JP3577174B2 - Battery charger - Google Patents
Battery charger Download PDFInfo
- Publication number
- JP3577174B2 JP3577174B2 JP24265096A JP24265096A JP3577174B2 JP 3577174 B2 JP3577174 B2 JP 3577174B2 JP 24265096 A JP24265096 A JP 24265096A JP 24265096 A JP24265096 A JP 24265096A JP 3577174 B2 JP3577174 B2 JP 3577174B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- acg
- thyristor
- group
- phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Charge By Means Of Generators (AREA)
- Control Of Eletrric Generators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、二輪車等の、永久磁石式三相交流発電機を使用したバッテリ充電装置に関する。
【0002】
【従来の技術】
従来の、二輪車用バッテリ充電システムは、永久磁石式三相交流発電機を使用した、サイリスタショ−ト式のReg/Recが主流であり、その回路構成は図1のようになっている。
【0003】
バッテリ充電時は、永久磁石式三相交流発電機(以下ACGと言う)の電流は、ダイオ−ドD1〜D6で整流され、バッテリ(B)に充電される。
【0004】
やがて、バッテリが満充電になると、コントロラCがバッテリ電圧を検出して、ダイオ−ドD4〜D6のそれぞれと逆並列に設けた第2のサイリスタ群T4〜T6をオンして、ACGを短絡して充電を制御する。すなわち、ACGの各相は、U相−T4−T5−V相、V相−T5−D6−W相、W相−T6−D4−U相のル−トで短絡される。このように、ACGを短絡し充電を制御する為、熱ロスとなり、システムとしての効率が非常に悪くなる等の問題があった。
【0005】
また、充電器として、図2に示すように制御整流器付三相全波整流方式の充電器がある。これは、三相サイリスタオ−プン式Reg/Recであり、前述の無制御整流器方式の欠点を解消したものである。
【0006】
すなわち、バッテリ充電時は、サイリスタT1〜T3を位相制御してバッテリBへ充電を行う。
【0007】
そして、バッテリBが満充電になると、バッテリ電圧を検出してコントロ−ラCONTが、サイリスタT1〜T3をOFFして充電量を制御する。
【0008】
この場合、サイリスタT1〜T3がOFFするために、発電機ACGは無負荷となり、ACG出力電圧が上昇する。そして、エンジン回転数の上昇と共に、ACG出力電圧及び周波数が上昇し、結果的に発電機の鉄損が激増し、バッテリ充電装置の効率を悪くしてしまう。
【0009】
【発明が解決しようとする課題】
上述の様にいずれの従来技術も、バッテリ満充電時に、ACG出力をショ−トする場合も、オ−プンにする場合も、効率を悪くするという点においては同じように欠点がある。しかし、エンジン回転数によって、ショ−トする場合とオ−プンにする場合とで、ACGの損失の大きさに差異がある。
【0010】
そこで、本発明はこの点に着目してなされたものである。図3は、エンジン回転数と発電機損失との関係を示す特性図である。特性カ−ブAは、図1に示すような回路でACG出力をショ−トした場合、特性カ−ブBは、図2に示すような回路でACG出力をオ−プンにした場合の特性である。
【0011】
図3のカ−ブから解るように、エンジン回転数がNexより低回転ではオ−プン式、Nexより高回転ではショ−ト式の方が発電機損失が少ないことがわかる。本発明は、この両者の特性をうまく利用して実現したものである。
【0012】
【課題を解決するための手段】
本発明は、永久磁石式三相交流発電機(ACG)を入力とし、制御整流器付三相全波整流回路で整流された直流電圧によりバッテリ(B)を充電するバッテリ充電装置において、前記制御整流器付三相全波整流回路は、第一のサイリスタ群(T1、T2、T3)とダイオ−ド群(D4、D5、D6)によって構成され、かつ前記ダイオ−ド群の各々のダイオ−ド(D4、D5、D6)には、第二のサイリスタ群(T4、T5、T6)がそれぞれ逆並列に接続され、前記バッテリが所定の電圧に到達するまで前は、第一のサイリスタ群(T1、T2、T3)がON、第2のサイリスタ群(T4、T5、T6)がOFFしてバッテリを充電し、前記発電機が所定の回転数に到達しバッテリ(B)が満充電後は、第一のサイリスタ群(T1、T2、T3)がOFFして、第2のサイリスタ群(T4、T5、T6)がONすることを特徴とするバッテリ充電装置である。
【0013】
このようにして、エンジン回転数が一定値以下ではACG出力をオ−プンにし、一定値以上になったときACG出力をショ−トするような回路構成にすれば、発電機損失を低く押えることができ、結果的にバッテリ充電装置の効率を上げることができる。
【0014】
【実施の形態】
図4は、本発明の二輪車用バッテリ充電システムで、永久磁石式三相交流発電機を使用した、サイリスタショ−ト/オ−プン式のReg/Recである。
【0015】
永久磁石式三相交流発電機ACGを入力とし、第一のサイリスタ群T1〜T3及びダイオ−ド群D4〜D6で制御整流器付三相全波整流回路を構成し、ダイオ−ド群D4〜D6の各々に第二のサイリスタ群T4〜T6をそれぞれ逆並列に接続する。そして、制御整流器付三相全波整流回路の出力をバッテリBに接続する。
【0016】
又、コントロ−ラCONTは、出力電圧や永久磁石式三相交流発電機ACGの回転数を検出して、それぞれのサイリスタにゲ−ト信号を与え、又は停止するように構成されている。
【0017】
さらに、バッテリ充電装置を構成する部品、例えば、永久磁石式三相交流発電機ACGやバッテリBあるいは、整流回路を構成するダイオ−ドやサイリスタ等の温度を検出して、第2のサイリスタ群にゲ−ト信号を送出するように構成されている。
【0018】
このような回路構成において、バッテリ充電時にはサイリスタT1〜T3にゲ−ト信号を与え、バッテリBが満充電になった後、エンジン回転数がNexより低いとき、例えば、4000〜5000rpm以下の時は、第1のサイリスタ群T1〜T3のゲ−ト信号を止めてACG出力をオ−プンにする。AC80〜100V以下の時は、第1のサイリスタ群T1〜T3のゲ−ト信号を止めてACG出力をオ−プンにする。
【0019】
また、満充電時に、ACGの出力電圧が高いとき、例えば、AC80〜100V以上のときは、第B 2のサイリスタ群T4〜T6にゲ−ト信号を与え、ACG出力をショ−トする。
【0020】
このようにすることによって、エンジン回転数が低い時から高い時まで、発電機損失を比較的低く押えることができ、常に、バッテリ充電装置の効率が高い状態で運転することができる。
【0021】
又、満充電時にACGやバッテリBあるいは、ダイオード、サイリスタ等の温度を検出して、これらの部品の少なくとも一つが温度上昇した時に、第2のサイリスタ郡T4〜T6にゲート信号を送出して、ACG出力を短絡するようにしても良い。
【0022】
同様に、バッテリBが満充電になった後、ACGの出力電圧が高いとき、例えば、AC80〜100V以上のときは、第B 2のサイリスタ群T4〜T6にゲ−ト信号を与え、ACG出力を短絡するようにしても良い。
【0023】
又、ACGの回転加速度が正の値で一定値以上になったとき、第2のサイリスタ群T4〜T6にゲ−ト信号を送出してACG出力を短絡するようにしても良い。このようにすることによって、ACGの鉄損を減らすことができ、又、ACGの出力電圧の異常な上昇を押える事もできる。
【0024】
【発明の効果】
本発明は、このようにすることによって、エンジン回転数が低い時から高い時まで、発電機損失を比較的低く押えることができ、常に、バッテリ充電装置の効率が高い状態で運転することができる二輪車用バッテリ充電装置を実現することが出来るものである。
【図面の簡単な説明】
【図1】従来の、二輪車用バッテリ充電装置の一実施例回路図(ACGショ−ト方式)。
【図2】従来の、二輪車用バッテリ充電装置の他の実施例回路図(ACGオ−プン方式)
【図3】ACGのエンジン回転数と発電機損失の特性曲線。
【図4】本発明の、二輪車用バッテリ充電装置の一実施例回路図(ACGショ−ト/オ−プン方式)。
【符号の説明】
ACG 永久磁石式三相交流発電機
D1〜D6 ダイオ−ド
T1〜T3 第1のサイリスタ群
T4〜T6 第2のサイリスタ群
CONT コントロ−ラ
B バッテリ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery charging device using a permanent magnet type three-phase AC generator, such as a motorcycle.
[0002]
[Prior art]
2. Description of the Related Art In a conventional battery charging system for a motorcycle, a thyristor-type Reg / Rec using a permanent magnet type three-phase AC generator is mainly used, and its circuit configuration is as shown in FIG.
[0003]
During charging of the battery, the current of the permanent magnet type three-phase alternating current generator (hereinafter referred to as ACG) is rectified by the diodes D1 to D6 and charged to the battery (B).
[0004]
Eventually, when the battery is fully charged, controller C detects the battery voltage, turns on second thyristor groups T4 to T6 provided in antiparallel with diodes D4 to D6, and shorts ACG. To control charging. That is, each phase of the ACG is short-circuited by the route of the U phase-T4-T5-V phase, the V phase-T5-D6-W phase, and the W phase-T6-D4-U phase. As described above, since the charging is controlled by short-circuiting the ACG, there is a problem that heat loss occurs and the efficiency of the system becomes extremely poor.
[0005]
As a charger, there is a three-phase full-wave rectifier charger with a control rectifier as shown in FIG. This is a three-phase thyristor open-type Reg / Rec, which eliminates the above-mentioned disadvantages of the uncontrolled rectifier system.
[0006]
That is, when charging the battery, the thyristors T1 to T3 are phase-controlled to charge the battery B.
[0007]
When the battery B is fully charged, the controller CONT detects the battery voltage and turns off the thyristors T1 to T3 to control the charge amount.
[0008]
In this case, since the thyristors T1 to T3 are turned off, the generator ACG becomes unloaded, and the ACG output voltage increases. Then, as the engine speed increases, the ACG output voltage and the frequency increase, and as a result, the core loss of the generator increases drastically, and the efficiency of the battery charger deteriorates.
[0009]
[Problems to be solved by the invention]
As described above, any of the prior arts has the same drawback in that the efficiency is deteriorated when the ACG output is shorted or opened when the battery is fully charged. However, there is a difference in the magnitude of the ACG loss between the case of short-circuit and the case of open-circuit depending on the engine speed.
[0010]
Therefore, the present invention has been made by paying attention to this point. FIG. 3 is a characteristic diagram showing a relationship between the engine speed and the generator loss. The characteristic curve A is the characteristic when the ACG output is shorted by the circuit as shown in FIG. 1, and the characteristic curve B is the characteristic when the ACG output is open by the circuit as shown in FIG. It is.
[0011]
As can be seen from the curve in FIG. 3, the generator loss is smaller in the open type when the engine speed is lower than Nex and in the short type when the engine speed is higher than Nex. The present invention has been realized by making good use of these two characteristics.
[0012]
[Means for Solving the Problems]
The present invention relates to a battery charger for charging a battery (B) with a DC voltage rectified by a three-phase full-wave rectifier circuit with a control rectifier, using a permanent magnet type three-phase alternating current generator (ACG) as an input. The attached three-phase full-wave rectifier circuit is composed of a first thyristor group (T1, T2, T3) and a diode group (D4, D5, D6), and each of the diodes (D1, D2, D3) of the diode group D4, D5, D6) are connected to the second thyristor group (T4, T5, T6) in anti-parallel, respectively, and before the battery reaches a predetermined voltage, the first thyristor group (T1, T1, T2, T3) are turned on, and the second thyristor group (T4, T5, T6) is turned off to charge the battery. After the generator reaches a predetermined rotation speed and the battery (B) is fully charged, One thyristor group (T1, T2, T3) turns off and the second Thyristors group (T4, T5, T6) is a battery charging device, wherein a turned ON.
[0013]
In this way, if the circuit configuration is such that the ACG output is opened when the engine speed is lower than the predetermined value and the ACG output is shorted when the engine speed is higher than the predetermined value, the generator loss can be kept low. As a result, the efficiency of the battery charger can be increased.
[0014]
Embodiment
FIG. 4 shows a thyristor-shot / open-type Reg / Rec using a permanent magnet type three-phase AC generator in the battery charging system for a motorcycle according to the present invention.
[0015]
A three-phase full-wave rectifier circuit with a control rectifier is constituted by a first thyristor group T1 to T3 and diode groups D4 to D6 with a permanent magnet type three-phase AC generator ACG as an input, and diode groups D4 to D6. Are connected in reverse parallel to the second thyristor groups T4 to T6, respectively. Then, the output of the three-phase full-wave rectifier circuit with the control rectifier is connected to the battery B.
[0016]
The controller CONT is configured to detect the output voltage and the rotation speed of the permanent magnet type three-phase AC generator ACG, and to supply a gate signal to each thyristor or stop the thyristor.
[0017]
Further, the temperature of the components constituting the battery charger, for example, the permanent magnet type three-phase AC generator ACG or the battery B, or the temperature of the diode or thyristor constituting the rectifier circuit is detected, and the second thyristor group is detected. It is configured to transmit a gate signal.
[0018]
In such a circuit configuration, when the battery is charged, a gate signal is supplied to the thyristors T1 to T3, and when the engine speed is lower than Nex after the battery B is fully charged, for example, when the engine speed is 4000 to 5000 rpm or less. Then, the gate signals of the first thyristor groups T1 to T3 are stopped to open the ACG output. When the voltage is 80 to 100 V or less, the gate signals of the first thyristor groups T1 to T3 are stopped and the ACG output is opened.
[0019]
When the output voltage of the ACG is high at full charge, for example, when the output voltage is 80 to 100 V or more, a gate signal is supplied to the B2 th thyristors T4 to T6 to short the ACG output.
[0020]
By doing so, the generator loss can be kept relatively low from when the engine speed is low to when it is high, and the battery charger can always be operated with high efficiency.
[0021]
Further, when the temperature of the ACG, the battery B, the diode, the thyristor, etc. is detected at the time of full charge, and when at least one of these components rises in temperature , a gate signal is sent to the second thyristor group T4 to T6 , The ACG output may be short-circuited.
[0022]
Similarly, when the output voltage of the ACG is high after the battery B is fully charged, for example, when the output voltage is 80 to 100 V or more, a gate signal is supplied to the B2 thyristor group T4 to T6, and the ACG output May be short-circuited.
[0023]
Further, when the rotational acceleration of the ACG becomes a positive value and becomes a certain value or more, a gate signal may be sent to the second thyristor groups T4 to T6 to short-circuit the ACG output. By doing so, the iron loss of the ACG can be reduced, and an abnormal increase in the output voltage of the ACG can be suppressed.
[0024]
【The invention's effect】
By doing so, the present invention can keep the generator loss relatively low from low to high engine speeds, and can always operate the battery charger with high efficiency. It is possible to realize a battery charger for a motorcycle.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an example of a conventional battery charger for a motorcycle (ACG short system).
FIG. 2 is a circuit diagram of another conventional battery charger for a motorcycle (ACG open system).
FIG. 3 is a characteristic curve of ACG engine speed and generator loss.
FIG. 4 is a circuit diagram of an embodiment of a battery charger for a motorcycle according to the present invention (ACG short / open system).
[Explanation of symbols]
ACG Permanent magnet type three-phase AC generator D1 to D6 Diodes T1 to T3 First thyristor group T4 to T6 Second thyristor group CONT Controller B Battery
Claims (1)
整流回路で整流された直流電圧によりバッテリ(B)を充電するバッテリ充電装置において、前記制御整流器付三相全波整流回路は、第一のサイリスタ群(T1、T2、T3)とダイオ−ド群(D4、D5、D6)によって構成され、かつ前記ダイオ−ド群の各々のダイオ−ド(D4、D5、D6)には、第二のサイリスタ群(T4、T5、T6)がそれぞれ逆並列に接続され、前記バッテリが所定の電圧に到達するまで前は、第一のサイリスタ群(T1、T2、T3)がON、第2のサイリスタ群(T4、T5、T6)がOFFしてバッテリ(B)を充電し、前記発電機が所定の回転数に到達しバッテリ(B)が満充電後は、第一のサイリスタ群(T1、T2、T3)がOFFして、第2のサイリスタ群(T4、T5、T6)がONすることを特徴とするバッテリ充電装置。In a battery charging apparatus which receives a permanent magnet type three-phase alternating current generator (ACG) as input and charges a battery (B) with a DC voltage rectified by a three-phase full-wave rectifier circuit with a control rectifier, The wave rectifier circuit includes a first thyristor group (T1, T2, T3) and a diode group (D4, D5, D6), and each diode (D4, D5, D5, D6), the second thyristor group (T4, T5, T6) is connected in anti-parallel, respectively, and before the battery reaches a predetermined voltage, the first thyristor group (T1, T2, T3). Is turned on, the second thyristor group (T4, T5, T6) is turned off to charge the battery (B), and after the generator reaches a predetermined rotation speed and the battery (B) is fully charged, the first Thyristors (T1, T2, T3) are turned off and the second Lister group (T4, T5, T6) battery charging apparatus, wherein a turned ON.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24265096A JP3577174B2 (en) | 1996-08-26 | 1996-08-26 | Battery charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24265096A JP3577174B2 (en) | 1996-08-26 | 1996-08-26 | Battery charger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1070851A JPH1070851A (en) | 1998-03-10 |
JP3577174B2 true JP3577174B2 (en) | 2004-10-13 |
Family
ID=17092207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24265096A Expired - Fee Related JP3577174B2 (en) | 1996-08-26 | 1996-08-26 | Battery charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3577174B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005160129A (en) * | 2003-11-20 | 2005-06-16 | Kokusan Denki Co Ltd | Battery charge controller |
JP5032357B2 (en) | 2008-02-06 | 2012-09-26 | 新電元工業株式会社 | Battery charging circuit |
-
1996
- 1996-08-26 JP JP24265096A patent/JP3577174B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1070851A (en) | 1998-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6771040B2 (en) | Control apparatus and control method of on-vehicle dynamo-electric machine | |
US20090184681A1 (en) | Electrically Powered Vehicle | |
JPH05252747A (en) | Voltage regulator | |
US10020765B2 (en) | Excitation device of AC exciter | |
JPS5840918B2 (en) | Electric motor operation control device | |
US5691625A (en) | Using sensed stator terminal voltages for determining alternator rotor position for cranking an engine | |
TWI404327B (en) | Voltage regulator for magnetogenerators with configurable connection of the phase windings | |
JPH0947055A (en) | Electric vehicle electrical system | |
US6628105B1 (en) | Operation of switched reluctance drive systems from dual voltage sources | |
WO2020037840A1 (en) | Hybrid vehicle transmission system | |
JP4097361B2 (en) | Battery charger | |
JP3577174B2 (en) | Battery charger | |
JP6795268B1 (en) | AC rotating machine control device | |
KR830001604B1 (en) | Slip recovery system of wound induction motor | |
JPH0161026B2 (en) | ||
JPS6055900A (en) | Dc generating apparatus | |
JP3681050B2 (en) | Power supply using a magnet generator | |
CN201113872Y (en) | Switch reluctance motor per phase winding coil grouping drive apparatus | |
JP2004509600A (en) | Apparatus with an alternator for producing various output voltages and method for producing various output voltages with the alternator | |
US7276882B2 (en) | Regulator control circuit and method | |
CN104767466A (en) | A starter generator system with automatic switching of windings | |
JPH0337000A (en) | Generation controller | |
CN104953912B (en) | Frequency conversion speed regulation system of electric propulsion ship based on matrix converter | |
US6906480B2 (en) | Regulator control circuit and method | |
JPS6011725Y2 (en) | AC generator voltage control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040602 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040709 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |