[go: up one dir, main page]

JP2004048067A - Light emitting component and method for manufacturing the same - Google Patents

Light emitting component and method for manufacturing the same Download PDF

Info

Publication number
JP2004048067A
JP2004048067A JP2003353149A JP2003353149A JP2004048067A JP 2004048067 A JP2004048067 A JP 2004048067A JP 2003353149 A JP2003353149 A JP 2003353149A JP 2003353149 A JP2003353149 A JP 2003353149A JP 2004048067 A JP2004048067 A JP 2004048067A
Authority
JP
Japan
Prior art keywords
light emitting
electrode
side electrode
gan
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003353149A
Other languages
Japanese (ja)
Other versions
JP2004048067A5 (en
Inventor
Kunio Takeuchi
竹内 邦生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003353149A priority Critical patent/JP2004048067A/en
Publication of JP2004048067A publication Critical patent/JP2004048067A/en
Publication of JP2004048067A5 publication Critical patent/JP2004048067A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a light emitting component suitable for a surface light source that is formed as a single component and has large light emitting intensity. <P>SOLUTION: An n-type GaN layer 16, a light emitting layer 18, and a p-type GaN contact layer 20 are formed in this order in correspondence with respective GaN-based light emitting diodes 14a to 14d on an insulating substrate 12. A translucent electrode 22 that is a p-type side electrode is formed flat on the p-type GaN contact layer 20 to extend to the vicinity of the edge of the n-type GaN layer 16 and in a lateral direction to form an n-type side electrode 24. Each of the components on the insulative substrate 12 is covered with a protection film 26, and the protection film 26 is opened such that tops of the translucent electrode 22 and the n-type side electrode 24 between the adjacent GaN-based light emitting diodes are partially exposed. Furthermore, internal wiring 28 is formed on the translucent electrode 22 and the n-type side electrode 24 in the opening, thereby a light emitting component 10 is obtained in which series connection is made among adjacent GaN-based light emitting diodes 14a to 14d, respectively. <P>COPYRIGHT: (C)2004,JPO

Description

 この発明は発光部品およびその製造方法に関し、特にたとえば3族窒化物半導体発光素子を用いる発光部品およびその製造方法に関する。 The present invention relates to a light emitting component and a method of manufacturing the same, and more particularly, to a light emitting component using a group III nitride semiconductor light emitting device and a method of manufacturing the same.

 図9に示すように、従来のGaN系発光素子1としては、1つの絶縁性基板2上に、1つの透光性電極3、およびアノード電極4とカソード電極5とからなる一対のボンディング用のパッド電極が形成された、すなわち1つのチップに対して1ヶ所の発光部を有する、発光ダイオードが広く用いられてきた。 As shown in FIG. 9, as a conventional GaN-based light emitting device 1, a single transmissive electrode 3 and a pair of bonding electrodes including an anode electrode 4 and a cathode electrode 5 are formed on one insulating substrate 2. Light emitting diodes having pad electrodes formed, that is, having one light emitting portion for one chip, have been widely used.

 従来のGaN系発光素子1は発光部を1ヶ所しか有さないので、それ単独では面光源としては適さなかった。 (4) Since the conventional GaN-based light-emitting element 1 has only one light-emitting portion, it alone was not suitable as a surface light source.

 また、GaN系発光素子1では1つの絶縁性基板2上に1つの素子しか形成されないため、大面積の面光源を得ようとすると、複数のGaN系発光素子1を基体上に配列して互いに接続する必要があるので相互に隣接するGaN系発光素子1の間隔に限界があり、大きな発光強度を有する面光源を得られないという問題点があった。 Further, since only one element is formed on one insulating substrate 2 in the GaN-based light-emitting element 1, if a large-area surface light source is to be obtained, a plurality of GaN-based light-emitting elements 1 are arranged on a base and mutually Because of the necessity of connection, there is a limit on the interval between the GaN-based light emitting elements 1 adjacent to each other, and there is a problem that a surface light source having a large light emission intensity cannot be obtained.

 それゆえにこの発明の主たる目的は、単一の部品として形成されかつ大きな発光強度を有する面光源として適する、発光部品を提供することである。 Therefore, a main object of the present invention is to provide a light emitting component which is formed as a single component and which is suitable as a surface light source having a large light emission intensity.

 上記目的を達成するために、本発明の発光部品は、基板、および基板上にそれぞれ形成されかつ接続される複数の3族窒化物半導体発光素子を備える。 In order to achieve the above object, a light emitting component of the present invention includes a substrate and a plurality of Group III nitride semiconductor light emitting devices formed and connected to the substrate, respectively.

 本発明の発光部品は、複数の3族窒化物半導体発光素子は直列に接続されるものである。 発 光 In the light emitting component of the present invention, a plurality of group III nitride semiconductor light emitting devices are connected in series.

 本発明の発光部品は、各3族窒化物半導体発光素子は、基板上に形成される第1導電型の半導体層、第1導電型の半導体層上の一端縁近傍かつ幅方向に延びて形成される第1導電型側電極、第1導電性の半導体層上に形成される第2導電型の半導体層、および第2導電型の半導体層上に面状に形成される第2導電型側電極を含み、各3族窒化物半導体発光素子は直線状に配列され、かつ相互に隣接する3族窒化物半導体発光素子の一方の発光素子の第1導電型側電極と他方の発光素子の第2導電型側電極とは幅を有する内部配線によって接続されるものである。 In the light-emitting component of the present invention, each of the group III nitride semiconductor light-emitting elements is formed on a first conductive type semiconductor layer formed on a substrate, near one end of the first conductive type semiconductor layer, and extending in the width direction. A first conductivity type side electrode, a second conductivity type semiconductor layer formed on the first conductivity type semiconductor layer, and a second conductivity type side formed on the second conductivity type semiconductor layer in a planar manner. Each of the group III nitride semiconductor light emitting devices includes an electrode, and the first conductivity type side electrode of one light emitting device of the group III nitride semiconductor light emitting device adjacent to each other and the third group nitride semiconductor light emitting device of the other light emitting device. The two-conductivity-type-side electrode is connected by an internal wiring having a width.

 本発明の発光部品は、第1導電型の半導体層の抵抗をR1、第2導電型側電極の抵抗をR2とすると、R1≒R2に設定されるものである。 発 光 The light emitting component of the present invention is set such that R1 ≒ R2, where R1 is the resistance of the semiconductor layer of the first conductivity type and R2 is the resistance of the electrode of the second conductivity type.

 本発明の発光部品は、第2導電型側電極は透光性電極を含むものである。 発 光 In the light emitting component of the present invention, the second conductivity type side electrode includes a light transmitting electrode.

 本発明の発光部品は、3族窒化物半導体発光素子の数は駆動電圧に応じて決定されるものである。 発 光 In the light emitting component of the present invention, the number of group III nitride semiconductor light emitting devices is determined according to the driving voltage.

 本発明の発光部品は、3族窒化物半導体発光素子はGaN系発光素子を含むものである。 は In the light emitting component of the present invention, the group III nitride semiconductor light emitting device includes a GaN-based light emitting device.

 この発明によれば、1つの基板上に発光部を複数形成でき、単一の部品として形成されかつ大きな発光強度が得られ面光源として適する発光部品が得られる。 According to the present invention, a plurality of light-emitting portions can be formed on one substrate, and a light-emitting component that is formed as a single component, has high emission intensity, and is suitable as a surface light source can be obtained.

 本発明の発光部品では、一般のIC製造プロセスを用いて1枚の基板上に複数の3族窒化物半導体発光素子が形成されかつ接続されるので、相互に隣接する3族窒化物半導体発光素子の間隔を従来よりも狭くできる。したがって、単一の部品として形成されかつ発光強度が大きい面光源が得られる。 In the light emitting component of the present invention, a plurality of group III nitride semiconductor light emitting devices are formed and connected on one substrate using a general IC manufacturing process, so that the group III nitride semiconductor light emitting devices adjacent to each other are provided. Can be made narrower than before. Therefore, a surface light source which is formed as a single component and has a high luminous intensity can be obtained.

 本発明の発光部品では、複数の3族窒化物半導体発光素子が直列に接続されると、各3族窒化物半導体発光素子からの発光量が等しくされる。 で は In the light emitting component of the present invention, when a plurality of group III nitride semiconductor light emitting devices are connected in series, the amount of light emitted from each group III nitride semiconductor light emitting device is equalized.

 本発明の発光部品では、各3族窒化物半導体発光素子は直線状に配列され、かつ相互に隣接する3族窒化物半導体発光素子の一方の発光素子の第1導電型側電極と他方の発光素子の第2導電型側電極とが幅を有する内部配線によって接続されると、個々の3族窒化物半導体発光素子における発光強度分布はより均一化される。また、本発明の発光部品では、(第1導電型の半導体層の抵抗R1)≒(第2導電型側電極の抵抗R2)に設定されると、個々の3族窒化物半導体発光素子における発光強度分布は略均一化される。 In the light emitting component according to the present invention, each of the group III nitride semiconductor light emitting elements is linearly arranged, and the first conductivity type side electrode of one of the group III nitride semiconductor light emitting elements adjacent to each other and the other light emitting element. When the second-conductivity-type-side electrode of the device is connected by an internal wiring having a width, the emission intensity distribution in each group III nitride semiconductor light-emitting device is made more uniform. Further, in the light emitting component of the present invention, when (resistance R1 of the semiconductor layer of the first conductivity type) ≒ (resistance R2 of the side electrode of the second conductivity type) is set, the light emission of each group III nitride semiconductor light emitting element is achieved. The intensity distribution is substantially uniform.

 また、本発明の発光部品では、3族窒化物半導体発光素子の数が、発光部品が用いられる装置の駆動電圧に適合するように設定されると、さまざまな駆動電圧に適用可能な発光部品が得られる。なお、本発明の発光部品では、第2導電型側電極は透光性電極によって形成され、また、本発明の発光部品では、3族窒化物半導体発光素子としてはたとえばGaN系発光素子が用いられる。 Further, in the light emitting component of the present invention, when the number of the group III nitride semiconductor light emitting elements is set to be suitable for the driving voltage of the device using the light emitting component, a light emitting component applicable to various driving voltages is obtained. can get. In the light-emitting component of the present invention, the second conductivity type side electrode is formed by a translucent electrode, and in the light-emitting component of the present invention, for example, a GaN-based light-emitting device is used as the group III nitride semiconductor light-emitting device. .

 以下、この発明の実施の形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

 図1および図2を参照して、この発明の実施の形態の発光部品10は、たとえばサファイア基板等などの絶縁性基板12を含み、絶縁性基板12上に4個のGaN(少なくともGa、Nを含む半導体)系発光ダイオード14a〜14dが形成されるものである。 Referring to FIGS. 1 and 2, light emitting component 10 according to an embodiment of the present invention includes an insulating substrate 12 such as a sapphire substrate, and has four GaNs (at least Ga, N) on insulating substrate 12. Semiconductor light emitting diodes 14a to 14d.

 すなわち、絶縁性基板12上には、各GaN系発光ダイオード14a〜14dに対応して、層厚3.0μmの電極設置層となるn型GaN層(Siドープ)16、層厚0.1μmの発光層18、および層厚0.5μmのp型GaNコンタクト層(Mgドープ)20が、この順序で形成される。 That is, on the insulating substrate 12, an n-type GaN layer (Si-doped) 16 serving as an electrode installation layer having a layer thickness of 3.0 μm and a layer thickness of 0.1 μm corresponding to each of the GaN-based light emitting diodes 14a to 14d. The light emitting layer 18 and the p-type GaN contact layer (Mg doped) 20 having a layer thickness of 0.5 μm are formed in this order.

 また、各p型GaNコンタクト層20上にはp型側電極である透光性電極22が面状に形成され、各n型GaN層16上の一端縁近傍かつ幅方向にはn型側電極24が形成される。図1からよくわかるように、透光性電極22とn型側電極24とは平行に形成される。 On each of the p-type GaN contact layers 20, a light-transmitting electrode 22, which is a p-type electrode, is formed in a planar shape. 24 are formed. As can be clearly understood from FIG. 1, the translucent electrode 22 and the n-side electrode 24 are formed in parallel.

 そして、絶縁性基板12上の各部材は保護膜26によって覆われ、隣接するGaN系発光ダイオード間の透光性電極22とn型側電極24とは所定の幅W1を有する内部配線28によって直列接続される。このとき、内部配線28の一端は透光性電極22上の一端縁近傍かつ幅方向に延びて形成される。したがって、1つのGaN系発光ダイオードに関していえば、内部配線28と透光性電極22との接続箇所は、n型側電極24の形成箇所とは反対側の端縁近傍となる。なお、図1からわかるように、内部配線28の幅W1の寸法は、たとえば、透光性電極22の幅W2よりやや小さくかつn型側電極24の長さLよりやや大きくなるように設定される。 Each member on the insulating substrate 12 is covered with a protective film 26, and the translucent electrode 22 and the n-type electrode 24 between adjacent GaN-based light emitting diodes are connected in series by an internal wiring 28 having a predetermined width W1. Connected. At this time, one end of the internal wiring 28 is formed near one end edge on the light transmitting electrode 22 and extends in the width direction. Therefore, regarding one GaN-based light emitting diode, the connection point between the internal wiring 28 and the translucent electrode 22 is near the edge opposite to the formation point of the n-type side electrode 24. 1, the width W1 of the internal wiring 28 is set to be slightly smaller than the width W2 of the translucent electrode 22 and slightly larger than the length L of the n-type side electrode 24, for example. You.

 さらに、両端の透光性電極22およびn型側電極24には、それぞれ外部の部品と接続するためのパッド電極30が接続される。パッド電極30も内部電極28と同様に形成される。 パ ッ ド Furthermore, pad electrodes 30 for connection to external components are connected to the translucent electrode 22 and the n-type side electrode 24 at both ends. The pad electrode 30 is also formed in the same manner as the internal electrode 28.

 このように、内部配線28を介して透光性電極22とn型側電極24とを接続することによって、4個のGaN系発光ダイオード14a〜14dを直列接続した発光部品10が得られる。発光部品10の等価回路が図3に示される。 Thus, by connecting the translucent electrode 22 and the n-type side electrode 24 via the internal wiring 28, the light emitting component 10 in which the four GaN-based light emitting diodes 14a to 14d are connected in series is obtained. FIG. 3 shows an equivalent circuit of the light emitting component 10.

 このような発光部品10の製造方法の一例を、図4を参照して説明する。 An example of a method for manufacturing such a light emitting component 10 will be described with reference to FIG.

 まず、図4(a)に示すように、絶縁性基板12上に、n型GaN層16、発光層18およびp型GaNコンタクト層20をMOCVD(有機金属化学気相成長法)によってこの順序でエピタキシャル成長させ、膜厚3.0μm、ND=1018cm−3のn型GaN層16、膜厚0.1μmの発光層18、および膜厚0.5μm、NA=1017cm−3のp型GaNコンタクト層20が形成される。 First, as shown in FIG. 4A, an n-type GaN layer 16, a light-emitting layer 18, and a p-type GaN contact layer 20 are formed on an insulating substrate 12 in this order by MOCVD (metal organic chemical vapor deposition). An n-type GaN layer 16 having a thickness of 3.0 μm and N D = 10 18 cm −3 , a light emitting layer 18 having a thickness of 0.1 μm, and a film having a thickness of 0.5 μm and N A = 10 17 cm −3 . A p-type GaN contact layer 20 is formed.

 ついで、図4(b)に示すように、Niマスクによるフォトリソグラフィーおよび塩素ガスを0.5Paの圧力で供給するドライエッチング法によって、絶縁性基板12上のp型GaNコンタクト層20、発光層18およびn型GaN層16がエッチング除去され、メサ21が形成される。このときのエッチングの深さは0.8μmである。 Next, as shown in FIG. 4B, the p-type GaN contact layer 20 and the light-emitting layer 18 on the insulating substrate 12 are formed by photolithography using a Ni mask and dry etching supplying chlorine gas at a pressure of 0.5 Pa. Then, n-type GaN layer 16 is removed by etching, and mesa 21 is formed. At this time, the etching depth is 0.8 μm.

 さらに、図4(c)に示すように、Niマスクによるフォトリソグラフィーおよび塩素ガスを0.5Paの圧力で供給するドライエッチング法によって、絶縁性基板12上のn型GaN層16がエッチング除去され、絶縁性基板12が露出するように凹部32が形成される。これによって、エッチングの深さは3.6μmとなり、GaN系発光ダイオード14a〜14dを構成する層がそれぞれ分離される。 Further, as shown in FIG. 4C, the n-type GaN layer 16 on the insulating substrate 12 is etched away by photolithography using a Ni mask and dry etching supplying chlorine gas at a pressure of 0.5 Pa. The recess 32 is formed so that the insulating substrate 12 is exposed. As a result, the etching depth becomes 3.6 μm, and the layers constituting the GaN-based light emitting diodes 14a to 14d are separated.

 つづいて、図4(d)に示すように、2×10−6torrの圧力による電子ビーム蒸着によって、p型GaNコンタクト層20上面全体に、膜厚2nmのNi膜および膜厚4nmのAu膜がこの順序で成膜され、フォトリソグラフィーによって面状の透光性電極22が形成される。また、2×10−6torrの圧力による電子ビーム蒸着によって、n型GaN層16上に、膜厚30nmのTi膜および膜厚500nmのAl膜がこの順序で成膜され、フォトリソグラフィーによってn型GaN層16上の一端縁近傍かつ幅方向に延びたn型側電極24が形成される。n型側電極24はGaN系発光ダイオードのカソード電極に相当する。 Subsequently, as shown in FIG. 4D, a 2 nm-thick Ni film and a 4 nm-thick Au film are formed on the entire upper surface of the p-type GaN contact layer 20 by electron beam evaporation under a pressure of 2 × 10 −6 torr. Are formed in this order, and a planar light-transmitting electrode 22 is formed by photolithography. In addition, a 30 nm-thick Ti film and a 500 nm-thick Al film are formed in this order on the n-type GaN layer 16 by electron beam evaporation under a pressure of 2 × 10 −6 torr. An n-side electrode 24 is formed near the one edge on the GaN layer 16 and extends in the width direction. The n-type side electrode 24 corresponds to a cathode electrode of a GaN-based light emitting diode.

 その後、図4(e)に示すように、図4(d)で形成されたチップの上面全体に膜厚300nmのSiO2からなる保護膜26が電子ビーム蒸着によって形成される。 Thereafter, as shown in FIG. 4E, a protective film 26 made of SiO 2 having a thickness of 300 nm is formed on the entire upper surface of the chip formed in FIG. 4D by electron beam evaporation.

 その後、透光性電極22およびn型側電極24のそれぞれの上面の一部が露出するように、フォトリソグラフィーによって保護膜26がエッチング除去されて開口される。このとき、1つのGaN系発光ダイオードに関していえば、透光性電極22上の開口はn型側電極24の形成箇所とは反対側の端縁近傍かつ幅方向に延びて形成される。また、n型側電極24の開口も幅方向に延びて形成される。 (5) Thereafter, the protective film 26 is etched and removed by photolithography so that an opening is formed so that a part of the upper surface of each of the translucent electrode 22 and the n-type side electrode 24 is exposed. At this time, regarding one GaN-based light emitting diode, the opening on the translucent electrode 22 is formed near the edge opposite to the location where the n-type electrode 24 is formed and extends in the width direction. The opening of the n-side electrode 24 is also formed to extend in the width direction.

 そして、図4(f)に示すように、2×10−6torrの圧力による電子ビーム蒸着によって、保護膜26の上面全体に膜厚100nmのNi膜および膜厚700nmのAu膜がこの順序で成膜され、フォトリソグラフィーによって内部配線28が形成される。したがって、1つのGaN系発光ダイオードに関していえば、透光性電極22に接続される内部配線28およびn型側電極24に接続される内部配線28は、GaN系発光ダイオードの両端からそれぞれ反対方向に引き出されることになる。なお、図4(f)には図示しないが、パッド電極30も同様にして同時に形成される。内部配線28およびパッド電極30のうち、透光性電極22と接続される一端部が、GaN系発光ダイオードのアノード電極に相当する。 Then, as shown in FIG. 4F, a 100-nm thick Ni film and a 700-nm thick Au film are formed in this order on the entire upper surface of the protective film 26 by electron beam evaporation under a pressure of 2 × 10 −6 torr. The film is formed, and the internal wiring 28 is formed by photolithography. Therefore, regarding one GaN-based light emitting diode, the internal wiring 28 connected to the translucent electrode 22 and the internal wiring 28 connected to the n-type side electrode 24 are arranged in opposite directions from both ends of the GaN-based light emitting diode. Will be withdrawn. Although not shown in FIG. 4F, the pad electrode 30 is formed simultaneously in the same manner. One end of the internal wiring 28 and the pad electrode 30 connected to the translucent electrode 22 corresponds to the anode electrode of the GaN-based light emitting diode.

 このようにして、4個のGaN系発光ダイオード14a〜14dが直列接続された発光部品10が形成される。 よ う Thus, the light emitting component 10 in which the four GaN-based light emitting diodes 14a to 14d are connected in series is formed.

 発光強度10によれば、一般のIC製造プロセスを用いて1枚の絶縁性基板12上に複数のGaN系発光ダイオード14a〜14dが形成されかつ接続されるので、相互に隣接するGaN系発光ダイオードの間隔を従来よりも狭くできる。したがって、単一の部品として形成されかつ発光強度が大きい面光源として適する発光部品10が得られる。 According to the light emission intensity 10, a plurality of GaN-based light emitting diodes 14a to 14d are formed and connected on one insulating substrate 12 using a general IC manufacturing process, so that GaN-based light emitting diodes adjacent to each other are formed. Can be made narrower than before. Therefore, the light emitting component 10 which is formed as a single component and is suitable as a surface light source having a high luminous intensity is obtained.

 また、発光部品10によれば、図5(a)にも示すように、絶縁性基板12上にGaN系発光ダイオード14a〜14dを直線状に形成することができるので、図5(b)からわかるように、大面積の発光が得られる。 Further, according to the light emitting component 10, as shown in FIG. 5A, the GaN-based light emitting diodes 14a to 14d can be formed on the insulating substrate 12 in a straight line. As can be seen, a large area emission is obtained.

 また、同一の絶縁性基板12上にGaN系発光ダイオード14a〜14dを形成できるので、GaN系発光ダイオード14a〜14d間の絶縁分離、集積化が容易になる。 (4) Since the GaN-based light emitting diodes 14a to 14d can be formed on the same insulating substrate 12, the GaN-based light emitting diodes 14a to 14d can be easily separated and integrated.

 各GaN系発光ダイオード14a〜14dの発光強度分布は図6に示すようになる。透光性電極22の抵抗をRt、n型GaN層16の抵抗をRnとし、Rpは、p型GaNコンタクト層20の抵抗、透光性電極22とp型GaNコンタクト層20との接触抵抗およびp−n接合電圧相当抵抗分を示し、各抵抗は面内において一定と考えるとする。 発 光 The emission intensity distribution of each of the GaN-based light emitting diodes 14a to 14d is as shown in FIG. The resistance of the translucent electrode 22 is Rt, the resistance of the n-type GaN layer 16 is Rn, and Rp is the resistance of the p-type GaN contact layer 20, the contact resistance between the translucent electrode 22 and the p-type GaN contact layer 20, and The resistance corresponding to the pn junction voltage is shown, and each resistance is assumed to be constant in the plane.

 各GaN系発光ダイオード14a〜14dは直線状に配列され、かつ相互に隣接するGaN系発光ダイオードの一方の発光ダイオードのn型側電極24と他方の発光ダイオードの透光性電極22とが幅W1を有する内部配線28によって接続されているので、透光性電極22の単位面積当たりの抵抗が小さい場合(Rt≒Rn)には、図6(a)に示すように、透光性電極22全面からn型GaN層16に電流が流れ、発光層18を通過する電流は発光層18内の位置に拘わらず均一になる。したがって、図6(b)および(c)に示すように、透光性電極22からの発光は発光箇所に拘わらず略均一になり、かつより大きな発光強度が得られる。 Each of the GaN-based light-emitting diodes 14a to 14d is linearly arranged, and the n-type electrode 24 of one of the GaN-based light-emitting diodes adjacent to each other and the light-transmitting electrode 22 of the other light-emitting diode have a width W1. When the resistance per unit area of the translucent electrode 22 is small (Rt ≒ Rn), as shown in FIG. 6A, the entire surface of the translucent electrode 22 is connected. Current flows through the n-type GaN layer 16, and the current passing through the light emitting layer 18 becomes uniform regardless of the position in the light emitting layer 18. Therefore, as shown in FIGS. 6B and 6C, the light emission from the translucent electrode 22 is substantially uniform regardless of the light emission location, and a higher light emission intensity can be obtained.

 因みに、透光性電極22の単位面積当たりの抵抗が大きい場合(Rt>Rn)には、図6(d)に示すように、発光層18を通過する電流は内部配線28すなわちアノード電極近傍に集中する。この場合、図6(e)に示すX−X断面における発光強度は不均一になるが、各GaN系発光ダイオード14a〜14dは直線状に配列され、かつ相互に隣接するGaN系発光ダイオードの一方の発光ダイオードのn型側電極24と他方の発光ダイオードの透光性電極22とが幅W1を有する内部配線28によって接続されているので、図6(f)に示すY−Y断面における発光強度は略均一になる。したがって、上述した透光性電極22の単位面積当たりの抵抗が小さい場合より発光強度は不均一かつ小さくなるが、少なくとも図9に示す従来技術より発光強度は均一化されかつ大きくなる。 Incidentally, when the resistance per unit area of the translucent electrode 22 is large (Rt> Rn), as shown in FIG. 6D, the current passing through the light emitting layer 18 is close to the internal wiring 28, that is, near the anode electrode. concentrate. In this case, the light emission intensity in the XX section shown in FIG. 6E becomes non-uniform, but each of the GaN-based light-emitting diodes 14a to 14d is linearly arranged and one of the GaN-based light-emitting diodes adjacent to each other. The n-type side electrode 24 of the light emitting diode and the translucent electrode 22 of the other light emitting diode are connected by the internal wiring 28 having the width W1, so that the light emission intensity in the YY cross section shown in FIG. Becomes substantially uniform. Therefore, the light emission intensity is non-uniform and small compared to the case where the resistance per unit area of the light-transmitting electrode 22 is small, but the light emission intensity is uniform and large at least as compared with the prior art shown in FIG.

 さらに、図7(a)〜(c)に示すように、絶縁性基板12a上にGaN系発光ダイオード14a〜14dを形成しコ字状に直列接続してもよく、この場合にも、単一の部品として形成されかつ大きな発光強度が得られ面光源として適する発光部品が得られる。 Further, as shown in FIGS. 7A to 7C, GaN-based light emitting diodes 14a to 14d may be formed on an insulating substrate 12a and connected in series in a U-shape. Thus, a light emitting component suitable for a surface light source can be obtained.

 すなわち、図5および図7からわかるように、絶縁性基板上に複数個のGaN系発光ダイオードを形成し直列接続することによって、単一の部品として形成されかつ大きな発光強度が得られ面光源に応用できる発光部品が得られる。 That is, as can be seen from FIGS. 5 and 7, by forming a plurality of GaN-based light-emitting diodes on an insulating substrate and connecting them in series, they are formed as a single component and have a large luminous intensity. A light emitting component that can be applied is obtained.

 なお、GaN系発光ダイオードを駆動するには、3V以上必要であり、5V電源を用いて回路動作を行うことが多い。1つのGaN系発光ダイオードあたり4V(たとえば20mAの電流を流す場合)程度必要とすると、駆動電圧が24Vの場合には6つのGaN系発光ダイオードが直列接続された発光部品を用いればよい。このように、駆動電圧に応じた直列素子数のGaN系発光ダイオードを用いることによって、大面積の発光が可能となり、かつ駆動電圧の制限も少なくなり、多方面にわたる応用が期待できる。 Note that driving a GaN-based light-emitting diode requires 3 V or more, and circuit operation is often performed using a 5 V power supply. When about 4 V is required per GaN-based light emitting diode (for example, when a current of 20 mA flows), when the driving voltage is 24 V, a light emitting component in which six GaN-based light emitting diodes are connected in series may be used. As described above, by using the GaN-based light-emitting diodes having the number of series elements according to the drive voltage, light emission of a large area becomes possible and the limitation of the drive voltage is reduced, so that a wide variety of applications can be expected.

 また、図8に示すように、GaN系発光ダイオード14a〜14nとともに抵抗(図8(a))やFET(図8(b))などの電流制御素子が同一絶縁性基板上に形成されてもよく、この場合、GaN系発光ダイオード14a〜14nと電流制御素子とを同一の絶縁性基板上にモノリシックに形成できる。 Further, as shown in FIG. 8, even if a current control element such as a resistor (FIG. 8A) or an FET (FIG. 8B) is formed on the same insulating substrate together with the GaN-based light emitting diodes 14a to 14n. In this case, the GaN-based light emitting diodes 14a to 14n and the current control element can be formed monolithically on the same insulating substrate.

 このように外付け素子が不要になるため、小型かつ軽量の発光部品10が得られ、また、GaN系発光ダイオード14a〜14dだけではなく電流制御素子をもワイドギャップバンド材料によって形成できるので、発熱に対して強い発光部品10が得られ、集積化が容易となる。さらに、絶縁性基板の一方主面にのみ素子を構成するので、この場合にも一般的なIC製造プロセスを適用できる。また、GaN系発光ダイオードの数を調整するだけではなく電流制御素子を付加することにより、駆動電圧の制限がさらに少なくなる。さらに、GaN系発光ダイオード14a〜14nに抵抗を付加することによって、組立時や使用時におけるサージ電流を抑制することができる。 As described above, since an external element is not required, a small and light-weight light emitting component 10 can be obtained. In addition, not only the GaN-based light emitting diodes 14a to 14d but also the current control element can be formed of a wide gap band material, so that heat is generated. A light-emitting component 10 that is strong against light is obtained, and integration is facilitated. Furthermore, since elements are formed only on one main surface of the insulating substrate, a general IC manufacturing process can be applied in this case as well. Further, by adding a current control element as well as adjusting the number of GaN-based light emitting diodes, the limitation of the driving voltage is further reduced. Further, by adding a resistor to the GaN-based light emitting diodes 14a to 14n, it is possible to suppress a surge current at the time of assembly or use.

 図1の実施の形態では、4個のGaN系発光ダイオード14a〜14dを直列接続する場合について述べたが、GaN系発光ダイオードの数はこれに限定されないことはいうまでもない。 で は In the embodiment of FIG. 1, the case where four GaN-based light emitting diodes 14a to 14d are connected in series has been described, but it goes without saying that the number of GaN-based light emitting diodes is not limited to this.

 また、上述の実施の形態では、発光素子として発光ダイオードを例に説明したが、これに限定されず、レーザであってもよい。 In the above-described embodiment, a light emitting diode is described as an example of a light emitting element, but the present invention is not limited to this, and a laser may be used.

 さらに、発光部品10の3族窒化物半導体発光素子としては、たとえばAlN、InN、BNまたはInGaNなどを含む3族窒化物半導体からなる発光素子であれば、任意の3族窒化物半導体発光素子を用いることができる。 Further, as the group III nitride semiconductor light emitting element of the light emitting component 10, any group III nitride semiconductor light emitting element made of a group III nitride semiconductor containing AlN, InN, BN, InGaN or the like can be used. Can be used.

この発明の一実施形態の主要部を示す平面図である。It is a top view which shows the principal part of one Embodiment of this invention. 図1の実施形態を示す断面図である。FIG. 2 is a sectional view showing the embodiment of FIG. 1. 図1の実施形態を示す等価回路図である。FIG. 2 is an equivalent circuit diagram illustrating the embodiment of FIG. 1. 図1の実施形態の製造プロセスを示す工程図である。FIG. 2 is a process chart illustrating a manufacturing process of the embodiment in FIG. 1. (a)は図1の実施形態におけるGaN系発光ダイオードの配置状態を模式的に示す平面図であり、(b)はその発光状態を模式的に示す側面図である。FIG. 2A is a plan view schematically illustrating an arrangement state of the GaN-based light emitting diodes in the embodiment of FIG. 1, and FIG. 2B is a side view schematically illustrating the light emission state. GaN系発光ダイオードの電流の流れおよび発光強度分布の概略を示す図解図であり、(a)〜(c)は透光性電極の抵抗が小さい場合、(d)〜(f)は透光性電極の抵抗が大きい場合をそれぞれ示す。FIGS. 3A to 3C are schematic views schematically showing a current flow and a light emission intensity distribution of a GaN-based light-emitting diode, wherein FIGS. The case where the resistance of the electrode is large is shown. (a)はこの発明の他の実施の形態を示す等価回路図であり、(b)はその実施の形態におけるGaN系発光ダイオードの配置状態を模式的に示す平面図であり、(c)はその発光状態を模式的に示す側面図である。(A) is an equivalent circuit diagram showing another embodiment of the present invention, (b) is a plan view schematically showing an arrangement state of GaN-based light emitting diodes in the embodiment, and (c) is a plan view. It is a side view which shows the light emission state typically. この発明のその他の実施の形態を示す等価回路図であり、(a)はGaN系発光ダイオードに抵抗を付加したもの、(b)はGaN系発光ダイオードにFETを付加したものをそれぞれ示す。It is an equivalent circuit diagram which shows other embodiment of this invention, (a) shows what added resistance to the GaN-based light emitting diode, and (b) shows what added FET to the GaN-based light emitting diode, respectively. (a)は従来技術を示す平面図であり、(b)はその端面図である。(A) is a plan view showing a conventional technique, and (b) is an end view thereof.

符号の説明Explanation of reference numerals

  10 発光部品
  12、12a 絶縁性基板
  14a〜14d、14n GaN系発光ダイオード
  16 n型GaNバッファ層
  18 発光層
  20 p型GaNコンタクト層
  22 透光性電極
  24 n型側電極
  26 保護膜
  28 内部配線
  30 パッド電極
  W1 内部配線の幅
REFERENCE SIGNS LIST 10 light-emitting component 12, 12 a insulating substrate 14 a-14 d, 14 n GaN-based light-emitting diode 16 n-type GaN buffer layer 18 light-emitting layer 20 p-type GaN contact layer 22 light-transmitting electrode 24 n-type side electrode 26 protective film 28 internal wiring 30 Pad electrode W1 Internal wiring width

Claims (4)

 基板および前記基板上にそれぞれ形成されかつ接続される複数の3族窒化物半導体発光素子を備えた発光部品であって、
 前記各3族窒化物半導体発光素子は、前記基板上に形成される第1導電型の半導体層、前記第1導電型の半導体層上に形成される第1導電型側電極、前記第1導電性の半導体層上に形成される第2導電型の半導体層、および前記第2導電型の半導体層上に形成される第2導電型側電極を含み、
 相互に隣接する前記3族窒化物半導体発光素子の一方の発光素子の前記第1導電型側電極と他方の発光素子の前記第2導電型側電極とは、前記第1導電型側電極上および前記第2導電型側電極上に形成された内部配線によって接続される、発光部品。
A light emitting component comprising a substrate and a plurality of group III nitride semiconductor light emitting devices formed and connected to the substrate, respectively,
Each of the group III nitride semiconductor light emitting devices includes a first conductive type semiconductor layer formed on the substrate, a first conductive type side electrode formed on the first conductive type semiconductor layer, and a first conductive type electrode. A second conductivity type semiconductor layer formed on the conductive semiconductor layer, and a second conductivity type side electrode formed on the second conductivity type semiconductor layer,
The first conductive type side electrode of one light emitting element of the group III nitride semiconductor light emitting element and the second conductive type side electrode of the other light emitting element which are adjacent to each other are on the first conductive type side electrode and A light emitting component connected by an internal wiring formed on the second conductivity type side electrode.
 前記第1導電型側電極上および前記第2導電型側電極上には、保護膜が形成され、
 前記内部配線は、前記保護膜の開口を介して前記第1導電型側電極および前記第2導電型側電極と接続される、請求項1に記載の発光部品。
A protective film is formed on the first conductivity type side electrode and the second conductivity type side electrode,
The light emitting component according to claim 1, wherein the internal wiring is connected to the first conductivity type electrode and the second conductivity type electrode via an opening in the protective film.
 基板および前記基板上にそれぞれ形成されかつ接続される複数の3族窒化物半導体発光素子を備えた発光部品の製造方法であって、
 前記基板上に形成される第1導電型の半導体層、前記第1導電型の半導体層上に形成される第1導電型側電極、前記第1導電性の半導体層上に形成される第2導電型の半導体層、および前記第2導電型の半導体層上に形成される第2導電型側電極を含む前記各3族窒化物半導体発光素子を形成する工程と、
 前記第1導電型側電極上および前記第2導電型側電極上に内部配線を形成することにより、相互に隣接する前記3族窒化物半導体発光素子を接続する工程とを備える、発光部品の製造方法。
A method for manufacturing a light-emitting component comprising a substrate and a plurality of group III nitride semiconductor light-emitting elements formed and connected to the substrate, respectively,
A first conductive type semiconductor layer formed on the substrate, a first conductive type side electrode formed on the first conductive type semiconductor layer, and a second conductive layer formed on the first conductive semiconductor layer A step of forming each of the group III nitride semiconductor light emitting devices including a semiconductor layer of a conductivity type and a second conductivity type side electrode formed on the semiconductor layer of the second conductivity type;
Forming an internal wiring on the first conductivity type side electrode and the second conductivity type side electrode to connect the group III nitride semiconductor light emitting elements adjacent to each other. Method.
 前記3族窒化物半導体発光素子を接続する工程は、
 前記各3族窒化物半導体発光素子の上面全体を覆うとともに、相互に隣接する前記3族窒化物半導体発光素子の一方の発光素子の前記第1導電型側電極および他方の発光素子の前記第2導電型側電極の上面の一部が露出する開口を有する保護膜を形成する工程と、
 前記保護膜の上面、および、前記開口内の前記第1導電型側電極と前記第2導電型側電極との上面に前記内部配線を形成する工程をさらに含む、請求項3記載の発光部品の製造方法。
The step of connecting the group III nitride semiconductor light emitting device includes:
The first conductivity type side electrode of one light emitting element of the group III nitride semiconductor light emitting element and the second electrode of the other light emitting element which cover the entire top surface of each of the group III nitride semiconductor light emitting elements and are adjacent to each other. A step of forming a protective film having an opening exposing a part of the upper surface of the conductivity type electrode,
4. The light emitting component according to claim 3, further comprising a step of forming the internal wiring on an upper surface of the protective film and on an upper surface of the first conductivity type electrode and the second conductivity type electrode in the opening. Production method.
JP2003353149A 2003-10-14 2003-10-14 Light emitting component and method for manufacturing the same Pending JP2004048067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003353149A JP2004048067A (en) 2003-10-14 2003-10-14 Light emitting component and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003353149A JP2004048067A (en) 2003-10-14 2003-10-14 Light emitting component and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33108397A Division JP3505374B2 (en) 1997-11-14 1997-11-14 Light emitting components

Publications (2)

Publication Number Publication Date
JP2004048067A true JP2004048067A (en) 2004-02-12
JP2004048067A5 JP2004048067A5 (en) 2005-06-09

Family

ID=31712835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003353149A Pending JP2004048067A (en) 2003-10-14 2003-10-14 Light emitting component and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004048067A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 Lighting device using LED and projection display device using the same
KR100644215B1 (en) 2005-11-25 2006-11-10 서울옵토디바이스주식회사 Light emitting device and manufacturing method
KR100652864B1 (en) 2005-12-16 2006-12-04 서울옵토디바이스주식회사 Light emitting diode for alternating current with improved transparent electrode structure
KR100715456B1 (en) 2005-11-01 2007-05-07 서울옵토디바이스주식회사 Method for manufacturing a light emitting device combined with a plurality of cells
KR100757800B1 (en) 2006-06-30 2007-09-11 서울옵토디바이스주식회사 Light emitting diode for alternating current having an insulating protective film and a method of manufacturing the same
KR100758541B1 (en) 2005-08-22 2007-09-13 서울옵토디바이스주식회사 Light emitting diodes having light emitting cells arranged in a matrix and a method of manufacturing the same
JP2007294981A (en) * 2006-04-21 2007-11-08 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic component
KR100966372B1 (en) 2007-11-23 2010-06-28 삼성엘이디 주식회사 Monolithic LED Array and Manufacturing Method Thereof
JP2011187998A (en) * 2006-01-09 2011-09-22 Seoul Opto Devices Co Ltd Light emitting diode
KR101077862B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
KR101077861B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
JP2012503861A (en) * 2008-09-24 2012-02-09 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Semiconductor light-emitting devices grown on composite substrates
KR101135093B1 (en) 2011-02-22 2012-04-16 서울대학교산학협력단 Method for producing uniform coating on light emitting diode
US8669126B2 (en) 2012-03-30 2014-03-11 Snu R&Db Foundation Uniform coating method for light emitting diode
KR101781227B1 (en) 2011-09-21 2017-09-25 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136085A (en) * 1974-09-24 1976-03-26 Mitsubishi Electric Corp
JPH04167569A (en) * 1990-10-31 1992-06-15 Mitsubishi Kasei Polytec Co Protective film forming method and compound semiconductor light emitting diode provided therewith
JPH07288340A (en) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd Light emitting element and manufacture thereof
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JPH09283800A (en) * 1996-04-16 1997-10-31 Nippon Sheet Glass Co Ltd Formation of protection film and manufacture of light-emitting element
JPH10107316A (en) * 1996-10-01 1998-04-24 Toyoda Gosei Co Ltd Group III nitride semiconductor light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136085A (en) * 1974-09-24 1976-03-26 Mitsubishi Electric Corp
JPH04167569A (en) * 1990-10-31 1992-06-15 Mitsubishi Kasei Polytec Co Protective film forming method and compound semiconductor light emitting diode provided therewith
JPH07288340A (en) * 1994-04-19 1995-10-31 Mitsubishi Cable Ind Ltd Light emitting element and manufacture thereof
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JPH09283800A (en) * 1996-04-16 1997-10-31 Nippon Sheet Glass Co Ltd Formation of protection film and manufacture of light-emitting element
JPH10107316A (en) * 1996-10-01 1998-04-24 Toyoda Gosei Co Ltd Group III nitride semiconductor light emitting device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100628125B1 (en) 2004-09-02 2006-09-26 엘지전자 주식회사 Lighting device using LED and projection display device using the same
KR100758541B1 (en) 2005-08-22 2007-09-13 서울옵토디바이스주식회사 Light emitting diodes having light emitting cells arranged in a matrix and a method of manufacturing the same
KR100715456B1 (en) 2005-11-01 2007-05-07 서울옵토디바이스주식회사 Method for manufacturing a light emitting device combined with a plurality of cells
KR100644215B1 (en) 2005-11-25 2006-11-10 서울옵토디바이스주식회사 Light emitting device and manufacturing method
KR100652864B1 (en) 2005-12-16 2006-12-04 서울옵토디바이스주식회사 Light emitting diode for alternating current with improved transparent electrode structure
JP2011187998A (en) * 2006-01-09 2011-09-22 Seoul Opto Devices Co Ltd Light emitting diode
JP2007294981A (en) * 2006-04-21 2007-11-08 Philips Lumileds Lightng Co Llc Semiconductor light emitting device with integrated electronic component
KR100757800B1 (en) 2006-06-30 2007-09-11 서울옵토디바이스주식회사 Light emitting diode for alternating current having an insulating protective film and a method of manufacturing the same
KR100966372B1 (en) 2007-11-23 2010-06-28 삼성엘이디 주식회사 Monolithic LED Array and Manufacturing Method Thereof
JP2012503861A (en) * 2008-09-24 2012-02-09 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Semiconductor light-emitting devices grown on composite substrates
US9117944B2 (en) 2008-09-24 2015-08-25 Koninklijke Philips N.V. Semiconductor light emitting devices grown on composite substrates
KR101077862B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
KR101077861B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
KR101135093B1 (en) 2011-02-22 2012-04-16 서울대학교산학협력단 Method for producing uniform coating on light emitting diode
KR101781227B1 (en) 2011-09-21 2017-09-25 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit
US8669126B2 (en) 2012-03-30 2014-03-11 Snu R&Db Foundation Uniform coating method for light emitting diode

Similar Documents

Publication Publication Date Title
JP3505374B2 (en) Light emitting components
US7786502B2 (en) Nitride semiconductor light-emitting device and method of manufacturing the same
US9590137B2 (en) Light-emitting diode
US7880181B2 (en) Light emitting diode with improved current spreading performance
US7998771B2 (en) Manufacturing method of light emitting diode including current spreading layer
US8101960B2 (en) Nitride light emitting device and manufacturing method thereof
EP1187229A1 (en) Light-emitting semiconductor device and method of manufacture thereof
JP2006210879A (en) Gallium nitride-based light-emitting device equipped with LED for ESD protection and method for manufacturing the same
CN101305475A (en) AC Light Emitting Diodes with Improved Transparent Electrode Structure
JPH10200159A (en) Semiconductor light emitting element
WO2013161208A1 (en) Light-emitting element
JP2004048067A (en) Light emitting component and method for manufacturing the same
JP2007081180A (en) Semiconductor light emitting device
KR20080087251A (en) Light Emitting Diodes With Capacitors
US11417802B2 (en) Method of making a light emitting device and light emitting device made thereof
JP2010524226A (en) Light emitting device and manufacturing method thereof
JP3706458B2 (en) Semiconductor light emitting device
US20050127374A1 (en) Light-emitting device and forming method thereof
JP5772213B2 (en) Light emitting element
KR20090021933A (en) Semiconductor light emitting device and manufacturing method thereof
JPH10209498A (en) Semiconductor light emitting device
JP2010177446A (en) Light-emitting element
KR20090004044A (en) Semiconductor light emitting device and manufacturing method thereof
US20220045249A1 (en) Optoelectronic semiconductor component having a first and second metal layer and method for producing the optoelectronic semiconductor component
JP2007157778A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070629