセルの一部の構成を示すパターン平面図である。図中、太い実線で示した部分は前記トランスファゲート用のNチャネルMOSトランジスタN1 、N2 のソース、ドレイン領域となる拡散領域71である。また、前記ビット線BL、/BL及び配線B、B′、D(配線B′、Dは図示せず)は第1層目のアルミニウム配線層を用いて構成されており、ワード線WLは図中、小丸を付した第2層目のアルミニウム配線層を用いて構成されている。また、図中、前記トランスファゲート用のNチャネルMOSトランジスタN1 、N2 のゲート電極72は、図中、左下がりの斜線を付した多結晶シリコン配線層を用いて構成されている。そして、ビット線BL、/BLは、図中、右下がりの破線による斜線を付したコンタクト73を介して上記各拡散領域71に接続されている。また、ワード線WLと各ゲート電極72との相互接続は、第2層目のアルミニウム配線層からなるワード線WLと第1層目のアルミニウム配線層とをビア・コンタクト74を介して接続し、さらに第1層目のアルミニウム配線層と多結晶シリコン配線層からなるゲート電極72とをコンタクト75を介して接続することにより行われる。なお、図中の回路部分とはプログラマブル論理回路セルの他の部分が形成される領域を示している。
【0014】
【発明が解決しようとする課題】
上記のように記憶回路と論理回路とを混在させた場合、論理回路を設けたことによりレイアウト上の制約が増加する。つまり、集積度を大きくするためにはRAMセル上にも配線を配置しなければならない。この配線は本来、RAMセルには必要のないものであるため、従来のRAMセルのパターンをそのまま用いると配線のための領域が不足する。そして、前記図10のパターン平面図に示すように、各プログラマブル論理回路セルでは図中の縦方向にビット線BL、/BL及び配線Bもしくは配線Dからなる3本の配線を設ける必要があるため、各セルの図10中の横方向における寸法が大きなものとなる。この結果、チップ面積の増加及びそれによる歩留りの低下を招き、ひいては製造コストの大幅な増大につながる。
【0015】
この発明は上記のような事情を考慮してなされたものであり、その目的は従来に比べてチップ面積の増大を防止することができると共に歩留まり良く製造できる論理回路を提供することである。
【0017】
【課題を解決するための手段】
この発明の論理回路は、それぞれ相補な一対のデータを記憶する第1乃至第4の記憶回路セルを含む行列状に配置された複数の記憶回路セルと、上記複数の記憶回路セルをアクセスするための信号が伝達される複数の信号線からなる記憶回路アクセス線と、上記複数の記憶回路セルに対する書き込みデータ及び各記憶回路セルからの読み出しデータが伝達される複数の信号線からなるデータ線と、第1乃至第5の配線と、第1、第2の入力ノード及び出力ノードを有し、出力ノードが上記第5の配線に接続された論理ゲート回路と、ソース、ドレイン間が上記第1の配線と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記第1の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第1のNチャネルMOSトランジスタと、ソース、ドレイン間が上記第2の配線と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記第1の記憶回路セルに記憶された相補な一対のデータの他方がゲートに供給される第2のNチャネルMOSトランジスタと、ソース、ドレイン間が上記第3の配線と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記第2の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第3のNチャネルMOSトランジスタと、ソース、ドレイン間が上記第4の配線と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記第2の記憶回路セルに記憶された相補な一対のデータの他方がゲートに供給される第4のNチャネルMOSトランジスタと、ソース、ドレイン間が上記第1の配線と上記第5の配線との間に挿入され、上記第3の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第5のNチャネルMOSトランジスタと、ソース、ドレイン間が上記第4の配線と上記第5の配線との間に挿入され、上記第4の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第6のNチャネルMOSトランジスタと、ソース、ドレイン間が電源電位と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記論理ゲート回路の出力ノードの信号がゲートに供給される第1のPチャネルMOSトランジスタと、ソース、ドレイン間が電源電位と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記論理ゲート回路の出力ノードの信号がゲートに供給される第2のPチャネルMOSトランジスタとを具備したことを特徴とする。
【0019】
【作用】
この発明の論理回路では、第1乃至第6のNチャネルMOSトランジスタを設けることにより、記憶回路セルの記憶内容に応じてプログラム可能な論理回路を構成することができる。
【0020】
【実施例】
以下、図面を参照してこの発明を実施例により説明する。
図1はこの発明の一実施例に係るプログラマブル論理回路で使用されるプログラマブル論理回路セル1個分の構成を示す回路図である。
【0021】
図中、一点鎖線で囲まれた領域10はプログラマブル論理回路セル1個分を示している。図示のように各プログラマブル論理回路セルには、それぞれ前記図4の場合と同様に、CMOSインバータI1 、I2 及びNチャネルMOSトランジスタN1 、N2 からなる4個のRAMセル50−1 〜50−4 が設けられている。これら4個のRAMセル50−1 〜50−4 は、図示しない他のプログラマブル論理回路セル内のRAMセルと共にマトリクス状に配置されている。
【0022】
また、各プログラマブル論理回路セル毎に、4本のワード線WLm0,WLm1、WL(m+1)0,WL(m+1)1と2組の配線AとC、C′が図中の横方向(列方向)に延長して設けられている。さらに2本のビット線BL(n−1) ,BLn と2組の配線B、B′とDが図中の縦方向(行方向)に延長して設けられている。なお、図では隣接したプログラマブル論理回路セルのビット線BL(n+1) も図示されている。上記配線A、B、B′、C、C′、Dはそれぞれ従来と同じ配線である。
【0023】
ここで、上記4個のRAMセル50−1 〜50−4 のうち、同一列に配置された2個のRAMセル50−1 〜50−2 の一方のRAMセル50−1 は上記ワード線WLm0に接続され、他方のRAMセル50−2 は上記ワード線WLm1に接続されている。同様に同一列に配置された2個のRAMセル50−3 、50−4 の一方のRAMセル50−3 は上記ワード線WL(m+1)0に接続され、他方のRAMセル50−4 は上記ワード線WL(m+1)1に接続されている。すなわち、同一列で互いに隣り合う2個のRAMセルについては2本のワード線のうちのそれぞれ異なるワード線が接続される。
【0024】
また、上記4個のRAMセル50−1 〜50−4 のうち、同一行に配置された2個のRAMセル50−1 、50−3 は上記ビット線BL(n−1) とBLn に接続されている。さらに、同一行に配置された2個のRAMセル50−2 、50−4 は上記ビット線BLn とBL(n+1) に接続されている。すなわち、各RAMセルにはそれぞれ2本のビット線が接続されるが、同一列で互いに隣り合う2個のRAMセルに関してはその2本のうち1本のビット線は共通にされている。
【0025】
さらに、各プログラマブル論理回路セル毎に、論理回路としてCMOS型の2入力NANDゲート回路11が設けられている。そして、このNANDゲート回路11の一方の入力ノード12と上記配線Aとの間には、上記RAMセル50−1 の一方の記憶データであるインバータI1 の出力がゲートに供給されるNチャネルMOSトランジスタ13のソース、ドレイン間が挿入されている。上記入力ノード12と上記配線Bとの間には、上記RAMセル50−1 の他方の記憶データであるインバータI2 の出力がゲートに供給されるNチャネルMOSトランジスタ14のソース、ドレイン間が挿入されている。上記NANDゲート回路11の他方の入力ノード15と上記配線Cとの間には、上記RAMセル50−3 の一方の記憶データであるインバータI1 の出力がゲートに供給されるNチャネルMOSトランジスタ16のソース、ドレイン間が挿入されている。上記入力ノード15と上記配線Dとの間には、上記RAMセル50−3 の他方の記憶データであるインバータI2 の出力がゲートに供給されるNチャネルMOSトランジスタ17のソース、ドレイン間が挿入されている。
【0026】
上記NANDゲート回路11の出力ノード18は上記配線C′に接続されている。上記出力ノード18と上記配線Aとの間には、上記RAMセル50−2 の一方の記憶データであるインバータI1 の出力がゲートに供給されるNチャネルMOSトランジスタ19のソース、ドレイン間が挿入されている。上記出力ノード18と上記配線Dとの間には、上記RAMセル50−4 の一方の記憶データであるインバータI1 の出力がゲートに供給されるNチャネルMOSトランジスタ20のソース、ドレイン間が挿入されている。
【0027】
また、上記NANDゲート回路11の一方の入力ノード12と電源電位(論理1に相当)との間にはPチャネルMOSトランジスタ21のソース、ドレイン間が、他方の入力ノード15と電源電位との間にはPチャネルMOSトランジスタ22のソース、ドレイン間がそれぞれ挿入されており、両MOSトランジスタ21、22のゲートは共にNANDゲート回路11の出力ノード18に接続されている。
【0028】
上記配線のうち、各ワード線はMOSトランジスタのゲート電極と同じ配線、例えば多結晶シリコン配線層を用いて構成され、各ビット線、配線B、B′、Dはそれぞれ第1層目の金属(例えばアルミニウム)配線層を用いて構成され、さらに配線A、C、C′はそれぞれ第2層目の金属(例えばアルミニウム)配線層を用いて構成されている。なお、従来と同様に配線B、B′Dを第2層目の金属配線層で、配線A、C、C′を第1層目の金属配線層で構成してもよい。
【0029】
また、上記RAMセル50−1 〜50−4 は、従来と同様に、前記図7に示すように、ロー・デコーダ51、カラム・デコーダ52、センス回路/書き込み回路53と共に半導体記憶装置を構成している。
【0030】
図2は複数のプログラマブル論理回路セルがマトリクス状態に配置されたプログラマブル論理回路において、ある列で隣接して設けられている4個のRAMセル50−(n−1) 、50−n 、50−(n+1) 、50−(n+2) を抜き出して示している。また、図3は、図1のプログラマブル論理回路セルから論理回路を抜き出して示している。
【0031】
さらに、図4は上記図1の回路を集積化した場合に1対のワード線WLm0、WLm1に接続され、互いに隣接した2個のRAMセルの一部の構成を示すパターン平面図である。図中、太い実線で示した部分は前記トランスファゲート用のNチャネルMOSトランジスタN1 、N2 のソース、ドレイン領域となる拡散領域71である。また、前記ビット線BLn 、BL(n+1) 、…及び配線B、B′、Dは第1層目のアルミニウム配線層を用いて構成されており、ワード線WLm0、WLm1、…はそれぞれ図中、小丸を付した第2層目のアルミニウム配線層を用いて構成されている。また、図中、前記トランスファゲート用のNチャネルMOSトランジスタN1 、N2 のゲート電極72は、図中、左下がりの斜線を付した多結晶シリコン配線層を用いて構成されている。そして、ビット線BLn 、BL(n+1) 、…は、図中、右下がりの破線による斜線を付したコンタクト73を介して上記各拡散領域71に接続されている。また、ワード線WLm0、WLm1、…と各ゲート電極72との相互接続は、第2層目のアルミニウム配線層からなるワード線と第1層目のアルミニウム配線層とをビア・コンタクト74を介して接続し、さらに第1層目のアルミニウム配線層と多結晶シリコン配線層からなるゲート電極72とをコンタクト75を介して接続することにより行われる。なお、図中の回路部分とはこの場合もプログラマブル論理回路セルの他の部分が形成される領域を示している。
【0032】
次に上記のように構成されたプログラマブル論理回路の動作を説明する。まず、各RAMセルに対するデータの書き込み動作及び各RAMセルからの読み出し動作は次のようにして行われる。
【0033】
すなわち、図2において、RAMセルの各列毎に2本ずつ設けられている2本のワード線WLm0、WLm1のうち例えばWLm0を論理1にする。このとき、このワード線WLm0で選択されるRAMセル50−(n−1) 、50−(n+1) に接続されているそれぞれ各2本のビット線BL(n−2) とBL(n−1) 、BLn とBL(n+1) が前記カラム・デコーダ52で選ばれ、読み出しみ時であれば、RAMセル50−(n−1) 、50−(n+1) のデータがビット線BL(n−2) とBL(n−1) 、BLn とBL(n+1) を通じて読み出しされ、書き込み時であれば、同じビット線を介して各データがRAMセル50−(n−1) 、50−(n+1) に書き込まれる。
【0034】
次に2本のワード線WLm0、WLm1のうちWLm1を論理1にする。このとき、このワード線WLm1で選択されるRAMセル50−n 、50−(n+2) に接続されているそれぞれ各2本のビット線BL(n−1) とBLn 、BL(n+1) とBL(n+2) が前記カラム・デコーダ52で選ばれ、読み出しみ時であれば、これらRAMセル50−n 、50−(n−2) のデータが対応するビット線BL(n−1) とBLn 、BL(n+1) とBL(n+2) それぞれを通じて読み出しされ、書き込み時であれば、同じビット線を介して各データがRAMセルに書き込まれる。なお、2本のワード線WLm0、WLm1のうちどちらを先に論理1に設定してもよい。
【0035】
このようにすると、RAMセル1個当たりのビット線の本数は実質的に1本となり、従来の2本のビット線を個別に持つRAMセルとほぼ同じ面積で、図中の縦方向に延長された配線を1本余分に設けることができる。この余分に設ける配線として前記の配線B、B′もしくは配線Dのいずれかとすれば、図4のパターンにおける横方向の寸法を、前記図10に示す従来例の場合よりも配線1本分だけ短くすることができる。また、図10中の縦方向では2本のワード線を通しても1個のセルの寸法は従来と変わらない。このため、多数のセルを集積化する際にチップ面積の増大を防止することができると共に歩留り良く製造をすることができる。
【0036】
次に、各RAMセルに対するデータの書き込み後に、RAMセルの記憶データによって論理回路を制御する際の動作を説明する。いま、例えば図1の回路セルにおいて、RAMセル50−1 、50−3 でそれぞれ一方の記憶データであるインバータI1 の出力が論理1、RAMセル50−2 、50−4 でそれぞれ一方の記憶データであるインバータI1 の出力が論理0となるようにデータが記憶されているといる。このとき、図3においてMOSトランジスタ13、16がそれぞれオンし、MOSトランジスタ14、17がそれぞれオフするため、配線AとCの信号がNANDゲート回路11に供給され、このNANDゲート回路11の出力が配線C′を介して隣接するプログラマブル論理回路セルに供給される。
【0037】
また、RAMセル50−1 、50−3 でそれぞれ他方の記憶データであるインバータI2 の出力が論理1、RAMセル50−2 、50−4 でそれぞれ一方の記憶データであるインバータI1 の出力が論理0となるようにデータが記憶されている場合には、図3においてMOSトランジスタ14、17がそれぞれオンし、MOSトランジスタ13、16がそれぞれオフするため、配線BとDの信号がNANDゲート回路11に供給され、このNANDゲート回路11の出力が配線C′を介して隣接するプログラマブル論理回路セルに供給される。
【0038】
このようにして各RAMセルの記憶データに応じてNANDゲート回路11に対する入力と出力が変更され、プログラマブル論理回路全体で所望の機能が得られるように回路設定することができる。
【0039】
ところで、前記図9に示す従来回路では、本発明の図3の回路中のPチャネルMOSトランジスタ21、22に相当するものは設けられていない。図9中の各NチャネルMOSトランジスタ62、63、64、65は配線A、B、C、Dに伝達される信号を選択してNANDゲート回路61に供給する。そして論理1の信号が通過するとき、この信号電位がNチャネルMOSトランジスタのバックゲート・バイアス効果により低下することが知られている。電位が下がったとしても論理的には1であるため、NANDゲート回路61には所定の出力が得られる。しかし、CMOS型のNANDゲート回路61を構成するPチャネル及びNチャネルのMOSトランジスタのゲートには電源電位よりも低下した信号電位が供給されるので、完全にオフ状態となるべきはずのPチャネルMOSトランジスタに電流が流れる場合がある。このとき、NチャネルのMOSトランジスタはオン状態なので、電源と接地との間に貫通電流が流れ、消費電流が非常に大きなものとなる。
【0040】
この発明による図3の回路では、NANDゲート回路11の入力ノード12、15と電源電位との間にPチャネルMOSトランジスタ21、22が挿入されており、そのゲートにはNANDゲート回路11の出力ノード18の信号が供給されている。いま、例えばNチャネルMOSトランジスタ13を介してNANDゲート回路11の一方の入力ノード12に電源電位よりも低下した論理1の信号電位が供給されたとする。このとき、NANDゲート回路11の出力ノード18の信号は論理は0となり、この信号がゲートに入力するPチャネルMOSトランジスタ21はオン状態になり、NANDゲート回路11の一方の入力ノード12の信号電位は電源電位まで持ち上げられる。従って、従来のようなNANDゲート回路における貫通電流は発生せず、従来に比べて消費電流を削減することができる。
【0041】
なお、この発明は上記実施例に限定されるものではなく、種々の変形が可能であることはいうまでもない。例えば、上記実施例では1本のビット線を2個のRAMセルで共有する場合について説明したが、さらに3個以上のRAMセルで1本のビット線を共有させるようにしてもよい。
【0042】
さらにこの発明は1個のRAMセルに複数のビット線対を持つ記憶装置、例えばデュアル・ポートRAM等の半導体記憶装置にも実施が可能であることはいうまでもない。また、その他、連想メモリ、マイクロコンピュータに内蔵されるレジスタ回路等の記憶装置、さらにはロジック回路を含まないRAMセルマトリクスそのものにも実施することができる。
【0043】
【発明の効果】
以上説明したようにこの発明によれば、従来に比べて1セル当りのサイズを縮小でき、これによりチップ面積の増大を防止することができると共に歩留まり良く製造できる論理回路を提供することができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係るプログラマブル論理回路で使用されるプログラマブル論理回路セル1個分の構成を示す回路図。
【図2】上記実施例のプログラマブル論理回路においてある列で隣接して設けられている複数のRAMセルを抜き出して示す図。
【図3】図1のプログラマブル論理回路セルから論理回路を抜き出して示す図。
【図4】図1のプログラマブル論理回路を集積化した際の一部のパターン平面図。
【図5】ランダム・アクセス・メモリセル(RAMセル)の回路図。
【図6】図5のランダム・アクセス・メモリセルの一部を具体化して示す回路図。
【図7】図5のRAMセルを多数マトリクス状に配置して構成される半導体記憶装置のブロック図。
【図8】従来のプログラマブル論理回路セルの回路図。
【図9】図8の回路から一部を抜き出して示す図。
【図10】図8のプログラマブル論理回路を集積化した際の一部のパターン平面図。
【符号の説明】
50−1 〜50−4 ,50−(n−1) ,50−n ,50−(n+1) ,50−(n+2) …RAMセル、WLm0,WLm1,WL(m+1)0,WL(m+1)1…ワード線、A,B,B′,C,C′,D…配線、BL(n−2) ,BL(n−1) ,BLn ,BL(n+1) ,BL(n+2) …ビット線、11…2入力NANDゲート回路、13,14,16,17,19,20…NチャネルMOSトランジスタ、21,22…PチャネルMOSトランジスタ。
Claims (3)
- それぞれ相補な一対のデータを記憶する第1乃至第4の記憶回路セルを含む行列状に配置された複数の記憶回路セルと、
上記複数の記憶回路セルをアクセスするための信号が伝達される複数の信号線からなる記憶回路アクセス線と、
上記複数の記憶回路セルに対する書き込みデータ及び各記憶回路セルからの読み出しデータが伝達される複数の信号線からなるデータ線と、
第1乃至第5の配線と、
第1、第2の入力ノード及び出力ノードを有し、出力ノードが上記第5の配線に接続された論理ゲート回路と、
ソース、ドレイン間が上記第1の配線と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記第1の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第1のNチャネルMOSトランジスタと、
ソース、ドレイン間が上記第2の配線と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記第1の記憶回路セルに記憶された相補な一対のデータの他方がゲートに供給される第2のNチャネルMOSトランジスタと、
ソース、ドレイン間が上記第3の配線と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記第2の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第3のNチャネルMOSトランジスタと、
ソース、ドレイン間が上記第4の配線と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記第2の記憶回路セルに記憶された相補な一対のデータの他方がゲートに供給される第4のNチャネルMOSトランジスタと、
ソース、ドレイン間が上記第1の配線と上記第5の配線との間に挿入され、上記第3の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第5のNチャネルMOSトランジスタと、
ソース、ドレイン間が上記第4の配線と上記第5の配線との間に挿入され、上記第4の記憶回路セルに記憶された相補な一対のデータの一方がゲートに供給される第6のNチャネルMOSトランジスタと、
ソース、ドレイン間が電源電位と上記論理ゲート回路の第1の入力ノードとの間に挿入され、上記論理ゲート回路の出力ノードの信号がゲートに供給される第1のPチャネルMOSトランジスタと、
ソース、ドレイン間が電源電位と上記論理ゲート回路の第2の入力ノードとの間に挿入され、上記論理ゲート回路の出力ノードの信号がゲートに供給される第2のPチャネルMOSトランジスタと
を具備したことを特徴とする論理回路。 - 前記複数の記憶回路セルのうち、行方向で互いに隣り合う2つの記憶回路セルについては異なる前記記憶回路アクセス線が接続される請求項1記載の論理回路。
- 前記複数の記憶回路セルのうち、列方向で互いに隣り合う2つの記憶回路セルについては同一の前記データ線が接続される請求項1記載の論理回路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15337893A JP3579068B2 (ja) | 1993-06-24 | 1993-06-24 | 論理回路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15337893A JP3579068B2 (ja) | 1993-06-24 | 1993-06-24 | 論理回路 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0730075A JPH0730075A (ja) | 1995-01-31 |
JP3579068B2 true JP3579068B2 (ja) | 2004-10-20 |
Family
ID=15561161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15337893A Expired - Fee Related JP3579068B2 (ja) | 1993-06-24 | 1993-06-24 | 論理回路 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3579068B2 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100474996B1 (ko) * | 1997-08-26 | 2005-06-07 | 삼성전자주식회사 | 인터페이스 디자인 방법 |
JP2005197345A (ja) * | 2004-01-05 | 2005-07-21 | Hitachi Ltd | 半導体装置 |
KR102257058B1 (ko) * | 2013-06-21 | 2021-05-26 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
-
1993
- 1993-06-24 JP JP15337893A patent/JP3579068B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0730075A (ja) | 1995-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5280441A (en) | Semiconductor memory device | |
US5554874A (en) | Six-transistor cell with wide bit-line pitch, double words lines, and bit-line contact shared among four cells | |
US4791607A (en) | Gate array integrated circuit device and method thereof for providing various bit/word constructions | |
US20070025174A1 (en) | Dual port semiconductor memory device | |
US7532536B2 (en) | Semiconductor memory device | |
US4951259A (en) | Semiconductor memory device with first and second word line drivers | |
JP2002184870A (ja) | スタティック型半導体記憶装置 | |
US6795368B2 (en) | Semiconductor integrated circuit device | |
US4779231A (en) | Gate array arrangement in complementary metal-oxide-semiconductor technology | |
US8107278B2 (en) | Semiconductor storage device | |
US6556468B2 (en) | High bit density, high speed, via and metal programmable read only memory core cell architecture | |
JPH01294295A (ja) | パーシャル・ランダム・アクセス・メモリ | |
JP3579068B2 (ja) | 論理回路 | |
US5274594A (en) | Static RAM | |
US8102727B2 (en) | Semiconductor memory device | |
US6486519B2 (en) | Semiconductor memory device with reduce coupling capacitance | |
JP3732111B2 (ja) | 半導体装置 | |
US8243500B2 (en) | Semiconductor memory and system | |
JP3722307B2 (ja) | 半導体集積回路 | |
US20050259500A1 (en) | Semiconductor memory device and semiconductor device | |
JP2871962B2 (ja) | 半導体記憶回路装置 | |
KR100546297B1 (ko) | 반도체 집적회로 | |
JPH04238191A (ja) | 半導体記憶装置 | |
KR950001125B1 (ko) | 반도체 기억장치 | |
JPS62146483A (ja) | 半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040713 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040715 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |