JP3420331B2 - Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading - Google Patents
Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loadingInfo
- Publication number
- JP3420331B2 JP3420331B2 JP13679394A JP13679394A JP3420331B2 JP 3420331 B2 JP3420331 B2 JP 3420331B2 JP 13679394 A JP13679394 A JP 13679394A JP 13679394 A JP13679394 A JP 13679394A JP 3420331 B2 JP3420331 B2 JP 3420331B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- steel
- bearing
- heat treatment
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Rolling Contact Bearings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、ころ軸受あるいは玉軸
受といった転がり軸受の要素部材として用いられる軸受
鋼および軸受部材に関し、とくに苛酷な使用環境におけ
る繰り返し応力負荷によって転動接触面下に発生するミ
クロ組織変化(劣化)に対する遅延特性が、潤滑油の清
浄性に関係なく、それが劣悪な状態であってもなお優れ
た特性を示すと共に、熱処理時に起こる脱炭層の生成を
抑制する効果に優れた軸受鋼および軸受部材について提
案する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing steel and a bearing member used as an element member of a rolling bearing such as a roller bearing or a ball bearing, and is particularly generated under a rolling contact surface due to repeated stress load in a severe operating environment. The delay property against microstructure change (deterioration) is excellent regardless of the cleanliness of the lubricating oil even if it is in a poor state, and the effect of suppressing the formation of the decarburized layer during heat treatment is excellent. Bearing steel and bearing members.
【0002】[0002]
【従来の技術】自動車ならびに産業機械等で用いられる
ころがり軸受としては、従来、高炭素クロム軸受鋼(JI
S:SUJ 2)が最も多く使用されてきた。一般に軸受鋼と
いうのは、転動疲労寿命の長いことが重要であるが、こ
の転動疲労寿命に与える要因としては、鋼中の硬質な非
金属介在物の影響が大きいと考えられていた。そのた
め、最近の研究の主流は、鋼中酸素量の低減を通じて非
金属介在物の量,その大きさを制御することによって軸
受寿命を向上させる方策がとられてきた。2. Description of the Related Art Conventionally, high-carbon chromium bearing steel (JI
S: SUJ 2) has been used most often. It is generally important for bearing steels to have a long rolling contact fatigue life, but it was thought that the influence of hard non-metallic inclusions in the steel was significant as a factor affecting this rolling contact fatigue life. Therefore, the mainstream of recent research has been to take measures to improve the bearing life by controlling the amount and size of non-metallic inclusions by reducing the amount of oxygen in steel.
【0003】例えば、軸受の転動疲労寿命の一層の向上
を目指して開発されたものとしては、特開平1−306542
号公報や特開平3−126839号公報などの提案があり、こ
れらは、鋼中の酸化物系非金属介在物の組成,形状ある
いは分布状態をコントロールする技術である。しかしな
がら、非金属介在物の少ない軸受鋼を製造するには、高
価な溶製設備の設置あるいは従来設備の大幅な改良が必
要であり、経済的な負担が大きいという問題があった。For example, as one developed for the purpose of further improving the rolling contact fatigue life of a bearing, Japanese Patent Laid-Open No. 1-306542 has been proposed.
Japanese Patent Laid-Open No. 3-126839 and Japanese Patent Laid-Open Publication No. 3-126839 propose techniques for controlling the composition, shape, or distribution of oxide-based nonmetallic inclusions in steel. However, in order to manufacture a bearing steel with a small amount of non-metallic inclusions, it is necessary to install expensive melting equipment or drastically improve conventional equipment, and there is a problem that the economical burden is large.
【0004】一方、軸受の寿命は、潤滑油の特性にも大
きく影響される。一般に、潤滑油中には、研磨時の研磨
粉やバリ、あるいは回転時に発生した摩耗粉等(以下、
これらを「ゴミ」という)が混入しており、このゴミの
混入は軸受部材の転がり寿命の低下を招くことが指摘さ
れていた。従来、ゴミ入り環境下での軸受寿命の改善に
対しては、主に潤滑油の清浄性を向上させる手法が採ら
れているが、特開平5−78782号公報や同5−78814号公
報などの開示によると、軸受部材の表面層を浸炭窒化処
理することにより、その表面層の炭化物面積率,表面炭
素濃度,表面残留オーステナイト量をコントロールし
て、該表層部における特性を改善することにより、ゴミ
による圧痕形状をコントロールし、もって、応力集中の
軽減を導いて長寿命化を図ることを提案している。しか
しながら、この従来技術は、鋼組織を本質的に改善する
訳ではなく、いわゆる浸炭窒化・硬化熱処理によって、
軸受部材の表面層のみを外的に改質する方法であるか
ら、後述するような、表層部の下辺で観察されるミクロ
組織変化部の改善につながらないばかりでなく、さらに
処理コストが高いといった問題が残っていた。On the other hand, the life of the bearing is greatly affected by the characteristics of the lubricating oil. Generally, in lubricating oil, polishing powder and burrs during polishing, or abrasion powder generated during rotation (hereinafter,
It has been pointed out that these are mixed with "dust", and that the mixing of dust causes a reduction in rolling life of the bearing member. Conventionally, in order to improve the life of the bearing in an environment containing dust, a method of mainly improving the cleanliness of the lubricating oil has been adopted, but JP-A-5-78782 and JP-A-5-78814 are used. According to the disclosure, by carbonitriding the surface layer of the bearing member, by controlling the carbide area ratio of the surface layer, the surface carbon concentration, the amount of surface retained austenite, by improving the characteristics in the surface layer portion, It is proposed to control the shape of the indentation caused by dust, thus leading to the reduction of stress concentration and prolonging the service life. However, this conventional technique does not essentially improve the steel structure, and the so-called carbonitriding / hardening heat treatment
Since it is a method of externally modifying only the surface layer of the bearing member, it does not lead to the improvement of the microstructure change portion observed at the lower side of the surface layer portion as described later, and further the treatment cost is high. Was left.
【0005】また、上記高炭素軸受鋼(JIS-SUJ 2)の特
性改善を図るためのもう1つの動きは、加工性、特に熱
処理時の脱炭層の生成を抑制する技術に関する研究であ
る。一般に、上記JIS-SUJ2に規定された軸受鋼は、0.9
5〜1.10mass%のCを含むことから、非常に硬質であ
り、それ故に、球状化焼なましを行って加工性を向上さ
せた後に成形加工し、その後焼入れ,焼もどし処理を施
すことによって、転がり軸受に必要な強度と靱性を得て
いた。ところが、このような特性改善のための熱処理が
何回も重なると、素材表面には、Cと雰囲気ガスとの反
応によって、脱炭層と呼ばれる“低C濃度領域”が発生
することが知られている。この脱炭層は、転がり軸受の
硬さ低下のみならず転動疲労寿命劣化の原因となること
から、切削または研削加工により除去するのが普通であ
った。そのために材料歩留り、さらには生産性の低下を
余儀なくされていたのである。これに対して従来、上記
脱炭層の生成を防止する手段として、熱処理時における
炉内の雰囲気ガス中のカーボンポテンシャルをコントロ
ールする方法や、特開平2−54717号公報に開示されて
いる,球状化焼なましの初期段階に浸炭処理を施す方法
などが提案されている。しかし、上記の各方法はいずれ
も、熱処理あるいはその前処理時の雰囲気清浄によるも
のであることから、熱処理コストが嵩むのみならず、材
料の組成や熱処理時間等に応じた適切なガス組成の設定
といった煩雑な操作を必要とするところに問題を残して
いた。Another move to improve the characteristics of the above-mentioned high carbon bearing steel (JIS-SUJ 2) is a study on a workability, especially a technique for suppressing the formation of a decarburized layer during heat treatment. Generally, the bearing steel specified in JIS-SUJ2 above is 0.9
Since it contains 5 to 1.10 mass% C, it is very hard. Therefore, it is spheroidized and annealed to improve the workability, and then molded and then hardened and tempered. , Had obtained the strength and toughness required for rolling bearings. However, it is known that when the heat treatment for improving the characteristics is repeated many times, a "low C concentration region" called a decarburized layer is generated on the surface of the material due to the reaction between C and the atmosphere gas. There is. This decarburized layer not only lowers the hardness of the rolling bearing but also causes the deterioration of rolling contact fatigue life, and therefore it is usually removed by cutting or grinding. For this reason, the material yield and the productivity have been unavoidably reduced. On the other hand, conventionally, as a means for preventing the formation of the decarburized layer, a method of controlling the carbon potential in the atmosphere gas in the furnace during the heat treatment, or the spheroidizing method disclosed in JP-A-2-54717. A method of carburizing at the initial stage of annealing has been proposed. However, since each of the above methods is performed by cleaning the atmosphere during the heat treatment or the pretreatment thereof, not only the heat treatment cost increases but also the setting of an appropriate gas composition according to the composition of the material, the heat treatment time, etc. That left a problem where complicated operations were required.
【0006】[0006]
【発明が解決しようとする課題】ところで、発明者らが
行った最近の研究成果によれば、転動寿命を決めている
要因としては、従来から一般に論じられてきた現象;す
なわち、特開平5−78782号,同5−78814号各公報など
で問題にしている熱処理時に生じる軸受部材表面におけ
る“脱炭層”(低C濃度領域)や、特開平1−306542
号,同3−126839号各公報で問題にしている“非金属介
在物”の存在以外の要因もあるということが判った。と
いうのは、従来技術の下で主として軸受部材表面層を熱
処理することによって、単に脱炭層や非金属介在物を減
少させても、軸受の転動疲労寿命、特に、高負荷あるい
は高温といった過酷な条件下での軸受寿命の向上には大
きな効果が得られないことを多く経験したからである。
このことから、発明者らは軸受寿命を律する他の要因の
存在を確信したのである。By the way, according to the recent research results conducted by the inventors, as a factor that determines the rolling life, a phenomenon which has been generally discussed in the past; -78782, 5-78814, etc., "decarburization layer" (low C concentration region) on the surface of a bearing member caused by heat treatment, which is a problem, and JP-A-1-306542.
It was found that there are factors other than the presence of "non-metallic inclusions", which is a problem in each of the publications, No. 3-126839. This is because the rolling contact fatigue life of the bearing, especially the severe load such as high load or high temperature, is reduced by simply heat-treating the bearing member surface layer under the conventional technique even if the decarburized layer and non-metallic inclusions are simply reduced. This is because we have often experienced that a great effect cannot be obtained for improving the bearing life under the conditions.
From this, the inventors were convinced of the existence of other factors that govern the life of the bearing.
【0007】そこで、発明者らは、最近の軸受使用環境
を考慮した上での軸受寿命,とくに転がり軸受の剥離の
発生原因について鋭意研究を続けた。その結果、軸受使
用環境の激化に伴って、軸受の内・外輪と転動体との回
転接触時に発生する繰り返し剪断応力により、図1(a)
に示すような、転動接触面(表層部)の下部に、帯状の
白色生成物と棒状の析出物からなるミクロ組織変化層が
発生し、これが転動回数を増すにつれて次第に成長し、
終にはこのミクロ組織変化部から、図1(b)に示すよう
な疲労剥離が生じて軸受部材表層部を欠損して軸受寿命
がつきることがわかった。さらに、軸受使用環境の苛酷
化すなわち,高面圧化(小型化),使用温度の上昇は、
これらミクロ組織変化が発生するまでの転動回数を短縮
し、著しい軸受寿命の低下につながるということも突き
止めた。[0007] Therefore, the present inventors have continued to earnestly study the bearing life in consideration of the recent bearing usage environment, especially the cause of the separation of the rolling bearing. As a result, as the bearing operating environment became more severe, the repeated shear stress generated during the rolling contact between the inner and outer rings of the bearing and the rolling elements caused
In the lower part of the rolling contact surface (surface layer portion), a microstructure change layer consisting of a white strip-shaped product and a rod-shaped precipitate is generated, which gradually grows as the number of rolling increases,
At the end, it was found that fatigue delamination occurred as shown in FIG. 1 (b) from this microstructure-changed portion, and the bearing member surface layer portion was damaged to extend the bearing life. Furthermore, the harsh bearing operating environment, that is, higher surface pressure (smaller size) and higher operating temperature,
It was also found that the number of rolling cycles until the microstructure change occurs can be shortened, leading to a significant reduction in bearing life.
【0008】以上説明したように、軸受寿命というの
は、従来技術のような、軸受部材の表面層の部分におけ
る脱炭層や非金属介在物の制御だけでは不十分であり、
例えば、浸炭・窒化や球状化焼鈍などの各種の熱処理に
よって、表面層の脱炭層や非金属介在物量を単に低減さ
せるだけでは、上述した転動接触面(表層部)下で発生
するミクロ組織変化が発生するまでの時間を遅延させる
ことはできない。その結果として、軸受寿命の今まで以
上の向上は図り得ないということを知見したのである。As described above, the bearing life is not sufficient to control the decarburization layer and the non-metallic inclusions in the surface layer portion of the bearing member as in the prior art.
For example, by simply reducing the amount of decarburized layer in the surface layer and the amount of non-metallic inclusions by various heat treatments such as carburizing / nitriding and spheroidizing annealing, the microstructural changes that occur under the rolling contact surface (surface layer portion) described above. It is not possible to delay the time until the occurrence of. As a result, they have found that the bearing life cannot be further improved.
【0009】本発明の主たる目的は、過酷な使用条件の
下での転動疲労寿命特性を向上させるのに有効な手段を
提案することにある。本発明の他の目的は、軸受鋼の成
分組成そのものおよび鋼中の残留オーステナイト量を工
夫することによって、表層部だけでなく鋼全体としての
特性,とくに高負荷・高温環境下での軸受使用中に生成
が予想される表層部下に見られるミクロ組織変化を遅延
させ、ひいては軸受寿命の著しい向上を図ることにあ
る。本発明の他の目的は、鋼の成分組成、とくにMo含有
量の調整と鋼中残留オーステナイト量を制御することに
より、ゴミ入り環境下においても、そのゴミによる圧痕
の周辺にその応力集中によって上記ミクロ組織変化が発
生するのを抑制することに加え、更に表面層の転動疲労
寿命、素材自体の特性の改善を図り、もって軸受寿命の
一層の向上を目指すことにある。本発明のさらに他の目
的は、熱処理時の脱炭層厚みの成長を抑えることによ
り、熱処理生産性(脱炭層の加工除去の手間を省くこ
と)の向上を図ることにある。A main object of the present invention is to propose a means effective for improving rolling contact fatigue life characteristics under severe operating conditions. Another object of the present invention is to improve the characteristics of not only the surface layer but also the steel as a whole, especially during use of the bearing under high load and high temperature environment, by devising the composition of the bearing steel itself and the amount of retained austenite in the steel. The purpose of this is to delay the microstructural change observed under the surface layer, which is expected to be generated, and to significantly improve the bearing life. Another object of the present invention is to adjust the composition of the steel, especially the Mo content and to control the amount of retained austenite in the steel, so that even in an environment containing dust, the stress concentration around the indentation due to the dust causes In addition to suppressing the occurrence of microstructural changes, it is intended to further improve the rolling contact fatigue life of the surface layer and the characteristics of the material itself, thereby further improving the bearing life. Still another object of the present invention is to improve the heat treatment productivity (eliminating the work of removing the decarburized layer) by suppressing the growth of the thickness of the decarburized layer during the heat treatment.
【0010】[0010]
【課題を解決するための手段】さて、発明者らは、上述
した知見に基づき軸受寿命として新たに“ミクロ組織変
化遅延特性”というものに着目した。そして、この特性
の向上を通じてこの面における軸受寿命の向上を図るこ
とにした。そのためには、当然新たな合金設計(成分組
成)ならびに鋼組織の特定が必要であり、このことの実
現なくして軸受のより一層の寿命向上は図れないという
認識に立って、さらに種々の実験と検討とを行った。そ
の結果、意外にも、適正量のMoおよびSbを複合添加する
こと及び、鋼中の残留オーステナイト量(以下、単に
「残留γ量」と略記する)を制御すれば、繰り返し応力
負荷による転動接触面下に生成する上述したミクロ組織
変化を著しく遅延できることを見い出し、本発明軸受部
材とその製造方法を開発した。Means for Solving the Problems Based on the above-mentioned findings, the present inventors have paid attention to a new "microstructure change delay characteristic" as a bearing life. Then, it was decided to improve the life of the bearing in this respect by improving this characteristic. To that end, of course, a new alloy design (composition composition) and identification of the steel structure are required, and we will not be able to further improve the life of the bearing without realizing this, and we will carry out further experiments. I examined it. As a result, unexpectedly, by adding appropriate amounts of Mo and Sb together and controlling the amount of retained austenite in steel (hereinafter simply referred to as “retained γ amount”), rolling due to repeated stress loading It was found that the above-mentioned microstructure change generated under the contact surface can be significantly delayed, and the bearing member of the present invention and the manufacturing method thereof have been developed.
【0011】すなわち、本発明にかかる軸受鋼および軸
受部材は、以下に列挙するような要旨構成を有するもの
である。
(1) C:0.5〜1.5mass%,Mo:1.0超〜2.0mass%,Sb:
0.005〜0.015mass%,O:0.0020mass%以下を含有し、
残部がFeおよび不可避的不純物からなる、熱処理生産性
ならびに繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受鋼。That is, the bearing steel and the bearing member according to the present invention have the essential configurations as listed below. (1) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0 mass%, Sb:
0.005 to 0.015 mass%, O: contains 0.0020 mass% or less,
Bearing steel with balance of Fe and unavoidable impurities and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
【0012】(2) C:0.5〜1.5mass%,Mo:1.0超〜2.0
mass%,Sb:0.005〜0.015mass%,O:0.0020mass%以
下を含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05
〜2.0mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mas
s%,Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,
B:0.0005〜0.01mass%及びN:0.0005〜0.012mass%
のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなる、熱処理生
産性ならびに繰り返し応力負荷によるミクロ組織変化の
遅延特性に優れた軸受鋼。(2) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0
mass%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05
~ 2.0mass%, Cr: 0.05 ~ 2.5mass%, Ni: 0.05 ~ 1.0mass
s%, Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%,
B: 0.0005 to 0.01 mass% and N: 0.0005 to 0.012 mass%
A bearing steel containing one or more selected from the group consisting of Fe and unavoidable impurities with the balance being excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load.
【0013】(3) ただし、上記基本成分(C,Mo,Sb,
O)に対しさらに、選択的に添加される任意添加成分(S
i,Mn,Cr,Ni,Cu,Al,B,N)については、上記(2)
の組成の範囲内において、次のような組合わせで添加す
ることが推奨される。
0.05〜0.5mass%Si−(Mn,Cr,Ni,Cu,Al,Bおよ
びNのいずれか1種以上)
0.05〜2.0mass%Mn−(Cr,Ni,Cu,Al,BおよびN
のいずれか1種以上)
0.05〜2.5mass%Cr−(Ni,Cu,Al,BおよびNのい
ずれか1種以上)
0.05〜1.0mass%Ni−(Cu,Al,BおよびNのいずれ
か1種以上)
0.05〜1.0mass%Cu−(Al,BおよびNのいずれか1
種以上)
0.005〜0.07mass%Al−(BおよびNのいずれか1種
以上)
0.0005〜0.01mass%B−(N)(3) However, the basic components (C, Mo, Sb,
O), optionally added components (S
For i, Mn, Cr, Ni, Cu, Al, B, N), see (2) above.
Within the range of the composition, it is recommended to add the following combinations. 0.05 to 0.5 mass% Si- (any one or more of Mn, Cr, Ni, Cu, Al, B and N) 0.05 to 2.0 mass% Mn- (Cr, Ni, Cu, Al, B and N
0.05 to 2.5 mass% Cr- (any one or more of Ni, Cu, Al, B and N) 0.05 to 1.0 mass% Ni- (any of Cu, Al, B and N 1) Species or more) 0.05-1.0mass% Cu- (any of Al, B and N 1
0.005 to 0.07 mass% Al- (any one or more of B and N) 0.0005 to 0.01 mass% B- (N)
【0014】(4) C:0.5〜1.5mass%,Mo:1.0超〜2.0
mass%,Sb:0.005〜0.015mass%,O:0.0020mass%以
下を含有し、さらに、Si:0.5超〜2.5mass%,Cr:2.5
超〜8.0mass%,Ni:1.0超〜3.0mass%,N:0.012超〜
0.050mass%,V:0.05〜1.0mass%,Nb:0.05〜1.0mas
s%,W:0.05〜1.0mass%,Zr:0.02〜0.5mass%,T
a:0.02〜0.5mass%,Hf:0.02〜0.5mass%及びCo:0.0
5〜1.5mass%のうちから選ばれるいずれか1種または2
種以上を含み、残部がFeおよび不可避的不純物からな
る、熱処理生産性ならびに繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受鋼。(4) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0
mass%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: more than 0.5 to 2.5 mass%, Cr: 2.5
Super ~ 8.0mass%, Ni: over 1.0 ~ 3.0mass%, N: over 0.012 ~
0.050mass%, V: 0.05 to 1.0mass%, Nb: 0.05 to 1.0mass
s%, W: 0.05 to 1.0 mass%, Zr: 0.02 to 0.5 mass%, T
a: 0.02-0.5mass%, Hf: 0.02-0.5mass% and Co: 0.0
Any one or two selected from 5 to 1.5 mass%
A bearing steel that contains more than one type of material, with the balance consisting of Fe and unavoidable impurities, and that has excellent heat treatment productivity and delay characteristics for microstructural changes due to repeated stress loading.
【0015】(5) ただし、上記基本成分(C,Mo,Sb,
O)に対しさらに、選択的に多量添加される任意添加成
分(Si,Cr,Ni,N)とその他の少量添加される任意添加
成分(V,Nb,W,Zr,Ta,HfおよびCo)については、上
記(4)に記載の組成範囲内において、次のような組合わ
せで添加することが推奨される。
0.5超〜2.5mass%Si−(Cr,NiおよびNのうちのいず
れか1種以上)−(V,Nb,W,Zr,Ta,HfおよびCoの
うちのいずれか1種以上)
2.5超〜8.0mass%Cr−(NiまたはNのいずれか1種以
上)−(V,Nb,W,Zr,Ta,HfおよびCoのうちのいず
れか1種以上)
1.0超〜3.0mass%Ni−(N)−(V,Nb,W,Zr,T
a,HfおよびCoのうちのいずれか1種以上)
0.012超〜0.050mass%N−(V,Nb,W,Zr,Ta,Hf
およびCoのうちのいずれか1種以上)(5) However, the basic components (C, Mo, Sb,
O), optionally added components (Si, Cr, Ni, N) added selectively in large amounts and other added components (V, Nb, W, Zr, Ta, Hf and Co) added in small amounts. With respect to, it is recommended to add the following combinations within the composition range described in (4) above. Over 0.5 to 2.5 mass% Si- (any one or more of Cr, Ni and N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co) over 2.5- 8.0mass% Cr- (any one or more of Ni or N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co) over 1.0 to 3.0mass% Ni- (N )-(V, Nb, W, Zr, T
Any one or more of a, Hf and Co) over 0.012 to 0.050 mass% N- (V, Nb, W, Zr, Ta, Hf
And any one of Co and Co)
【0016】(6) C:0.5〜1.5mass%,Mo:1.0超〜2.0
mass%,Sb:0.005〜0.015mass%,O:0.0020mass%以
下を含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05
〜2.0mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mas
s%,Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,
B:0.0005〜0.01mass%及びN:0.0005〜0.012mass%
のうちから選ばれるいずれか1種または2種以上を、通
常環境下での転動疲労を改善する成分として含み、さら
にまた、上記改善成分のいずれか1種以上のものが選択
された場合はその元素を除く下記の成分、すなわち、S
i:0.5超〜2.5mass%,Cr:2.5超〜8.0mass%,Ni:1.0
超〜3.0mass%,N:0.012超〜0.050mass%,V:0.05
〜1.0mass%,Nb:0.05〜1.0mass%,W:0.05〜1.0mas
s%,Zr:0.02〜0.5mass%,Ta:0.02〜0.5mass%,H
f:0.02〜0.5mass%及びCo:0.05〜1.5mass%のうちか
ら選ばれるいずれか1種または2種以上を、苛酷な環境
下での転動疲労寿命を改善する成分として含み、残部が
Feおよび不可避的不純物からなる、熱処理生産性ならび
に繰り返し応力負荷によるミクロ組織変化の遅延特性に
優れた軸受鋼。(6) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0
mass%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05
~ 2.0mass%, Cr: 0.05 ~ 2.5mass%, Ni: 0.05 ~ 1.0mass
s%, Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%,
B: 0.0005 to 0.01 mass% and N: 0.0005 to 0.012 mass%
When any one or more selected from the above is contained as a component that improves rolling fatigue in a normal environment, and when any one or more of the above-mentioned improving components is selected, The following components excluding that element, namely S
i: over 0.5 to 2.5 mass%, Cr: over 2.5 to 8.0 mass%, Ni: 1.0
Super ~ 3.0mass%, N: 0.012 Super ~ 0.050mass%, V: 0.05
~ 1.0mass%, Nb: 0.05 ~ 1.0mass%, W: 0.05 ~ 1.0mass
s%, Zr: 0.02-0.5mass%, Ta: 0.02-0.5mass%, H
f: 0.02-0.5mass% and Co: 0.05-1.5mass%, any one kind or two kinds or more selected as a component for improving rolling fatigue life in a harsh environment, and the balance
Bearing steel consisting of Fe and unavoidable impurities, which has excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading.
【0017】(7) ただし、上記(6)において、通常環境
における転動疲労寿命改善成分については、次のような
組合わせが推奨される。
0.05〜0.5mass%Si−(Mn,Cr,Ni,Cu,Al,Bおよ
びNのいずれか1種以上)
0.05〜2.0mass%Mn−(Cr,Ni,Cu,Al,BおよびN
のいずれか1種以上)
0.05〜2.5mass%Cr−(Ni,Cu,Al,BおよびNのい
ずれか1種以上)
0.05〜1.0mass%Ni−(Cu,Al,BおよびNのいずれ
か1種以上)
0.05〜1.0mass%Cu−(Al,BおよびNのいずれか1
種以上)
0.005〜0.07mass%Al−(BおよびNのいずれか1種
以上)
0.0005〜0.01mass%B−(N)
また、上記の苛酷な使用環境における転動疲労寿命改善
成分についての組合わせは下記のものが推奨される。
´0.5超〜2.5mass%Si−(Cr,NiおよびNのうちのい
ずれか1種以上)−(V,Nb,W,Zr,Ta,HfおよびCo
のうちのいずれか1種以上)
´2.5超〜8.0mass%Cr−(NiまたはNのいずれか1種
以上)−(V,Nb,W,Zr,Ta,HfおよびCoのうちのい
ずれか1種以上)
´1.0超〜3.0mass%Ni−(N)−(V,Nb,W,Zr,T
a,HfおよびCoのうちのいずれか1種以上)
´0.012超〜0.050mass%N−(V,Nb,W,Zr,Ta,H
fおよびCoのうちのいずれか1種以上)(7) However, in the above item (6), the following combinations are recommended for the rolling fatigue life improving components in a normal environment. 0.05 to 0.5 mass% Si- (any one or more of Mn, Cr, Ni, Cu, Al, B and N) 0.05 to 2.0 mass% Mn- (Cr, Ni, Cu, Al, B and N
0.05 to 2.5 mass% Cr- (any one or more of Ni, Cu, Al, B and N) 0.05 to 1.0 mass% Ni- (any of Cu, Al, B and N 1) Species or more) 0.05-1.0mass% Cu- (any of Al, B and N 1
0.005 to 0.07mass% Al- (any one or more of B and N) 0.0005 to 0.01mass% B- (N) In addition, a combination of components for improving rolling contact fatigue life in the above severe operating environment The following are recommended. More than 0.5 to 2.5 mass% Si- (any one or more of Cr, Ni and N)-(V, Nb, W, Zr, Ta, Hf and Co
More than 2.5 to 8.0 mass% Cr- (any one or more of Ni or N)-(V, Nb, W, Zr, Ta, Hf and Co 1 More than 1.0) ~ 1.0 to 3.0 mass% Ni- (N)-(V, Nb, W, Zr, T
Any one or more of a, Hf and Co) '> 0.012 to 0.050 mass% N- (V, Nb, W, Zr, Ta, H
Any one or more of f and Co)
【0018】(8) C:0.5〜1.5mass%,Mo:1.0超〜2.0
mass%,Sb:0.005〜0.015mass%,O:0.0020mass%以
下を含有し、残部がFeおよび不可避的不純物からなり、
かつ鋼中の残留オーステナイト量が体積比にして10〜35
%である鋼組織を有することを特徴とする、熱処理生産
性ならびに繰り返し応力負荷によるミクロ組織変化の遅
延特性に優れた軸受部材。(8) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0
mass%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, and the balance Fe and unavoidable impurities,
In addition, the amount of retained austenite in steel is 10 to 35 in volume ratio.
%, A bearing member excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load.
【0019】(9) C:0.5〜1.5mass%,Mo:1.0超〜2.0
mass%,Sb:0.005〜0.015mass%,O:0.0020mass%以
下を含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05
〜2.0mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mas
s%,Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,
B:0.0005〜0.01mass%及びN:0.0005〜0.012mass%
のうちから選ばれるいずれか1種または2種以上を含
み、残部がFeおよび不可避的不純物からなり、かつ鋼中
の残留オーステナイト量が体積比にして10〜35%である
鋼組織を有することを特徴とする、熱処理生産性ならび
に繰り返し応力負荷によるミクロ組織変化の遅延特性に
優れた軸受部材。(9) C: 0.5 to 1.5 mass%, Mo: over 1.0 to 2.0
mass%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05
~ 2.0mass%, Cr: 0.05 ~ 2.5mass%, Ni: 0.05 ~ 1.0mass
s%, Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%,
B: 0.0005 to 0.01 mass% and N: 0.0005 to 0.012 mass%
A steel structure containing at least one selected from the above, the balance being Fe and unavoidable impurities, and having a residual austenite amount in the steel of 10 to 35% by volume. A bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load.
【0020】(10) ただし、上記基本成分(C,Mo,Sb,
O)に対しさらに、選択的に添加される任意添加成分(S
i,Mn,Cr,Ni,Cu,Al,B,N)については、上記(9)
の組成の範囲内において、次のような組合わせで添加す
ることが推奨される。
0.05〜0.5mass%Si−(Mn,Cr,Ni,Cu,Al,Bおよ
びNのいずれか1種以上)
0.05〜2.0mass%Mn−(Cr,Ni,Cu,Al,BおよびN
のいずれか1種以上)
0.05〜2.5mass%Cr−(Ni,Cu,Al,BおよびNのい
ずれか1種以上)
0.05〜1.0mass%Ni−(Cu,Al,BおよびNのいずれ
か1種以上)
0.05〜1.0mass%Cu−(Al,BおよびNのいずれか1
種以上)
0.005〜0.07mass%Al−(BおよびNのいずれか1種
以上)
0.0005〜0.01mass%B−(N)(10) However, the basic components (C, Mo, Sb,
O), optionally added components (S
i, Mn, Cr, Ni, Cu, Al, B, N), see (9) above.
Within the range of the composition, it is recommended to add the following combinations. 0.05 to 0.5 mass% Si- (any one or more of Mn, Cr, Ni, Cu, Al, B and N) 0.05 to 2.0 mass% Mn- (Cr, Ni, Cu, Al, B and N
0.05 to 2.5 mass% Cr- (any one or more of Ni, Cu, Al, B and N) 0.05 to 1.0 mass% Ni- (any of Cu, Al, B and N 1) Species or more) 0.05-1.0mass% Cu- (any of Al, B and N 1
0.005 to 0.07 mass% Al- (any one or more of B and N) 0.0005 to 0.01 mass% B- (N)
【0021】(11) C:0.5〜1.5mass%,Mo:1.0超〜2.
0mass%,Sb:0.005〜0.015mass%,O:0.0020mass%
以下を含有し、さらに、Si:0.5超〜2.5mass%,Cr:2.
5超〜8.0mass%,Ni:1.0超〜3.0mass%,N:0.012超
〜0.050mass%,V:0.05〜1.0mass%,Nb:0.05〜1.0m
ass%,W:0.05〜1.0mass%,Zr:0.02〜0.5mass%,T
a:0.02〜0.5mass%,Hf:0.02〜0.5mass%及びCo:0.0
5〜1.5mass%のうちから選ばれるいずれか1種または2
種以上を含み、残部がFeおよび不可避的不純物からな
り、かつ鋼中の残留オーステナイト量が体積比にして10
〜35%である鋼組織を有することを特徴とする、熱処理
生産性ならびに繰り返し応力負荷によるミクロ組織変化
の遅延特性に優れた軸受部材。(11) C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.
0mass%, Sb: 0.005 to 0.015mass%, O: 0.0020mass%
Contains the following: Si: more than 0.5 to 2.5 mass%, Cr: 2.
5 to 8.0 mass%, Ni: 1.0 to 3.0 mass%, N: 0.012 to 0.050 mass%, V: 0.05 to 1.0 mass%, Nb: 0.05 to 1.0 m
ass%, W: 0.05 to 1.0 mass%, Zr: 0.02 to 0.5 mass%, T
a: 0.02-0.5mass%, Hf: 0.02-0.5mass% and Co: 0.0
Any one or two selected from 5 to 1.5 mass%
Containing at least one species, the balance consisting of Fe and unavoidable impurities, and the amount of retained austenite in the steel being 10% by volume.
A bearing member excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load, which has a steel structure of up to 35%.
【0022】(12) ただし、上記基本成分(C,Mo,Sb,
O)に対しさらに、選択的に多量添加される任意添加成
分(Si,Cr,Ni,N)とその他の少量添加される任意添
加成分(V,Nb,W,Zr,Ta,HfおよびCo)については、
上記(11)に記載の組成範囲内において、次のような組合
わせで添加することが推奨される。
0.5超〜2.5mass%Si−(Cr,NiおよびNのうちのいず
れか1種以上)−(V,Nb,W,Zr,Ta,HfおよびCoの
うちのいずれか1種以上)
2.5超〜8.0mass%Cr−(NiまたはNのいずれか1種以
上)−(V,Nb,W,Zr,Ta,HfおよびCoのうちのいず
れか1種以上)
1.0超〜3.0mass%Ni−(N)−(V,Nb,W,Zr,T
a,HfおよびCoのうちのいずれか1種以上)
0.012超〜0.050mass%N−(V,Nb,W,Zr,Ta,Hf
およびCoのうちのいずれか1種以上)(12) However, the basic components (C, Mo, Sb,
O), optionally added components (Si, Cr, Ni, N) added selectively in large amounts and other added components added in small amounts (V, Nb, W, Zr, Ta, Hf and Co). about,
Within the composition range described in (11) above, it is recommended to add the following combinations. Over 0.5 to 2.5 mass% Si- (any one or more of Cr, Ni and N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co) over 2.5- 8.0mass% Cr- (any one or more of Ni or N)-(any one or more of V, Nb, W, Zr, Ta, Hf and Co) over 1.0 to 3.0mass% Ni- (N )-(V, Nb, W, Zr, T
Any one or more of a, Hf and Co) over 0.012 to 0.050 mass% N- (V, Nb, W, Zr, Ta, Hf
And any one of Co and Co)
【0023】(13) C:0.5〜1.5mass%,Mo:1.0超〜2.
0mass%,Sb:0.005〜0.015mass%,O:0.0020mass%
以下を含有し、さらに、Si:0.05〜0.5mass%,Mn:0.0
5〜2.0mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0ma
ss%,Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,
B:0.0005〜0.01mass%及びN:0.0005〜0.012mass%
のうちから選ばれるいずれか1種または2種以上を、通
常環境下での転動疲労を改善する成分として含み、さら
にまた、上記改善成分のいずれか1種以上のものが選択
された場合はその元素を除く下記の成分、すなわち、S
i:0.5超〜2.5mass%,Cr:2.5超〜8.0mass%,Ni:1.0
超〜3.0mass%,N:0.012超〜0.050mass%,V:0.05
〜1.0mass%,Nb:0.05〜1.0mass%,W:0.05〜1.0mas
s%,Zr:0.02〜0.5mass%,Ta:0.02〜0.5mass%,H
f:0.02〜0.5mass%及びCo:0.05〜1.5mass%のうちか
ら選ばれるいずれか1種または2種以上を、苛酷な環境
下での転動疲労寿命を改善する成分として含み、残部が
Feおよび不可避的不純物からなり、かつ鋼中の残留オー
ステナイト量が体積比にして10〜35%である鋼組織を有
することを特徴とする、熱処理生産性ならびに繰り返し
応力負荷によるミクロ組織変化の遅延特性に優れた軸受
部材。(13) C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.
0mass%, Sb: 0.005 to 0.015mass%, O: 0.0020mass%
Contains the following, and further Si: 0.05 to 0.5 mass%, Mn: 0.0
5 to 2.0mass%, Cr: 0.05 to 2.5mass%, Ni: 0.05 to 1.0ma
ss%, Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%,
B: 0.0005 to 0.01 mass% and N: 0.0005 to 0.012 mass%
When any one or more selected from the above is contained as a component that improves rolling fatigue in a normal environment, and when any one or more of the above-mentioned improving components is selected, The following components excluding that element, namely S
i: over 0.5 to 2.5 mass%, Cr: over 2.5 to 8.0 mass%, Ni: 1.0
Super ~ 3.0mass%, N: 0.012 Super ~ 0.050mass%, V: 0.05
~ 1.0mass%, Nb: 0.05 ~ 1.0mass%, W: 0.05 ~ 1.0mass
s%, Zr: 0.02-0.5mass%, Ta: 0.02-0.5mass%, H
f: 0.02-0.5mass% and Co: 0.05-1.5mass%, any one kind or two kinds or more selected as a component for improving rolling fatigue life in a harsh environment, and the balance
Featuring a steel structure consisting of Fe and unavoidable impurities and having a residual austenite content in the steel of 10 to 35% by volume, heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading Excellent bearing material.
【0024】(14) ただし、上記(13)において、通常環
境における転動疲労寿命改善成分については、次のよう
な組合わせが推奨される。
0.05〜0.5mass%Si−(Mn,Cr,Ni,Cu,Al,Bおよ
びNのいずれか1種以上)
0.05〜2.0mass%Mn−(Cr,Ni,Cu,Al,BおよびN
のいずれか1種以上)
0.05〜2.5mass%Cr−(Ni,Cu,Al,BおよびNのい
ずれか1種以上)
0.05〜1.0mass%Ni−(Cu,Al,BおよびNのいずれ
か1種以上)
0.05〜1.0mass%Cu−(Al,BおよびNのいずれか1
種以上)
0.005〜0.07mass%Al−(BおよびNのいずれか1種
以上)
0.0005〜0.01mass%B−(N)
また、上記の苛酷な使用環境における転動疲労寿命改善
成分についての組合わせは下記のものが推奨される。
´0.5超〜2.5mass%Si−(Cr,NiおよびNのうちのい
ずれか1種以上)−(V,Nb,W,Zr,Ta,HfおよびCo
のうちのいずれか1種以上)
´2.5超〜8.0mass%Cr−(NiまたはNのいずれか1種
以上)−(V,Nb,W,Zr,Ta,HfおよびCoのうちのい
ずれか1種以上)
´1.0超〜3.0mass%Ni−(N)−(V,Nb,W,Zr,T
a,HfおよびCoのうちのいずれか1種以上)
´0.012超〜0.050mass%N−(V,Nb,W,Zr,Ta,H
fおよびCoのうちのいずれか1種以上)(14) However, in the above (13), the following combinations are recommended for the rolling fatigue life improving components in the normal environment. 0.05 to 0.5 mass% Si- (any one or more of Mn, Cr, Ni, Cu, Al, B and N) 0.05 to 2.0 mass% Mn- (Cr, Ni, Cu, Al, B and N
0.05 to 2.5 mass% Cr- (any one or more of Ni, Cu, Al, B and N) 0.05 to 1.0 mass% Ni- (any of Cu, Al, B and N 1) Species or more) 0.05-1.0mass% Cu- (any of Al, B and N 1
0.005 to 0.07mass% Al- (any one or more of B and N) 0.0005 to 0.01mass% B- (N) In addition, a combination of components for improving rolling contact fatigue life in the above severe operating environment The following are recommended. More than 0.5 to 2.5 mass% Si- (any one or more of Cr, Ni and N)-(V, Nb, W, Zr, Ta, Hf and Co
More than 2.5 to 8.0 mass% Cr- (any one or more of Ni or N)-(V, Nb, W, Zr, Ta, Hf and Co 1 More than 1.0) ~ 1.0 to 3.0 mass% Ni- (N)-(V, Nb, W, Zr, T
Any one or more of a, Hf and Co) '> 0.012 to 0.050 mass% N- (V, Nb, W, Zr, Ta, H
Any one or more of f and Co)
【0025】なお、上記各軸受部材は、所定の成分組成
を有する鋼を、溶製後常法に従う処理によって棒鋼に圧
延し、次いで焼ならしと焼なましを施した後、880〜980
℃(望ましくは900〜950℃)からの焼入れを施すことによ
って製造することができる。In each of the above-mentioned bearing members, steel having a predetermined composition is rolled into a steel bar by a process according to a conventional method after smelting, followed by normalizing and annealing, and then 880 to 980.
It can be produced by quenching at a temperature of preferably from 900C (desirably 900 to 950C).
【0026】[0026]
【作用】まず、上記合金設計ならびに組織制御にかかる
本発明の軸受鋼および軸受部材を開発した経緯につき、
発明者らが行った実験結果に基づいて説明する。まず、
この実験に当たっては、
SUJ 2 (C:1.02mass%,Si:0.25mass%,Mn:0.45
mass%,Cr:1.35mass%,N:0.0040mass%,O:0.00
12mass%)と、MoとSbを添加した2種の材料
(C:1.00mass%,Si:0.21mass%,Mn:0.43mass
%,Cr:1.33mass%,Mo:1.14mass%,Sb:0.0061mass
%,N:0.0035mass%,O:0.0008mass%)
(C:0.98mass%,Si:0.20mass%,Mn:0.41mass
%,Cr:1.31mass%,Mo:1.81mass%,Sb:0.0094mass
%,N:0.0033mass%,O:0.0009mass%)の化学組成
を有する鋼を溶製してから鋳造し、1240℃で30h の拡散
焼鈍を施した後に65mmφの棒鋼に圧延して供試材とし
た。ついで、この供試材を焼ならし、球状化焼なまし、
さらには焼入れ−焼もどしの順で熱処理を行い、その
後、ラッピング仕上げにより12mmφ×22mmの円筒状の試
験片とした。First, the history of the development of the bearing steel and bearing member of the present invention relating to the above alloy design and structure control will be described.
A description will be given based on the results of experiments conducted by the inventors. First,
In this experiment, SUJ 2 (C: 1.02 mass%, Si: 0.25 mass%, Mn: 0.45
mass%, Cr: 1.35 mass%, N: 0.0040 mass%, O: 0.00
12mass%) and two kinds of materials added with Mo and Sb (C: 1.00mass% , Si: 0.21mass%, Mn: 0.43mass)
%, Cr: 1.33mass%, Mo: 1.14mass%, Sb: 0.0061mass
%, N: 0.0035mass%, O: 0.0008mass%) (C: 0.98mass% , Si: 0.20mass%, Mn: 0.41mass
%, Cr: 1.31mass%, Mo: 1.81mass%, Sb: 0.0094mass
%, N: 0.0033mass%, O: 0.0009mass%) was melted and cast, then subjected to diffusion annealing at 1240 ° C for 30 hours and then rolled into a steel bar of 65mmφ. And Then, normalize this test material, spheroidize,
Further, heat treatment was performed in the order of quenching-tempering, and then lapping finishing was performed to obtain a cylindrical test piece of 12 mmφ × 22 mm.
【0027】次に、上記試験片をラジアルタイプ型の転
動疲労寿命試験機を用い、ヘルツ最大接触応力:600kgf
/mm2,繰返し応力数:46500cpm,潤滑:#68タービン飛
沫油使用環境下の負荷条件で、焼入れ温度を調整して、
鋼中の残留γ量を変化させることにより転動疲労寿命試
験を行った。その試験結果は、ワイブル分布に従うもの
として確率紙上にプロットし、主として表面層における
非金属介在物の抑制と材料強度の上昇による,従来から
検討されていた通常の転動疲労寿命を示す数値であるB
10値(10%累積破損確率)と、高温・高負荷転動時の繰り
返し応力負荷による,苛酷な使用環境下で見られる、い
わゆる表層部下におけるミクロ組織変化の発生を遅延さ
せることによる転動疲労寿命を示す数値と見られるB50
値(50%累積破損確率)とを求めた。また、脱炭層の試験
については、上記の円筒状試験片を10mmの位置で高さ方
向に垂直に切断後、ナイタールにて腐食し、ミクロ組織
変化による円周上の全脱炭層深さ(厚み)最大値(以後、
「最大脱炭層」という)で評価した。Then, the above test piece was subjected to a Hertz maximum contact stress: 600 kgf using a radial type rolling fatigue life tester.
/ mm 2 , Repetitive stress number: 46500cpm, Lubrication: # 68 Turbine splash oil Adjust the quenching temperature under load conditions under the environment
A rolling fatigue life test was performed by changing the amount of residual γ in the steel. The test results are plotted on probability paper as subject to the Weibull distribution, and are numerical values showing the normal rolling fatigue life that has been conventionally studied, mainly due to the suppression of nonmetallic inclusions in the surface layer and the increase in material strength. B
Rolling fatigue by delaying the occurrence of so-called microstructure change under the surface layer, which is seen in a harsh service environment due to 10 values (10% cumulative failure probability) and repeated stress load during high temperature / high load rolling B 50, which is considered to be the value indicating the life
The value (50% cumulative damage probability) was calculated. Also, for the decarburization layer test, after cutting the above cylindrical test piece vertically in the height direction at a position of 10 mm, it is corroded by Nital and the total decarburization layer depth (thickness on the circumference due to microstructure change ) Maximum value (hereafter
"Maximum decarburized layer").
【0028】その結果、表1に示すように、高Mo添加材
については、残留γ量が6〜7%と少ない場合、前記B
10値についての改善はそれほど大きいものではないが、
B50値については著しく高い数値を示し、軸受平均寿命
は SUJ 2 材に比べ、Mo:1.14mass%では約18倍もの改
善を示していた。とくに、このMoを1.81mass%と、もっ
と多量に添加した高Mo添加材の場合には、B50値は約26
倍にも達し、高負荷転動中に生成するミクロ組織変化の
遅延特性に対して顕著な効果を示し、破損(寿命)を大き
く遅延させることができることが判った。ところが、同
じ成分組成でも、残留γ量が17〜18%と多くなると、B
50値の改善程度が一層顕著なものになることに加え、更
にB10値も SUJ 2 材に比べると、Mo:1.14mass%の場
合で約9倍、Mo:1.81mass%の場合で約12倍も改善され
ることが判った。さらに、熱処理後の最大脱炭層につい
ては、SUJ 2の0.10mmに対してSb:0.0040mass%含有す
るものでは0.02mm、Sb:約0.0082mass%含有するもので
は、実に0.01mmの厚さとなり、適量のSbの添加は、熱処
理脱炭層の抑制に極めて著効を示すことが窺える。As a result, as shown in Table 1, for the high Mo additive material, when the residual γ amount was as small as 6 to 7%, the B
The improvement in 10 values is not so big,
The B 50 value was remarkably high, and the average life of the bearings was improved by about 18 times in the case of Mo: 1.14 mass% as compared with the SUJ 2 material. In particular, in the case of a high Mo additive material in which a large amount of Mo is added at 1.81 mass%, the B 50 value is about 26.
It has been found that the damage (life) can be greatly delayed by showing a remarkable effect on the delay property of microstructure change generated during high load rolling. However, even with the same composition, if the residual γ amount increases to 17-18%, B
In addition to the more remarkable improvement in the 50 value, the B 10 value is about 9 times higher when the Mo: 1.14mass% and about 12 times when the Mo: 1.81mass% is compared to the SUJ 2 material. It turned out to be doubled. In addition, regarding the maximum decarburized layer after heat treatment, the thickness of SJ: 0.040 mm relative to 0.10 mm of SUJ 2 is 0.02 mm, and the content of Sb: about 0.0082 mass% is actually 0.01 mm thick, It can be seen that the addition of an appropriate amount of Sb is extremely effective in suppressing the heat-treated decarburized layer.
【0029】[0029]
【表1】 [Table 1]
【0030】図2は、上記実験結果をまとめたものであ
って、表層部における非金属介在物に起因する軸受寿命
と、表層部下における繰返し応力負荷でのミクロ組織変
化の様子、ならびに残留γ量が軸受の転動疲労寿命に及
ぼす影響を示す模式図である。この図に明らかなよう
に、従来からごく一般的に議論されてきた、軸受部材表
面層の非金属介在物の量とその形態,C濃度,炭化物面
積率などの指標としての,累積破損確率10%のB10値で
示される軸受寿命(以下、これを「B10寿命」という)
によれば、単にMoを多量に添加するだけではその効果は
期待した程には得られないが、残留γ量を多くした場合
には、かなり改善されることがわかる。一方、部材表層
部下の帯域に見られるミクロ組織変化特性を示す指標と
しての,累積破損確率50%のB50値で示される軸受寿命
(以下、これを「B50寿命」という)についてみると、M
o添加の効果は極めて顕著であり、この傾向は残留γ量
の影響よりも大きく、少なくとも苛酷な環境下で発生す
るミクロ組織変化の生成度合いを示す軸受寿命を意識す
る限り、高Moと高残留γ量へのコントロールは極めて有
効であることがわかる。これは、上記表1の結果ともよ
く符合している。FIG. 2 is a summary of the above experimental results. The bearing life due to non-metallic inclusions in the surface layer, the microstructure change under cyclic stress load under the surface layer, and the amount of residual γ FIG. 3 is a schematic diagram showing the effect of the on the rolling contact fatigue life of the bearing. As is clear from this figure, the cumulative damage probability 10 as an index of the amount of non-metallic inclusions on the surface layer of the bearing member, its form, C concentration, carbide area ratio, etc. % Bearing 10 life (hereinafter referred to as "B 10 life")
According to the above, the effect cannot be obtained as expected by simply adding a large amount of Mo, but it is understood that when the residual γ amount is increased, it is considerably improved. On the other hand, the bearing life indicated by the B 50 value with a cumulative failure probability of 50%, as an index showing the microstructure change characteristics found in the zone below the surface layer of the member.
Looking at this (hereinafter referred to as "B 50 life"), M
o The effect of addition is extremely remarkable, and this tendency is greater than the effect of the residual γ amount. It can be seen that the control of the γ amount is extremely effective. This is in good agreement with the results in Table 1 above.
【0031】以上説明したように、B10寿命,B50寿命
の両方を改善するには、適正量のMoを含有する鋼につい
て、焼ならしおよび球状化焼なましの処理を経てからさ
らに適正な焼入れ処理および必要に応じて焼もどし処理
をも施すことにより、鋼中の残留γ量を所定の範囲に制
御することが有効である。このような処理によって特性
が改善される理由については必ずしも明確に解明した訳
ではないが、発明者らは、この残留γが繰返し応力負荷
によるミクロ組織変化の遅延と応力作用領域に存在する
硬質な非金属介在物の切り欠き作用を緩和し、このこと
によってB10寿命およびB50寿命の両方を向上させるも
のと考えている。As described above, in order to improve both the B 10 life and the B 50 life, it is more appropriate to conduct the normalizing and spheroidizing annealing processes on the steel containing a proper amount of Mo. It is effective to control the amount of residual γ in the steel within a predetermined range by performing various quenching treatments and, if necessary, tempering treatments. Although the reason why the characteristics are improved by such a treatment has not always been clarified, the inventors have found that this residual γ is a delay in the microstructural change due to repeated stress loading and a hard texture existing in the stress action region. It is believed that the notch action of non-metallic inclusions is mitigated, which improves both B 10 and B 50 life.
【0032】なお、上記の残留γ量は、体積比にして10
〜35%が適正量と考えている。それは、この残留γの量
が少ないと転動疲労寿命、とりわけB10寿命向上の効果
が得られないからであり、それ故に10%以上は必要であ
る。一方、35%を超える残留γ量では軸受強度の不足な
らびに寸法の安定性に欠けるから、残留γ量は、10〜35
%の範囲に、好ましくは15〜30%の範囲に、そしてより
好ましくは15〜25%の範囲内に制御する。The above-mentioned residual γ amount is 10 in terms of volume ratio.
I think ~ 35% is an appropriate amount. This is because if the amount of this residual γ is small, the effect of improving rolling fatigue life, especially B 10 life cannot be obtained, and therefore, 10% or more is necessary. On the other hand, if the residual γ amount exceeds 35%, the bearing strength is insufficient and the dimensional stability is lacking.
%, Preferably in the range of 15-30%, and more preferably in the range of 15-25%.
【0033】本発明においては、主として繰り返し応力
負荷によるミクロ組織変化遅延特性の改善を図るという
観点から、以下に説明するような成分組成の範囲を決定
した。In the present invention, the range of the component composition as described below was determined mainly from the viewpoint of improving the microstructure change retarding property due to the repeated stress load.
【0034】C:0.5〜1.5mass%
Cは、基地に固溶してマルテンサイトの強化に有効に作
用する元素であり、焼入れ焼もどし後の強度確保とそれ
による転動疲労寿命を向上させるために含有させる。そ
の含有量が0.5mass%未満ではこうした効果が得られな
い。一方、1.5mass%超では被削性,鍛造性が低下する
ので、0.5〜1.5mass%の範囲に限定した。好ましくは、
0.65〜1.10mass%の範囲がよい。C: 0.5 to 1.5 mass% C is an element which forms a solid solution in the matrix and effectively acts to strengthen martensite, and in order to secure the strength after quenching and tempering and to improve the rolling fatigue life due to it. Contained in. If the content is less than 0.5 mass%, such effects cannot be obtained. On the other hand, if it exceeds 1.5 mass%, the machinability and the forgeability are deteriorated, so the range is limited to 0.5 to 1.5 mass%. Preferably,
The range of 0.65 to 1.10 mass% is good.
【0035】Mo:1.0超〜2.0mass%
Moは、本発明において最も重要な役割を担っている元素
であり、とりわけ過酷な繰り返し応力負荷の下での、上
述したミクロ組織変化の遅延を促して、この面での転動
疲労寿命(B50寿命)を向上させる。その効果を得るため
には、1.0mass%超が必要であるが、その量が2.0mass%
を超えると、切削性,鍛造性を低下させ、コストアップ
の因ともなるため、このB50寿命向上のためには、1.0
超〜2.0mass%の範囲内で添加することが必要である
が、好ましくは1.0超〜1.8mass%、より好ましくは1.0
超〜1.5mass%がよい。Mo: more than 1.0 to 2.0 mass% Mo is an element that plays the most important role in the present invention, and promotes the delay of the above-mentioned microstructure change particularly under severe cyclic stress loading. In this respect, the rolling fatigue life (B 50 life) is improved. To obtain that effect, more than 1.0 mass% is required, but the amount is 2.0 mass%
If it exceeds 1.0, the machinability and forgeability will be reduced, and this will cause a cost increase. Therefore, in order to improve the B 50 life, 1.0
It is necessary to add within the range of more than 2.0 mass%, but preferably more than 1.0 to 1.8 mass%, more preferably 1.0
Super ~ 1.5mass% is good.
【0036】Sb:0.005〜0.015mass%
このSbは、この発明においてAlとともに重要な役割を担
っている元素である。とくに、このSbは、熱処理時にお
いて、鋼材表層部のCと雰囲気ガスとの反応を抑制して
脱炭層の発生を阻止することによって、熱処理生産性向
上に寄与する。しかも、Alとの複合添加により、該脱炭
層の抑制にあわせてミクロ組織変化の遅延に対しても効
果を示すことから、積極的に添加する。このような2つ
の作用は、このSb含有量が0.005mass%以上で顕著なも
のとなるが、0.015mass%を超えて添加してもその効果
は飽和することに加え、却って熱間加工性および靱性の
劣化を招くようになる。従って、Sbは0.005〜0.015mass
%の範囲で含有させることとした。好ましくは、0.005
〜0.010mass%の範囲で含有させる。Sb: 0.005 to 0.015 mass% This Sb is an element that plays an important role together with Al in the present invention. In particular, this Sb contributes to the improvement of the heat treatment productivity by suppressing the reaction between C in the surface layer portion of the steel material and the atmospheric gas during the heat treatment to prevent the generation of the decarburized layer. Moreover, since the combined addition with Al has an effect on the retardation of the microstructure change as well as the suppression of the decarburized layer, it is positively added. These two effects become remarkable when the Sb content is 0.005 mass% or more, but even if the Sb content exceeds 0.015 mass%, the effect is saturated, and conversely, hot workability and It causes deterioration of toughness. Therefore, Sb is 0.005-0.015mass
It was decided to contain in the range of%. Preferably 0.005
It is contained in the range of 0.010 mass%.
【0037】O:0.0020mass%以下
Oは、硬質な非金属介在物を形成するので、たとえ他の
成分の制御によって繰り返し応力負荷によるミクロ組織
変化の遅延が得られたとしても、B10寿命,B50寿命の
低下を招くことがあるから、可能な限り低いことが望ま
しい。しかし、0.0020mass%以下の含有量であれば許容
できる。好ましくは0.0012mass%以下である。O: 0.0020 mass% or less O forms a hard non-metallic inclusion, so even if the control of other components can delay the microstructure change due to repeated stress loading, the B 10 life, Since it may lead to a decrease in B 50 life, it is desirable that the content be as low as possible. However, a content of 0.0020 mass% or less is acceptable. It is preferably 0.0012 mass% or less.
【0038】Si:0.05〜0.5mass%,0.5超〜2.5mass%
Siは、鋼の溶製時の脱酸剤として用いられる他、基地に
固溶して焼もどし軟化抵抗の増大により焼入れ,焼もど
し後の強度を高めてB10値にあらわれる転動疲労寿命
(B10寿命)を向上させる元素として有効である。こうし
た目的の下に添加されるSiの含有量は、0.05〜0.5mass
%、好ましくは0.15〜0.50mass%がよい。さらに、この
Siは、0.5mass%超を添加すると、高温,高負荷,繰り
返し応力負荷の下でのミクロ組織変化の遅延をもたらし
て、B50値としてあらわれる転動疲労寿命(B50寿命)を
向上させる効果がある。しかし、その含有量が2.5mass
%を超えると、効果が飽和する一方で加工性や靱性を低
下させるので、ミクロ組織変化遅延特性のより一層の向
上のためには、0.5超〜2.5mass%を添加することが有効
である。より好ましくは0.5超〜2.0mass%がよい。Si: 0.05 to 0.5 mass%, more than 0.5 to 2.5 mass% Si is used as a deoxidizing agent during the melting of steel, and is also solid-dissolved in the matrix to increase quenching and quenching due to an increase in temper softening resistance. Rolling fatigue life that appears in B 10 value by increasing the strength after returning
It is effective as an element for improving (B 10 life). The content of Si added for these purposes is 0.05 to 0.5 mass.
%, Preferably 0.15 to 0.50 mass%. Furthermore, this
When Si is added in an amount of more than 0.5 mass%, it causes a delay in microstructure change under high temperature, high load, and repeated stress load, and improves rolling fatigue life (B 50 life) that appears as a B 50 value. There is. However, its content is 2.5 mass
%, The effect is saturated while the workability and toughness are reduced. Therefore, in order to further improve the microstructure change retardation property, it is effective to add more than 0.5 to 2.5 mass%. More preferably, it is more than 0.5 to 2.0 mass%.
【0039】Mn:0.05〜2.0mass%
Mnは、鋼の溶製時に脱酸剤として作用し、鋼の低酸素化
に有効な元素である。また、鋼の焼入れ性を向上させる
ことにより基地マルテンサイトの靱性,硬度を向上さ
せ、部材表層部における一般的な転動疲労寿命(B10寿
命)の向上に有効に寄与する。こうした目的のために
は、0.05〜2.0mass%の添加があれば十分であり、好ま
しくは0.25〜2.0mass%である。Mn: 0.05 to 2.0 mass% Mn is an element that acts as a deoxidizer during the melting of steel and is effective in reducing the oxygen content of steel. Further, by improving the hardenability of steel, the toughness and hardness of the base martensite are improved, which effectively contributes to the improvement of the general rolling contact fatigue life (B 10 life) in the surface layer of the member. For this purpose, the addition of 0.05 to 2.0 mass% is sufficient, preferably 0.25 to 2.0 mass%.
【0040】Cr:0.05〜2.5mass%,2.5超〜8.0mass%
Crは、焼入れ性の向上と安定な炭化物の形成を通じて、
強度の向上ならびに耐摩耗性を向上させ、ひいては一般
的な意味での転動疲労寿命を向上させる成分である。こ
うした効果を得るためには、0.05〜2.5mass%の添加で
十分である。好ましい添加量は0.15〜2.5mass%であ
る。さらに、このCrは、繰返し応力負荷によるミクロ組
織変化を遅延せしめて、この面での転動疲労寿命(B50
寿命)を向上させるためには、2.5mass%を超える多量添
加を行う必要がある。そして、このB50寿命を向上する
ために添加するCr添加の量は、8.0mass%を超えると飽
和するのみならず、却って焼入れ時の固溶C量の低下を
招いて強度が低下する。従って、この目的のために添加
するときは、2.5超〜8.0mass%としなければならない。
好ましくは2.5超〜5.0mass%の範囲がよい。Cr: 0.05 to 2.5 mass%, more than 2.5 to 8.0 mass% Cr improves the hardenability and forms stable carbides.
It is a component that improves strength and wear resistance, and in turn, improves rolling fatigue life in a general sense. To obtain such effects, addition of 0.05 to 2.5 mass% is sufficient. The preferable addition amount is 0.15 to 2.5 mass%. Furthermore, this Cr delays the microstructural change due to cyclic stress loading, and the rolling fatigue life (B 50
In order to improve the (life), it is necessary to add a large amount exceeding 2.5 mass%. When the amount of Cr added to improve the B 50 life exceeds 8.0 mass%, not only the amount of Cr is saturated, but also the amount of solid solution C during quenching is rather decreased and the strength is reduced. Therefore, when it is added for this purpose, it should be more than 2.5 to 8.0 mass%.
The range of more than 2.5 to 5.0 mass% is preferable.
【0041】Ni:0.05〜1.0mass%,1.0超〜3.0mass%
Niは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め靱性を向上させるとともに、B10寿命を向上させる
ので、この目的のためには0.05〜1.0mass%の範囲内で
添加することとし、好ましくは0.15〜1.0mass%添加す
る。さらに、このNiは、上述したように、1.0mass%を
超えて添加した場合には、転動時のミクロ組織変化を遅
らせ、これによりB50寿命を向上させる。しかし、この
場合でも3mass%を超えて添加すると、多量(>35%)
の残留γを析出して強度の低下ならびに寸法安性を害す
ることになる他、コストアップになるため、この作用効
果を期待する場合には、1.0超〜3.0mass%の範囲内で添
加することが必要であり、好ましくは1.0超〜2.5mass%
がよい。Ni: 0.05 to 1.0 mass%, more than 1.0 to 3.0 mass% Ni enhances the hardenability and enhances the strength after quenching and tempering to improve the toughness and the B 10 life. In order to achieve this, the addition is made within the range of 0.05 to 1.0 mass%, preferably 0.15 to 1.0 mass%. Further, as described above, this Ni, when added in an amount of more than 1.0 mass%, delays the microstructure change during rolling, thereby improving the B 50 life. However, even in this case, if it is added in excess of 3 mass%, a large amount (> 35%)
In addition to precipitating the residual γ of the product, it will reduce the strength and impair the dimensional stability, and also increase the cost. Therefore, when expecting this effect, add it in the range of more than 1.0 to 3.0 mass%. Is required, preferably more than 1.0 to 2.5 mass%
Is good.
【0042】Cu:0.05〜1.0mass%
Cuは、焼入れの増大により焼入れ焼もどし後の強度を高
め、B10寿命を向上させるために添加する。この目的の
ために添加するときは、0.05〜1.0mass%の範囲で十分
であり、好ましくは0.15〜1.0mass%がよい。Cu: 0.05 to 1.0 mass% Cu is added to enhance the strength after quenching and tempering by increasing quenching and to improve the B 10 life. When added for this purpose, the range of 0.05 to 1.0 mass% is sufficient, preferably 0.15 to 1.0 mass%.
【0043】Al:0.005〜0.07mass%
Alは、鋼の溶製時の脱酸剤として用いられると同時に、
鋼中Nと結合して結晶粒を微細化して鋼の靱性向上に寄
与する。また、焼入れ焼もどし後の強度を高めることに
よる転動疲労寿命の向上にも有効に作用する。このよう
な作用のためにAlは、0.005〜0.07mass%添加すること
が有効である。好ましくは0.010〜0.07mass%がよい。Al: 0.005 to 0.07 mass% Al is used as a deoxidizing agent during the melting of steel, and at the same time,
Combines with N in the steel to refine the crystal grains and contribute to the improvement of the toughness of the steel. Further, it effectively acts to improve the rolling contact fatigue life by increasing the strength after quenching and tempering. For such an action, it is effective to add 0.005 to 0.07 mass% of Al. It is preferably 0.010 to 0.07 mass%.
【0044】B:0.0005〜0.01mass%
Bは、焼入れ性の増大により焼入れ焼もどし後の強度を
高め、B10寿命を向上させるので、0.0005mass%以上を
添加する。しかしながら、0.01mass%を超えて添加する
と加工性を劣化させるので、0.0005〜0.01mass%の範囲
に限定する。好ましくは0.0015〜0.0050mass%がよい。B: 0.0005 to 0.01 mass% B enhances the hardenability to increase the strength after quenching and tempering and improves the B 10 life, so 0.0005 mass% or more is added. However, if added in excess of 0.01 mass%, the workability deteriorates, so the content is limited to 0.0005 to 0.01 mass%. It is preferably 0.0015 to 0.0050 mass%.
【0045】N:0.0005〜0.012mass%,0.012超〜0.05
0mass%
Nは、炭窒化物形成元素と結合して結晶粒を微細化し、
基地に固溶して焼入れ焼もどし後の強度を高め、そして
B10寿命を向上させる。この目的のためには0.0005〜0.
012mass%の範囲内で添加するが、好ましくは0.0020〜
0.012mass%がよい。また、このNは、一方において0.0
12mass%を超えて添加した場合には、上述したように、
繰り返し応力によるミクロ組織変化を遅らせることによ
りB50寿命を向上させることができる。ただし、この量
が0.050mass%を超えると、加工性,靱性が低下するた
め、この目的のためには0.012超〜0.050mass%を添加す
るが、好ましくは0.012超〜0.035mass%がよい。N: 0.0005 to 0.012 mass%, more than 0.012 to 0.05
0mass% N combines with carbonitride forming elements to refine the crystal grains,
It forms a solid solution in the matrix to increase the strength after quenching and tempering and improve the B 10 life. 0.0005-0 for this purpose.
It is added within the range of 012mass%, but preferably 0.0020-
0.012 mass% is good. Also, this N is 0.0
When added in excess of 12 mass%, as described above,
By delaying the microstructural change due to repeated stress, the B 50 life can be improved. However, if this amount exceeds 0.050 mass%, the workability and toughness deteriorate, so for this purpose, more than 0.012 to 0.050 mass% is added, but more than 0.012 to 0.035 mass% is preferable.
【0046】以上、部材表層部における繰り返し応力負
荷によるミクロ組織変化を遅延させることによる転動疲
労寿命(B50寿命)を改善すると共に、強度の上昇を通じ
て部材表層部における転動疲労寿命(B10寿命)を改善す
るための主要成分(C,Mo,Sb,OおよびSi,Cr,Mn,
Ni,Cu,Al,B,N)の限定理由についてそれぞれ説明
したが、本発明ではさらに、V,Nb,W,Zr,Ta,Hfお
よびCoのうちから選ばれるいずれか1種または2種以上
を添加することにより、苛酷な使用環境(ゴミ入り,高
負荷,高温)での転動疲労寿命,即ちB50寿命を改善さ
せるようにしてもよい。As described above, the rolling fatigue life (B 50 life) is improved by delaying the microstructural change due to the repeated stress load in the surface layer of the member, and the rolling fatigue life (B 10 The main components (C, Mo, Sb, O and Si, Cr, Mn,
Ni, Cu, Al, B, N) has been explained, but in the present invention, any one or more selected from V, Nb, W, Zr, Ta, Hf and Co is further used. May be added to improve the rolling fatigue life, that is, the B 50 life in a harsh environment of use (including dust, high load, high temperature).
【0047】上記各元素の好適添加範囲と添加の目的、
上限値、下限値限定の理由につき、表2にまとめて示
す。The preferred range of addition of each element and the purpose of addition,
The reasons for limiting the upper limit and the lower limit are summarized in Table 2.
【表2】 [Table 2]
【0048】本発明においては、被削性を改善するため
に、S,Se,Te,REM,Pb,Bi,Ca,Ti,Mg,P,Sn,A
s等を添加しても、上述した本発明の目的である繰り返
し応力負荷によるミクロ組織変化による遅延特性を阻害
することはなく、容易に被削性を改善することができる
ので、必要に応じて添加してもよい。In the present invention, in order to improve machinability, S, Se, Te, REM, Pb, Bi, Ca, Ti, Mg, P, Sn, A
Even if s or the like is added, it does not impair the retardation property due to the microstructure change due to the repeated stress load which is the object of the present invention, and the machinability can be easily improved, so that it is possible as necessary. You may add.
【0049】なお、Pは、鋼の靱性ならびに転動疲労寿
命を低下させることから可能な限り低いことが望まし
く、0.025mass%以下、好ましくは0.015mass%以下に抑
える。また、Sは、Mnと結合してMnSを形成し、被削性
を向上させる元素である。しかし、多量に含有させると
転動疲労寿命を低下させることから、0.025mass%以
下、好ましくは0.015mass%以下に抑えるのがよい。It is desirable that P is as low as possible in order to reduce the toughness and rolling contact fatigue life of steel, and is kept to 0.025 mass% or less, preferably 0.015 mass% or less. Further, S is an element that combines with Mn to form MnS and improves machinability. However, if it is contained in a large amount, the rolling contact fatigue life is shortened, so it is preferable to suppress it to 0.025 mass% or less, preferably 0.015 mass% or less.
【0050】[0050]
【実施例】表3、表4に示す成分組成の鋼を溶製して鋳
造し、得られた鋼材につき1200℃で30h の拡散焼鈍を施
した後に65mmφの棒鋼に圧延した。次いで、焼ならし−
球状化焼なましの後、鋼材No.1,No.2は820℃で、他
は900℃〜950℃で焼入れ、180℃で焼もどしを行った。
さらに、ラッピング仕上げにより12mmφ×22mmならびに
60mmφ×5mmの円筒状試験片を作製した。このときの該
試験片の面粗度はいずれもRa:0.1mmとした。そして、
上記各試験片について、クリーン環境下におけるB10寿
命,4B50寿命についての測定試験を行った。このクリ
ーン環境下のB10寿命,B50寿命の試験は、図3に示す
ようなラジアルタイプの転動疲労寿命試験機を用いて、
ヘルツ最大接触応力:600kgf/mm2,繰り返し応力数約46
500cpmおよび潤滑油:#68タービン飛沫油を使うという
条件で行ったものである。なお、試験の結果は、ワイブ
ル分布に従うものとして確率紙上にまとめ、鋼材No.1
(従来鋼である SUJ 2)の平均寿命(累積破損確率:10%
および50%における、剥離発生までの総負荷回数)を1
として、その他の鋼種のものを対比して評価した。EXAMPLE Steels having the chemical compositions shown in Tables 3 and 4 were melted and cast, and the obtained steel material was subjected to diffusion annealing at 1200 ° C. for 30 hours and then rolled into a steel bar having a diameter of 65 mm. Then normalize-
After spheroidizing annealing, the steel No.1, No.2 at 820 ° C., others were subjected to tempering quenching, at 180 ° C. at 900 ° C. to 950 ° C..
Furthermore, 12mmφ × 22mm and
A cylindrical test piece of 60 mmφ × 5 mm was prepared. The surface roughness of each of the test pieces at this time was Ra: 0.1 mm. And
Each of the above test pieces was subjected to a measurement test for B 10 life and 4B 50 life under a clean environment. The B 10 life and B 50 life tests under this clean environment were carried out using a radial type rolling contact fatigue life tester as shown in FIG.
Hertz maximum contact stress: 600kgf / mm 2 , cyclic stress number about 46
500 cpm and lubricating oil: # 68 Turbine spray oil was used under the condition. The results of the test are summarized on the probability paper as being in accordance with the Weibull distribution.
Average life of SUJ 2 (conventional steel) (cumulative damage probability: 10%
And the total load frequency until peeling at 50%) is 1
Was evaluated in comparison with those of other steel types.
【0051】一方、上記各試験片についてのゴミ入り環
境の苛酷な条件下での転動寿命(B10寿命,B50寿命)
は、円盤状試験片を作製してスラスト型転動疲労試験機
を用い、ヘルツ最大接触応力:536kgf/mm2,繰り返し応
力数:1800cpmの条件で、#68タービン油中に硬さ:Hv8
50程度、平均粒子径:約100μmの鉄粉を約150ppm混入し
て行った。試験機には、図3に示すような改良を行い、
鋼球と試験片の接触部に常時鉄粉が供給されるようにし
た。On the other hand, the rolling life (B 10 life, B 50 life) of each of the above test pieces under harsh conditions in an environment containing dust.
Made a disk-shaped test piece and used a thrust-type rolling contact fatigue tester. Hertz maximum contact stress: 536 kgf / mm 2 , cyclic stress: 1800 cpm, hardness in # 68 turbine oil: Hv8
About 50 and an average particle diameter: about 100 μm of iron powder was mixed at about 150 ppm. The testing machine was improved as shown in Fig. 3,
Iron powder was constantly supplied to the contact portion between the steel ball and the test piece.
【0052】試験結果は、ワイブル分布に従うものとし
て確率紙上にプロットし、B10寿命(累積破損確率:10
%での剥離発生までの総負荷回数)ならびにB50寿命(同
50%)を求め、鋼材No.1をそれぞれ1として比較評価し
たものである。また、残留オーステナイト量は、ラッピ
ング仕上げ後の試験片をX線解析装置を使って測定した
ものである。上記の評価結果を、表3、表4、表5にま
とめて示した。The test results are plotted on probability paper as if they follow Weibull distribution, and the B 10 life (cumulative failure probability: 10
%, The total number of loads until peeling occurs, and the B 50 life (same
50%), and the steel material No. 1 was set to 1 for comparative evaluation. Further, the retained austenite amount is measured by using an X-ray analysis device on a test piece after lapping. The above evaluation results are summarized in Tables 3, 4 and 5.
【0053】[0053]
【表3】 [Table 3]
【0054】[0054]
【表4】 [Table 4]
【0055】[0055]
【表5】 [Table 5]
【0056】鋼No.2〜6は比較例として示すものであ
り、鋼中C量が本発明範囲外である鋼No.5、鋼中Mo量
が本発明範囲外である鋼No.6、鋼中O量が本発明範囲
外である鋼No.4および、鋼中残留オーステナイト量が
本発明範囲外である鋼No.2の場合、Moを含まない従来
鋼(鋼No.1)と同程度か、B10寿命,B50寿命のいずれ
か少なくとも一方が低く、軸受寿命の改善には効果がな
いことが判る。また、No.3は、Sbが本発明外範囲のも
のであるが、B10寿命,B50寿命は、従来鋼(No.1)に
比べると良好であるが、最大脱炭層の深さが0.09mmと大
きく、従来鋼(No.1)に比べても改善されていないため
に、この脱炭層除去のための処理が必要となった。これ
に対し、本発明の軸受鋼を用い、残留γ量を所定範囲内
に調整した軸受部材である鋼材No.7〜45は、クリーン
環境下での通常試験では、B10寿命が従来鋼(鋼材No.
1)に比較すると平均約3〜25倍も改善され、また、B
50寿命も4〜61倍も優れた結果を出している。さらに、
この傾向は、ゴミ入り環境下の試験でも、B10寿命にし
て従来の約2〜11倍、B50寿命にして約4〜18倍も優れ
た結果を示しており、クリーン環境下と同様に改善され
ていることが判る。さらに、最大脱炭層の深さも大きく
て約0.02mm程度と小さく、熱処理生産性にも優れている
ことが判る。すなわち、軸受部材としては、多量のMoお
よびSbを複合添加したものがゴミ入り環境下における転
がり寿命,とりわけB50寿命で示されるミクロ組織変化
を著しく遅延し、一方残留γ量を10〜35%にコントロー
ルすることによりB10寿命の著しい向上をもたらし、そ
して脱炭層の深さをも減じることから、軸受の全体的な
転動疲労寿命の向上に極めて有効で生産性の向上にも寄
与するものであることが窺える。Steel Nos. 2 to 6 are shown as comparative examples. Steel No. 5 has a C content in the steel outside the scope of the present invention, and Steel No. 6 has a Mo content in the steel outside the scope of the present invention. Steel No. 4 in which the amount of O in the steel is outside the range of the present invention and Steel No. 2 in which the amount of retained austenite in the steel is outside the range of the present invention are the same as the conventional steel containing no Mo (Steel No. 1). At least one of B 10 life and B 50 life is low, and it is understood that there is no effect in improving the bearing life. Further, No. 3 has Sb in the range outside the present invention, but B 10 life and B 50 life are better than the conventional steel (No. 1), but the maximum decarburized layer depth is Since it was as large as 0.09 mm, which was not improved compared to the conventional steel (No. 1), it was necessary to perform treatment to remove this decarburized layer. On the other hand, the steel materials No. 7 to 45, which are the bearing members in which the residual steel amount of the bearing steel of the present invention is adjusted within the predetermined range, have a B 10 life of the conventional steel (in the normal test in a clean environment). Steel material No.
Compared to 1), it is improved about 3 to 25 times on average, and B
The 50-year life is also 4 to 61 times superior. further,
This tendency shows that even in a test in a dust-containing environment, the B 10 life is about 2 to 11 times better than the conventional one, and the B 50 life is about 4 to 18 times better. You can see that it has been improved. Furthermore, it is clear that the maximum decarburized layer has a large depth of about 0.02 mm, which is excellent in heat treatment productivity. That is, as the bearing member, the one in which a large amount of Mo and Sb are added in combination significantly delays the rolling life in the environment containing dust, especially the microstructural change indicated by the B 50 life, while the residual γ amount is 10 to 35%. By controlling the temperature to B 10, the B 10 life is significantly improved, and the depth of the decarburized layer is also reduced, so it is extremely effective in improving the overall rolling contact fatigue life of the bearing and also contributes to the improvement of productivity. It can be seen that
【0057】[0057]
【発明の効果】以上説明したとおり、本発明によれば、
Mo:1.0超〜2.0mass%およびSb:0.005〜0.015mass%を
複合添加した軸受鋼を焼き入れして鋼中の残留γ量を10
〜35%の組織とすることにより、クリーン環境のみなら
ずゴミ入り環境下において高負荷,高温使用という苛酷
な条件であっても、軸受部材の表層部下における繰り返
し応力負荷に伴うミクロ組織変化の遅延をもたらし、こ
のことによってB10,B50転動疲労寿命の向上(高Mo含
有効果)を達成すると共に、さらには熱処理時の加工負
荷を軽減(Sb添加効果)して生産性を高めることができ
る。従って、従来技術の下では不可欠とされていた、部
材表層部のより一層の鋼中酸素量の低減あるいは鋼中に
存在する酸化物系非金属介在物の組成,形状,ならびに
その分布状態をコントロールするために必要となる製鋼
設備の改良あるいは建設が、本発明では不必要である。
また、本発明にかかる軸受部材の開発によって、転がり
軸受の小型化ならびに軸受使用温度のより以上の上昇が
期待できる。As described above, according to the present invention,
The residual γ content in the steel was reduced to 10 by quenching the bearing steel with a composite addition of Mo: more than 1.0 to 2.0 mass% and Sb: 0.005 to 0.015 mass%.
By setting up to 35% structure, delay of microstructure change due to repeated stress load under the surface layer of bearing member even under severe conditions such as high load and high temperature use not only in clean environment but also in environment containing dust Which improves the B 10 and B 50 rolling contact fatigue life (high Mo content effect), and also reduces the processing load during heat treatment (Sb addition effect) to improve productivity. it can. Therefore, it is indispensable under the conventional technology to further reduce the oxygen content in the steel in the surface layer of the member or control the composition, shape, and distribution state of oxide-based nonmetallic inclusions present in the steel. The improvement or construction of the steelmaking equipment required to do so is unnecessary in the present invention.
Further, the development of the bearing member according to the present invention can be expected to reduce the size of the rolling bearing and further increase the bearing operating temperature.
【図1】 (a),(b)は、繰り返し応力負荷の下に、部材
表層部下の帯域において発生するミクロ組織変化のよう
すを示す金属組織の顕微鏡写真。1A and 1B are micrographs of a metal structure showing a microstructure change occurring in a zone below a surface layer of a member under repeated stress loading.
【図2】 非金属介在物に起因する軸受寿命とミクロ組
織変化に起因する軸受寿命とに及ぼすMoおよびSb含有量
と残留γ量との影響を示す説明図。FIG. 2 is an explanatory diagram showing the effects of the Mo and Sb contents and the residual γ amount on the bearing life caused by non-metallic inclusions and the bearing life caused by microstructural changes.
【図3】 スラスト型転動疲労試験機の概略構成を示す
略線図。FIG. 3 is a schematic diagram showing a schematic configuration of a thrust type rolling fatigue tester.
フロントページの続き (72)発明者 天野 虔一 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社技術研究本部内 (56)参考文献 特開 平5−78814(JP,A) 特開 平5−306432(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 Continued Front Page (72) Inventor Shinichi Amano 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Works, Ltd. Technical Research Division (56) Reference JP-A-5-78814 (JP, A) JP-A-5 -306432 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 38/00
Claims (8)
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、残部がFeおよび不可避的不純物からなる、熱処
理生産性ならびに繰り返し応力負荷によるミクロ組織変
化の遅延特性に優れた軸受鋼。1. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, the balance consisting of Fe and unavoidable impurities, and excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress load.
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05〜2.0
mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mass%,
Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,B:0.
0005〜0.01mass%及びN:0.0005〜0.012mass%のうち
から選ばれるいずれか1種または2種以上を含み、残部
がFeおよび不可避的不純物からなる、熱処理生産性なら
びに繰り返し応力負荷によるミクロ組織変化の遅延特性
に優れた軸受鋼。2. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05 to 2.0
mass%, Cr: 0.05 to 2.5 mass%, Ni: 0.05 to 1.0 mass%,
Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%, B: 0.
0005 ~ 0.01mass% and N: 0.0005 ~ 0.012mass% any one kind or two or more kinds selected, the balance consisting of Fe and unavoidable impurities, the heat treatment productivity and microstructure change due to repeated stress load Bearing steel with excellent delay characteristics.
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.5超〜2.5mass%,Cr:2.5超〜
8.0mass%,Ni:1.0超〜3.0mass%,N:0.012超〜0.05
0mass%,V:0.05〜1.0mass%,Nb:0.05〜1.0mass
%,W:0.05〜1.0mass%,Zr:0.02〜0.5mass%,Ta:
0.02〜0.5mass%,Hf:0.02〜0.5mass%及びCo:0.05〜
1.5mass%のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなる、
熱処理生産性ならびに繰り返し応力負荷によるミクロ組
織変化の遅延特性に優れた軸受鋼。3. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, and Si: more than 0.5 to 2.5 mass%, Cr: more than 2.5
8.0mass%, Ni: more than 1.0 to 3.0mass%, N: more than 0.012 to 0.05
0mass%, V: 0.05-1.0mass%, Nb: 0.05-1.0mass
%, W: 0.05 to 1.0 mass%, Zr: 0.02 to 0.5 mass%, Ta:
0.02-0.5mass%, Hf: 0.02-0.5mass% and Co: 0.05-
Containing one or more selected from 1.5 mass%, the balance being Fe and inevitable impurities,
Bearing steel with excellent heat treatment productivity and delay characteristics for microstructural changes due to repeated stress loading.
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05〜2.0
mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mass%,
Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,B:0.
0005〜0.01mass%及びN:0.0005〜0.012mass%のうち
から選ばれるいずれか1種または2種以上を、通常環境
下での転動疲労を改善する成分として含み、さらにま
た、上記改善成分のいずれか1種以上のものが選択され
た場合はその元素を除く下記の成分、すなわち、Si:0.
5超〜2.5mass%,Cr:2.5超〜8.0mass%,Ni:1.0超〜
3.0mass%,N:0.012超〜0.050mass%,V:0.05〜1.0
mass%,Nb:0.05〜1.0mass%,W:0.05〜1.0mass%,
Zr:0.02〜0.5mass%,Ta:0.02〜0.5mass%,Hf:0.02
〜0.5mass%及びCo:0.05〜1.5mass%のうちから選ばれ
るいずれか1種または2種以上を、苛酷な環境下での転
動疲労寿命を改善する成分として含み、残部がFeおよび
不可避的不純物からなる、熱処理生産性ならびに繰り返
し応力負荷によるミクロ組織変化の遅延特性に優れた軸
受鋼。4. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05 to 2.0
mass%, Cr: 0.05 to 2.5 mass%, Ni: 0.05 to 1.0 mass%,
Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%, B: 0.
0005 ~ 0.01mass% and N: 0.0005 ~ 0.012mass% any one kind or two or more kinds selected from the above is included as a component for improving rolling fatigue in a normal environment, and When any one or more of them are selected, the following components excluding the element, that is, Si: 0.
Over 5 ~ 2.5mass%, Cr: over 2.5 ~ 8.0mass%, Ni: over 1.0 ~
3.0mass%, N: more than 0.012 to 0.050mass%, V: 0.05 to 1.0
mass%, Nb: 0.05 to 1.0 mass%, W: 0.05 to 1.0 mass%,
Zr: 0.02-0.5mass%, Ta: 0.02-0.5mass%, Hf: 0.02
~ 0.5mass% and Co: 0.05-1.5mass% selected from the group consisting of one or more selected as a component to improve rolling fatigue life under harsh environments, with the balance being Fe and inevitable Bearing steel that is made of impurities and has excellent heat treatment productivity and delay characteristics for microstructural changes due to repeated stress loading.
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、残部がFeおよび不可避的不純物からなる成分組
成を有し、かつ鋼中の残留オーステナイト量が体積比に
して10〜35%である鋼組織を有することを特徴とする、
熱処理生産性ならびに繰り返し応力負荷によるミクロ組
織変化の遅延特性に優れた軸受部材。5. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, with the balance being a component composition consisting of Fe and inevitable impurities, and the amount of retained austenite in the steel being 10 to 35 by volume ratio. % Of steel structure,
Bearing members with excellent heat treatment productivity and delay characteristics for microstructural changes due to repeated stress loading.
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05〜2.0
mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mass%,
Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,B:0.
0005〜0.01mass%及びN:0.0005〜0.012mass%のうち
から選ばれるいずれか1種または2種以上を含み、残部
がFeおよび不可避的不純物からなる成分組成を有し、か
つ鋼中の残留オーステナイト量が体積比にして10〜35%
である鋼組織を有することを特徴とする、熱処理生産性
ならびに繰り返し応力負荷によるミクロ組織変化の遅延
特性に優れた軸受部材。6. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05 to 2.0
mass%, Cr: 0.05 to 2.5 mass%, Ni: 0.05 to 1.0 mass%,
Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%, B: 0.
[0005] 0.01-mass% and N: 0.0005-0.012mass% any one kind or two or more kinds selected from, and the balance has a component composition consisting of Fe and unavoidable impurities, and retained austenite in steel 10% to 35% in volume ratio
A bearing member excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading, which is characterized by having a steel structure of
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.5超〜2.5mass%,Cr:2.5超〜
8.0mass%,Ni:1.0超〜3.0mass%,N:0.012超〜0.05
0mass%,V:0.05〜1.0mass%,Nb:0.05〜1.0mass
%,W:0.05〜1.0mass%,Zr:0.02〜0.5mass%,Ta:
0.02〜0.5mass%,Hf:0.02〜0.5mass%及びCo:0.05〜
1.5mass%のうちから選ばれるいずれか1種または2種
以上を含み、残部がFeおよび不可避的不純物からなる成
分組成を有し、かつ鋼中の残留オーステナイト量が体積
比にして10〜35%である鋼組織を有することを特徴とす
る、熱処理生産性ならびに繰り返し応力負荷によるミク
ロ組織変化の遅延特性に優れた軸受部材。7. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, and Si: more than 0.5 to 2.5 mass%, Cr: more than 2.5
8.0mass%, Ni: more than 1.0 to 3.0mass%, N: more than 0.012 to 0.05
0mass%, V: 0.05-1.0mass%, Nb: 0.05-1.0mass
%, W: 0.05 to 1.0 mass%, Zr: 0.02 to 0.5 mass%, Ta:
0.02-0.5mass%, Hf: 0.02-0.5mass% and Co: 0.05-
It contains one or two or more selected from 1.5 mass%, the balance has a composition composition of Fe and unavoidable impurities, and the amount of retained austenite in steel is 10 to 35% in volume ratio. A bearing member excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading, which is characterized by having a steel structure of
%,Sb:0.005〜0.015mass%,O:0.0020mass%以下を
含有し、さらに、Si:0.05〜0.5mass%,Mn:0.05〜2.0
mass%,Cr:0.05〜2.5mass%,Ni:0.05〜1.0mass%,
Cu:0.05〜1.0mass%,Al:0.005〜0.07mass%,B:0.
0005〜0.01mass%及びN:0.0005〜0.012mass%のうち
から選ばれるいずれか1種または2種以上を、通常環境
下での転動疲労を改善する成分として含み、さらにま
た、上記改善成分のいずれか1種以上のものが選択され
た場合はその元素を除く下記の成分、すなわち、Si:0.
5超〜2.5mass%,Cr:2.5超〜8.0mass%,Ni:1.0超〜
3.0mass%,N:0.012超〜0.050mass%,V:0.05〜1.0
mass%,Nb:0.05〜1.0mass%,W:0.05〜1.0mass%,
Zr:0.02〜0.5mass%,Ta:0.02〜0.5mass%,Hf:0.02
〜0.5mass%及びCo:0.05〜1.5mass%のうちから選ばれ
るいずれか1種または2種以上を、苛酷な環境下での転
動疲労寿命を改善する成分として含み、残部がFeおよび
不可避的不純物からなる成分組成を有し、かつ鋼中の残
留オーステナイト量が体積比にして10〜35%である鋼組
織を有することを特徴とする、熱処理生産性ならびに繰
り返し応力負荷によるミクロ組織変化の遅延特性に優れ
た軸受部材。8. C: 0.5 to 1.5 mass%, Mo: more than 1.0 to 2.0 mass
%, Sb: 0.005 to 0.015 mass%, O: 0.0020 mass% or less, Si: 0.05 to 0.5 mass%, Mn: 0.05 to 2.0
mass%, Cr: 0.05 to 2.5 mass%, Ni: 0.05 to 1.0 mass%,
Cu: 0.05 to 1.0 mass%, Al: 0.005 to 0.07 mass%, B: 0.
0005 ~ 0.01mass% and N: 0.0005 ~ 0.012mass% any one kind or two or more kinds selected from the above is included as a component for improving rolling fatigue in a normal environment, and When any one or more of them are selected, the following components excluding the element, that is, Si: 0.
Over 5 ~ 2.5mass%, Cr: over 2.5 ~ 8.0mass%, Ni: over 1.0 ~
3.0mass%, N: more than 0.012 to 0.050mass%, V: 0.05 to 1.0
mass%, Nb: 0.05 to 1.0 mass%, W: 0.05 to 1.0 mass%,
Zr: 0.02-0.5mass%, Ta: 0.02-0.5mass%, Hf: 0.02
~ 0.5mass% and Co: 0.05-1.5mass% selected from the group consisting of one or more selected as a component to improve rolling fatigue life under harsh environments, with the balance being Fe and inevitable Delay of microstructure change due to heat treatment productivity and cyclic stress loading, characterized by having a steel structure having a composition of impurities and having a residual austenite content in the steel of 10 to 35% by volume Bearing member with excellent characteristics.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13679394A JP3420331B2 (en) | 1994-06-20 | 1994-06-20 | Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13679394A JP3420331B2 (en) | 1994-06-20 | 1994-06-20 | Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH083683A JPH083683A (en) | 1996-01-09 |
JP3420331B2 true JP3420331B2 (en) | 2003-06-23 |
Family
ID=15183651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13679394A Expired - Fee Related JP3420331B2 (en) | 1994-06-20 | 1994-06-20 | Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3420331B2 (en) |
-
1994
- 1994-06-20 JP JP13679394A patent/JP3420331B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH083683A (en) | 1996-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3411086B2 (en) | Bearings with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3411088B2 (en) | Bearings with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3411387B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3420331B2 (en) | Bearing steel and bearing members excellent in heat treatment productivity and delay characteristics of microstructure change due to repeated stress loading | |
JP3411388B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3383347B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3411386B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3411389B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3411090B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3188094B2 (en) | Bearing member with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3233729B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity | |
JP3411085B2 (en) | Bearings with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3233792B2 (en) | Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity | |
JP3243372B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3188098B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JP3411087B2 (en) | Bearings with excellent microstructure change delay characteristics due to repeated stress loading | |
JP3243329B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JP3233778B2 (en) | Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load | |
JPH07316718A (en) | Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load and also in heat treatment productivity | |
JP3379785B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JPH07252595A (en) | Bearing member excellent in delaying property in change of microstructure caused by repeated stress load | |
JP3233728B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructural change due to repeated stress loading | |
JP3383346B2 (en) | Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading | |
JPH07316727A (en) | Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load as well as heat treatment productivity | |
JPH07286236A (en) | Bearing member excellent in characteristic of retarding microstructural change due to repeated stress load |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080418 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090418 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100418 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100418 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110418 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120418 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130418 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140418 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |