JP3505374B2 - Light emitting components - Google Patents
Light emitting componentsInfo
- Publication number
- JP3505374B2 JP3505374B2 JP33108397A JP33108397A JP3505374B2 JP 3505374 B2 JP3505374 B2 JP 3505374B2 JP 33108397 A JP33108397 A JP 33108397A JP 33108397 A JP33108397 A JP 33108397A JP 3505374 B2 JP3505374 B2 JP 3505374B2
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- gan
- type
- side electrode
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0208—Semi-insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04252—Electrodes, e.g. characterised by the structure characterised by the material
- H01S5/04253—Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4018—Lasers electrically in series
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/42—Arrays of surface emitting lasers
- H01S5/423—Arrays of surface emitting lasers having a vertical cavity
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は発光部品に関し、
特にたとえば3族窒化物半導体発光素子を用いる発光部
品に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device,
In particular, it relates to a light emitting component using, for example, a Group III nitride semiconductor light emitting device.
【0002】[0002]
【従来の技術】図9に示すように、従来のGaN系発光
素子1としては、1つの絶縁性基板2上に、1つの透光
性電極3、およびアノード電極4とカソード電極5とか
らなる一対のボンディング用のパッド電極が形成され
た、すなわち1つのチップに対して1ヶ所の発光部を有
する、発光ダイオードが広く用いられてきた。2. Description of the Related Art As shown in FIG. 9, a conventional GaN-based light emitting device 1 comprises one insulating substrate 2, one transparent electrode 3, and an anode electrode 4 and a cathode electrode 5. A light emitting diode having a pair of pad electrodes for bonding, that is, having one light emitting portion for one chip has been widely used.
【0003】[0003]
【発明が解決しようとする課題】従来のGaN系発光素
子1は発光部を1ヶ所しか有さないので、それ単独では
面光源としては適さなかった。Since the conventional GaN-based light emitting device 1 has only one light emitting portion, it is not suitable as a surface light source by itself.
【0004】また、GaN系発光素子1では1つの絶縁
性基板2上に1つの素子しか形成されないため、大面積
の面光源を得ようとすると、複数のGaN系発光素子1
を基体上に配列して互いに接続する必要があるので相互
に隣接するGaN系発光素子1の間隔に限界があり、大
きな発光強度を有する面光源を得られないという問題点
があった。In addition, since only one element is formed on one insulating substrate 2 in the GaN-based light emitting element 1, when a large area surface light source is to be obtained, a plurality of GaN-based light emitting elements 1 are formed.
Since it is necessary to arrange them on the base and connect them to each other, there is a limit in the interval between the GaN-based light emitting devices 1 adjacent to each other, and there is a problem that a surface light source having a large emission intensity cannot be obtained.
【0005】それゆえにこの発明の主たる目的は、単一
の部品として形成されかつ大きな発光強度を有する面光
源として適する、発光部品を提供することである。Therefore, a main object of the present invention is to provide a light emitting component which is formed as a single component and which is suitable as a surface light source having a high emission intensity.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明の発光部品は、基板、および基板上にそれぞ
れ形成されかつ接続される複数の3族窒化物半導体発光
素子を備える。In order to achieve the above object, a light emitting component of the present invention comprises a substrate and a plurality of Group III nitride semiconductor light emitting devices which are respectively formed and connected on the substrate.
【0007】 本発明の発光部品は、複数の3族窒化物
半導体発光素子は直列に接続されるものである。[0007] emitting component of the present invention, a group III nitride semiconductor light-emitting device of the multiple is intended to be connected in series.
【0008】 本発明の発光部品は、各3族窒化物半導
体発光素子は、基板上に形成される第1導電型の半導体
層、第1導電型の半導体層上に形成される第1導電型側
電極、第1導電性の半導体層上に形成される第2導電型
の半導体層、および第2導電型の半導体層上に面状に形
成される第2導電型側電極を含み、相互に隣接する3族
窒化物半導体発光素子の一方の発光素子の第1導電型側
電極と他方の発光素子の第2導電型側電極とは内部配線
によって接続され、内部配線の幅W1は、前記第1導電
型側電極の長さLより大きいものである。[0008] emitting component of the present invention, the group III nitride semiconductor light emitting device includes a first conductive type semiconductor layer of the first conductivity type formed in the first conductivity type semiconductor layer formed on a substrate side electrode includes a second conductive type semiconductor layer, and the second-conductivity-type-side electrode formed in a planar shape on the second conductive type semiconductor layer formed on the first conductive semiconductor layer, mutual are connected by the internal wiring and the second-conductivity-type-side electrode of the first-conductivity-type-side electrode and the other light-emitting element of one of the light-emitting element of the group III nitride semiconductor light-emitting element adjacent to, the width W1 of the internal wiring, The first conductivity
It is longer than the length L of the mold side electrode .
【0009】 本発明の発光部品は、第1導電型の半導
体層の抵抗をR1、第2導電型側電極の抵抗をR2とす
ると、R1≒R2に設定されるものである。In the light emitting device of the present invention , when the resistance of the first conductivity type semiconductor layer is R1 and the resistance of the second conductivity type side electrode is R2, R1≈R2 is set.
【0010】 本発明の発光部品は、第2導電型側電極
は透光性電極を含むものである。In the light emitting device of the present invention , the second-conductivity-type-side electrode includes a translucent electrode.
【0011】 本発明の発光部品は、3族窒化物半導体
発光素子の数は駆動電圧に応じて決定されるものであ
る。In the light emitting device of the present invention , the number of Group III nitride semiconductor light emitting devices is determined according to the driving voltage.
【0012】 本発明の発光部品は、3族窒化物半導体
発光素子はGaN系発光素子を含むものである。In the light emitting component of the present invention, the group III nitride semiconductor light emitting device includes a GaN-based light emitting device.
【0013】 本発明の発光部品では、一般のIC製造
プロセスを用いて1枚の基板上に複数の3族窒化物半導
体発光素子が形成されかつ接続されるので、相互に隣接
する3族窒化物半導体発光素子の間隔を従来よりも狭く
できる。したがって、単一の部品として形成されかつ発
光強度が大きい面光源が得られる。In the light emitting component of the present invention , since a plurality of Group III nitride semiconductor light emitting elements are formed and connected on one substrate by using a general IC manufacturing process, Group 3 nitrides adjacent to each other are used. The distance between the semiconductor light emitting elements can be made narrower than before. Therefore, a surface light source which is formed as a single component and has a high emission intensity can be obtained.
【0014】 本発明の発光部品では、複数の3族窒化
物半導体発光素子が直列に接続されると、各3族窒化物
半導体発光素子からの発光量が等しくされる。In the light emitting device of the present invention , when a plurality of group III nitride semiconductor light emitting elements are connected in series, the amount of light emitted from each group III nitride semiconductor light emitting element is made equal.
【0015】 本発明の発光部品では、各3族窒化物半
導体発光素子は直線状に配列され、かつ相互に隣接する
3族窒化物半導体発光素子の一方の発光素子の第1導電
型側電極と他方の発光素子の第2導電型側電極とが幅を
有する内部配線によって接続されると、個々の3族窒化
物半導体発光素子における発光強度分布はより均一化さ
れる。請求項4に記載するように、(第1導電型の半導
体層の抵抗R1)≒(第2導電型側電極の抵抗R2)に
設定されると、個々の3族窒化物半導体発光素子におけ
る発光強度分布は略均一化される。In the light emitting device of the present invention , the respective Group III nitride semiconductor light emitting elements are linearly arranged and are adjacent to each other and the first conductivity type side electrode of one light emitting element of the Group III nitride semiconductor light emitting elements. When the second-conductivity-type-side electrode of the other light emitting element is connected by the internal wiring having a width, the light emission intensity distribution in each group III nitride semiconductor light emitting element becomes more uniform. As set forth in claim 4, when (resistance R1 of semiconductor layer of first conductivity type) ≈ (resistance R2 of side electrode of second conductivity type) is set, light emission in each group III nitride semiconductor light emitting element The intensity distribution is made substantially uniform.
【0016】 また、本発明の発光部品では、3族窒化
物半導体発光素子の数が、発光部品が用いられる装置の
駆動電圧に適合するように設定されると、さまざまな駆
動電圧に適用可能な発光部品が得られる。なお、本発明
の発光部品では、第2導電型側電極は透光性電極によっ
て形成され、また、本発明の発光部品では、3族窒化物
半導体発光素子としてはたとえばGaN系発光素子が用
いられる。Further, in the light emitting device of the present invention, if the number of the group III nitride semiconductor light emitting devices is set to match the drive voltage of the device in which the light emitting device is used, it can be applied to various drive voltages. A light emitting component is obtained. The present invention
In the light emitting component , the second conductivity type side electrode is formed of a translucent electrode, and in the light emitting component of the present invention, for example, a GaN-based light emitting device is used as the group III nitride semiconductor light emitting device.
【0017】[0017]
【発明の実施の形態】以下、この発明の実施の形態につ
いて、図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0018】図1および図2を参照して、この発明の実
施の形態の発光部品10は、たとえばサファイア基板等
などの絶縁性基板12を含み、絶縁性基板12上に4個
のGaN(少なくともGa、Nを含む半導体)系発光ダ
イオード14a〜14dが形成されるものである。Referring to FIGS. 1 and 2, a light emitting component 10 according to an embodiment of the present invention includes an insulating substrate 12 such as a sapphire substrate, and the like. Semiconductors containing Ga and N) based light emitting diodes 14a to 14d are formed.
【0019】すなわち、絶縁性基板12上には、各Ga
N系発光ダイオード14a〜14dに対応して、層厚
3.0μmの電極設置層となるn型GaN層(Siドー
プ)16、層厚0.1μmの発光層18、および層厚
0.5μmのp型GaNコンタクト層(Mgドープ)2
0が、この順序で形成される。That is, each Ga is formed on the insulating substrate 12.
Corresponding to the N-based light emitting diodes 14a to 14d, an n-type GaN layer (Si-doped) 16 serving as an electrode installation layer having a layer thickness of 3.0 μm, a light emitting layer 18 having a layer thickness of 0.1 μm, and a layer thickness of 0.5 μm. p-type GaN contact layer (Mg-doped) 2
0s are formed in this order.
【0020】また、各p型GaNコンタクト層20上に
はp型側電極である透光性電極22が面状に形成され、
各n型GaN層16上の一端縁近傍かつ幅方向にはn型
側電極24が形成される。図1からよくわかるように、
透光性電極22とn型側電極24とは平行に形成され
る。A transparent electrode 22 which is a p-type side electrode is formed in a planar shape on each p-type GaN contact layer 20,
An n-type side electrode 24 is formed in the vicinity of one edge of each n-type GaN layer 16 and in the width direction. As you can see from Figure 1,
The translucent electrode 22 and the n-type side electrode 24 are formed in parallel.
【0021】そして、絶縁性基板12上の各部材は保護
膜26によって覆われ、隣接するGaN系発光ダイオー
ド間の透光性電極22とn型側電極24とは所定の幅W
1を有する内部配線28によって直列接続される。この
とき、内部配線28の一端は透光性電極22上の一端縁
近傍かつ幅方向に延びて形成される。したがって、1つ
のGaN系発光ダイオードに関していえば、内部配線2
8と透光性電極22との接続箇所は、n型側電極24の
形成箇所とは反対側の端縁近傍となる。なお、図1から
わかるように、内部配線28の幅W1の寸法は、たとえ
ば、透光性電極22の幅W2よりやや小さくかつn型側
電極24の長さLよりやや大きくなるように設定され
る。Each member on the insulating substrate 12 is covered with a protective film 26, and the translucent electrode 22 and the n-type side electrode 24 between adjacent GaN-based light emitting diodes have a predetermined width W.
1 is connected in series by the internal wiring 28 having the number 1. At this time, one end of the internal wiring 28 is formed near the one end edge on the transparent electrode 22 and extends in the width direction. Therefore, regarding one GaN-based light emitting diode, the internal wiring 2
8 and the transparent electrode 22 are connected to each other in the vicinity of the edge on the side opposite to the position where the n-type side electrode 24 is formed. As can be seen from FIG. 1, the width W1 of the internal wiring 28 is set to be, for example, slightly smaller than the width W2 of the transparent electrode 22 and slightly larger than the length L of the n-type side electrode 24. It
【0022】さらに、両端の透光性電極22およびn型
側電極24には、それぞれ外部の部品と接続するための
パッド電極30が接続される。パッド電極30も内部電
極28と同様に形成される。Further, the transparent electrode 22 and the n-type side electrode 24 at both ends are connected to pad electrodes 30 for connecting to external parts, respectively. The pad electrode 30 is also formed similarly to the internal electrode 28.
【0023】このように、内部配線28を介して透光性
電極22とn型側電極24とを接続することによって、
4個のGaN系発光ダイオード14a〜14dを直列接
続した発光部品10が得られる。発光部品10の等価回
路が図3に示される。As described above, by connecting the translucent electrode 22 and the n-type side electrode 24 through the internal wiring 28,
A light emitting component 10 in which four GaN-based light emitting diodes 14a to 14d are connected in series is obtained. An equivalent circuit of the light emitting component 10 is shown in FIG.
【0024】このような発光部品10の製造方法の一例
を、図4を参照して説明する。An example of a method of manufacturing such a light emitting component 10 will be described with reference to FIG.
【0025】まず、図4(a)に示すように、絶縁性基
板12上に、n型GaN層16、発光層18およびp型
GaNコンタクト層20をMOCVD(有機金属化学気
相成長法)によってこの順序でエピタキシャル成長さ
せ、膜厚3.0μm、ND=1018cmー3のn型GaN
層16、膜厚0.1μmの発光層18、および膜厚0.
5μm、NA=1017cmー3のp型GaNコンタクト層
20が形成される。First, as shown in FIG. 4A, an n-type GaN layer 16, a light emitting layer 18, and a p-type GaN contact layer 20 are formed on an insulating substrate 12 by MOCVD (metal organic chemical vapor deposition). Epitaxial growth was performed in this order, and n-type GaN having a film thickness of 3.0 μm and N D = 10 18 cm −3
The layer 16, the light emitting layer 18 having a thickness of 0.1 μm, and the thickness of 0.
A p-type GaN contact layer 20 of 5 μm and N A = 10 17 cm −3 is formed.
【0026】ついで、図4(b)に示すように、Niマ
スクによるフォトリソグラフィーおよび塩素ガスを0.
5Paの圧力で供給するドライエッチング法によって、
絶縁性基板12上のp型GaNコンタクト層20、発光
層18およびn型GaN層16がエッチング除去され、
メサ21が形成される。このときのエッチングの深さは
0.8μmである。Then, as shown in FIG. 4 (b), photolithography using a Ni mask and chlorine gas of 0.
By the dry etching method of supplying at a pressure of 5 Pa,
The p-type GaN contact layer 20, the light emitting layer 18, and the n-type GaN layer 16 on the insulating substrate 12 are removed by etching.
The mesa 21 is formed. The etching depth at this time is 0.8 μm.
【0027】さらに、図4(c)に示すように、Niマ
スクによるフォトリソグラフィーおよび塩素ガスを0.
5Paの圧力で供給するドライエッチング法によって、
絶縁性基板12上のn型GaN層16がエッチング除去
され、絶縁性基板12が露出するように凹部32が形成
される。これによって、エッチングの深さは3.6μm
となり、GaN系発光ダイオード14a〜14dを構成
する層がそれぞれ分離される。Further, as shown in FIG. 4 (c), photolithography using a Ni mask and chlorine gas of 0.
By the dry etching method of supplying at a pressure of 5 Pa,
The n-type GaN layer 16 on the insulating substrate 12 is removed by etching, and the recess 32 is formed so that the insulating substrate 12 is exposed. As a result, the etching depth is 3.6 μm.
The layers constituting the GaN-based light emitting diodes 14a to 14d are separated from each other.
【0028】つづいて、図4(d)に示すように、2×
10ー6torrの圧力による電子ビーム蒸着によって、
p型GaNコンタクト層20上面全体に、膜厚2nmの
Ni膜および膜厚4nmのAu膜がこの順序で成膜さ
れ、フォトリソグラフィーによって面状の透光性電極2
2が形成される。また、2×10ー6torrの圧力によ
る電子ビーム蒸着によって、n型GaN層16上に、膜
厚30nmのTi膜および膜厚500nmのAl膜がこ
の順序で成膜され、フォトリソグラフィーによってn型
GaN層16上の一端縁近傍かつ幅方向に延びたn型側
電極24が形成される。n型側電極24はGaN系発光
ダイオードのカソード電極に相当する。Subsequently, as shown in FIG. 4D, 2 ×
By electron beam evaporation by the pressure of 10 @ 6 torr,
A Ni film having a thickness of 2 nm and an Au film having a thickness of 4 nm are formed in this order on the entire upper surface of the p-type GaN contact layer 20, and the planar transparent electrode 2 is formed by photolithography.
2 is formed. Further, by electron beam evaporation by the pressure of 2 × 10 over 6 torr, on the n-type GaN layer 16, Al film of Ti film and the thickness 500nm of thickness 30nm is deposited in this order, n-type by photolithography An n-type side electrode 24 is formed on the GaN layer 16 in the vicinity of one edge and extending in the width direction. The n-type side electrode 24 corresponds to the cathode electrode of the GaN-based light emitting diode.
【0029】その後、図4(e)に示すように、図4
(d)で形成されたチップの上面全体に膜厚300nm
のSiO2からなる保護膜26が電子ビーム蒸着によっ
て形成される。Then, as shown in FIG.
A film thickness of 300 nm is formed on the entire upper surface of the chip formed in (d).
The SiO 2 protective film 26 is formed by electron beam evaporation.
【0030】その後、透光性電極22およびn型側電極
24のそれぞれの上面の一部が露出するように、フォト
リソグラフィーによって保護膜26がエッチング除去さ
れて開口される。このとき、1つのGaN系発光ダイオ
ードに関していえば、透光性電極22上の開口はn型側
電極24の形成箇所とは反対側の端縁近傍かつ幅方向に
延びて形成される。また、n型側電極24の開口も幅方
向に延びて形成される。After that, the protective film 26 is removed by etching by photolithography so that the upper surfaces of the translucent electrode 22 and the n-type side electrode 24 are partially exposed. At this time, regarding one GaN-based light-emitting diode, the opening on the translucent electrode 22 is formed in the vicinity of the edge on the side opposite to where the n-type side electrode 24 is formed and extends in the width direction. Further, the opening of the n-type side electrode 24 is also formed so as to extend in the width direction.
【0031】そして、図4(f)に示すように、2×1
0ー6torrの圧力による電子ビーム蒸着によって、保
護膜26の上面全体に膜厚100nmのNi膜および膜
厚700nmのAu膜がこの順序で成膜され、フォトリ
ソグラフィーによって内部配線28が形成される。した
がって、1つのGaN系発光ダイオードに関していえ
ば、透光性電極22に接続される内部配線28およびn
型側電極24に接続される内部配線28は、GaN系発
光ダイオードの両端からそれぞれ反対方向に引き出され
ることになる。なお、図4(f)には図示しないが、パ
ッド電極30も同様にして同時に形成される。内部配線
28およびパッド電極30のうち、透光性電極22と接
続される一端部が、GaN系発光ダイオードのアノード
電極に相当する。Then, as shown in FIG. 4 (f), 2 × 1
By electron beam evaporation by pressure 0 over 6 torr, Au film of Ni film and the thickness 700nm of thickness 100nm on the entire upper surface of the protective film 26 is deposited in this order, the internal wiring 28 is formed by photolithography . Therefore, regarding one GaN-based light emitting diode, the internal wiring 28 and n connected to the translucent electrode 22 are
The internal wiring 28 connected to the mold side electrode 24 is drawn out in opposite directions from both ends of the GaN-based light emitting diode. Although not shown in FIG. 4F, the pad electrode 30 is similarly formed at the same time. One end of the internal wiring 28 and the pad electrode 30 connected to the translucent electrode 22 corresponds to the anode electrode of the GaN-based light emitting diode.
【0032】このようにして、4個のGaN系発光ダイ
オード14a〜14dが直列接続された発光部品10が
形成される。Thus, the light emitting component 10 in which the four GaN-based light emitting diodes 14a to 14d are connected in series is formed.
【0033】発光強度10によれば、一般のIC製造プ
ロセスを用いて1枚の絶縁性基板12上に複数のGaN
系発光ダイオード14a〜14dが形成されかつ接続さ
れるので、相互に隣接するGaN系発光ダイオードの間
隔を従来よりも狭くできる。したがって、単一の部品と
して形成されかつ発光強度が大きい面光源として適する
発光部品10が得られる。According to the emission intensity 10, a plurality of GaN is formed on one insulating substrate 12 by using a general IC manufacturing process.
Since the system light emitting diodes 14a to 14d are formed and connected, the interval between the GaN-based light emitting diodes adjacent to each other can be made narrower than the conventional one. Therefore, it is possible to obtain the light emitting component 10 which is formed as a single component and is suitable as a surface light source having a high emission intensity.
【0034】また、発光部品10によれば、図5(a)
にも示すように、絶縁性基板12上にGaN系発光ダイ
オード14a〜14dを直線状に形成することができる
ので、図5(b)からわかるように、大面積の発光が得
られる。Further, according to the light emitting component 10, FIG.
As also shown in FIG. 5, since the GaN-based light emitting diodes 14a to 14d can be linearly formed on the insulating substrate 12, as shown in FIG. 5B, large area light emission can be obtained.
【0035】また、同一の絶縁性基板12上にGaN系
発光ダイオード14a〜14dを形成できるので、Ga
N系発光ダイオード14a〜14d間の絶縁分離、集積
化が容易になる。Since the GaN-based light emitting diodes 14a to 14d can be formed on the same insulating substrate 12, Ga
This facilitates insulation isolation and integration between the N-based light emitting diodes 14a to 14d.
【0036】各GaN系発光ダイオード14a〜14d
の発光強度分布は図6に示すようになる。透光性電極2
2の抵抗をRt、n型GaN層16の抵抗をRnとし、
Rpは、p型GaNコンタクト層20の抵抗、透光性電
極22とp型GaNコンタクト層20との接触抵抗およ
びp−n接合電圧相当抵抗分を示し、各抵抗は面内にお
いて一定と考えるとする。Each GaN-based light emitting diode 14a-14d
The emission intensity distribution of is as shown in FIG. Translucent electrode 2
The resistance of 2 is Rt, the resistance of the n-type GaN layer 16 is Rn,
Rp represents the resistance of the p-type GaN contact layer 20, the contact resistance between the translucent electrode 22 and the p-type GaN contact layer 20, and the resistance equivalent to the pn junction voltage, and each resistance is considered to be constant in the plane. To do.
【0037】各GaN系発光ダイオード14a〜14d
は直線状に配列され、かつ相互に隣接するGaN系発光
ダイオードの一方の発光ダイオードのn型側電極24と
他方の発光ダイオードの透光性電極22とが幅W1を有
する内部配線28によって接続されているので、透光性
電極22の単位面積当たりの抵抗が小さい場合(Rt≒
Rn)には、図6(a)に示すように、透光性電極22
全面からn型GaN層16に電流が流れ、発光層18を
通過する電流は発光層18内の位置に拘わらず均一にな
る。したがって、図6(b)および(c)に示すよう
に、透光性電極22からの発光は発光箇所に拘わらず略
均一になり、かつより大きな発光強度が得られる。Each GaN-based light emitting diode 14a-14d
Are linearly arranged, and the n-type side electrode 24 of one light emitting diode of the GaN-based light emitting diodes and the translucent electrode 22 of the other light emitting diode which are adjacent to each other are connected by an internal wiring 28 having a width W1. Therefore, when the resistance per unit area of the translucent electrode 22 is small (Rt≈
Rn) includes the translucent electrode 22 as shown in FIG.
A current flows from the entire surface to the n-type GaN layer 16, and the current passing through the light emitting layer 18 becomes uniform regardless of the position in the light emitting layer 18. Therefore, as shown in FIGS. 6B and 6C, the light emission from the translucent electrode 22 becomes substantially uniform regardless of the light emitting portion, and a larger light emission intensity can be obtained.
【0038】因みに、透光性電極22の単位面積当たり
の抵抗が大きい場合(Rt>Rn)には、図6(d)に
示すように、発光層18を通過する電流は内部配線28
すなわちアノード電極近傍に集中する。この場合、図6
(e)に示すXーX断面における発光強度は不均一にな
るが、各GaN系発光ダイオード14a〜14dは直線
状に配列され、かつ相互に隣接するGaN系発光ダイオ
ードの一方の発光ダイオードのn型側電極24と他方の
発光ダイオードの透光性電極22とが幅W1を有する内
部配線28によって接続されているので、図6(f)に
示すYーY断面における発光強度は略均一になる。した
がって、上述した透光性電極22の単位面積当たりの抵
抗が小さい場合より発光強度は不均一かつ小さくなる
が、少なくとも図9に示す従来技術より発光強度は均一
化されかつ大きくなる。By the way, when the resistance per unit area of the transparent electrode 22 is large (Rt> Rn), the current passing through the light emitting layer 18 is the internal wiring 28 as shown in FIG. 6D.
That is, they are concentrated near the anode electrode. In this case,
Although the emission intensity in the XX cross section shown in (e) is non-uniform, each GaN-based light emitting diode 14a to 14d is linearly arranged and n of one of the GaN-based light emitting diodes adjacent to each other. Since the mold side electrode 24 and the translucent electrode 22 of the other light emitting diode are connected by the internal wiring 28 having the width W1, the emission intensity in the YY cross section shown in FIG. 6 (f) becomes substantially uniform. . Therefore, the light emission intensity is nonuniform and smaller than that when the resistance per unit area of the translucent electrode 22 is small, but the light emission intensity is more uniform and larger than at least the conventional technique shown in FIG.
【0039】さらに、図7(a)〜(c)に示すよう
に、絶縁性基板12a上にGaN系発光ダイオード14
a〜14dを形成しコ字状に直列接続してもよく、この
場合にも、単一の部品として形成されかつ大きな発光強
度が得られ面光源として適する発光部品が得られる。Further, as shown in FIGS. 7A to 7C, the GaN-based light emitting diode 14 is formed on the insulating substrate 12a.
Alternatively, a to 14d may be formed and connected in series in a U shape. In this case, a light emitting component formed as a single component and having a large emission intensity and suitable as a surface light source can be obtained.
【0040】すなわち、図5および図7からわかるよう
に、絶縁性基板上に複数個のGaN系発光ダイオードを
形成し直列接続することによって、単一の部品として形
成されかつ大きな発光強度が得られ面光源に応用できる
発光部品が得られる。That is, as can be seen from FIGS. 5 and 7, by forming a plurality of GaN-based light-emitting diodes on an insulating substrate and connecting them in series, a single component and a high emission intensity can be obtained. A light emitting component applicable to a surface light source can be obtained.
【0041】なお、GaN系発光ダイオードを駆動する
には、3V以上必要であり、5V電源を用いて回路動作
を行うことが多い。1つのGaN系発光ダイオードあた
り4V(たとえば20mAの電流を流す場合)程度必要
とすると、駆動電圧が24Vの場合には6つのGaN系
発光ダイオードが直列接続された発光部品を用いればよ
い。このように、駆動電圧に応じた直列素子数のGaN
系発光ダイオードを用いることによって、大面積の発光
が可能となり、かつ駆動電圧の制限も少なくなり、多方
面にわたる応用が期待できる。It should be noted that 3 V or more is required to drive the GaN-based light emitting diode, and circuit operation is often performed using a 5 V power supply. If one GaN-based light emitting diode requires about 4 V (for example, when a current of 20 mA is applied), when the driving voltage is 24 V, a light emitting component in which six GaN-based light emitting diodes are connected in series may be used. Thus, the number of GaN elements in series depends on the driving voltage.
By using the system light emitting diode, light emission in a large area becomes possible, and the limitation of the driving voltage is reduced, so that the application in various fields can be expected.
【0042】また、図8に示すように、GaN系発光ダ
イオード14a〜14nとともに抵抗(図8(a))や
FET(図8(b))などの電流制御素子が同一絶縁性
基板上に形成されてもよく、この場合、GaN系発光ダ
イオード14a〜14nと電流制御素子とを同一の絶縁
性基板上にモノリシックに形成できる。As shown in FIG. 8, current control elements such as resistors (FIG. 8A) and FETs (FIG. 8B) are formed on the same insulating substrate together with the GaN-based light emitting diodes 14a to 14n. In this case, the GaN-based light emitting diodes 14a to 14n and the current control element can be monolithically formed on the same insulating substrate.
【0043】このように外付け素子が不要になるため、
小型かつ軽量の発光部品10が得られ、また、GaN系
発光ダイオード14a〜14dだけではなく電流制御素
子をもワイドギャップバンド材料によって形成できるの
で、発熱に対して強い発光部品10が得られ、集積化が
容易となる。さらに、絶縁性基板の一方主面にのみ素子
を構成するので、この場合にも一般的なIC製造プロセ
スを適用できる。また、GaN系発光ダイオードの数を
調整するだけではなく電流制御素子を付加することによ
り、駆動電圧の制限がさらに少なくなる。さらに、Ga
N系発光ダイオード14a〜14nに抵抗を付加するこ
とによって、組立時や使用時におけるサージ電流を抑制
することができる。Since no external element is required in this way,
A small and lightweight light emitting component 10 can be obtained, and since not only the GaN-based light emitting diodes 14a to 14d but also the current control element can be formed of the wide gap band material, the light emitting component 10 that is strong against heat generation can be obtained and integrated. It becomes easy to convert. Further, since the element is formed only on one main surface of the insulating substrate, a general IC manufacturing process can be applied in this case as well. Further, not only adjusting the number of GaN-based light emitting diodes but also adding a current control element further reduces the limitation on the driving voltage. Furthermore, Ga
By adding resistance to the N-type light emitting diodes 14a to 14n, surge current during assembly or use can be suppressed.
【0044】図1の実施の形態では、4個のGaN系発
光ダイオード14a〜14dを直列接続する場合につい
て述べたが、GaN系発光ダイオードの数はこれに限定
されないことはいうまでもない。In the embodiment of FIG. 1, a case has been described in which four GaN-based light emitting diodes 14a to 14d are connected in series, but it goes without saying that the number of GaN-based light emitting diodes is not limited to this.
【0045】また、上述の実施の形態では、発光素子と
して発光ダイオードを例に説明したが、これに限定され
ず、レーザであってもよい。In the above embodiment, the light emitting diode is used as an example of the light emitting element, but the light emitting element is not limited to this and may be a laser.
【0046】さらに、発光部品10の3族窒化物半導体
発光素子としては、たとえばAlN、InN、BNまた
はInGaNなどを含む3族窒化物半導体からなる発光
素子であれば、任意の3族窒化物半導体発光素子を用い
ることができる。Further, the group III nitride semiconductor light emitting element of the light emitting component 10 is any group III nitride semiconductor as long as it is a light emitting element made of a group III nitride semiconductor containing AlN, InN, BN or InGaN. A light emitting element can be used.
【0047】[0047]
【発明の効果】この発明によれば、1つの基板上に発光
部を複数形成でき、単一の部品として形成されかつ大き
な発光強度が得られ面光源として適する発光部品が得ら
れる。According to the present invention, a plurality of light emitting parts can be formed on one substrate, and a light emitting part which is formed as a single part and has a large emission intensity and which is suitable as a surface light source can be obtained.
【図1】この発明の一実施形態の主要部を示す平面図で
ある。FIG. 1 is a plan view showing a main part of an embodiment of the present invention.
【図2】図1の実施形態を示す断面図である。2 is a cross-sectional view showing the embodiment of FIG.
【図3】図1の実施形態を示す等価回路図である。FIG. 3 is an equivalent circuit diagram showing the embodiment of FIG.
【図4】図1の実施形態の製造プロセスを示す工程図で
ある。FIG. 4 is a process drawing showing the manufacturing process of the embodiment in FIG.
【図5】(a)は図1の実施形態におけるGaN系発光
ダイオードの配置状態を模式的に示す平面図であり、
(b)はその発光状態を模式的に示す側面図である。5 (a) is a plan view schematically showing the arrangement of GaN-based light emitting diodes in the embodiment of FIG.
(B) is a side view schematically showing the light emitting state.
【図6】GaN系発光ダイオードの電流の流れおよび発
光強度分布の概略を示す図解図であり、(a)〜(c)
は透光性電極の抵抗が小さい場合、(d)〜(f)は透
光性電極の抵抗が大きい場合をそれぞれ示す。FIG. 6 is an illustrative view showing an outline of a current flow and a light emission intensity distribution of a GaN-based light emitting diode, (a) to (c).
Shows the case where the resistance of the transparent electrode is small, and (d) to (f) shows the case where the resistance of the transparent electrode is large.
【図7】(a)はこの発明の他の実施の形態を示す等価
回路図であり、(b)はその実施の形態におけるGaN
系発光ダイオードの配置状態を模式的に示す平面図であ
り、(c)はその発光状態を模式的に示す側面図であ
る。FIG. 7 (a) is an equivalent circuit diagram showing another embodiment of the present invention, and FIG. 7 (b) is GaN in the embodiment.
It is a top view which shows typically the arrangement | positioning state of a system light emitting diode, and (c) is a side view which shows the light emission state typically.
【図8】この発明のその他の実施の形態を示す等価回路
図であり、(a)はGaN系発光ダイオードに抵抗を付
加したもの、(b)はGaN系発光ダイオードにFET
を付加したものをそれぞれ示す。FIG. 8 is an equivalent circuit diagram showing another embodiment of the present invention, where (a) is a GaN-based light emitting diode to which a resistor is added, and (b) is a GaN-based light emitting diode with an FET.
Are added respectively.
【図9】(a)は従来技術を示す平面図であり、(b)
はその端面図である。FIG. 9A is a plan view showing a conventional technique, and FIG.
Is an end view thereof.
【符号の説明】 10 発光部品 12、12a 絶縁性基板 14a〜14d、14n GaN系発光ダイオード 16 n型GaNバッファ層 18 発光層 20 p型GaNコンタクト層 22 透光性電極 24 n型側電極 26 保護膜 28 内部配線 30 パッド電極 W1 内部配線の幅[Explanation of symbols] 10 Light emitting parts 12, 12a Insulating substrate 14a to 14d, 14n GaN-based light emitting diode 16 n-type GaN buffer layer 18 Light-emitting layer 20 p-type GaN contact layer 22 Translucent electrode 24 n-type side electrode 26 Protective film 28 Internal wiring 30 pad electrode W1 internal wiring width
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 33/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 33/00
Claims (4)
されかつ接続される複数の3族窒化物半導体発光素子を
備えた発光部品であって、前記各3族窒化物半導体発光
素子は、前記基板上に形成される第1導電型の半導体
層、前記第1導電型の半導体層上に形成される第1導電
型側電極、前記第1導電性の半導体層上に形成される第
2導電型の半導体層、および前記第2導電型の半導体層
上に形成される第2導電型側電極を含み、 相互に隣接する前記3族窒化物半導体発光素子の一方の
発光素子の前記第1導電型側電極と他方の発光素子の前
記第2導電型側電極とは内部配線によって接続され、 前記内部配線の幅W1は、前記第1導電型側電極の長さ
Lより大きい 、発光部品。1. A light emitting component comprising a substrate and a plurality of group III nitride semiconductor light emitting devices formed and connected to the substrate, each group III nitride semiconductor light emitting device.
The element is a semiconductor of the first conductivity type formed on the substrate.
Layer, a first conductive layer formed on the first conductive type semiconductor layer
A mold side electrode, a first electrode formed on the first conductive semiconductor layer,
Two-conductivity-type semiconductor layer, and the second-conductivity-type semiconductor layer
One of the group III nitride semiconductor light-emitting devices including the second-conductivity-type-side electrode formed above and adjacent to each other.
In front of the first conductivity type side electrode of the light emitting element and the other light emitting element
The second conductivity type side electrode is connected by an internal wire, and the width W1 of the internal wire is the length of the first conductivity type side electrode.
A light-emitting component that is larger than L.
型側電極の幅W2より小さい、請求項1に記載の発光部
品。2. The width W1 of the internal wiring is the second conductive layer.
The light-emitting component according to claim 1, which is smaller than the width W2 of the mold-side electrode .
線状に配列される、請求項1または2に記載の発光部
品。3. Each group III nitride semiconductor light emitting device is directly
The light emitting component according to claim 1, wherein the light emitting component is arranged in a line .
N系発光素子を含む、請求項1ないし3のいずれかに記
載の発光部品。 4. The group III nitride semiconductor light emitting device is Ga
The method according to claim 1, which includes an N-based light emitting device.
Light emitting parts on board.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33108397A JP3505374B2 (en) | 1997-11-14 | 1997-11-14 | Light emitting components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33108397A JP3505374B2 (en) | 1997-11-14 | 1997-11-14 | Light emitting components |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003353149A Division JP2004048067A (en) | 2003-10-14 | 2003-10-14 | Light emitting component and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11150303A JPH11150303A (en) | 1999-06-02 |
JP3505374B2 true JP3505374B2 (en) | 2004-03-08 |
Family
ID=18239667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33108397A Expired - Fee Related JP3505374B2 (en) | 1997-11-14 | 1997-11-14 | Light emitting components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3505374B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412242A (en) * | 2011-11-23 | 2012-04-11 | 俞国宏 | Light-emitting diode (LED) chipset capable of being connected to alternating current directly |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2331625B (en) * | 1997-11-19 | 2003-02-26 | Hassan Paddy Abdel Salam | led Lamp |
US8587020B2 (en) | 1997-11-19 | 2013-11-19 | Epistar Corporation | LED lamps |
US6410942B1 (en) * | 1999-12-03 | 2002-06-25 | Cree Lighting Company | Enhanced light extraction through the use of micro-LED arrays |
US6885035B2 (en) * | 1999-12-22 | 2005-04-26 | Lumileds Lighting U.S., Llc | Multi-chip semiconductor LED assembly |
JP4904628B2 (en) * | 2001-03-14 | 2012-03-28 | パナソニック株式会社 | Composite light emitting device |
US6547249B2 (en) | 2001-03-29 | 2003-04-15 | Lumileds Lighting U.S., Llc | Monolithic series/parallel led arrays formed on highly resistive substrates |
KR100437761B1 (en) * | 2001-04-19 | 2004-06-26 | 엘지전자 주식회사 | edge-emitting type light emitting diode using face light source and fabrication method for the same |
JP4075321B2 (en) * | 2001-04-24 | 2008-04-16 | 日亜化学工業株式会社 | Integrated nitride semiconductor light emitting device |
JP4585014B2 (en) * | 2002-04-12 | 2010-11-24 | ソウル セミコンダクター カンパニー リミテッド | Light emitting device |
EP2157609A3 (en) | 2002-08-29 | 2014-05-07 | Seoul Semiconductor Co., Ltd. | Light-emitting device having light-emitting diodes |
JP2004207349A (en) * | 2002-12-24 | 2004-07-22 | Matsushita Electric Ind Co Ltd | Semiconductor laser apparatus and its manufacturing method |
JP4155847B2 (en) * | 2003-03-12 | 2008-09-24 | 三洋電機株式会社 | Multilayer light emitting diode element |
JP4411871B2 (en) * | 2003-06-17 | 2010-02-10 | 日亜化学工業株式会社 | Nitride semiconductor light emitting device |
EP1658642B1 (en) | 2003-08-28 | 2014-02-26 | Panasonic Corporation | Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device |
EP1700344B1 (en) | 2003-12-24 | 2016-03-02 | Panasonic Intellectual Property Management Co., Ltd. | Semiconductor light emitting device and lighting module |
JP5346909B2 (en) * | 2004-02-03 | 2013-11-20 | パナソニック株式会社 | Semiconductor light emitting device, lighting module, lighting device, and display element |
JP2005317676A (en) * | 2004-04-27 | 2005-11-10 | Sony Corp | Semiconductor light emitting device, semiconductor light emitting device, and method for manufacturing semiconductor light emitting device |
US7804098B2 (en) | 2004-06-30 | 2010-09-28 | Seoul Opto Device Co., Ltd. | Light emitting element with a plurality of cells bonded, method of manufacturing the same, and light emitting device using the same |
JP2008508730A (en) * | 2004-07-30 | 2008-03-21 | ノバラックス,インコーポレイティド | Apparatus, system, and method for junction separation of an array of surface emitting lasers |
JP2008523637A (en) | 2004-12-14 | 2008-07-03 | ソウル オプト−デバイス カンパニー リミテッド | Light emitting device having a plurality of light emitting cells and package mounting the same |
KR101138944B1 (en) * | 2005-01-26 | 2012-04-25 | 서울옵토디바이스주식회사 | Light emitting device having a plurality of light emitting cells connected in series and method of fabricating the same |
JP5059739B2 (en) | 2005-03-11 | 2012-10-31 | ソウル セミコンダクター カンパニー リミテッド | Light emitting diode package having an array of light emitting cells connected in series |
KR100663907B1 (en) | 2005-03-24 | 2007-01-02 | 서울옵토디바이스주식회사 | A light emitting device in which a plurality of cells are combined and a method of manufacturing the same |
JP4636501B2 (en) * | 2005-05-12 | 2011-02-23 | 株式会社沖データ | Semiconductor device, print head, and image forming apparatus |
EP2750194A1 (en) | 2005-06-22 | 2014-07-02 | Seoul Viosys Co., Ltd. | Light emitting device comprising a plurality of light emitting diode cells |
KR100683446B1 (en) | 2005-07-16 | 2007-02-20 | 서울옵토디바이스주식회사 | Light-Emitting Device Having Uneven Buffer Layer and Manufacturing Method Thereof |
CN100433381C (en) * | 2005-08-02 | 2008-11-12 | 璨圆光电股份有限公司 | Flip chip type light emitting diode packaging structure and light emitting diode chip |
JP4961887B2 (en) * | 2005-09-07 | 2012-06-27 | 豊田合成株式会社 | Solid state device |
KR100715456B1 (en) | 2005-11-01 | 2007-05-07 | 서울옵토디바이스주식회사 | Method for manufacturing a light emitting device combined with a plurality of cells |
WO2007081092A1 (en) * | 2006-01-09 | 2007-07-19 | Seoul Opto Device Co., Ltd. | Del à couche d'ito et son procédé de fabrication |
JP2007214276A (en) | 2006-02-08 | 2007-08-23 | Mitsubishi Chemicals Corp | Light emitting element |
WO2007126092A1 (en) | 2006-05-01 | 2007-11-08 | Mitsubishi Chemical Corporation | Integrated semiconductor light emitting device and method for manufacturing same |
WO2007126091A1 (en) | 2006-05-01 | 2007-11-08 | Mitsubishi Chemical Corporation | Etching method, etching mask and method for manufacturing semiconductor device using the same |
CN101479858B (en) | 2006-05-01 | 2011-05-11 | 三菱化学株式会社 | Integrated semiconductor light-emitting device and its manufacturing method |
US7714348B2 (en) * | 2006-10-06 | 2010-05-11 | Ac-Led Lighting, L.L.C. | AC/DC light emitting diodes with integrated protection mechanism |
KR101423723B1 (en) * | 2007-10-29 | 2014-08-04 | 서울바이오시스 주식회사 | Light emitting diode package |
JP2009135475A (en) * | 2007-10-31 | 2009-06-18 | Mitsubishi Chemicals Corp | Etching method and method of manufacturing optical/electronic device using the same |
WO2009057764A1 (en) | 2007-10-31 | 2009-05-07 | Mitsubishi Chemical Corporation | Etching method and method for manufacturing optical/electronic device using the same |
JP5217787B2 (en) * | 2008-08-27 | 2013-06-19 | 日亜化学工業株式会社 | Semiconductor light emitting device |
DE102009039891A1 (en) | 2009-09-03 | 2011-03-10 | Osram Opto Semiconductors Gmbh | Optoelectronic module having at least a first semiconductor body with a radiation exit side and an insulating layer and method for its production |
JP2011249411A (en) * | 2010-05-24 | 2011-12-08 | Seiwa Electric Mfg Co Ltd | Semiconductor light-emitting element, light-emitting device, illumination device, display device, signal light unit and road information device |
JP5367792B2 (en) * | 2011-10-07 | 2013-12-11 | スタンレー電気株式会社 | Light emitting element |
JP2013165188A (en) * | 2012-02-10 | 2013-08-22 | Oki Data Corp | Semiconductor light-emitting device, light source device, image forming apparatus and image display device |
JP2013165170A (en) * | 2012-02-10 | 2013-08-22 | Oki Data Corp | Semiconductor light emitting device, image display device, portable terminal, head up display unit, image projection device, head mount display, and image formation device |
EP2626901A1 (en) | 2012-02-10 | 2013-08-14 | Oki Data Corporation | Semiconductor light emitting apparatus, image displaying apparatus, mobile terminal, head-up display apparatus, image projector, head-mounted display apparatus, and image forming apparatus |
-
1997
- 1997-11-14 JP JP33108397A patent/JP3505374B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102412242A (en) * | 2011-11-23 | 2012-04-11 | 俞国宏 | Light-emitting diode (LED) chipset capable of being connected to alternating current directly |
CN102412242B (en) * | 2011-11-23 | 2013-04-24 | 宁波江东科海运拓机械科技有限公司 | Light-emitting diode (LED) chipset capable of being connected to alternating current directly |
Also Published As
Publication number | Publication date |
---|---|
JPH11150303A (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3505374B2 (en) | Light emitting components | |
US7285801B2 (en) | LED with series-connected monolithically integrated mesas | |
US8101960B2 (en) | Nitride light emitting device and manufacturing method thereof | |
KR100568269B1 (en) | Gallium nitride based light emitting diode for flip-chip bonding and manufacturing method thereof | |
US7880181B2 (en) | Light emitting diode with improved current spreading performance | |
US6979844B2 (en) | Light-emitting semiconductor device and method of fabrication | |
JP2828187B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
KR101000276B1 (en) | Semiconductor light emitting device | |
JP3706458B2 (en) | Semiconductor light emitting device | |
KR20080087251A (en) | Light Emitting Diodes With Capacitors | |
JP2004048067A (en) | Light emitting component and method for manufacturing the same | |
KR20010088929A (en) | AlGaInN LED device and their fabrication method | |
JPH06237012A (en) | Semiconductor light emitting element of gallium nitride compound | |
JP3698229B2 (en) | Semiconductor device and semiconductor light emitting device | |
JPH11214749A (en) | Semiconductor light-emitting device | |
US12191422B2 (en) | Optoelectronic semiconductor component comprising connection regions, and method for producing the optoelectronic semiconductor component | |
JP3223810B2 (en) | Gallium nitride based compound semiconductor light emitting device | |
KR20060069375A (en) | Semiconductor LED Device and Method of Manufacturing the Same | |
JPH10270753A (en) | Semiconductor light emitting device and display device | |
KR100447029B1 (en) | Semiconductor LED device and method thereof | |
JP3974676B2 (en) | Manufacturing method of semiconductor light emitting device | |
JP2010177446A (en) | Light-emitting element | |
JP2012243972A (en) | Light emitting element | |
KR20030089574A (en) | Gallium Nitride-Based Compound Semiconductor | |
KR920000329B1 (en) | Light emitting device array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031215 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |