[go: up one dir, main page]

JP3572353B2 - Composite disinfectant and disinfection method - Google Patents

Composite disinfectant and disinfection method Download PDF

Info

Publication number
JP3572353B2
JP3572353B2 JP2000289498A JP2000289498A JP3572353B2 JP 3572353 B2 JP3572353 B2 JP 3572353B2 JP 2000289498 A JP2000289498 A JP 2000289498A JP 2000289498 A JP2000289498 A JP 2000289498A JP 3572353 B2 JP3572353 B2 JP 3572353B2
Authority
JP
Japan
Prior art keywords
silver
precursor
composite
water
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000289498A
Other languages
Japanese (ja)
Other versions
JP2002104909A (en
Inventor
嘉郎 小野寺
利夫 佐藤
俊二 砂山
武雄 蛯名
レイン イン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000289498A priority Critical patent/JP3572353B2/en
Publication of JP2002104909A publication Critical patent/JP2002104909A/en
Application granted granted Critical
Publication of JP3572353B2 publication Critical patent/JP3572353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飲料用水や生活用水などの水の殺菌処理並びに呼気や病室等の菌の存在する含水気体の殺菌処理に使用される殺菌剤に関するものであり、特に多孔性無機物担体−リン酸銀(Ag PO /Ag )複合体を殺菌剤の有効成分とし、水中の細菌を簡単にしかも安全に殺菌処理することが可能な殺菌剤とそれを用いた殺菌処理方法に関するものである。
尚、本明細書において「又は」を「/」で表すことがある。
【0002】
【従来の技術】
水の殺菌法は、飲料水や生活用水の確保のため、古くから欠くことのできない技術である。最近では、食品や医薬品の製造からLSIの製造に至るまで、高度に殺菌された水が必要とされ、広範囲な工業的分野においても、製造工程上重要な技術の一つとなりつつある。現在、その方法として、生活用水などの確保には、飲料水の塩素殺菌に代表されるような化学的殺菌法が主流であり、また、工業分野では、加熱や紫外線による物理的殺菌法が主流となっている。また、病人の呼気や病室等の菌の存在する含水気体においても同様に物理的殺菌法が主体である。化学的殺菌法が飲料水や生活用水の殺菌法として普及した理由は、殺菌処理の基本操作が薬剤の混入のみであり、操作が簡単でかつコストも低く、大量に必要な飲料水や生活用水の殺菌法として適していたためである。
【0003】
しかし、近年、上水道の殺菌に使用される塩素だけでなく、下水や工場廃水のBOD値達成及び滅菌処理に使用される塩素による上水道源の回帰的汚染が、発ガン性物質であるトリハロメタン類の成長を助長していることが明らかとなり、このような薬剤を用いる化学的殺菌法に代わる疫学的に安全な新しい殺菌法の開発が急務とされている(澤井ら、無機マテリアル、4,156−162(1997))。このため、種々の抗菌性金属をゼオライトのような耐熱性の高い無機担体に担持して調製される無機抗菌・殺菌剤の開発及びそれらの生活、産業分野への応用が注目されている。 種々の抗菌性金属のうち、銀は抗菌スペクトルが広く(岩田、ゼオライト、13(2)、8−15(1996))かつ安全性も比較的高いため(大谷、防菌防黴、24(6)、429−432(1996))、銀を種々の無機担体に担持した抗菌・殺菌剤の開発研究が盛んに行われている(例えば、テイーアイシイー社発行、“抗菌・抗かび性セラミックス(I);(II)、1995;1998)。無機担体として、ゼオライトを始め、各種リン酸塩、酸化チタン、各種層状化合物、ガラス等が用いられている(例えば、テイーアイシイー社発行、“抗菌・抗かび性セラミックス(I);(II)、1995;1998)。
【0004】
しかし、無機担体への銀イオンの直接担持は、多くの場合、担体と銀イオンとの間の親和性があまり大きくないため、担持銀イオンが容易に溶離されて殺菌寿命が短いという欠点があった。 このため、銀を担持する過程で有機処理法を併用して銀の溶出速度を制御した試剤の調製も試みられている(大谷、防菌防黴、20(8)、413−418(1992))。しかし、一般に、このような有機処理法の併用は、処理工程が複雑かつ製造コストが嵩むこと、さらに有機物の導入による試剤の耐熱性の低下等が問題となる。 このため、殺菌寿命が長くかつ殺菌力及び耐熱性に優れた銀担持無機系殺菌剤の簡単かつ製造コストの安い調製方法の開発が望まれていた。
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、簡単でかつ安全な殺菌処理が可能な新しい殺菌剤の提供を目的としている。
また、本発明は、上記殺菌剤による被処理水や含水気体の新しい殺菌処理方法の提供を目的としている。
【0006】
本発明者らは、上記目的を達成するべく鋭意研究を重ねた結果、多孔性無機物担体にオルトリン酸塩溶液あるいはリン酸水素塩溶液/二リン酸塩溶液を含浸後、乾燥させて上記の担体細孔内にオルトリン酸塩あるいはリン酸水素塩/二リン酸塩を析出させて得られる前駆複合体に、さらに銀溶液を含浸させ前駆複合体中のオルトリン酸塩あるいはリン酸水素塩/二リン酸塩の1価陽イオンを銀イオンで置換して得られる難溶性リン酸銀(Ag PO /Ag )を担持した複合体殺菌剤を用い、これらを水や含水気体に接触させることによりそれらの表面特性を利用して、水中の細菌の迅速かつ、完全な殺菌が可能であることを見いだし、本発明を完成させた。
【0007】
【課題を解決するための手段】
即ち、上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)多孔性無機物担体の細孔内に、Ag3 PO4 又はAg427で表されるリン酸銀化合物を合成・担持して得られる高い殺菌性を有する無機・無機複合体からなる複合殺菌剤であって、第一段階として、多孔性無機物担体の細孔内に、一般式M 3 PO 4 で表されるメタリン酸塩(式中のMは1価陽イオンを表し、Na + 、NH 4 + 、K + 等のイオンである)、M n 3-n PO 4 で表されるリン酸水素塩(式中のMは1価陽イオンを表し、Na + 、NH 4 + 、K + 等のイオンである。また、nは1,2,3のいずれかの値をとる)、又は一般式M I 4 2 7 で表される二リン酸塩(式中のMは1価陽イオンを表し、Na + 、H + 、K + 等のイオンである)の溶液を含浸させた後、乾燥して上記のメタリン酸塩、リン酸水素塩、又は二リン酸塩の前駆化合物を晶出させ、これらの前駆化合物と多孔性無機物担体からなる前駆複合体を調製し、次に、第二段階として、先の前駆複合体に硝酸銀等の水溶性銀化合物の溶液を含浸して、前駆化合物中の1価陽イオンを銀イオンで置換した後、乾燥してAg 3 PO 4 、又はAg 4 2 7 で表されるリン酸銀化合物を担持した複合殺菌剤を調製することにより作製されたことを特徴とする複合殺菌剤。
(2)前記(1)記載の複合殺菌剤を製造する方法であって、第一段階として、多孔性無機物担体の細孔内に、メタリン酸塩、リン酸水素塩、二リン酸塩の前駆化合物を晶出させ、これらの前駆化合物と多孔性無機物担体からなる前駆複合体を調製し、次に、第二段階として、先の前駆複合体に水溶性銀化合物の溶液を含浸して、前駆化合物中の1価陽イオンを銀イオンで置換することによりAg3PO4 又はAg427 で表されるリン酸銀化合物を、多孔性無機物担体の細孔内に合成・担持することを特徴とする複合殺菌剤の製造方法。
(3)上記のAg3 PO4 で表されるリン酸銀化合物を合成する際に、一般式M3 PO4で表されるメタリン酸塩(式中のMは1価陽イオンを表し、Na+ 、NH4 + 、K+等のイオンである)あるいはMn3-n PO4 で表されるリン酸水素塩(式中のMは1価陽イオンを表し、Na+、NH4 + 、K+ 等のイオンである。また、nは1,2,3のいずれかの値をとる)を前駆化合物として用いることを特徴とする前記(2)記載の製造方法。
(4)上記のAg427 で表されるリン酸銀化合物を合成する際に、一般式MI 427 で表される二リン酸塩(式中のMは1価陽イオンを表し、Na+、H+ 、K+ 等のイオンである)を前駆化合物として用いることを特徴とする前記(2)記載の製造方法。
(5)多孔性無機物担体に前駆化合物のメタリン酸塩あるいはリン酸水素塩を合成・担持して得られる前駆複合体に、さらに銀塩溶液を含浸し前駆複合体中のメタリン酸塩あるいはリン酸水素塩の1価陽イオンを銀イオンで置換することによりリン酸銀化合物(Ag3PO4 )に変換することを特徴とする前記(2)記載の製造方法。
(6)多孔性無機物担体に前駆化合物の二リン酸塩を合成・担持して得られる前駆複合体に、さらに銀塩溶液を含浸し前駆複合体中の二リン酸塩の1価陽イオンを銀イオンで置換することによりリン酸銀化合物(Ag427 )に変換することを特徴とする前記(2)記載の製造方法。
(7)前記(1)記載の複合殺菌剤に被処理水や含水気体を接触せしめ、該殺菌剤の表面特性によって被処理水や含水気体の殺菌を行うことを特徴とする殺菌処理方法。
【0008】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明の複合殺菌剤は、第一段階として、シリカ等の多孔性無機物担体の細孔内に、一般式M PO で表されるメタリン酸塩(式中のMは1価陽イオンを表し、Na 、NH 、K 等のイオンである)あるいはM3−n PO で表されるリン酸水素塩(式中のMは1価陽イオンを表し、通常、Na 、NH 、K 等のイオンである。また、nは1,2,3のいずれかの値をとる)/一般式M で表される二リン酸塩(式中のMは1価陽イオンを表し、通常、Na 、H 、K 等のイオンである)の溶液を含浸させた後、乾燥して上記のメタリン酸塩あるいはリン酸水素塩/二リン酸塩の前駆化合物を晶出させ、これらの前駆化合物と多孔性無機物担体からなる前駆複合体を調製する。次に、第二段階として、先の前駆複合体に硝酸銀等の水溶性銀化合物の溶液を含浸して、前駆化合物中の1価陽イオンを銀イオンで置換した後、乾燥してリン酸銀化合物(Ag PO /Ag )を担持した複合殺菌剤を調製するものである。
【0009】
多孔性無機物担体としては、上記のシリカの他、アルミナ、シリカ−アルミナ、ガラス、ゼオライト、粘土、活性炭、カーボンブラック、種々の多孔性セラミックス等、が例示されるが、これらに限らず、多孔性でかつある程度の機械的強度を有するものであれば市販品、天然物を問わず用いることが出来る。
【0010】
また、上記の複合殺菌剤は、担体の形状により粒状、膜状、あるいは微粉末状等、種々の形状の成形体に成形可能である。また、微粉末状の物を繊維や紙等の中に分散させて用いることも可能である。
【0011】
本発明の複合殺菌剤を用いて水の殺菌処理を行うには、複合殺菌剤に水を接触させれば良く、水中に殺菌剤を投入し撹拌放置するだけで水の殺菌処理が可能である。また、流水を連続的に殺菌処理する方法としては、複合殺菌剤からなる透水層に被処理水を透過させる方法が好適である。このように、複合殺菌剤を用いた水の殺菌処理は極めて簡単な操作によって実施可能であり、上水、下水の塩素殺菌法の代替として使用可能である他、家庭用浄水器、給水設備や風呂などの細菌付着防止用、空気清浄器や加湿器の細菌繁殖防止、携帯用水処理器などとして応用が可能である。
【0012】
以上は水の殺菌について述べたが、本発明は、これにのみ適用されるものでなく、水分が含まれる気体、例えば、人間の呼気やさらには大気を殺菌することができる。この場合、本発明の殺菌剤を通気性包袋に収納してマスクに配置して使用すると、これを病人が使用すれば、病人の呼気ガスとの接触により呼気中の菌は殺菌され、大気に放散することが防止され、また、病院での病室等の換気や冷暖房装置に本発明の殺菌剤を配置することにより、室内の殺菌処理を行うことができ、防疫上有効である。
【0013】
【作用】
本発明の複合殺菌剤は、含浸晶出法を用いて多孔性無機物担体の細孔内にオルトリン酸塩あるいはリン酸水素塩/二リン酸塩を担持して得られる前駆複合体に、さらに銀溶液を含浸させ前駆複合体中の1価陽イオンを銀イオンで置換して得られるリン酸銀(Ag PO /Ag )−多孔性無機担体複合体であり、これらの殺菌剤中に微粒子状で分散担持されたリン酸銀に水や含水気体中の細菌が接触して殺菌されることから、本発明に係わる殺菌剤は、水中細菌に対し高い殺菌効果を有している。従って、本発明に係わる複合殺菌剤を用いることにより、簡単にしかも安全に水や含水気体の殺菌処理を行うことができる。
【0014】
【実施例】
以下、本発明に係わる複合殺菌剤の製法、水処理の実施例を例示してその殺菌効果を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。
(1)使用菌株及び試料液の調製
実験に使用した菌株は、大腸菌(Escherichia coli:E.coli(JCM 1649))及び黄色ブドウ球菌(Staphylococcus aureus:S.aureus(FDA209P))である。これらの菌株は、それぞれ普通寒天斜面培地に毎月一回継代保存したもので、実験にあたっては、普通ブイヨン10mlを分注したL字管にて37℃、20±2時間振とう培養後、さらに同培地150mlを入れた三角フラスコに移植し37℃、18時間振とう培養した。この培養液から遠心集菌(4℃、6000rpm、10分間)した菌体を滅菌生理食塩液にて2回、滅菌精製水にて1回洗浄し、これを滅菌精製水300mlに菌濃度10 〜10 個/mlとなるように均一に浮遊させ、試料菌浮遊液とした(以下、試料液という)。
【0015】
(2)殺菌実験に用いた試料
殺菌実験に用いた複合殺菌剤試料及び担体試料の諸特性を表1に示した。以下に、複合殺菌剤試料の製法及び特性を説明する。
【0016】
【表1】

Figure 0003572353
【0017】
リン酸銀(Ag PO /Ag )含有複合殺菌剤試料の製造方法は、天然あるいは合成の多孔性無機物担体をオルトリン酸塩溶液やリン酸水素塩溶液/二リン酸塩溶液と接触させ、これらの溶液を多孔体の細孔内に含浸させた後、乾燥してオルトリン酸塩やリン酸水素塩/二リン酸塩を析出させて得られる前駆複合体に、さらに銀溶液を含浸させて前駆複合体中のオルトリン酸塩やリン酸水素塩/二リン酸塩の1価陽イオンを銀イオンで置換することにより作製される。例えば、表1に示した細孔特性の異なる3種の市販の粒状シリカ担体(100〜300μm)を担体試料として用いた調製例について詳しく説明する。
【0018】
1)リン酸銀(Ag PO )含有複合殺菌剤試料の製造
110℃で24時間乾燥、脱水後、密封容器中に保存した担体試料400LS、075LSあるいは005LSの3gを20mLの三角フラスコにとり、これに0.2M(M=mole/L) リン酸二水素アンモニウム (NH PO) 水溶液10mlを添加し、常温、減圧下に30分間保持し、リン酸二水素アンモニウム水溶液を担体細孔内に含浸させた。余剰のリン酸二水素アンモニウム水溶液を吸引除去した後、含浸試料を12時間凍結乾燥し、リン酸二水素アンモニウムを担持した前駆複合体試料を得た。 次に、この前駆複合体試料に0.2M硝酸銀水溶液10mlを添加し、常温、減圧下に30分間保持した後、さらに生成リン酸銀化合物の熟成を目的に同一条件下に2時間保持した。余剰の硝酸銀水溶液を吸引除去した後、含浸試料を12時間凍結乾燥した。得られた乾燥試料を100メッシュのふるいを用いて水簸し細粒を除去した後、80℃で24時間乾燥して、本発明のリン酸銀(Ag PO )−シリカ担体からなる粒状複合殺菌剤試料を得た。
【0019】
以下、担体400LS、075LSあるいは005LSを上記の処理をして得られたリン酸銀(Ag PO )担持複合殺菌剤試料を各々S3P−400LS、S3P−075LS及びS3P−005LSと略記する。ここで、上記の処理による目的複合殺菌剤試料の生成は、S3P−400LS、S3P−075LS及びS3P−005LSの粉末X線回折パターンの測定(CuKα線使用)により容易に確認できる。すなわち、表1に示したように、担体試料はいずれも非晶質シリカに特有の、約2θ=22°を中心とするハローのみがみられた。これに対し、S3P−400LS、S3P−075LS及びS3P−005LSでは、いずれも上記の非晶質シリカに特有のハローの他に、Ag PO に帰属される幾つかの回折ピーク(面間隔d値(Å) =2.69、2.46、3.01)(1998 JCPDS ファイル No.06−0505)が確認された。なお、リン酸銀(Ag PO )の担持量は、含浸溶液の濃度及び含浸回数の増加とともに大きくなるため、それらの処理条件を制御することにより容易に調整できる。Ag PO の担持量が小さい場合には、X線回折パターン上にはAg PO の最強回折線(d値(Å) =2.69)のみがみられる。
【0020】
2)リン酸銀(Ag )含有複合殺菌剤試料の製造
110℃で24時間乾燥、脱水後、密封容器中に保存した担体試料400LS、075LSあるいは005LSの3gを20mLの三角フラスコにとり、これに0.1M(M=mole/L) 二リン酸ナトリウム (Na ) 水溶液10mlを添加し、常温、減圧下に30分間保持し、二リン酸ナトリウム水溶液を担体細孔内に含浸させた。余剰の二リン酸ナトリウム水溶液を吸引除去した後、含浸試料を12時間凍結乾燥し、二リン酸ナトリウムを担持した前駆複合体試料を得た。 次に、この前駆複合体試料に0.1M硝酸銀水溶液10mlを添加し、常温、減圧下に30分間保持した後、さらに生成リン酸銀化合物の熟成を目的に同一条件下に2時間保持した。余剰の硝酸銀水溶液を吸引除去した後、含浸試料を12時間凍結乾燥した。得られた乾燥試料を100メッシュのふるいを用いて水簸し細粒を除去した後、80℃で24時間乾燥して、本発明のリン酸銀(Ag )−シリカ担体からなる粒状複合殺菌剤試料を得た。
【0021】
以下、担体400LS、075LSあるいは005LSを上記の処理をして得られたリン酸銀(Ag )担持複合殺菌剤試料を各々S4P2−400LS、S4P2−075LS及びS4P2−005LSと略記する。ここで、上記の処理による目的複合殺菌剤試料の生成は、S4P2−400LS、S4P2−075LS及びS4P2−005LSの粉末X線回折パターンの測定(CuKα線使用)により容易に確認できる。すなわち、表1に示したように、担体試料はいずれも非晶質シリカに特有の、約2θ=22°を中心とするハローのみがみられた。これに対し、S4P2−400LS、S4P2−075LS及びS4P2−005LSでは、いずれも上記の非晶質シリカに特有のハローの他に、Ag に帰属される幾つかの回折ピーク(面間隔d値(Å) =2.76、3.11、3.28)(1998 JCPDS ファイル No.37−0187)が確認された。なお、リン酸銀(Ag )の担持量は、含浸溶液の濃度及び含浸回数の増加とともに大きくなるため、それらの処理条件を制御することにより容易に調整できる。Ag の担持量が小さい場合には、X線回折パターン上にはAg の最強回折線(d値(Å) =2.76)のみがみられる。
【0022】
(3)殺菌実験
6種の複合殺菌剤の殺菌能力を担体試料のそれと比較して測定した。
殺菌効果の測定は全てバッチ法で行った。図1にその概要を示す。300mL容量の三角フラスコ2に前述した試料液1を150mL入れ、これに上記の粒状複合殺菌剤試料あるいは担体試料の1種を10mg添加し、沈降しない程度にシェーカーにて定速円形攪拌(20℃、130rpm)させ、これらから経時的に一部の液を採取したものを処理液とした。また、並行して菌試料液を同条件で単に攪拌したものをコントロール液とした。 殺菌効果の判定は、試料を添加する前の試料液を予め一部分取しておき、経時的に処理液を採取すると同時に、この分取した試料液からも一部採取し、各々の1mLを滅菌生理食塩水で適当段階10倍希釈し、その希釈溶液の0.1mlを普通寒天平板培地に塗沫し、37℃、24時間培養後、各々の集落数を測定し、試料液の集落数に対する処理液の集落数の%を算出し生菌率として判定した。また、殺菌試験前後の各処理液及びコントロール液をそれぞれ1mLを採取しメンブランフィルターにて濾過後の各濾液のpHをpHメーターにて測定した。
【0023】
実施例1
粒状複合体殺菌剤試料(S3P−400LS、S3P−075LS、S3P−005LS)及び担体試料(400LS、075LS、005LS)の各々10mgを添加した系における添加30分、60分、90分及び120分後に採取した処理液のpH及びE.coliの生菌率の測定結果を表2に示す。
【0024】
【表2】
Figure 0003572353
【0025】
先ず担体である005LS、075LS及び400LS添加系であるが、添加120分の生菌率はそれぞれ79.0%、18.3%及び11.4%であり、生菌率が一桁低下している。 このことは、1)実験に用いた大腸菌E.coliは、精製水中では3時間耐性があり、60分間では増殖、死滅のどちらも示さないことが公知であること、及び2)比表面積の大きな担体(表1)ほど生菌率が低いことから、E.coliが上記の担体試料に物理的に吸着された結果、水相の生菌数が見掛け上減少したためと考えられる。 これに対し、複合殺菌剤試料S3P−005LS、S3P−075LS及びS3P−400LS添加系であるが、S3P−005LS、S3P−075LS添加系ともに、添加30分後で生菌率は0%となり、顕著な殺菌効果が認められた。S3P−400LS添加系では添加30分後の生菌率は0.001%であるが添加60分後の生菌率は0%となり、S3P−005LS及びS3P−075LS添加系と比較すると接触時間は長いものの顕著な殺菌効果が認められた。
【0026】
実施例2
複合体殺菌剤試料(S3P−400LS、S3P−075LS、S3P−005LS)及び担体試料(400LS、075LS、005LS)の各々10mgを添加した系における添加30分、60分、90分及び120分後に採取した処理液のpH及びS.aureusの生菌率の測定結果を表3に示す。
【0027】
【表3】
Figure 0003572353
【0028】
先ず担体である005LS、075LS及び400LS添加系であるが、添加120分後の生菌率はそれぞれ43.6%、43.8%及び21.8%であり、生菌率が一桁低下している。 これは、E.coli同様にS.aureusの場合も担体の005LS、075LS及び400LSに物理的に吸着され水相の生菌数が見掛け上減少したためと考えられる。 これに対し、複合殺菌剤試料S3P−005LS、S3P−075LS及びS3P−400LS添加系であるが、添加30分後の生菌率はそれぞれ0.005%、0.001%及び0.001%であるが、添加60分後では3系ともに生菌率は0%であり、顕著な殺菌効果が認められた。S3P−005LS、S3P−075LS添加系とも生菌率が0%となるにはE.coliに比べ長い接触時間を必要とするが、S3P−400LS添加系ではE.coli及びS.aureusともに添加60分後に生菌率は0%であり、殺菌速度に差は認められなかった。
【0029】
実施例3
複合体殺菌剤試料(S4P2−400LS、S4P2−075LS、S4P2−005LS)及び担体試料(400LS、075LS、005LS)の各々10mgを添加した系における添加30分、60分、90分及び120分後に採取した処理液のpH及びE.coliの生菌率の測定結果を表4に示す。
【0030】
【表4】
Figure 0003572353
【0031】
先ず担体である005LS、075LS及び400LS添加系であるが、添加120分後の生菌率はそれぞれ79.0%、18.3%及び11.4%であり、生菌率が一桁低下している。 このことは、1)実験に用いた大腸菌E.coliは、精製水中では3時間耐性があり60分間では増殖、死滅のどちらも示さないことが公知であること、及び2)比表面積の大きな担体(表1)ほど生菌率が低いことから、E.coliが上記の担体試料に物理的に吸着された結果、水相の生菌数が見掛け上減少したためと考えられる。 これに対し、複合殺菌剤試料S4P2−005LS、S4P2−075LS及びS4P2−400LS添加系であるが、S4P2−005LS、S4P2−075LS添加系とともに、添加30分後で生菌率は0%となり顕著な殺菌効果が認められた。S4P2−400LS添加系では添加30分後の生菌率は0.009%であるが、添加60分後の生菌率は0%となり、S4P2−005LS及びS4P2−075LS添加系より長い接触時間を必要とするものの、顕著な殺菌効果が認められた。
【0032】
実施例4
複合体殺菌剤試料(S4P2−400LS、S4P2−075LS、S4P2−005LS)及び担体試料(400LS、075LS、005LS)の各々10mgを添加した系における添加30分、60分、90分及び120分後に採取した処理液のpH及びS.aureusの生菌率の測定結果を表5に示す。
【0033】
【表5】
Figure 0003572353
【0034】
先ず担体である005LS、075LS及び400LS添加系であるが、添加120分後の生菌率はそれぞれ43.6%、43.8%及び21.8%であり、生菌率が一桁低下している。 これは、E.coliと同様にS.aureusの場合も担体の005LS、075LS及び400LSに物理的に吸着され、水相の生菌数が見掛け上減少したためと考えられる。 これに対し、複合殺菌剤試料S4P2−005LS、S4P2−075LS及びS4P2−400LS添加系であるが、添加30分後の生菌率はそれぞれ0.029%、0.027%及び0.007%であるが、添加60分後では3系とも生菌率は0%であり、顕著な殺菌効果が認められた。S4P2−005LS、S4P2−075LS添加系とも生菌率が0%となるにはE.coliに比べ長い接触時間を必要とするが、S4P2−400LS添加系ではE.coliとS.aureusに対する殺菌速度に差は認められなかった。
【0035】
また、表2〜5に示したように、各系とも処理液のpHは6.0〜6.6の範囲のほぼ中性域であり、コントロール液との差も±0.1〜0.4であり殆ど差が見られなかった。E.coli、S.aureusともにpH5〜9の範囲では生菌率に殆ど変化が見られない(Onodera,Y.,et al.,Appl.Clay Sci.,掲載予定(2000))ことから、複合殺菌剤試料に見られた上記の殺菌効果が菌溶液のpH上昇による(Suzuki,T.,et al.,DENKI KAGAKU,52,272(1984))ものでないことは明らかである。
以上の結果から、本発明の複合殺菌剤試料はE.coli及びS.aureusに係わらず顕著な殺菌効果を持つことは明らかである。
【0036】
【発明の効果】
以上説明したように、1)高い殺菌性を有する無機・無機複合体からなる複合殺菌剤が提供される、2)本発明の粒状複合殺菌剤は、被処理水や水分を含有する含水気体と接触させることによってこれらの殺菌剤の表面特性により比処理水や含水気体の殺菌処理が可能となる、3)即ち、殺菌剤中に微粒子状で分散担持されているリン酸銀化合物の広大な表面に細菌が接触すると銀の殺菌作用により細菌が完全かつ短時間内に死滅する、いう殺菌特性により、被処理水や含水気体の殺菌処理が可能である、4)従って、この殺菌剤を用いることにより、塩素殺菌法のように処理水に塩素などの二次汚染物質を残留させることなく被処理水の殺菌処理が可能となり、また、菌が存在する含水気体を殺菌処理することができる、という格別の効果が得られる。
【図面の簡単な説明】
【図1】殺菌実験の概要を示す説明図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disinfectant used for disinfecting water such as drinking water or domestic water and for disinfecting water-containing gas in which bacteria such as breath and sickrooms are present, and particularly relates to a porous inorganic carrier-silver phosphate. (Ag3  PO4  / Ag4  P2  O7  The present invention relates to a disinfectant capable of easily and safely disinfecting bacteria in water using a complex as an active ingredient of a disinfectant, and a disinfection method using the same.
In this specification, "or" may be represented by "/".
[0002]
[Prior art]
The water sterilization method has long been indispensable technology for securing drinking water and domestic water. Recently, highly sterilized water is required from the production of foods and pharmaceuticals to the production of LSIs, and it is becoming one of the important technologies in the production process even in a wide range of industrial fields. At present, chemical disinfection methods such as chlorine disinfection of drinking water are the mainstream for securing domestic water, etc.In the industrial field, physical disinfection methods using heating or ultraviolet rays are the mainstream. It has become. Similarly, a physical sterilization method is mainly used for a gas containing water such as a patient's breath or a sick room where bacteria exist. The reason why the chemical sterilization method became popular as a sterilization method for drinking water and domestic water is that the basic operation of the sterilization treatment is only mixing of chemicals, the operation is simple and the cost is low, and a large amount of drinking water and domestic water is required. This was because it was suitable as a sterilization method.
[0003]
However, in recent years, not only chlorine used for disinfection of waterworks but also the recurring contamination of waterworks sources by chlorine used for achievement of BOD value of sewage and industrial wastewater and for sterilization has caused trihalomethanes which are carcinogenic substances. It has been clarified that they are contributing to growth, and there is an urgent need to develop new epidemiologically safe disinfection methods that can replace chemical disinfection methods using such drugs (Sawai et al., Inorganic Materials, 4,156-). 162 (1997)). For this reason, the development of inorganic antibacterial / bactericides prepared by supporting various antibacterial metals on a highly heat-resistant inorganic carrier such as zeolite, and their application to daily life and industrial fields are attracting attention. Among various antibacterial metals, silver has a broad antibacterial spectrum (Iwata, zeolite, 13 (2), 8-15 (1996)) and relatively high safety (Otani, antibacterial and antifungal, 24 (6) , 429-432 (1996)), and development of antibacterial and bactericidal agents in which silver is supported on various inorganic carriers has been actively conducted (for example, "antibacterial and antifungal ceramics ( (I); (II), 1995; 1998) As an inorganic carrier, zeolite, various phosphates, titanium oxide, various layered compounds, glass, and the like are used (for example, “Antibacterial” issued by T.I.C. -Antifungal ceramics (I); (II), 1995; 1998).
[0004]
However, the direct support of silver ions on an inorganic carrier has the disadvantage that, in many cases, the affinity between the carrier and silver ions is not so large, the supported silver ions are easily eluted and the sterilization life is short. Was. For this reason, an attempt has been made to prepare a reagent in which silver is eluted at a controlled rate by using an organic treatment method in combination with the process of supporting silver (Otani, Fungi-proof, Fungicide, 20 (8), 413-418 (1992)). ). However, in general, the combined use of such an organic treatment method causes problems such as a complicated treatment step and an increase in production cost, and a decrease in heat resistance of the reagent due to introduction of an organic substance. Therefore, development of a simple and low-cost preparation method of a silver-carrying inorganic bactericide having a long germicidal life and excellent bactericidal power and heat resistance has been desired.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a new disinfectant capable of simple and safe disinfection.
Another object of the present invention is to provide a new method for sterilizing water to be treated and water-containing gas with the above-mentioned sterilizing agent.
[0006]
The present inventors have conducted intensive studies to achieve the above object. As a result, the porous inorganic carrier was impregnated with an orthophosphate solution or a hydrogen phosphate solution / diphosphate solution, and then dried and dried. The precursor complex obtained by precipitating orthophosphate or hydrogen phosphate / diphosphate in the pores is further impregnated with a silver solution, and the orthophosphate or hydrogen phosphate / diphosphate in the precursor complex is impregnated. Sparingly soluble silver phosphate (Ag) obtained by replacing the monovalent cation of the acid salt with silver ion3  PO4  / Ag4  P2  O7  )) And found that it is possible to rapidly and completely kill bacteria in water by contacting them with water or water-containing gas by contacting them with water or water-containing gas. Completed the invention.
[0007]
[Means for Solving the Problems]
That is, the present invention for solving the above-mentioned problems includes the following technical means.
(1) Ag in the pores of the porous inorganic carrierThree POFour Or AgFour PTwo O7From inorganic-inorganic composites with high bactericidal properties obtained by synthesizing and supporting the silver phosphate compound represented byRuCombination fungicideIn the first step, the general formula M is contained in the pores of the porous inorganic carrier. Three PO Four (Wherein M represents a monovalent cation, + , NH Four + , K + Etc.), M n H 3-n PO Four (M in the formula represents a monovalent cation; + , NH Four + , K + And the like. N is one of 1, 2, and 3) or the general formula M I Four P Two O 7 (In the formula, M represents a monovalent cation; + , H + , K + ), And then dried to crystallize the above-mentioned metaphosphate, hydrogenphosphate, or diphosphate precursor compounds, and these precursor compounds and the porous inorganic carrier And then, as a second step, impregnating the precursor complex with a solution of a water-soluble silver compound such as silver nitrate to replace monovalent cations in the precursor compound with silver ions. After drying, Ag Three PO Four Or Ag Four P Two O 7 A composite disinfectant produced by preparing a composite disinfectant carrying a silver phosphate compound represented by the formula:
(2) A method for producing the composite germicide according to (1),In the first step, a precursor compound of a metaphosphate, a hydrogen phosphate, and a diphosphate is crystallized in the pores of the porous inorganic carrier, and a precursor composite comprising these precursor compounds and the porous inorganic carrier is formed. And then, as a second step, impregnating the precursor complex with a solution of a water-soluble silver compound to replace the monovalent cation in the precursor compound with silver ion.AgThreePOFour Or AgFour PTwo O7 The silver phosphate compound represented by, ManyCharacterized by being synthesized and supported in the pores of a porous inorganic carriercompositeA method for producing a disinfectant.
(3) The above AgThree POFour When synthesizing the silver phosphate compound represented by the general formula MThree POFour(Wherein M represents a monovalent cation,+ , NHFour + , K+Etc.) or Mn H3-n POFour (M in the formula represents a monovalent cation;+, NHFour + , K+ And the like. The method according to (2), wherein n is one of 1, 2, and 3) as the precursor compound.
(4) The above AgFour PTwo O7 When synthesizing the silver phosphate compound represented by the general formula MI Four PTwo O7 (Wherein M represents a monovalent cation;+, H+ , K+ (2) is used as a precursor compound.
(5) A precursor composite obtained by synthesizing and supporting a metaphosphate or hydrogen phosphate of a precursor compound on a porous inorganic carrier is further impregnated with a silver salt solution, and the metaphosphate or phosphate in the precursor composite is impregnated. By replacing the monovalent cation of the hydrogen salt with silver ion, a silver phosphate compound (AgThreePOFour The method according to the above (2), wherein the method is carried out.
(6) A precursor composite obtained by synthesizing and supporting a diphosphate of a precursor compound on a porous inorganic carrier is further impregnated with a silver salt solution to form a monovalent cation of the diphosphate in the precursor composite. The silver phosphate compound (AgFourPTwo O7 The method according to the above (2), wherein the method is carried out.
(7) A sterilization treatment method comprising contacting water to be treated or a gas containing water with the composite disinfectant according to (1), and sterilizing the water to be treated or gas containing water according to the surface characteristics of the disinfectant.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The composite fungicide of the present invention comprises, as a first step, the general formula M3  PO4  (Wherein M represents a monovalent cation,+  , NH4 +  , K+  Etc.) or Mn  H3-n  PO4  (M in the formula represents a monovalent cation;+  , NH4  +, K+  And the like. N is one of 1, 2, and 3) / general formula MI  4P2  O7  (Wherein M represents a monovalent cation and is usually Na+  , H+  , K+  ), And then dried to crystallize the above-mentioned metaphosphate or hydrogen phosphate / diphosphate precursor compounds, from these precursor compounds and the porous inorganic carrier. A precursor complex is prepared. Next, as a second step, the precursor complex is impregnated with a solution of a water-soluble silver compound such as silver nitrate, and the monovalent cation in the precursor compound is replaced with silver ions. Compound (Ag3  PO4  / Ag4  P2  O7  ) Is prepared.
[0009]
Examples of the porous inorganic carrier include, in addition to the above-mentioned silica, alumina, silica-alumina, glass, zeolite, clay, activated carbon, carbon black, various porous ceramics, and the like, but are not limited thereto. Any commercially available or natural product can be used as long as it has a certain mechanical strength.
[0010]
Further, the above-mentioned composite bactericide can be formed into molded articles having various shapes such as a granular form, a film form, and a fine powder form depending on the shape of the carrier. Further, it is also possible to use a fine powder in a state of being dispersed in fibers, paper, or the like.
[0011]
To perform water disinfection treatment using the composite disinfectant of the present invention, the disinfectant treatment of water can be performed only by contacting the composite disinfectant with water, and only adding the disinfectant in water and stirring and leaving it. . In addition, as a method for continuously sterilizing the flowing water, a method in which the water to be treated permeates through a water-permeable layer made of a composite sterilizing agent is preferable. Thus, the sterilization treatment of water using a complex disinfectant can be carried out by an extremely simple operation, and can be used as an alternative to water and sewage chlorination methods, as well as household water purifiers, water supply facilities and It can be applied to prevent bacteria from adhering to baths, prevent the growth of bacteria in air purifiers and humidifiers, and be used as a portable water treatment device.
[0012]
Although the above has described sterilization of water, the present invention is not limited to this and can sterilize a gas containing water, for example, human breath or even the atmosphere. In this case, when the bactericide of the present invention is stored in a gas-permeable wrapper and placed on a mask and used by a sick person, bacteria in the breath are sterilized by contact with the sick breath gas, and the In addition, by disposing the germicide of the present invention in the ventilation or cooling / heating device of a hospital room or the like in a hospital, the germicidal treatment in the room can be performed, which is effective for epidemic prevention.
[0013]
[Action]
The composite germicide of the present invention comprises a precursor composite obtained by supporting orthophosphate or hydrogen phosphate / diphosphate in pores of a porous inorganic carrier using an impregnation crystallization method, and further comprising silver Silver phosphate (Ag) obtained by impregnating a solution and substituting monovalent cations in the precursor complex with silver ions.3  PO4  / Ag4  P2  O7  )-A porous inorganic carrier complex, wherein bacteria in water or a water-containing gas are sterilized by contact with silver phosphate dispersed and supported in fine particles in these germicides; The agent has a high bactericidal effect on bacteria in water. Therefore, by using the complex disinfectant according to the present invention, it is possible to easily and safely perform the disinfection treatment of water and water-containing gas.
[0014]
【Example】
Hereinafter, the bactericidal effect of the composite bactericide according to the present invention will be described in detail with reference to examples of the production method and water treatment, but the present invention is not limited to the following examples.
(1) Preparation of used strain and sample solution
The strains used in the experiment were Escherichia coli (Escherichia coli: E. coli (JCM 1649)) and Staphylococcus aureus: S. aureus (FDA209P). Each of these strains was passage-preserved once a month on a normal agar slant medium. In the experiment, after shaking culture at 37 ° C. for 20 ± 2 hours in an L-shaped tube into which 10 ml of a common broth was dispensed, furthermore, The cells were transferred to an Erlenmeyer flask containing 150 ml of the same medium and cultured with shaking at 37 ° C. for 18 hours. The cells collected by centrifugation (4 ° C., 6000 rpm, 10 minutes) from the culture solution were washed twice with sterile physiological saline and once with sterile purified water.6  -107  The suspension was uniformly suspended so as to have a concentration of cells / ml, and used as a sample suspension (hereinafter referred to as a sample solution).
[0015]
(2) Sample used for sterilization experiment
Table 1 shows various characteristics of the composite disinfectant sample and the carrier sample used in the disinfection experiment. Hereinafter, the manufacturing method and characteristics of the composite germicide sample will be described.
[0016]
[Table 1]
Figure 0003572353
[0017]
Silver phosphate (Ag3  PO4  / Ag4  P2  O7  ) The method for producing the composite bactericide-containing sample involves contacting a natural or synthetic porous inorganic carrier with an orthophosphate solution or a hydrogen phosphate solution / diphosphate solution, and bringing these solutions into the pores of the porous body. After impregnating the precursor complex, the precursor complex obtained by drying and precipitating orthophosphate or hydrogen phosphate / diphosphate is further impregnated with a silver solution, and the orthophosphate or phosphorus in the precursor complex is impregnated. It is prepared by replacing the monovalent cation of the oxyhydrogen salt / diphosphate with a silver ion. For example, a preparation example using three types of commercially available granular silica carriers (100 to 300 μm) having different pore characteristics shown in Table 1 as carrier samples will be described in detail.
[0018]
1) Silver phosphate (Ag)3  PO4  ) Production of a composite fungicide sample
After drying and dehydrating at 110 ° C. for 24 hours, 3 g of 400 LS, 075 LS or 005 LS of the carrier sample stored in a sealed container is placed in a 20 mL Erlenmeyer flask, and 0.2 M (M = mole / L) ammonium dihydrogen phosphate ( NH4  H2  PO410 ml of an aqueous solution was added, and the mixture was kept at room temperature under reduced pressure for 30 minutes to impregnate an aqueous solution of ammonium dihydrogen phosphate into the pores of the carrier. After the excess ammonium dihydrogen phosphate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours to obtain a precursor composite sample carrying ammonium dihydrogen phosphate. Next, 10 ml of a 0.2 M silver nitrate aqueous solution was added to this precursor composite sample, and the mixture was kept at room temperature and under reduced pressure for 30 minutes, and further kept under the same conditions for 2 hours for ripening of the formed silver phosphate compound. After the excess silver nitrate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours. The obtained dried sample was elutriated using a 100-mesh sieve to remove fine particles, and then dried at 80 ° C. for 24 hours to obtain the silver phosphate (Ag) of the present invention.3  PO4  ) -A particulate composite fungicide sample comprising a silica carrier was obtained.
[0019]
Hereinafter, 400 LS, 075 LS or 005 LS of the carrier was treated with silver phosphate (Ag3  PO4  ) The supported complex germicide samples are abbreviated as S3P-400LS, S3P-075LS and S3P-005LS, respectively. Here, the production of the target composite disinfectant sample by the above treatment can be easily confirmed by measuring the powder X-ray diffraction patterns (using CuKα rays) of S3P-400LS, S3P-075LS and S3P-005LS. That is, as shown in Table 1, in each of the carrier samples, only a halo centered at about 2θ = 22 °, which is characteristic of amorphous silica, was observed. On the other hand, in S3P-400LS, S3P-075LS and S3P-005LS, in addition to the above-mentioned halo unique to amorphous silica, Ag3  PO4  (D value (Å) = 2.69, 2.46, 3.01) (1998 JCPDS file No. 06-0505). In addition, silver phosphate (Ag3  PO4  The amount supported by ()) increases with an increase in the concentration of the impregnating solution and the number of times of impregnation, and thus can be easily adjusted by controlling the processing conditions. Ag3  PO4  Is small, the Ag-ray diffraction pattern shows3  PO4  (D value (Å) = 2.69).
[0020]
2) Silver phosphate (Ag)4  P2  O7  ) Production of a composite fungicide sample
After drying and dehydration at 110 ° C. for 24 hours, 3 g of the carrier sample (400 LS, 075 LS or 005 LS) stored in the sealed container was placed in a 20 mL Erlenmeyer flask, and 0.1 M (M = mole / L) sodium diphosphate (Na4  P2  O7  ) An aqueous solution (10 ml) was added, and the mixture was kept at room temperature and under reduced pressure for 30 minutes to impregnate the carrier pores with a sodium diphosphate aqueous solution. After the excess sodium diphosphate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours to obtain a precursor composite sample carrying sodium diphosphate. Next, 10 ml of a 0.1 M aqueous solution of silver nitrate was added to this precursor composite sample, and the mixture was kept at room temperature and under reduced pressure for 30 minutes, and further kept under the same conditions for 2 hours for ripening of the formed silver phosphate compound. After the excess silver nitrate aqueous solution was removed by suction, the impregnated sample was freeze-dried for 12 hours. The obtained dried sample was elutriated using a 100-mesh sieve to remove fine particles, and then dried at 80 ° C. for 24 hours to obtain the silver phosphate (Ag) of the present invention.4  P2  O7  ) -A particulate composite fungicide sample comprising a silica carrier was obtained.
[0021]
Hereinafter, 400 LS, 075 LS or 005 LS of the carrier was treated with silver phosphate (Ag4P2  O7  ) The supported composite germicide samples are abbreviated as S4P2-400LS, S4P2-075LS and S4P2-005LS, respectively. Here, the production of the target composite disinfectant sample by the above treatment can be easily confirmed by measuring the powder X-ray diffraction pattern (using CuKα ray) of S4P2-400LS, S4P2-075LS and S4P2-005LS. That is, as shown in Table 1, in each of the carrier samples, only a halo centered at about 2θ = 22 °, which is characteristic of amorphous silica, was observed. On the other hand, in S4P2-400LS, S4P2-075LS and S4P2-005LS, in addition to the above-mentioned halo unique to amorphous silica, Ag4  P2  O7  (D value (面) = 2.76, 3.11, 3.28) (1998 JCPDS file No. 37-0187). In addition, silver phosphate (Ag4P2  O7  The amount supported by ()) increases with an increase in the concentration of the impregnating solution and the number of times of impregnation, and thus can be easily adjusted by controlling the processing conditions. Ag4  P2  O7  Is small, the Ag-ray diffraction pattern shows4  P2  O7  (D value (Å) = 2.76).
[0022]
(3) Sterilization experiment
The bactericidal capacity of the six complex fungicides was measured relative to that of the carrier sample.
All measurements of the bactericidal effect were performed by the batch method. FIG. 1 shows the outline. 150 mL of the above-described sample solution 1 is placed in a 300 mL Erlenmeyer flask 2, 10 mg of the above-mentioned granular composite germicide sample or one of the carrier samples is added thereto, and a constant speed circular stirring (20 ° C. , 130 rpm), and a part of the solution was collected over time to obtain a treatment solution. A control solution was prepared by simply stirring the bacterial sample solution under the same conditions in parallel. Judgment of the bactericidal effect is made by taking a portion of the sample solution before adding the sample in advance, collecting the processing solution over time, and also collecting a portion of the sample solution, and sterilizing 1 mL of each sample solution. It is diluted 10 times with physiological saline at an appropriate stage, and 0.1 ml of the diluted solution is spread on a normal agar plate medium. After culturing at 37 ° C. for 24 hours, the number of each colony is measured. The percentage of the number of colonies of the treatment liquid was calculated and determined as the viable cell rate. In addition, 1 mL of each of the treatment solution and the control solution before and after the sterilization test was collected, and the pH of each filtrate after filtration through a membrane filter was measured with a pH meter.
[0023]
Example 1
30 minutes, 60 minutes, 90 minutes, and 120 minutes after the addition of 10 mg of each of the granular composite biocide sample (S3P-400LS, S3P-075LS, S3P-005LS) and the carrier sample (400LS, 075LS, 005LS). PH of collected processing solution and E.C. Table 2 shows the results of measuring the viability of E. coli.
[0024]
[Table 2]
Figure 0003572353
[0025]
First, the carrier systems of 005LS, 075LS and 400LS are added, and the viability of 120 minutes after addition is 79.0%, 18.3% and 11.4%, respectively. I have. This means that 1) E. coli E. coli used in the experiment was used. It is known that E. coli is resistant to purified water for 3 hours and does not grow or die in 60 minutes, and 2) a carrier having a larger specific surface area (Table 1) has a lower viability. , E .; It is considered that as a result of E. coli being physically adsorbed to the carrier sample, the viable cell count in the aqueous phase apparently decreased. On the other hand, the combined bactericide samples S3P-005LS, S3P-075LS and S3P-400LS were added, and the viable cell rate became 0% 30 minutes after addition for both S3P-005LS and S3P-075LS added systems. An excellent bactericidal effect was observed. In the S3P-400LS addition system, the viability rate 30 minutes after the addition is 0.001%, but the viability rate 60 minutes after the addition becomes 0%. Compared with the S3P-005LS and S3P-075LS addition systems, the contact time is shorter. A long but remarkable bactericidal effect was observed.
[0026]
Example 2
30 minutes, 60 minutes, 90 minutes, and 120 minutes after the addition of the complex bactericide sample (S3P-400LS, S3P-075LS, S3P-005LS) and the carrier sample (400LS, 075LS, 005LS) to the system to which 10 mg was added. PH and S.P. Table 3 shows the results of measuring the viable cell ratio of Aureus.
[0027]
[Table 3]
Figure 0003572353
[0028]
First, the carriers 005LS, 075LS, and 400LS were added. The viable cell rates after 120 minutes of addition were 43.6%, 43.8%, and 21.8%, respectively. ing. This is E.I. E. coli as well. In the case of aureus, it is considered that the number of viable bacteria in the aqueous phase was apparently reduced by being physically adsorbed to the carriers 005LS, 075LS and 400LS. On the other hand, the combined bactericide samples S3P-005LS, S3P-075LS and S3P-400LS were added, but the viability rates 30 minutes after addition were 0.005%, 0.001% and 0.001%, respectively. However, 60 minutes after the addition, the viable cell rate was 0% for all three strains, indicating a remarkable bactericidal effect. For both the S3P-005LS and S3P-075LS addition systems, the viable cell rate becomes 0%. Although a longer contact time is required compared to E. coli, the S3P-400LS-added system requires E. coli. coli and S. coli. 60 minutes after the addition of Aureus, the viable cell rate was 0%, and no difference was observed in the sterilization rate.
[0029]
Example 3
30 minutes, 60 minutes, 90 minutes, and 120 minutes after the addition of the complex bactericide sample (S4P2-400LS, S4P2-075LS, S4P2-005LS) and the carrier sample (400LS, 075LS, 005LS) to the system to which 10 mg was added. PH of treated solution and E.C. Table 4 shows the results of measuring the viable cell ratio of E. coli.
[0030]
[Table 4]
Figure 0003572353
[0031]
First, the carriers 005LS, 075LS and 400LS are added, and the viability after 120 minutes of addition is 79.0%, 18.3% and 11.4%, respectively. ing. This means that 1) E. coli E. coli used in the experiment was used. It is known that E. coli is resistant to purified water for 3 hours and does not grow or die in 60 minutes, and 2) a carrier having a larger specific surface area (Table 1) has a lower viable cell rate. E. FIG. It is considered that as a result of E. coli being physically adsorbed to the carrier sample, the viable cell count in the aqueous phase apparently decreased. On the other hand, the combined bactericide samples S4P2-005LS, S4P2-075LS and S4P2-400LS were added, and the viable cell rate became 0% 30 minutes after the addition, together with the S4P2-005LS and S4P2-075LS added systems. A bactericidal effect was observed. In the S4P2-400LS addition system, the viability rate 30 minutes after the addition is 0.009%, but the viability rate 60 minutes after the addition is 0%, and the contact time is longer than that in the S4P2-005LS and S4P2-075LS addition systems. Although required, a significant bactericidal effect was observed.
[0032]
Example 4
30 minutes, 60 minutes, 90 minutes, and 120 minutes after the addition of the complex bactericide sample (S4P2-400LS, S4P2-075LS, S4P2-005LS) and the carrier sample (400LS, 075LS, 005LS) to the system to which 10 mg was added. PH and S.P. Table 5 shows the results of measuring the viable cell ratio of Aureus.
[0033]
[Table 5]
Figure 0003572353
[0034]
First, the carriers 005LS, 075LS and 400LS were added, and the viability after 120 minutes of addition was 43.6%, 43.8% and 21.8%, respectively. ing. This is E.I. like S. coli. Aureus is also considered to be physically adsorbed on the carriers 005LS, 075LS, and 400LS, and the viable cell count in the aqueous phase apparently decreased. On the other hand, the combined fungicide samples S4P2-005LS, S4P2-075LS, and S4P2-400LS were added, and the viability rates 30 minutes after addition were 0.029%, 0.027%, and 0.007%, respectively. However, 60 minutes after the addition, the viable cell rate was 0% in all three strains, and a remarkable bactericidal effect was recognized. In order for the viable cell rate to be 0% for both the S4P2-005LS and the S4P2-075LS-added systems, E. coli. Although a longer contact time is required as compared with E. coli, the S4P2-400LS addition system requires E. coli. coli and S. Aureus showed no difference in sterilization rate.
[0035]
Further, as shown in Tables 2 to 5, in each system, the pH of the treatment solution was almost in the neutral range of 6.0 to 6.6, and the difference from the control solution was ± 0.1 to 0. 4 and almost no difference was seen. E. FIG. coli, S.E. Aureus shows almost no change in the viable cell ratio in the pH range of 5 to 9 (Onodera, Y., et al., Appl. Clay Sci., scheduled to be published (2000)). It is clear that the above-mentioned bactericidal effect is not due to the increase in the pH of the bacterial solution (Suzuki, T., et al., DENKI KAGAKU, 52, 272 (1984)).
From the above results, the composite fungicide sample of the present invention was obtained from E. coli. coli and S. coli. It is clear that it has a significant bactericidal effect regardless of Aureus.
[0036]
【The invention's effect】
As described above, 1) a composite germicide comprising an inorganic-inorganic composite having high bactericidal properties is provided. 2) The particulate composite germicide of the present invention is characterized by containing water to be treated and water-containing gas containing water. The contact makes it possible to disinfect the treated water or the water-containing gas due to the surface characteristics of these disinfectants. 3) In other words, the vast surface of the silver phosphate compound dispersed and supported in fine particles in the disinfectant When bacteria come into contact with the bacteria, the bacteria are killed completely and within a short period of time by the bactericidal action of silver. Thereby, it is possible to sterilize the water to be treated without leaving secondary contaminants such as chlorine in the treated water as in the chlorine sterilization method, and it is possible to sterilize a water-containing gas in which bacteria exist. Special effects Obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an outline of a sterilization experiment.

Claims (7)

多孔性無機物担体の細孔内に、Ag3 PO4 又はAg427で表されるリン酸銀化合物を合成・担持して得られる高い殺菌性を有する無機・無機複合体からなる複合殺菌剤であって、第一段階として、多孔性無機物担体の細孔内に、一般式M 3 PO 4 で表されるメタリン酸塩(式中のMは1価陽イオンを表し、Na + 、NH 4 + 、K + 等のイオンである)、M n 3-n PO 4 で表されるリン酸水素塩(式中のMは1価陽イオンを表し、Na + 、NH 4 + 、K + 等のイオンである。また、nは1,2,3のいずれかの値をとる)、又は一般式M I 4 2 7 で表される二リン酸塩(式中のMは1価陽イオンを表し、Na + 、H + 、K + 等のイオンである)の溶液を含浸させた後、乾燥して上記のメタリン酸塩、リン酸水素塩、又は二リン酸塩の前駆化合物を晶出させ、これらの前駆化合物と多孔性無機物担体からなる前駆複合体を調製し、次に、第二段階として、先の前駆複合体に硝酸銀等の水溶性銀化合物の溶液を含浸して、前駆化合物中の1価陽イオンを銀イオンで置換した後、乾燥してAg 3 PO 4 、又はAg 4 2 7 で表されるリン酸銀化合物を担持した複合殺菌剤を調製することにより作製されたことを特徴とする複合殺菌剤。 Into the pores of the porous inorganic carrier, that Do from Ag 3 PO 4 or Ag 4 Inorganic-inorganic composite having a high bactericidal obtained the silver phosphate compound represented by P 2 O 7 was synthesized-bearing a double coupling fungicides, as a first step, into the pores of the porous inorganic carrier, M of metaphosphate (wherein of the general formula M 3 PO 4 represents a monovalent cation, Na + , NH 4 + , K +, etc.), M n H 3-n PO M hydrogen phosphate salt (wherein represented by 4 represents a monovalent cation, Na +, NH 4 +, an ion of K + and the like. Further, n represents 1, 2, take one of the values 3), or M in diphosphate (formula represented by the general formula M I 4 P 2 O 7 represents monovalent cations, Na +, H +, K + ), And then dried to crystallize the above-mentioned precursor compound of metaphosphate, hydrogen phosphate, or diphosphate, and these precursor compound and porous inorganic carrier And then, as a second step, impregnating the precursor complex with a solution of a water-soluble silver compound such as silver nitrate to replace monovalent cations in the precursor compound with silver ions. After drying, Ag 3 PO 4 or Ag 4 P 2 O 7 A composite disinfectant produced by preparing a composite disinfectant carrying a silver phosphate compound represented by the formula: 請求項1記載の複合殺菌剤を製造する方法であって、第一段階として、多孔性無機物担体の細孔内に、メタリン酸塩、リン酸水素塩、二リン酸塩の前駆化合物を晶出させ、これらの前駆化合物と多孔性無機物担体からなる前駆複合体を調製し、次に、第二段階として、先の前駆複合体に水溶性銀化合物の溶液を含浸して、前駆化合物中の1価陽イオンを銀イオンで置換することによりAg3PO4又はAg427 で表されるリン酸銀化合物を、多孔性無機物担体の細孔内に合成・担持することを特徴とする複合殺菌剤の製造方法。The method for producing a composite fungicide according to claim 1, wherein, as a first step, a precursor compound of a metaphosphate, a hydrogen phosphate, and a diphosphate is crystallized in pores of the porous inorganic carrier. Then, a precursor composite comprising these precursor compounds and a porous inorganic carrier is prepared. Next, as a second step, the precursor complex is impregnated with a solution of a water-soluble silver compound, and 1 and wherein the synthesis-carrying silver phosphate compound represented by Ag 3 PO 4 or Ag 4 P 2 O 7, in the pores of the multi-porous mineral support by replacing the divalent cation with silver ions A method for producing a composite fungicide. 上記のAg3 PO4 で表されるリン酸銀化合物を合成する際に、一般式M3 PO4で表されるメタリン酸塩(式中のMは1価陽イオンを表し、Na+、NH4 + 、K+等のイオンである)あるいはMn3-nPO4 で表されるリン酸水素塩(式中のMは1価陽イオンを表し、Na+、NH4 +、K+ 等のイオンである。また、nは1,2,3のいずれかの値をとる)を前駆化合物として用いることを特徴とする請求項2記載の製造方法。When synthesizing the above silver phosphate compound represented by Ag 3 PO 4 , a metaphosphate represented by the general formula M 3 PO 4 (where M represents a monovalent cation, Na + , NH 3) 4 + , K +, etc.) or hydrogen phosphate represented by M n H 3 -n PO 4 (M in the formula represents a monovalent cation, and Na + , NH 4 + , K + 3. The method according to claim 2, wherein n is one of 1, 2, and 3). 上記のAg427 で表されるリン酸銀化合物を合成する際に、一般式MI 427 で表される二リン酸塩(式中のMは1価陽イオンを表し、Na+、H+、K+ 等のイオンである)を前駆化合物として用いることを特徴とする請求項2記載の製造方法。In the synthesis of silver phosphate compound represented by the above Ag 4 P 2 O 7, the M in diphosphate (formula represented by the general formula M I 4 P 2 O 7 a monovalent cation And Na + , H + , K + or the like) is used as the precursor compound. 多孔性無機物担体に前駆化合物のメタリン酸塩あるいはリン酸水素塩を合成・担持して得られる前駆複合体に、さらに銀塩溶液を含浸し前駆複合体中のメタリン酸塩あるいはリン酸水素塩の1価陽イオンを銀イオンで置換することによりリン酸銀化合物(Ag3PO4)に変換することを特徴とする請求項2記載の製造方法。A precursor composite obtained by synthesizing and supporting a metaphosphate or hydrogen phosphate of a precursor compound on a porous inorganic carrier is further impregnated with a silver salt solution to form a mixture of the metaphosphate or hydrogen phosphate in the precursor composite. the method of claim 2, wherein the converting the monovalent cation silver phosphate compound by substituting with silver ions (Ag 3 PO 4). 多孔性無機物担体に前駆化合物の二リン酸塩を合成・担持して得られる前駆複合体に、さらに銀塩溶液を含浸し前駆複合体中の二リン酸塩の1価陽イオンを銀イオンで置換することによりリン酸銀化合物(Ag427 )に変換することを特徴とする請求項2記載の製造方法。A precursor composite obtained by synthesizing and supporting a diphosphate of the precursor compound on the porous inorganic carrier is further impregnated with a silver salt solution, and the monovalent cation of the diphosphate in the precursor composite is converted to silver ions. the method of claim 2, wherein the converting the silver phosphate compound (Ag 4 P 2 O 7) by replacing. 請求項1記載の複合殺菌剤に被処理水や含水気体を接触せしめ、該殺菌剤の表面特性によって被処理水や含水気体の殺菌を行うことを特徴とする殺菌処理方法。A sterilization method comprising contacting water to be treated or a gas containing water with the composite disinfectant according to claim 1, and sterilizing the water to be treated or gas containing water according to the surface characteristics of the disinfectant.
JP2000289498A 2000-09-22 2000-09-22 Composite disinfectant and disinfection method Expired - Lifetime JP3572353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000289498A JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000289498A JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Publications (2)

Publication Number Publication Date
JP2002104909A JP2002104909A (en) 2002-04-10
JP3572353B2 true JP3572353B2 (en) 2004-09-29

Family

ID=18772887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000289498A Expired - Lifetime JP3572353B2 (en) 2000-09-22 2000-09-22 Composite disinfectant and disinfection method

Country Status (1)

Country Link
JP (1) JP3572353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879457A1 (en) * 2005-05-10 2008-01-23 Ciba Specialty Chemicals Holding, Inc. Antimicrobial porous silicon oxide particles
JP5182647B2 (en) * 2009-02-13 2013-04-17 三菱マテリアル株式会社 Antibacterial material

Also Published As

Publication number Publication date
JP2002104909A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
Bacakova et al. Applications of zeolites in biotechnology and medicine–a review
KR100306886B1 (en) Iodine / resin disinfectant and its manufacturing method
EP2214493B1 (en) Process for limiting the growth of microorganisms
US6680050B1 (en) Iodine/resin disinfectant and a procedure for the preparation thereof
CN112205420A (en) Negative oxygen ion disinfectant, and preparation method and application thereof
JP3572353B2 (en) Composite disinfectant and disinfection method
US7261879B2 (en) Iodinated anion exchange resin and process for preparing same
US20100260869A1 (en) Biocidal materials
JP5704623B2 (en) Anti-Legionella material carrying metal-tropolone complex between inorganic layers
SALIM SYNTHESIS AND CHARACTERIZATION OF CETYLTRIMETHYL AMMONIUM BROMIDE AND SILVER SUPPORTED NaY ZEOLITES FOR ANTIBACTERIAL APPLICATION
CN113087949B (en) A kind of preparation method of fluoride-modified cellulose membrane for face mask
JP2013035796A (en) Solid material
Gemishev et al. Preparation of silver nanoparticles–natural zeolite composite and study of its antibacterial properties
JPH06277673A (en) Silica containing apatite hydroxide bactericide and bactericidal treatment process
KR0178394B1 (en) Humidification method Humidification method and porous body for humidification gas preparation
AU719355B2 (en) Use of iodinated resins to disinfect air and liquids containing microorganisms
CN116803271A (en) Bactericide capable of releasing negative oxygen ions and preparation method and application thereof
JP3737726B6 (en) Disinfectant using iodine / resin disinfectant
WO1994002420A1 (en) Novel water treatment compositions
NZ299532A (en) An iodinated disinfectant resin is bound to a carrier component
JPS62240064A (en) Sterilization and removal of bacteria
JPS62240063A (en) Sterilization and bacteria removal method
JP2001064111A (en) Complex fungicide and sterilization
KR20110067841A (en) Fungicides containing kimchi lactic acid bacteria and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040531

R150 Certificate of patent or registration of utility model

Ref document number: 3572353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term